Stay Ahead, Stay ONMINE

Nine Pico PIO Wats with Rust (Part 2)

This is Part 2 of an exploration into the unexpected quirks of programming the Raspberry Pi Pico PIO with Micropython. If you missed Part 1, we uncovered four Wats that challenge assumptions about register count, instruction slots, the behavior of pull noblock, and smart yet cheap hardware. Now, we continue our journey toward crafting a theremin-like musical instrument — a project that reveals some of the quirks and perplexities of PIO programming. Prepare to challenge your understanding of constants in a way that brings to mind a Shakespearean tragedy. Wat 5: Inconstant constants In the world of PIO programming, constants should be reliable, steadfast, and, well, constant. But what if they’re not? This brings us to a puzzling Wat about how the set instruction in PIO works—or doesn’t—when handling larger constants. Much like Juliet doubting Romeo’s constancy, you might find yourself wondering if PIO constants will, as she says, “prove likewise variable.” The problem: Constants are not as big as they seem Imagine you’re programming an ultrasonic range finder and need to count down from 500 while waiting for the Echo signal to drop from high to low. To set up this wait time in PIO, you might naïvely try to load the constant value directly using set: ; In Rust, be sure ‘config.shift_in.direction = ShiftDirection::Left;’ set y, 15 ; Load upper 5 bits (0b01111) mov isr, y ; Transfer to ISR (clears ISR) set y, 20 ; Load lower 5 bits (0b10100) in y, 5 ; Shift in lower bits to form 500 in ISR mov y, isr ; Transfer back to y Aside: Don’t try to understand the crazy jmp operations here. We’ll discuss those next in Wat 6. But here’s the tragic twist: the set instruction in PIO is limited to constants between 0 and 31. Moreover, the star-crossed set instruction doesn’t report an error. Instead, it silently corrupts the entire PIO instruction. This produces a nonsense result. Workarounds for inconstant constants To address this limitation, consider the following approaches: Read Values and Store Them in a Register: We saw this approach in Wat 1. You can load your constant in the osr register, then transfer it to y. For example: # Read the max echo wait into OSR. pull ; same as pull block mov y, osr ; Load max echo wait into Y Shift and Combine Smaller Values: Using the isr register and the in instruction, you can build up a constant of any size. This, however, consumes time and operations from your 32-operation budget (see Part 1, Wat 2). ; In Rust, be sure ‘config.shift_in.direction = ShiftDirection::Left;’ set y, 15 ; Load upper 5 bits (0b01111) mov isr, y ; Transfer to ISR (clears ISR) set y, 20 ; Load lower 5 bits (0b10100) in y, 5 ; Shift in lower bits to form 500 in ISR mov y, isr ; Transfer back to y Slow Down the Timing: Reduce the frequency of the state machine to stretch delays over more system clock cycles. For example, lowering the state machine speed from 125 MHz to 343 kHz reduces the timeout constant 182,216 to 500.  Use Extra Delays and (Nested) Loops: All instructions support an optional delay, allowing you to add up to 31 extra cycles. (To generate even longer delays, use loops — or even nested loops.) ; Generate 10μs trigger pulse (4 cycles at 343_000Hz) set pins, 1 [3] ; Set trigger pin to high, add delay of 3 set pins, 0 ; Set trigger pin to low voltage Use the “Subtraction Trick” to Generate the Maximum 32-bit Integer: In Wat 7, we’ll explore a way to generate 4,294,967,295 (the maximum unsigned 32-bit integer) via subtraction. Much like Juliet cautioning against swearing by the inconstant moon, we’ve discovered that PIO constants are not always as steadfast as they seem. Yet, just as their story takes unexpected turns, so too does ours, moving from the inconstancy of constants to the uneven nature of conditionals. In the next Wat, we’ll explore how PIO’s handling of conditional jumps can leave you questioning its loyalty to logic. Wat 6: Conditionals through the looking-glass In most programming environments, logical conditionals feel balanced: you can test if a pin is high or low, or check registers for equality or inequality. In PIO, this symmetry breaks down. You can jump on pin high, but not pin low, and on x!=y, but not x==y. The rules are whimsical — like Humpty Dumpty in Through the Looking-Glass: “When I define a conditional, it means just what I choose it to mean — neither more nor less.” These quirks force us to rewrite our code to fit the lopsided logic, creating a gulf between how we wish the code could be written and how we must write it. The problem: Lopsided conditionals in action Consider a simple scenario: using a range finder, you want to count down from a maximum wait time (y) until the ultrasonic echo pin goes low. Intuitively, you might write the logic like this: measure_echo_loop: jmp !pin measurement_complete ; If echo voltage is low, measurement is complete jmp y– measure_echo_loop ; Continue counting down unless timeout And when processing the measurement, if we only wish to output values that differ from the previous value, we would write: measurement_complete: jmp x==y cooldown ; If measurement is the same, skip to cool down mov isr, y ; Store measurement in ISR push ; Output ISR mov x, y ; Save the measurement in X Unfortunately, PIO doesn’t let you test !pin or x==y directly. You must restructure your logic to accommodate the available conditionals, such as pin and x!=y. The solution: The way it must be Given PIO’s limitations, we adapt our logic with a two-step approach that ensures the desired behavior despite the missing conditionals: Jump on the opposite conditional to skip two instructions forward. Next, use an unconditional jump to reach the desired target. This workaround adds one extra jump (affecting the instruction limit), but the additional label is cost-free. Here is the rewritten code for counting down until the pin goes low: measure_echo_loop: jmp pin echo_active ; if echo voltage is high continue count down jmp measurement_complete ; if echo voltage is low, measurement is complete echo_active: jmp y– measure_echo_loop ; Continue counting down unless timeout And here is the code for processing the measurement such that it will only output differing values: measurement_complete: jmp x!=y send_result ; if measurement is different, then send it. jmp cooldown ; If measurement is the same, don’t send. send_result: mov isr, y ; Store measurement in ISR push ; Output ISR mov x, y ; Save the measurement in X Lessons from Humpty Dumpty’s conditionals In Through the Looking-Glass, Alice learns to navigate Humpty Dumpty’s peculiar world — just as you’ll learn to navigate PIO’s Wonderland of lopsided conditions. But as soon as you master one quirk, another reveals itself. In the next Wat, we’ll uncover a surprising behavior of jmp that, if it were an athlete, would shatter world records. In Part 1’s Wat 1 and Wat 3, we saw how jmp x– or jmp y– is often used to loop a fixed number of times by decrementing a register until it reaches 0. Straightforward enough, right? But what happens when y is 0 and we run the following instruction? jmp y– measure_echo_loop If you guessed that it does not jump to measure_echo_loop and instead falls through to the next instruction, you’re absolutely correct. But for full credit, answer this: What value does y have after the instruction? The answer: 4,294,967,295. Why? Because y is decremented after it is tested for zero. Wat!? Aside: If this doesn’t surprise you, you likely have experience with C or C++ which distinguish between pre-increment (e.g., ++x) and post-increment (e.g., x++) operations. The behavior of jmp y– is equivalent to a post-decrement, where the value is tested before being decremented. This value, 4,294,967,295, is the maximum for a 32-bit unsigned integer. It’s as if a track-and-field long jumper launches off the takeoff board but, instead of landing in the sandpit, overshoots and ends up on another continent. Aside: As foreshadowed in Wat 5, we can use this behavior intentionally to set a register to the value 4,294,967,295. Now that we’ve learned how to stick the landing with jmp, let’s see if we can avoid getting stuck by the pins that PIO reads and sets. In Dr. Seuss’s Too Many Daves, Mrs. McCave had 23 sons, all named Dave, leading to endless confusion whenever she called out their name. In PIO programming, pin and pins can refer to completely different ranges of pins depending on the context. It’s hard to know which Dave or Daves you’re talking to. The problem: Pin ranges and subranges In PIO, both pin and pins instructions depend on pin ranges defined in Rust, outside of PIO. However, individual instructions often operate on a subrange of those pin ranges. The behavior varies depending on the command: the subrange could be the first n pins of the range, all the pins, or just a specific pin given by an index. To clarify PIO’s behavior, I created the following table: This table shows how PIO interprets the terms pin and pins in different instructions, along with their associated contexts and configurations. Example: Distance program for the range finder Here’s a PIO program for measuring the distance to an object using Trigger and Echo pins. The key features of this program are: Continuous Operation: The range finder runs in a loop as fast as possible. Maximum Range Limit: Measurements are capped at a given distance, with a return value of 4,294,967,295 if no object is detected. Filtered Outputs: Only measurements that differ from their immediate predecessor are sent, reducing the output rate. Glance over the program and notice that although it is working with two pins — Trigger and Echo — throughout the program we only see pin and pins. .program distance ; X is the last value sent. Initialize it to ; u32::MAX which means ‘echo timeout’ ; (Set X to u32::MAX by subtracting 1 from 0) set x, 0 subtraction_trick: jmp x– subtraction_trick ; Read the max echo wait into OSR pull ; same as pull block ; Main loop .wrap_target ; Generate 10μs trigger pulse (4 cycles at 343_000Hz) set pins, 0b1 [3] ; Set trigger pin to high, add delay of 3 set pins, 0b0 ; Set trigger pin to low voltage ; When the trigger goes high, start counting down until it goes low wait 1 pin 0 ; Wait for echo pin to be high voltage mov y, osr ; Load max echo wait into Y measure_echo_loop: jmp pin echo_active ; if echo voltage is high continue count down jmp measurement_complete ; if echo voltage is low, measurement is complete echo_active: jmp y– measure_echo_loop ; Continue counting down unless timeout ; Y tells where the echo countdown stopped. It ; will be u32::MAX if the echo timed out. measurement_complete: jmp x!=y send_result ; if measurement is different, then sent it. jmp cooldown ; If measurement is the same, don’t send. send_result: mov isr, y ; Store measurement in ISR push ; Output ISR mov x, y ; Save the measurement in X ; Cool down period before next measurement cooldown: wait 0 pin 0 ; Wait for echo pin to be low .wrap ; Restart the measurement loop Configuring Pins To ensure the PIO program behaves as intended: set pins, 0b1 should control the Trigger pin. wait 1 pin 0 should monitor the Echo pin. jmp pin echo_active should also monitor the Echo pin. Here’s how you can configure this in Rust (followed by an explanation): let mut distance_state_machine = pio1.sm0; let trigger_pio = pio1.common.make_pio_pin(hardware.trigger); let echo_pio = pio1.common.make_pio_pin(hardware.echo); distance_state_machine.set_pin_dirs(Direction::Out, &[&trigger_pio]); distance_state_machine.set_pin_dirs(Direction::In, &[&echo_pio]); distance_state_machine.set_config(&{ let mut config = Config::default(); config.set_set_pins(&[&trigger_pio]); // For set instruction config.set_in_pins(&[&echo_pio]); // For wait instruction config.set_jmp_pin(&echo_pio); // For jmp instruction let program_with_defines = pio_file!(“examples/distance.pio”); let program = pio1.common.load_program(&program_with_defines.program); config.use_program(&program, &[]); // No side-set pins config }); The keys here are the set_set_pins, set_in_pins, and set_jmp_pin methods on the Config struct. set_in_pins: Specifies the pins for input operations, such as wait(1, pin, …). The “in” pins must be consecutive. set_set_pins: Configures the pin for set operations, like set(pins, 1). The “set” pins must also be consecutive. set_jmp_pin: Defines the single pin used in conditional jumps, such as jmp(pin, …). As described in the table, other optional inputs include: set_out_pins: Sets the consecutive pins for output operations, such as out(pins, …). use_program: Sets a) the loaded program and b) consecutive pins for sideset operations. Sideset operations allow simultaneous pin toggling during other instructions. Configuring Multiple Pins Although not required for this program, you can configure a range of pins in PIO by providing a slice of consecutive pins. For example, suppose we had two ultrasonic range finders: let trigger_a_pio = pio1.common.make_pio_pin(hardware.trigger_a); let trigger_b_pio = pio1.common.make_pio_pin(hardware.trigger_b); config.set_set_pins(&[&trigger_a_pio, &trigger_b_pio]); A single instruction can then control both pins: set pins, 0b11 [3] # Sets both trigger pins (17, 18) high, adds delay set pins, 0b00 # Sets both trigger pins low This approach lets you efficiently apply bit patterns to multiple pins simultaneously, streamlining control for applications involving multiple outputs. Aside: The Word “Set” in Programming In programming, the word “set” is notoriously overloaded with multiple meanings. In the context of PIO, “set” refers to something to which you can assign a value — such as a pin’s state. It does not mean a collection of things, as it often does in other programming contexts. When PIO refers to a collection, it usually uses the term “range” instead. This distinction is crucial for avoiding confusion as you work with PIO. Lessons from Mrs. McCave In Too Many Daves, Mrs. McCave lamented not giving her 23 Daves more distinct names. You can avoid her mistake by clearly documenting your pins with meaningful names — like Trigger and Echo — in your comments. But if you think handling these pin ranges is tricky, debugging a PIO program adds an entirely new layer of challenge. In the next Wat, we’ll dive into the kludgy debugging methods available. Let’s see just how far we can push them. I like to debug with interactive breakpoints in VS Code. I also do print debugging, where you insert temporary info statements to see what the code is doing and the values of variables. Using the Raspberry Pi Debug Probe and probe-rs, I can do both of these with regular Rust code on the Pico. With PIO programming, however, I can do neither. The fallback is push-to-print debugging. In PIO, you temporarily output integer values of interest. Then, in Rust, you use info! to print those values for inspection. For example, in the following PIO program, we temporarily add instructions to push the value of x for debugging. We also include set and out to push a constant value, such as 7, which must be between 0 and 31 inclusive. .program distance ; X is the last value sent. Initialize it to ; u32::MAX which means ‘echo timeout’ ; (Set X to u32::MAX by subtracting 1 from 0) set x, 0 subtraction_trick: jmp x– subtraction_trick ; DEBUG: See the value of x mov isr, x push ; Read the max echo wait into OSR pull ; same as pull block ; DEBUG: Send constant value set y, 7 ; Push ‘7’ so that we know we’ve reached this point mov isr, y push ; … Back in Rust, you can read and print these values to help understand what’s happening in the PIO code (full code and project): // … distance_state_machine.set_enable(true); distance_state_machine.tx().wait_push(MAX_LOOPS).await; loop { let end_loops = distance_state_machine.rx().wait_pull().await; info!(“end_loops: {}”, end_loops); } // … Outputs: INFO Hello, debug! └─ distance_debug::inner_main::{async_fn#0} @ examplesdistance_debug.rs:27 INFO end_loops: 4294967295 └─ distance_debug::inner_main::{async_fn#0} @ examplesdistance_debug.rs:57 INFO end_loops: 7 └─ distance_debug::inner_main::{async_fn#0} @ examplesdistance_debug.rs:57 When push-to-print debugging isn’t enough, you can turn to hardware tools. I bought my first oscilloscope (a FNIRSI DSO152, for $37). With it, I was able to confirm the Echo signal was working. The Trigger signal, however, was too fast for this inexpensive oscilloscope to capture clearly. Using these methods — especially push-to-print debugging — you can trace the flow of your PIO program, even without a traditional debugger. Aside: In C/C++ (and potentially Rust), you can get closer to a full debugging experience for PIO, for example, by using the piodebug project. That concludes the nine Wats, but let’s bring everything together in a bonus Wat. Now that all the components are ready, it’s time to combine them into a working theremin-like musical instrument. We need a Rust monitor program. This program starts both PIO state machines — one for measuring distance and the other for generating tones. It then waits for a new distance measurement, maps that distance to a tone, and sends the corresponding tone frequency to the tone-playing state machine. If the distance is out of range, it stops the tone. Rust’s Place: At the heart of this system is a function that maps distances (from 0 to 50 cm) to tones (approximately B2 to F5). This function is simple to write in Rust, leveraging Rust’s floating-point math and exponential operations. Implementing this in PIO would be virtually impossible due to its limited instruction set and lack of floating-point support. Here’s the core monitor program to run the theremin (full file and project): sound_state_machine.set_enable(true); distance_state_machine.set_enable(true); distance_state_machine.tx().wait_push(MAX_LOOPS).await; loop { let end_loops = distance_state_machine.rx().wait_pull().await; match loop_difference_to_distance_cm(end_loops) { None = > { info!(“Distance: out of range”); sound_state_machine.tx().wait_push(0).await; } Some(distance_cm) = > { let tone_frequency = distance_to_tone_frequency(distance_cm); let half_period = sound_state_machine_frequency / tone_frequency as u32 / 2; info!(“Distance: {} cm, tone: {} Hz”, distance_cm, tone_frequency); sound_state_machine.tx().push(half_period); // non-blocking push Timer::after(Duration::from_millis(50)).await; } } } Using two PIO state machines alongside a Rust monitor program lets you literally run three programs at once. This setup is convenient on its own and is essential when strict timing or very high-frequency I/O operations are required. Aside: Alternatively, Rust Embassy’s async tasks let you implement cooperative multitasking directly on a single main processor. You code in Rust rather than a mixture of Rust and PIO. Although Embassy tasks don’t literally run in parallel, they switch quickly enough to handle applications like a theremin. Here’s a snippet from theremin_no_pio.rs showing a similar core loop: loop { match distance.measure().await { None = > { info!(“Distance: out of range”); sound.rest().await; } Some(distance_cm) = > { let tone_frequency = distance_to_tone_frequency(distance_cm); info!(“Distance: {} cm, tone: {} Hz”, distance_cm, tone_frequency); sound.play(tone_frequency).await; Timer::after(Duration::from_millis(50)).await; } } } See our recent article on Rust Embassy programming for more details. Now that we’ve assembled all the components, let’s watch the video again of me “playing” the musical instrument. On the monitor screen, you can see the debugging prints displaying the distance measurements and the corresponding tones. This visual connection highlights how the system responds in real time. [embedded content] Conclusion PIO programming on the Raspberry Pi Pico is a captivating blend of simplicity and complexity, offering unparalleled hardware control while demanding a shift in mindset for developers accustomed to higher-level programming. Through the nine Wats we’ve explored, PIO has both surprised us with its limitations and impressed us with its raw efficiency. While we’ve covered significant ground — managing state machines, pin assignments, timing intricacies, and debugging — there’s still much more you can learn as needed: DMA, IRQ, side-set pins, differences between PIO on the Pico 1 and Pico 2, autopush and autopull, FIFO join, and more. Recommended Resources At its core, PIO’s quirks reflect a design philosophy that prioritizes low-level hardware control with minimal overhead. By embracing these characteristics, PIO will not only meet your project’s demands but also open doors to new possibilities in embedded systems programming. Please follow Carl on Towards Data Science and on @carlkadie.bsky.social. I write on scientific programming in Rust and Python, machine learning, and statistics. I tend to write about one article per month.

This is Part 2 of an exploration into the unexpected quirks of programming the Raspberry Pi Pico PIO with Micropython. If you missed Part 1, we uncovered four Wats that challenge assumptions about register count, instruction slots, the behavior of pull noblock, and smart yet cheap hardware.

Now, we continue our journey toward crafting a theremin-like musical instrument — a project that reveals some of the quirks and perplexities of PIO programming. Prepare to challenge your understanding of constants in a way that brings to mind a Shakespearean tragedy.

Wat 5: Inconstant constants

In the world of PIO programming, constants should be reliable, steadfast, and, well, constant. But what if they’re not? This brings us to a puzzling Wat about how the set instruction in PIO works—or doesn’t—when handling larger constants.

Much like Juliet doubting Romeo’s constancy, you might find yourself wondering if PIO constants will, as she says, “prove likewise variable.”

The problem: Constants are not as big as they seem

Imagine you’re programming an ultrasonic range finder and need to count down from 500 while waiting for the Echo signal to drop from high to low. To set up this wait time in PIO, you might naïvely try to load the constant value directly using set:

; In Rust, be sure 'config.shift_in.direction = ShiftDirection::Left;'
set y, 15       ; Load upper 5 bits (0b01111)
mov isr, y      ; Transfer to ISR (clears ISR)
set y, 20       ; Load lower 5 bits (0b10100)
in y, 5         ; Shift in lower bits to form 500 in ISR
mov y, isr      ; Transfer back to y

Aside: Don’t try to understand the crazy jmp operations here. We’ll discuss those next in Wat 6.

But here’s the tragic twist: the set instruction in PIO is limited to constants between 0 and 31. Moreover, the star-crossed set instruction doesn’t report an error. Instead, it silently corrupts the entire PIO instruction. This produces a nonsense result.

Workarounds for inconstant constants

To address this limitation, consider the following approaches:

  • Read Values and Store Them in a Register: We saw this approach in Wat 1. You can load your constant in the osr register, then transfer it to y. For example:
# Read the max echo wait into OSR.
pull                    ; same as pull block
mov y, osr              ; Load max echo wait into Y
  • Shift and Combine Smaller Values: Using the isr register and the in instruction, you can build up a constant of any size. This, however, consumes time and operations from your 32-operation budget (see Part 1, Wat 2).
; In Rust, be sure 'config.shift_in.direction = ShiftDirection::Left;'

set y, 15       ; Load upper 5 bits (0b01111)
mov isr, y      ; Transfer to ISR (clears ISR)
set y, 20       ; Load lower 5 bits (0b10100)
in y, 5         ; Shift in lower bits to form 500 in ISR
mov y, isr      ; Transfer back to y
  • Slow Down the Timing: Reduce the frequency of the state machine to stretch delays over more system clock cycles. For example, lowering the state machine speed from 125 MHz to 343 kHz reduces the timeout constant 182,216 to 500
  • Use Extra Delays and (Nested) Loops: All instructions support an optional delay, allowing you to add up to 31 extra cycles. (To generate even longer delays, use loops — or even nested loops.)
; Generate 10μs trigger pulse (4 cycles at 343_000Hz)
set pins, 1 [3]       ; Set trigger pin to high, add delay of 3
set pins, 0           ; Set trigger pin to low voltage
  • Use the “Subtraction Trick” to Generate the Maximum 32-bit Integer: In Wat 7, we’ll explore a way to generate 4,294,967,295 (the maximum unsigned 32-bit integer) via subtraction.

Much like Juliet cautioning against swearing by the inconstant moon, we’ve discovered that PIO constants are not always as steadfast as they seem. Yet, just as their story takes unexpected turns, so too does ours, moving from the inconstancy of constants to the uneven nature of conditionals. In the next Wat, we’ll explore how PIO’s handling of conditional jumps can leave you questioning its loyalty to logic.

Wat 6: Conditionals through the looking-glass

In most programming environments, logical conditionals feel balanced: you can test if a pin is high or low, or check registers for equality or inequality. In PIO, this symmetry breaks down. You can jump on pin high, but not pin low, and on x!=y, but not x==y. The rules are whimsical — like Humpty Dumpty in Through the Looking-Glass: “When I define a conditional, it means just what I choose it to mean — neither more nor less.”

These quirks force us to rewrite our code to fit the lopsided logic, creating a gulf between how we wish the code could be written and how we must write it.

The problem: Lopsided conditionals in action

Consider a simple scenario: using a range finder, you want to count down from a maximum wait time (y) until the ultrasonic echo pin goes low. Intuitively, you might write the logic like this:

measure_echo_loop:
 jmp !pin measurement_complete   ; If echo voltage is low, measurement is complete
 jmp y-- measure_echo_loop       ; Continue counting down unless timeout

And when processing the measurement, if we only wish to output values that differ from the previous value, we would write:

measurement_complete:
 jmp x==y cooldown             ; If measurement is the same, skip to cool down
 mov isr, y                    ; Store measurement in ISR
 push                          ; Output ISR
 mov x, y                      ; Save the measurement in X

Unfortunately, PIO doesn’t let you test !pin or x==y directly. You must restructure your logic to accommodate the available conditionals, such as pin and x!=y.

The solution: The way it must be

Given PIO’s limitations, we adapt our logic with a two-step approach that ensures the desired behavior despite the missing conditionals:

  • Jump on the opposite conditional to skip two instructions forward.
  • Next, use an unconditional jump to reach the desired target.

This workaround adds one extra jump (affecting the instruction limit), but the additional label is cost-free.

Here is the rewritten code for counting down until the pin goes low:

measure_echo_loop:
   jmp pin echo_active     ; if echo voltage is high continue count down
   jmp measurement_complete ; if echo voltage is low, measurement is complete
echo_active:
   jmp y-- measure_echo_loop ; Continue counting down unless timeout

And here is the code for processing the measurement such that it will only output differing values:

measurement_complete:
   jmp x!=y send_result    ; if measurement is different, then send it.
   jmp cooldown            ; If measurement is the same, don't send.

send_result:
   mov isr, y              ; Store measurement in ISR
   push                    ; Output ISR
   mov x, y               ; Save the measurement in X

Lessons from Humpty Dumpty’s conditionals

In Through the Looking-Glass, Alice learns to navigate Humpty Dumpty’s peculiar world — just as you’ll learn to navigate PIO’s Wonderland of lopsided conditions.

But as soon as you master one quirk, another reveals itself. In the next Wat, we’ll uncover a surprising behavior of jmp that, if it were an athlete, would shatter world records.

In Part 1’s Wat 1 and Wat 3, we saw how jmp x-- or jmp y-- is often used to loop a fixed number of times by decrementing a register until it reaches 0. Straightforward enough, right? But what happens when y is 0 and we run the following instruction?

jmp y-- measure_echo_loop

If you guessed that it does not jump to measure_echo_loop and instead falls through to the next instruction, you’re absolutely correct. But for full credit, answer this: What value does y have after the instruction?

The answer: 4,294,967,295. Why? Because y is decremented after it is tested for zero. Wat!?

Aside: If this doesn’t surprise you, you likely have experience with C or C++ which distinguish between pre-increment (e.g., ++x) and post-increment (e.g., x++) operations. The behavior of jmp y-- is equivalent to a post-decrement, where the value is tested before being decremented.

This value, 4,294,967,295, is the maximum for a 32-bit unsigned integer. It’s as if a track-and-field long jumper launches off the takeoff board but, instead of landing in the sandpit, overshoots and ends up on another continent.

Aside: As foreshadowed in Wat 5, we can use this behavior intentionally to set a register to the value 4,294,967,295.

Now that we’ve learned how to stick the landing with jmp, let’s see if we can avoid getting stuck by the pins that PIO reads and sets.

In Dr. Seuss’s Too Many Daves, Mrs. McCave had 23 sons, all named Dave, leading to endless confusion whenever she called out their name. In PIO programming, pin and pins can refer to completely different ranges of pins depending on the context. It’s hard to know which Dave or Daves you’re talking to.

The problem: Pin ranges and subranges

In PIO, both pin and pins instructions depend on pin ranges defined in Rust, outside of PIO. However, individual instructions often operate on a subrange of those pin ranges. The behavior varies depending on the command: the subrange could be the first n pins of the range, all the pins, or just a specific pin given by an index. To clarify PIO’s behavior, I created the following table:

This table shows how PIO interprets the terms pin and pins in different instructions, along with their associated contexts and configurations.

Example: Distance program for the range finder

Here’s a PIO program for measuring the distance to an object using Trigger and Echo pins. The key features of this program are:

  • Continuous Operation: The range finder runs in a loop as fast as possible.
  • Maximum Range Limit: Measurements are capped at a given distance, with a return value of 4,294,967,295 if no object is detected.
  • Filtered Outputs: Only measurements that differ from their immediate predecessor are sent, reducing the output rate.

Glance over the program and notice that although it is working with two pins — Trigger and Echo — throughout the program we only see pin and pins.

.program distance

; X is the last value sent. Initialize it to
; u32::MAX which means 'echo timeout'
; (Set X to u32::MAX by subtracting 1 from 0)
   set x, 0
subtraction_trick:
   jmp x-- subtraction_trick

; Read the max echo wait into OSR
   pull                         ; same as pull block

; Main loop
.wrap_target
   ; Generate 10μs trigger pulse (4 cycles at 343_000Hz)
   set pins, 0b1 [3]       ; Set trigger pin to high, add delay of 3
   set pins, 0b0           ; Set trigger pin to low voltage

   ; When the trigger goes high, start counting down until it goes low
   wait 1 pin 0            ; Wait for echo pin to be high voltage
   mov y, osr              ; Load max echo wait into Y

measure_echo_loop:
   jmp pin echo_active     ; if echo voltage is high continue count down
   jmp measurement_complete ; if echo voltage is low, measurement is complete
echo_active:
   jmp y-- measure_echo_loop ; Continue counting down unless timeout

; Y tells where the echo countdown stopped. It
; will be u32::MAX if the echo timed out.
measurement_complete:
   jmp x!=y send_result    ; if measurement is different, then sent it.
   jmp cooldown            ; If measurement is the same, don't send.

send_result:
   mov isr, y              ; Store measurement in ISR
   push                    ; Output ISR
   mov x, y               ; Save the measurement in X

; Cool down period before next measurement
cooldown:
   wait 0 pin 0           ; Wait for echo pin to be low
.wrap                      ; Restart the measurement loop

Configuring Pins

To ensure the PIO program behaves as intended:

  • set pins, 0b1 should control the Trigger pin.
  • wait 1 pin 0 should monitor the Echo pin.
  • jmp pin echo_active should also monitor the Echo pin.

Here’s how you can configure this in Rust (followed by an explanation):

let mut distance_state_machine = pio1.sm0;
let trigger_pio = pio1.common.make_pio_pin(hardware.trigger);
let echo_pio = pio1.common.make_pio_pin(hardware.echo);
distance_state_machine.set_pin_dirs(Direction::Out, &[&trigger_pio]);
distance_state_machine.set_pin_dirs(Direction::In, &[&echo_pio]);
distance_state_machine.set_config(&{
   let mut config = Config::default();
   config.set_set_pins(&[&trigger_pio]); // For set instruction
   config.set_in_pins(&[&echo_pio]); // For wait instruction
   config.set_jmp_pin(&echo_pio); // For jmp instruction
   let program_with_defines = pio_file!("examples/distance.pio");
   let program = pio1.common.load_program(&program_with_defines.program);
   config.use_program(&program, &[]); // No side-set pins
   config
});

The keys here are the set_set_pins, set_in_pins, and set_jmp_pin methods on the Config struct.

  • set_in_pins: Specifies the pins for input operations, such as wait(1, pin, …). The “in” pins must be consecutive.
  • set_set_pins: Configures the pin for set operations, like set(pins, 1). The “set” pins must also be consecutive.
  • set_jmp_pin: Defines the single pin used in conditional jumps, such as jmp(pin, ...).

As described in the table, other optional inputs include:

  • set_out_pins: Sets the consecutive pins for output operations, such as out(pins, …).
  • use_program: Sets a) the loaded program and b) consecutive pins for sideset operations. Sideset operations allow simultaneous pin toggling during other instructions.

Configuring Multiple Pins

Although not required for this program, you can configure a range of pins in PIO by providing a slice of consecutive pins. For example, suppose we had two ultrasonic range finders:

let trigger_a_pio = pio1.common.make_pio_pin(hardware.trigger_a);
let trigger_b_pio = pio1.common.make_pio_pin(hardware.trigger_b);
config.set_set_pins(&[&trigger_a_pio, &trigger_b_pio]);

A single instruction can then control both pins:

set pins, 0b11 [3]  # Sets both trigger pins (17, 18) high, adds delay
set pins, 0b00      # Sets both trigger pins low

This approach lets you efficiently apply bit patterns to multiple pins simultaneously, streamlining control for applications involving multiple outputs.

Aside: The Word “Set” in Programming

In programming, the word “set” is notoriously overloaded with multiple meanings. In the context of PIO, “set” refers to something to which you can assign a value — such as a pin’s state. It does not mean a collection of things, as it often does in other programming contexts. When PIO refers to a collection, it usually uses the term “range” instead. This distinction is crucial for avoiding confusion as you work with PIO.

Lessons from Mrs. McCave

In Too Many Daves, Mrs. McCave lamented not giving her 23 Daves more distinct names. You can avoid her mistake by clearly documenting your pins with meaningful names — like Trigger and Echo — in your comments.

But if you think handling these pin ranges is tricky, debugging a PIO program adds an entirely new layer of challenge. In the next Wat, we’ll dive into the kludgy debugging methods available. Let’s see just how far we can push them.

I like to debug with interactive breakpoints in VS Code. I also do print debugging, where you insert temporary info statements to see what the code is doing and the values of variables. Using the Raspberry Pi Debug Probe and probe-rs, I can do both of these with regular Rust code on the Pico.

With PIO programming, however, I can do neither.

The fallback is push-to-print debugging. In PIO, you temporarily output integer values of interest. Then, in Rust, you use info! to print those values for inspection.

For example, in the following PIO program, we temporarily add instructions to push the value of x for debugging. We also include set and out to push a constant value, such as 7, which must be between 0 and 31 inclusive.

.program distance

; X is the last value sent. Initialize it to
; u32::MAX which means 'echo timeout'
; (Set X to u32::MAX by subtracting 1 from 0)
   set x, 0
subtraction_trick:
   jmp x-- subtraction_trick

; DEBUG: See the value of x
   mov isr, x
   push

; Read the max echo wait into OSR
   pull                         ; same as pull block

; DEBUG: Send constant value
   set y, 7           ; Push '7' so that we know we've reached this point
   mov isr, y
   push
; ...

Back in Rust, you can read and print these values to help understand what’s happening in the PIO code (full code and project):

  // ...
   distance_state_machine.set_enable(true);
   distance_state_machine.tx().wait_push(MAX_LOOPS).await;
   loop {
       let end_loops = distance_state_machine.rx().wait_pull().await;
       info!("end_loops: {}", end_loops);
   }
  // ...

Outputs:

INFO  Hello, debug!
└─ distance_debug::inner_main::{async_fn#0} @ examplesdistance_debug.rs:27
INFO  end_loops: 4294967295
└─ distance_debug::inner_main::{async_fn#0} @ examplesdistance_debug.rs:57
INFO  end_loops: 7
└─ distance_debug::inner_main::{async_fn#0} @ examplesdistance_debug.rs:57

When push-to-print debugging isn’t enough, you can turn to hardware tools. I bought my first oscilloscope (a FNIRSI DSO152, for $37). With it, I was able to confirm the Echo signal was working. The Trigger signal, however, was too fast for this inexpensive oscilloscope to capture clearly.

Using these methods — especially push-to-print debugging — you can trace the flow of your PIO program, even without a traditional debugger.

Aside: In C/C++ (and potentially Rust), you can get closer to a full debugging experience for PIO, for example, by using the piodebug project.

That concludes the nine Wats, but let’s bring everything together in a bonus Wat.

Now that all the components are ready, it’s time to combine them into a working theremin-like musical instrument. We need a Rust monitor program. This program starts both PIO state machines — one for measuring distance and the other for generating tones. It then waits for a new distance measurement, maps that distance to a tone, and sends the corresponding tone frequency to the tone-playing state machine. If the distance is out of range, it stops the tone.

Rust’s Place: At the heart of this system is a function that maps distances (from 0 to 50 cm) to tones (approximately B2 to F5). This function is simple to write in Rust, leveraging Rust’s floating-point math and exponential operations. Implementing this in PIO would be virtually impossible due to its limited instruction set and lack of floating-point support.

Here’s the core monitor program to run the theremin (full file and project):

sound_state_machine.set_enable(true);
distance_state_machine.set_enable(true);
distance_state_machine.tx().wait_push(MAX_LOOPS).await;
loop {
   let end_loops = distance_state_machine.rx().wait_pull().await;
   match loop_difference_to_distance_cm(end_loops) {
       None => {
           info!("Distance: out of range");
           sound_state_machine.tx().wait_push(0).await;
       }
       Some(distance_cm) => {
           let tone_frequency = distance_to_tone_frequency(distance_cm);
           let half_period = sound_state_machine_frequency / tone_frequency as u32 / 2;
           info!("Distance: {} cm, tone: {} Hz", distance_cm, tone_frequency);
           sound_state_machine.tx().push(half_period); // non-blocking push
           Timer::after(Duration::from_millis(50)).await;
       }
   }
}

Using two PIO state machines alongside a Rust monitor program lets you literally run three programs at once. This setup is convenient on its own and is essential when strict timing or very high-frequency I/O operations are required.

Aside: Alternatively, Rust Embassy’s async tasks let you implement cooperative multitasking directly on a single main processor. You code in Rust rather than a mixture of Rust and PIO. Although Embassy tasks don’t literally run in parallel, they switch quickly enough to handle applications like a theremin. Here’s a snippet from theremin_no_pio.rs showing a similar core loop:

loop {
       match distance.measure().await {
           None => {
               info!("Distance: out of range");
               sound.rest().await;
           }
           Some(distance_cm) => {
               let tone_frequency = distance_to_tone_frequency(distance_cm);
               info!("Distance: {} cm, tone: {} Hz", distance_cm, tone_frequency);
               sound.play(tone_frequency).await;
               Timer::after(Duration::from_millis(50)).await;
           }
       }
   }

See our recent article on Rust Embassy programming for more details.

Now that we’ve assembled all the components, let’s watch the video again of me “playing” the musical instrument. On the monitor screen, you can see the debugging prints displaying the distance measurements and the corresponding tones. This visual connection highlights how the system responds in real time.

Conclusion

PIO programming on the Raspberry Pi Pico is a captivating blend of simplicity and complexity, offering unparalleled hardware control while demanding a shift in mindset for developers accustomed to higher-level programming. Through the nine Wats we’ve explored, PIO has both surprised us with its limitations and impressed us with its raw efficiency.

While we’ve covered significant ground — managing state machines, pin assignments, timing intricacies, and debugging — there’s still much more you can learn as needed: DMA, IRQ, side-set pins, differences between PIO on the Pico 1 and Pico 2, autopush and autopull, FIFO join, and more.

Recommended Resources

At its core, PIO’s quirks reflect a design philosophy that prioritizes low-level hardware control with minimal overhead. By embracing these characteristics, PIO will not only meet your project’s demands but also open doors to new possibilities in embedded systems programming.

Please follow Carl on Towards Data Science and on @carlkadie.bsky.social. I write on scientific programming in Rust and Python, machine learning, and statistics. I tend to write about one article per month.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

VMware (quietly) brings back its free ESXi hypervisor

By many accounts, Broadcom’s handling of the VMware acquisition was clumsy and caused many enterprises to reevaluate their relationship with the vendor The move to subscription models was tilted in favor of larger customers and longer, three-year licenses. Because the string of bad publicity and VMware’s competitors pounced, offering migration

Read More »

CoreWeave offers cloud-based Grace Blackwell GPUs for AI training

Cloud services provider CoreWeave has announced it is offering Nvidia’s GB200 NVL72 systems, otherwise known as “Grace Blackwell,” to customers looking to do intensive AI training. CoreWeave said its portfolio of cloud services are optimized for the GB200 NVL72, including CoreWeave’s Kubernetes Service, Slurm on Kubernetes (SUNK), Mission Control, and

Read More »

Kyndryl launches private cloud services for enterprise AI deployments

Kyndryl’s AI Private Cloud environment includes services and capabilities around containerization, data science tools, and microservices to deploy and manage AI applications on the private cloud. The service supports AI data foundations and MLOps/LLMOps services, letting customers manage their AI data pipelines and machine learning operation, Kyndryl stated. These tools facilitate

Read More »

US Energy Expands Carbon Capture Assets With New Acquisition

U.S. Energy Corporation strengthened its industrial gas and carbon capture platform in Montana by acquiring a privately held company for $0.2 million. With the acquisition, U.S. Energy secured approximately 2,300 net acres with carbon dioxide (CO2) rights that are highly contiguous to its existing position across Montana’s Kevin Dome structure. Additionally, the acquisition includes an active Class II injection well to sequester CO2 captured from U.S. Energy’s upcoming industrial gas processing facility, the company said in a media release. The permitted well advances the company’s carbon capture, utilization, and storage (CCUS) initiatives within its industrial gas development platform, U.S. Energy said. The Class II injection well is a key part of U.S. Energy’s plan to store CO2 from its upcoming gas processing facility. The well has active permits from the U.S. Environmental Protection Agency (EPA) under the Safe Drinking Water Act’s Underground Injection Control Program (UIC), ensuring compliance with regulations for safe CO2 storage, the company said. U.S. Energy added that the acquisition adds CCUS-ready infrastructure and supports its strategy to develop low-emission gas operations while establishing itself as a U.S. supplier of clean helium and other essential gases. “This acquisition marks a meaningful milestone forward in our efforts to integrate carbon sequestration into our industrial gas platform” Ryan Smith, Chief Executive Officer of U.S. Energy, said. “The addition of permitted injection infrastructure and strategic acreage strengthens our position across the Kevin Dome and accelerates our ability to deliver clean, domestically sourced helium while sequestering CO₂ at scale. We are committed to executing a responsible growth strategy that aligns with global demand for lower-carbon energy solutions”. The acquisition enhances U.S. Energy’s control over a contiguous acreage block in the Kevin Dome, a geological formation recognized for its helium-rich and CO₂-dominated gas systems. The company plans to present a Monitoring, Reporting,

Read More »

Carney, Poilievre Scrap Over Energy and Housing in Canada Debate

Liberal Party Leader Mark Carney argued that he represents change from Justin Trudeau’s nine years in power as he fended off attacks from his rivals during the final televised debate of Canada’s election. “Look, I’m a very different person from Justin Trudeau,” Carney said in response to comments from Conservative Leader Pierre Poilievre, his chief opponent in the election campaign that concludes April 28. Carney’s Liberals lead by several percentage points in most polls, marking a stunning reversal from the start of this year, when Trudeau was still the party’s leader and Poilievre’s Conservatives were ahead by more than 20 percentage points in some surveys. Trudeau’s resignation and US President Donald Trump’s economic and sovereignty threats against Canada have upended the race. Poilievre sought to remind Canadians of their complaints about the Liberal government, while Carney tried to distance himself from Trudeau’s record.  Poilievre argued that Carney was an adviser to Trudeau’s Liberals during a time when energy projects were stymied and the cost of living soared — especially housing prices. Carney, 60, responded that he has been prime minister for just a month, and pointed to moves he made to reverse some of Trudeau’s policies, such as scrapping the carbon tax on consumer fuels. As for inflation, Carney noted that it was well under control when he was governor of the Bank of Canada.  “I know it may be difficult, Mr. Poilievre,” Carney told him. “You spent years running against Justin Trudeau and the carbon tax and they’re both gone.” “Well, you’re doing a good impersonation of him, with the same policies,” Poilievre shot back. Trudeau announced in January that he was stepping down as prime minister and Carney was sworn in as his replacement on March 14. He triggered an election nine days later. “The question you have

Read More »

Gunvor, Adnoc Shortlisted for Shell South Africa Unit

Abu Dhabi National Oil Co. and Swiss commodities trading firm Gunvor are among companies that have been shortlisted to buy Shell Plc’s downstream assets in South Africa, according to people familiar with the matter.  The two companies are strong contenders for the assets that are valued at about $1 billion, said the people, who asked not to be identified as the information is private. Previous potential bidders including Trafigura’s Puma Energy, Sasol Ltd. and South Africa’s PetroSA are no longer in the running, two of the people said.  “While Adnoc Distribution regularly reviews opportunities for domestic and international growth, we don’t comment on market speculation,” Adnoc’s fuel retail unit said. Shell, Gunvor, Trafigura and Sasol declined to comment. PetroSA did not immediately reply to a request for comment. Shell has been looking to offload the assets, which include about 600 fuel stations and trading operations in Africa’s biggest economy, as part of a broader strategy to focus on regions and businesses that offer higher returns. The assets are attractive for trading firms since they ensure demand for fuels that they can then supply. Adnoc and other Middle East oil companies such as Saudi Aramco have been expanding their trading arms as they look to break into new markets.   Shell is working with adviser Rothschild & Co and a winner could be announced in the coming weeks, the people said. Talks are continuing and there’s no certainty there will be a final sale, they said. Saudi Aramco has also been involved in the process, but it wasn’t immediately clear if it was still in the running, the people said. Aramco declined to comment. A deal would give the buyer about 10% of South Africa’s fuel stations. The market in the country has changed significantly in recent years with trader Glencore Plc acquiring

Read More »

ICYMI: Trump Administration Adds Two DOE Critical Minerals Projects to Federal Permitting Dashboard

ICYMI— The Federal Permitting Improvement Steering Council (Permitting Council) today announced increased transparency and accountability for the federal permitting of two Department of Energy (DOE) critical minerals projects. The projects — Michigan Potash and the South West Arkansas Project — are part of the first wave of critical minerals projects added to the Permitting Dashboard in response to President Trump’s Executive Order, Immediate Measures to Increase American Mineral Production. Once completed, both DOE-supported projects will help meet President Trump’s commitment to bolster domestic production of America’s vast mineral resources, support more American jobs and reduce reliance on foreign supply chains. The Michigan Potash Project, supported by DOE’s Loan Programs Office, is projected to produce the largest American-based source of high-quality potash fertilizer and food-grade salt using mechanical vapor recompression technology and geothermal heat from subsurface brine. Once completed, this project will reduce reliance on potash imports, support American farmers, improve food security, and create 200 permanent and 400 construction sector jobs. DOE announced a conditional commitment for a loan guarantee of up to $1.26 billion to Michigan Potash in January 2025. The South West Arkansas Project, under DOE’s Office of Manufacturing and Energy Supply Chains, supports the construction of a world-class Direct Lithium Extraction facility that will produce battery-grade lithium carbonate from lithium-rich brine in North America. Once completed, this project will help secure the domestic lithium supply chain and is expected to create roughly 100 direct long-term jobs and 300 construction sector jobs. These additions to the Federal Permitting Dashboard reflect the Administration’s commitment to strengthen domestic supply chains for critical minerals and materials, reduce dependence on foreign sources, and advance President Trump’s bold agenda for American energy dominance through a more secure, affordable, and reliable U.S. energy system. The Department looks forward to working with federal partners, project

Read More »

EVOL: Courting wood, grid zombies and Easter wake loss

This week, Wood provided updates on Sidara’s proposed £250 million takeover, NESO declared war on zombies in the grid queue, and Equinor and Orsted warned of the impacts of wake loss. Aberdeen-headquartered Wood received a non-binding takeover bid from Dubai-based rival Sidara worth £250m, a significant drop-off compared to last year’s £1.5 billion bid. Our reporters discuss this, Wood’s shares being suspended and the impacts of yet another Scottish company being bought over by international competitors. Next up, the UK’s National Energy System Operator (NESO) unveiled plans to get rid of ‘zombies’ from the grid queue in a collaboration with regulator Ofgem. This could see up to 360GW of projects on the current queue have their contracts downgraded because they are not ready. What does this mean, and is it a result of too much dithering from the UK? Finally, European energy giants Equinor and Orsted have said offshore wind revenues could take a £363m hit due to other projects getting in the way of their turbines. Although those in the Tour de France peloton don’t mind the frontrunner taking the brunt of the wind resistance, turbine operators do. Does the industry need to share its survey results so that everyone can benefit from the North Sea breeze? Listen to Energy Voice Out Loud on your podcast platform of choice.

Read More »

Trump administration moves to curb energy regulation; BLM nominee stands down

The Trump administration issued two policy directives Apr. 10 to curb energy regulations, the same day the president’s choice to lead the Bureau of Land Management (BLM) pulled her nomination.  Kathleen Sgamma, former head of Western Energy Alliance (WEA), an oil and gas trade association, withdrew her nomination after a memo was leaked on X that included critical remarks following the Jan. 6, 2021, attack on the US Capitol. In the memo to WEA executives, Sgamma said she was “disgusted” by Trump “spreading misinformation” on Jan. 6 and “dishonoring the vote of the people.” The Senate was to conduct a confirmation hearing Apr. 10.  Prior to her withdrawal, industry had praised the choice of Sgamma to head the agency that determines the rules for oil and gas operations on federal lands.  Deregulation On the deregulation front, the Interior Department said it would no longer require BLM to prepare environmental impact statements (EIS) for about 3,244 oil and gas leases in seven western states. The move comes in response to two executive orders by President Donald Trump in January to increase US oil and gas production “by reducing regulatory barriers for oil and gas companies” and expediting development permits, Interior noted (OGJ Online, Jan. 21, 2025). Under the policy, BLM would no longer have to prepare an EIS for oil and gas leasing decisions on about 3.5 million acres across Colorado, New Mexico, North Dakota, South Dakota, Utah, and Wyoming.  BLM currently manages over 23 million acres of federal land leased for oil and gas development.  The agency said it will look for ways to comply with the National Environmental Policy Act (NEPA), a 1970 law that requires federal agencies to assess the potential environmental impacts of their proposed actions.  In recent years, courts have increasingly delayed lease sales and projects,

Read More »

The Rise of AI Factories: Transforming Intelligence at Scale

AI Factories Redefine Infrastructure The architecture of AI factories reflects a paradigm shift that mirrors the evolution of the industrial age itself—from manual processes to automation, and now to autonomous intelligence. Nvidia’s framing of these systems as “factories” isn’t just branding; it’s a conceptual leap that positions AI infrastructure as the new production line. GPUs are the engines, data is the raw material, and the output isn’t a physical product, but predictive power at unprecedented scale. In this vision, compute capacity becomes a strategic asset, and the ability to iterate faster on AI models becomes a competitive differentiator, not just a technical milestone. This evolution also introduces a new calculus for data center investment. The cost-per-token of inference—how efficiently a system can produce usable AI output—emerges as a critical KPI, replacing traditional metrics like PUE or rack density as primary indicators of performance. That changes the game for developers, operators, and regulators alike. Just as cloud computing shifted the industry’s center of gravity over the past decade, the rise of AI factories is likely to redraw the map again—favoring locations with not only robust power and cooling, but with access to clean energy, proximity to data-rich ecosystems, and incentives that align with national digital strategies. The Economics of AI: Scaling Laws and Compute Demand At the heart of the AI factory model is a requirement for a deep understanding of the scaling laws that govern AI economics. Initially, the emphasis in AI revolved around pretraining large models, requiring massive amounts of compute, expert labor, and curated data. Over five years, pretraining compute needs have increased by a factor of 50 million. However, once a foundational model is trained, the downstream potential multiplies exponentially, while the compute required to utilize a fully trained model for standard inference is significantly less than

Read More »

Google’s AI-Powered Grid Revolution: How Data Centers Are Reshaping the U.S. Power Landscape

Google Unveils Groundbreaking AI Partnership with PJM and Tapestry to Reinvent the U.S. Power Grid In a move that underscores the growing intersection between digital infrastructure and energy resilience, Google has announced a major new initiative to modernize the U.S. electric grid using artificial intelligence. The company is partnering with PJM Interconnection—the largest grid operator in North America—and Tapestry, an Alphabet moonshot backed by Google Cloud and DeepMind, to develop AI tools aimed at transforming how new power sources are brought online. The initiative, detailed in a blog post by Alphabet and Google President Ruth Porat, represents one of Google’s most ambitious energy collaborations to date. It seeks to address mounting challenges facing grid operators, particularly the explosive backlog of energy generation projects that await interconnection in a power system unprepared for 21st-century demands. “This is our biggest step yet to use AI for building a stronger, more resilient electricity system,” Porat wrote. Tapping AI to Tackle an Interconnection Crisis The timing is critical. The U.S. energy grid is facing a historic inflection point. According to the Lawrence Berkeley National Laboratory, more than 2,600 gigawatts (GW) of generation and storage projects were waiting in interconnection queues at the end of 2023—more than double the total installed capacity of the entire U.S. grid. Meanwhile, the Federal Energy Regulatory Commission (FERC) has revised its five-year demand forecast, now projecting U.S. peak load to rise by 128 GW before 2030—more than triple the previous estimate. Grid operators like PJM are straining to process a surge in interconnection requests, which have skyrocketed from a few dozen to thousands annually. This wave of applications has exposed the limits of legacy systems and planning tools. Enter AI. Tapestry’s role is to develop and deploy AI models that can intelligently manage and streamline the complex process of

Read More »

Podcast: Vaire Computing Bets on Reversible Logic for ‘Near Zero Energy’ AI Data Centers

The AI revolution is charging ahead—but powering it shouldn’t cost us the planet. That tension lies at the heart of Vaire Computing’s bold proposition: rethinking the very logic that underpins silicon to make chips radically more energy efficient. Speaking on the Data Center Frontier Show podcast, Vaire CEO Rodolfo Rossini laid out a compelling case for why the next era of compute won’t just be about scaling transistors—but reinventing the way they work. “Moore’s Law is coming to an end, at least for classical CMOS,” Rossini said. “There are a number of potential architectures out there—quantum and photonics are the most well known. Our bet is that the future will look a lot like existing CMOS, but the logic will look very, very, very different.” That bet is reversible computing—a largely untapped architecture that promises major gains in energy efficiency by recovering energy lost during computation. A Forgotten Frontier Unlike conventional chips that discard energy with each logic operation, reversible chips can theoretically recycle that energy. The concept, Rossini explained, isn’t new—but it’s long been overlooked. “The tech is really old. I mean really old,” Rossini said. “The seeds of this technology were actually at the very beginning of the industrial revolution.” Drawing on the work of 19th-century mechanical engineers like Sadi Carnot and later insights from John von Neumann, the theoretical underpinnings of reversible computing stretch back decades. A pivotal 1961 paper formally connected reversibility to energy efficiency in computing. But progress stalled—until now. “Nothing really happened until a team of MIT students built the first chip in the 1990s,” Rossini noted. “But they were trying to build a CPU, which is a world of pain. There’s a reason why I don’t think there’s been a startup trying to build CPUs for a very, very long time.” AI, the

Read More »

Pennsylvania’s Homer City Energy Campus: A Brownfield Transformed for Data Center Innovation

The redevelopment of the Homer City Generating Station in Pennsylvania represents an important transformation from a decommissioned coal-fired power plant to a state-of-the-art natural gas-powered data center campus, showing the creative reuse of a large brownfield site and the creation of what can be a significant location in power generation and the digital future. The redevelopment will address the growing energy demands of artificial intelligence and high-performance computing technologies, while also contributing to Pennsylvania’s digital advancement, in an area not known as a hotbed of technical prowess. Brownfield Development Established in 1969, the original generating station was a 2-gigawatt coal-fired power plant located near Homer City, Indiana County, Pennsylvania. The site was formerly the largest coal-burning power plant in the state, and known for its 1,217-foot chimney, the tallest in the United States. In April 2023, the owners announced its closure due to competition from cheaper natural gas and the rising costs of environmental compliance. The plant was officially decommissioned on July 1, 2023, and its demolition, including the iconic chimney, was completed by March 22, 2025. ​ The redevelopment project, led by Homer City Redevelopment (HCR) in partnership with Kiewit Power Constructors Co., plans to transform the 3,200-acre site into the Homer City Energy Campus, via construction of a 4.5-gigawatt natural gas-fired power plant, making it the largest of its kind in the United States. Gas Turbines This plant will utilize seven high-efficiency, hydrogen-enabled 7HA.02 gas turbines supplied by GE Vernova, with deliveries expected to begin in 2026. ​The GE Vernova gas turbine has been seeing significant interest in the power generation market as new power plants have been moving to the planning stage. The GE Vernova 7HA.02 is a high-efficiency, hydrogen-enabled gas turbine designed for advanced power generation applications. As part of GE Vernova’s HA product line, it

Read More »

Dell data center modernization gear targets AI, HPC workloads

The update starts with new PowerEdge R470, R570, R670 and R770 servers featuring Intel Xeon 6 with P-cores processors in single- and dual-socket configurations designed to handle high-performance computing, virtualization, analytics and artificial intelligence inferencing. Dell said they save up to half of the energy costs of previous server generations while supporting up to 50% more cores per processors and 67% better performance. With the R770, up to 80% of space can be saved and a 42U rack. They feature the Dell Modular Hardware System architecture, which is based on Open Compute Project standards. The controller system also received a significant update, with improvements to Dell OpenManage and Integrated Dell Remote Access Controller providing real-time monitoring, while the Dell PowerEdge RAID Controller for PCIe Gen 5 hardware reduces write latency up to 33-fold.

Read More »

Intel sells off majority stake in its FPGA business

Altera will continue offering field-programmable gate array (FPGA) products across a wide range of use cases, including automotive, communications, data centers, embedded systems, industrial, and aerospace.  “People were a bit surprised at Intel’s sale of the majority stake in Altera, but they shouldn’t have been. Lip-Bu indicated that shoring up Intel’s balance sheet was important,” said Jim McGregor, chief analyst with Tirias Research. The Altera has been in the works for a while and is a relic of past mistakes by Intel to try to acquire its way into AI, whether it was through FPGAs or other accelerators like Habana or Nervana, note Anshel Sag, principal analyst with Moor Insight and Research. “Ultimately, the 50% haircut on the valuation of Altera is unfortunate, but again is a demonstration of Intel’s past mistakes. I do believe that finishing the process of spinning it out does give Intel back some capital and narrows the company’s focus,” he said. So where did it go wrong? It wasn’t with FPGAs because AMD is making a good run of it with its Xilinx acquisition. The fault, analysts say, lies with Intel, which has a terrible track record when it comes to acquisitions. “Altera could have been a great asset to Intel, just as Xilinx has become a valuable asset to AMD. However, like most of its acquisitions, Intel did not manage Altera well,” said McGregor.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »