Stay Ahead, Stay ONMINE

The dream of offshore rocket launches is finally blasting off

Want to send something to space? Get in line. The demand for rides off Earth is skyrocketing, pushing even the busiest spaceports, like Florida’s Kennedy Space Center, to their operational limits. Orbital launches worldwide have more than doubled over the past four years, from about 100 to 250 annually. That number is projected to spiral further up this decade, fueled by an epic growth spurt in the commercial space sector. To relieve the congestion, some mission planners are looking to the ocean as the next big gateway to space. China has sent more than a dozen space missions from ocean platforms since 2019, most recently in January 2025. Italy’s space program has announced it will reopen its ocean launchpad off the coast of Kenya, while German space insiders envision an offshore spaceport in the North Sea. In the US, the idea of sea launches has attracted attention from heavyweights like SpaceX and inspired a new startup called the Spaceport Company.  Launching rockets from offshore platforms like barges or oil rigs has a number of advantages. For one thing, it dramatically expands potential locations to lift off from, especially along the equator (this provides rockets with a natural speed boost because, thanks to geometry, the equator moves faster than the poles). At the same time, it is potentially safer and more environmentally friendly, placing launches further from population centers and delicate ecosystems.  Ocean launches have taken place on and off for decades. But the renewed interest in offshore spaceports raises a host of questions about the unique regulatory, geopolitical, and environmental trade-offs of sea-based launches. It also offers a glimpse of new technologies and industries, enabled by a potentially limitless launch capacity, that could profoundly reshape our lives. “The best way to build a future where we have dozens, hundreds, or maybe thousands of spaceports is to build them at sea,” says Tom Marotta, CEO and founder of the Spaceport Company, which is working to establish offshore launch hubs. “It’s very hard to find a thousand acres on the coast over and over again to build spaceports. It’s very easy to build the same ship over and over again.” The saga of sea launches The vision of oceanic spaceports is almost as old as rocketry itself. The first large rocket to take off from sea was a V2, the notorious missile developed by Germany in World War II and subsequently adopted by the United States, which the US Navy launched from the aircraft carrier USS Midway south of Bermuda on September 6, 1947.  As it turned out, the inaugural flight was a bit of a mixed bag. Neal Casey, an 18-year-old technician stationed on the Midway, later recalled how the missile tilted dangerously starboard and headed toward  the vessel’s own command center, known as the island. “I had no problem tracking the rocket,” said Casey, according to the USS Midway Museum. “It almost hit the island.” Despite this brush with disaster, the test was considered a success because it proved that launching rockets from sea platforms was technically feasible. That revelation enabled the proliferation of missile-armed vessels, like warships or submarines, that have prowled the sea ever since. Of course, missiles are designed to hit targets on Earth, not venture into space. But in the early 1960s Robert Truax, an American rocketry engineer, began pursuing a spectacular vision: the Sea Dragon.  Standing nearly 500 feet tall, it would have been by far the biggest rocket in history, towering over the Apollo Program’s Saturn V or SpaceX’s Starship. No launchpad on land could withstand the force of its liftoff. A rocket this gargantuan could only be launched from a submerged position beneath the sea, rising out of the water like a breaching whale and leaving whirlpools swirling in its wake. Truax proposed this incredible idea in 1963 while he was working at the rocket and missile manufacturer Aerojet General. He was even able to test a few small prototypes, including the Sea Bee, which was fired from under the waters of San Francisco Bay. Though the Sea Dragon never became a reality, the concept captured the imaginations of space dreamers for decades; most recently, it was depicted bursting from the ocean in the Apple+ series For All Mankind.   Truax was eerily prescient about many future trends in spaceflight, and indeed, various governments and private entities have developed offshore launch platforms to take advantage of the flexibility offered by the seas. “The most wanted launching sites are close to the equator,” says Gerasimos Rodotheatos, an assistant professor of international law and security at the American University in the Emirates who has researched sea-based launches. “Many countries there are hard to deal with because of political instability or because they don’t have the infrastructure. But if you’re using a platform or a vessel, it’s easier to select your location.” Another major advantage is safety. “You’re far away from cities,” Rodotheatos adds. “You’re far away from land. You’re minimizing the risk of any accidents or any failures.” For these reasons, rockets have intermittently lifted off from sea for nearly 60 years, beginning with Italy’s Luigi Broglio Malindi Space Center, a retrofitted oil rig off the coast of Kenya that launched orbital missions from the 1960s to the 1980s and may soon reopen after a nearly 40-year hiatus.  Sea Launch, a multinational company founded in 1995, launched dozens of missions into orbit from the LP Odyssey, another repurposed drilling rig. The company might still be in business if Russia had not annexed Crimea in 2014, a move that prompted the venture—a partnership between Russia, Ukraine, the United States, and Norway—to shutter later the same year.  The saga of Sea Launch proved that offshore launches could be commercially profitable, but it also exposed gray areas in international marine and space law. For instance, while Sea Launch was a venture between four spacefaring nations, it registered its rig and vessels to Liberia, which has been interpreted as a flag of convenience. Such strategies could present the opportunity for companies or other entities to evade certain labor laws, tax obligations, and environmental regulations.   “Some states are very strict on the nationality and transparency of ownership, and other states less strict,” says Alla Pozdnakova, a professor of law at the University of Oslo’s Scandinavian Institute for Maritime Law, who has researched sea-based launches. “For now, it seems that it hasn’t been really that problematic because the United States, for example, would require that if you’re a US citizen or a US company, then you have to apply for a license from the US space authorities, regardless of where you want to launch.” But if the US imposes strict oversight on launches, other nations might apply different standards to licensing agreements with launch providers. “I can imagine that some unauthorized projects may become possible simply because they are on the seas and there is no real authority—by contrast to land-based space launches—to supervise those kinds of launches,” Pozdnakova says. Boeing, which managed Sea Launch, was fined $10 million in 1998 by the US Department of State for allegedly sharing information about American defense technology with its foreign partners in violation of the Arms Export Control Act. In addition to the legal and national security risks posed by Sea Launch, Pacific Island nations raised concerns to the United Nations in 1999 that the company’s offshore rockets could damage the environment by, for instance, creating oil slicks from unused fuel in discarded boosters.  The complex issues that offshore spaceports raise for international law, environmental protection, and launch access have never been more relevant. SpaceX, which is famous for pioneering offshore rocket landings, has also flirted with sea-based launches. The company went so far as to purchase two oil rigs for $3.5 million apiece in 2020. They were renamed Deimos and Phobos after the two moons of Mars. “SpaceX is building floating, superheavy-class spaceports for Mars, moon & hypersonic travel around Earth,” SpaceX CEO Elon Musk posted on Twitter (when it was still Twitter) in 2020.  SpaceX eventually abandoned this project and sold the rigs, though Gwynne Shotwell, its president and COO, said in 2023 that sea-based launches were likely to be part of the company’s future. SpaceX did not respond to a request for comment.  The company might need to move launch operations offshore if it wants to carry through on its aspirations for Starship, which is the most powerful rocket ever developed and the keystone of SpaceX’s future plans to send humans to the moon and Mars. “We have designed Starship to be as much like aircraft operations as we possibly can get it,” she said at a conference in 2023, according to SpaceNews. “We want to talk about dozens of launches a day, if not hundreds of launches a day.”  The environmental impact of launching hundreds of rockets a day, either from sea or land, is not known. While offshore launches pose fewer direct risks to local environments than land launches, very little is understood about the risks that rocket emissions and chemical pollution pose to the climate and human health at current levels, much less exponentially higher ones.  “It’s hard to deny that launching or emitting anything further from people is usually better,” says Sebastian Eastham, the senior lecturer in sustainable aviation at Imperial College London, who studies aerospace emissions and their environmental impacts. “But when we say that we’re concerned about the emissions, it is incomplete to say that we’re not launching near people, so people aren’t going to be affected.” “I really hope that we find out that the impacts are small,” he continues. “But because you have this very rapid growth in launch emissions, you can’t sample now and say that this is representative of what it’s going to be like in five years. We’re nowhere near a steady state.” In other words, rocket launches have been largely overlooked as a source of greenhouse-gas emissions and air pollution, simply because they have been too rare to be considered a major contributor. As space missions ramp up around the world, experts must aim to constrain the impact on climate change, the ozone layer, and pollution from spent parts that burn up in the atmosphere.  The McDonald’s of spaceports Offshore launches are almost routine in China, where companies like Galactic Energy, Orienspace, and the China Aerospace Science and Technology Corporation have expanded orbital liftoffs from barges. (None of these companies responded to a request for comment.)  But at the moment, sea-based launches are limited to small rockets that can deploy payloads of a few thousand pounds to orbit. No ocean spaceport is currently equipped to handle the world’s most powerful rockets, like SpaceX’s Falcon Heavy, which can deliver more than 140,000 pounds to orbit. There are also currently no public plans to invest in sea-based infrastructure for heavy-lift rockets, but that may change if smaller offshore spaceports prove to be reliable and affordable options. “All the activities now are based on off-the-shelf technologies,” Rodotheatos says, meaning facilities like oil rigs or barges. “If one company makes an investment to design and implement a floating platform from zero, specifically fitted for that purpose, I expect to see a big change.”  Tom Marotta founded the Spaceport Company in 2022 with a similar long-term vision in mind. After working both for the space company Astra and on the regulatory side at the Federal Aviation Administration’s Office of Commercial Space Transportation, Marotta observed what he calls a “spaceport bottleneck” that had to be addressed to keep pace with the demands of the commercial space sector.   To that end, the Spaceport Company procured a former US Navy training vessel, named the Once in a Lifetime after the Talking Heads song, as its first launchpad. The company is currently serving customers for suborbital space missions and missile tests, but its broader vision is to establish a network of scalable orbital spaceports across the ocean. “We want to be the McDonald’s of spaceports, and build a model that can be repeated and copied-and-pasted all around the world,” Marotta says. Marotta sees boundless applications for such a network. It could expand launch capacity without threatening coastal ecosystems or provoking pushback from local communities. It could serve as a reliable backup option for busy spaceports on land. It could give nations that normally don’t have access to spaceflight an affordable option for their own launch services.  “Many nations want their own sovereign orbital launch capability, but they don’t want to spend a billion dollars to build a launchpad that might only be used once or twice,” Marotta says. “We see an opportunity there to basically give them a launchpad on demand.” Marotta also has another dream in mind: ocean platforms could help to enable point-to-point rocket travel, capable of transporting cargo and passengers anywhere on Earth in under 90 minutes. “You’re going to need dedicated and exclusive use of rockets off the coasts of major cities to serve that point-to-point rocket travel concept,” Marotta says. “This is science fiction right now, but I would not be surprised if in the next five years we see [organizations], particularly the military, experimenting with point-to-point rocket cargo.”  Offshore launches currently represent a small tile in the global space mosaic, but they could dramatically change our lives in the coming decades. What that future might look like, with all of its risks and benefits, depends on the choices that companies, governments, and the public make right now. Becky Ferreira is a science reporter based in Ithaca, NY. She writes the weekly Abstract column for 404 Media and is the author of the upcoming book First Contact, about the search for alien life.

Want to send something to space? Get in line. The demand for rides off Earth is skyrocketing, pushing even the busiest spaceports, like Florida’s Kennedy Space Center, to their operational limits. Orbital launches worldwide have more than doubled over the past four years, from about 100 to 250 annually. That number is projected to spiral further up this decade, fueled by an epic growth spurt in the commercial space sector.

To relieve the congestion, some mission planners are looking to the ocean as the next big gateway to space. China has sent more than a dozen space missions from ocean platforms since 2019, most recently in January 2025. Italy’s space program has announced it will reopen its ocean launchpad off the coast of Kenya, while German space insiders envision an offshore spaceport in the North Sea. In the US, the idea of sea launches has attracted attention from heavyweights like SpaceX and inspired a new startup called the Spaceport Company

Launching rockets from offshore platforms like barges or oil rigs has a number of advantages. For one thing, it dramatically expands potential locations to lift off from, especially along the equator (this provides rockets with a natural speed boost because, thanks to geometry, the equator moves faster than the poles). At the same time, it is potentially safer and more environmentally friendly, placing launches further from population centers and delicate ecosystems. 

Ocean launches have taken place on and off for decades. But the renewed interest in offshore spaceports raises a host of questions about the unique regulatory, geopolitical, and environmental trade-offs of sea-based launches. It also offers a glimpse of new technologies and industries, enabled by a potentially limitless launch capacity, that could profoundly reshape our lives.

“The best way to build a future where we have dozens, hundreds, or maybe thousands of spaceports is to build them at sea,” says Tom Marotta, CEO and founder of the Spaceport Company, which is working to establish offshore launch hubs. “It’s very hard to find a thousand acres on the coast over and over again to build spaceports. It’s very easy to build the same ship over and over again.”

The saga of sea launches

The vision of oceanic spaceports is almost as old as rocketry itself. The first large rocket to take off from sea was a V2, the notorious missile developed by Germany in World War II and subsequently adopted by the United States, which the US Navy launched from the aircraft carrier USS Midway south of Bermuda on September 6, 1947. 

As it turned out, the inaugural flight was a bit of a mixed bag. Neal Casey, an 18-year-old technician stationed on the Midway, later recalled how the missile tilted dangerously starboard and headed toward  the vessel’s own command center, known as the island.

“I had no problem tracking the rocket,” said Casey, according to the USS Midway Museum. “It almost hit the island.”

Despite this brush with disaster, the test was considered a success because it proved that launching rockets from sea platforms was technically feasible. That revelation enabled the proliferation of missile-armed vessels, like warships or submarines, that have prowled the sea ever since.

Of course, missiles are designed to hit targets on Earth, not venture into space. But in the early 1960s Robert Truax, an American rocketry engineer, began pursuing a spectacular vision: the Sea Dragon. 

Standing nearly 500 feet tall, it would have been by far the biggest rocket in history, towering over the Apollo Program’s Saturn V or SpaceX’s Starship. No launchpad on land could withstand the force of its liftoff. A rocket this gargantuan could only be launched from a submerged position beneath the sea, rising out of the water like a breaching whale and leaving whirlpools swirling in its wake.

Truax proposed this incredible idea in 1963 while he was working at the rocket and missile manufacturer Aerojet General. He was even able to test a few small prototypes, including the Sea Bee, which was fired from under the waters of San Francisco Bay. Though the Sea Dragon never became a reality, the concept captured the imaginations of space dreamers for decades; most recently, it was depicted bursting from the ocean in the Apple+ series For All Mankind.  

Truax was eerily prescient about many future trends in spaceflight, and indeed, various governments and private entities have developed offshore launch platforms to take advantage of the flexibility offered by the seas.

“The most wanted launching sites are close to the equator,” says Gerasimos Rodotheatos, an assistant professor of international law and security at the American University in the Emirates who has researched sea-based launches. “Many countries there are hard to deal with because of political instability or because they don’t have the infrastructure. But if you’re using a platform or a vessel, it’s easier to select your location.”

Another major advantage is safety. “You’re far away from cities,” Rodotheatos adds. “You’re far away from land. You’re minimizing the risk of any accidents or any failures.”

For these reasons, rockets have intermittently lifted off from sea for nearly 60 years, beginning with Italy’s Luigi Broglio Malindi Space Center, a retrofitted oil rig off the coast of Kenya that launched orbital missions from the 1960s to the 1980s and may soon reopen after a nearly 40-year hiatus. 

Sea Launch, a multinational company founded in 1995, launched dozens of missions into orbit from the LP Odyssey, another repurposed drilling rig. The company might still be in business if Russia had not annexed Crimea in 2014, a move that prompted the venture—a partnership between Russia, Ukraine, the United States, and Norway—to shutter later the same year. 

The saga of Sea Launch proved that offshore launches could be commercially profitable, but it also exposed gray areas in international marine and space law. For instance, while Sea Launch was a venture between four spacefaring nations, it registered its rig and vessels to Liberia, which has been interpreted as a flag of convenience. Such strategies could present the opportunity for companies or other entities to evade certain labor laws, tax obligations, and environmental regulations.  

“Some states are very strict on the nationality and transparency of ownership, and other states less strict,” says Alla Pozdnakova, a professor of law at the University of Oslo’s Scandinavian Institute for Maritime Law, who has researched sea-based launches. “For now, it seems that it hasn’t been really that problematic because the United States, for example, would require that if you’re a US citizen or a US company, then you have to apply for a license from the US space authorities, regardless of where you want to launch.”

But if the US imposes strict oversight on launches, other nations might apply different standards to licensing agreements with launch providers. “I can imagine that some unauthorized projects may become possible simply because they are on the seas and there is no real authority—by contrast to land-based space launches—to supervise those kinds of launches,” Pozdnakova says.

Boeing, which managed Sea Launch, was fined $10 million in 1998 by the US Department of State for allegedly sharing information about American defense technology with its foreign partners in violation of the Arms Export Control Act. In addition to the legal and national security risks posed by Sea Launch, Pacific Island nations raised concerns to the United Nations in 1999 that the company’s offshore rockets could damage the environment by, for instance, creating oil slicks from unused fuel in discarded boosters. 

The complex issues that offshore spaceports raise for international law, environmental protection, and launch access have never been more relevant. SpaceX, which is famous for pioneering offshore rocket landings, has also flirted with sea-based launches. The company went so far as to purchase two oil rigs for $3.5 million apiece in 2020. They were renamed Deimos and Phobos after the two moons of Mars.

“SpaceX is building floating, superheavy-class spaceports for Mars, moon & hypersonic travel around Earth,” SpaceX CEO Elon Musk posted on Twitter (when it was still Twitter) in 2020. 

SpaceX eventually abandoned this project and sold the rigs, though Gwynne Shotwell, its president and COO, said in 2023 that sea-based launches were likely to be part of the company’s future. SpaceX did not respond to a request for comment. 

The company might need to move launch operations offshore if it wants to carry through on its aspirations for Starship, which is the most powerful rocket ever developed and the keystone of SpaceX’s future plans to send humans to the moon and Mars. “We have designed Starship to be as much like aircraft operations as we possibly can get it,” she said at a conference in 2023, according to SpaceNews. “We want to talk about dozens of launches a day, if not hundreds of launches a day.” 

The environmental impact of launching hundreds of rockets a day, either from sea or land, is not known. While offshore launches pose fewer direct risks to local environments than land launches, very little is understood about the risks that rocket emissions and chemical pollution pose to the climate and human health at current levels, much less exponentially higher ones. 

“It’s hard to deny that launching or emitting anything further from people is usually better,” says Sebastian Eastham, the senior lecturer in sustainable aviation at Imperial College London, who studies aerospace emissions and their environmental impacts. “But when we say that we’re concerned about the emissions, it is incomplete to say that we’re not launching near people, so people aren’t going to be affected.”

“I really hope that we find out that the impacts are small,” he continues. “But because you have this very rapid growth in launch emissions, you can’t sample now and say that this is representative of what it’s going to be like in five years. We’re nowhere near a steady state.”

In other words, rocket launches have been largely overlooked as a source of greenhouse-gas emissions and air pollution, simply because they have been too rare to be considered a major contributor. As space missions ramp up around the world, experts must aim to constrain the impact on climate change, the ozone layer, and pollution from spent parts that burn up in the atmosphere

The McDonald’s of spaceports

Offshore launches are almost routine in China, where companies like Galactic Energy, Orienspace, and the China Aerospace Science and Technology Corporation have expanded orbital liftoffs from barges. (None of these companies responded to a request for comment.) 

But at the moment, sea-based launches are limited to small rockets that can deploy payloads of a few thousand pounds to orbit. No ocean spaceport is currently equipped to handle the world’s most powerful rockets, like SpaceX’s Falcon Heavy, which can deliver more than 140,000 pounds to orbit. There are also currently no public plans to invest in sea-based infrastructure for heavy-lift rockets, but that may change if smaller offshore spaceports prove to be reliable and affordable options.

“All the activities now are based on off-the-shelf technologies,” Rodotheatos says, meaning facilities like oil rigs or barges. “If one company makes an investment to design and implement a floating platform from zero, specifically fitted for that purpose, I expect to see a big change.” 

Tom Marotta founded the Spaceport Company in 2022 with a similar long-term vision in mind. After working both for the space company Astra and on the regulatory side at the Federal Aviation Administration’s Office of Commercial Space Transportation, Marotta observed what he calls a “spaceport bottleneck” that had to be addressed to keep pace with the demands of the commercial space sector.  

To that end, the Spaceport Company procured a former US Navy training vessel, named the Once in a Lifetime after the Talking Heads song, as its first launchpad. The company is currently serving customers for suborbital space missions and missile tests, but its broader vision is to establish a network of scalable orbital spaceports across the ocean.

“We want to be the McDonald’s of spaceports, and build a model that can be repeated and copied-and-pasted all around the world,” Marotta says.

Marotta sees boundless applications for such a network. It could expand launch capacity without threatening coastal ecosystems or provoking pushback from local communities. It could serve as a reliable backup option for busy spaceports on land. It could give nations that normally don’t have access to spaceflight an affordable option for their own launch services. 

“Many nations want their own sovereign orbital launch capability, but they don’t want to spend a billion dollars to build a launchpad that might only be used once or twice,” Marotta says. “We see an opportunity there to basically give them a launchpad on demand.”

Marotta also has another dream in mind: ocean platforms could help to enable point-to-point rocket travel, capable of transporting cargo and passengers anywhere on Earth in under 90 minutes.

“You’re going to need dedicated and exclusive use of rockets off the coasts of major cities to serve that point-to-point rocket travel concept,” Marotta says. “This is science fiction right now, but I would not be surprised if in the next five years we see [organizations], particularly the military, experimenting with point-to-point rocket cargo.” 

Offshore launches currently represent a small tile in the global space mosaic, but they could dramatically change our lives in the coming decades. What that future might look like, with all of its risks and benefits, depends on the choices that companies, governments, and the public make right now.

Becky Ferreira is a science reporter based in Ithaca, NY. She writes the weekly Abstract column for 404 Media and is the author of the upcoming book First Contact, about the search for alien life.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

EPA to end environmental justice programs, monitoring tools

Dive Brief: The Trump administration announced Wednesday it will shut down all environmental justice offices and officially end other EJ-related initiatives, a move that will impact how waste and recycling industries measure and track their environmental impact on neighboring communities. The closures include the EPA’s Office of Environmental Justice and

Read More »

Intel under Tan: What enterprise IT buyers need to know

Intel’s discrete GPU ambitions — especially in enterprise AI — have often appeared reactive rather than part of a clear strategic vision. The company entered the market late, facing Nvidia’s dominant CUDA ecosystem and AMD’s aggressive push into AI GPUs. “Tan’s background suggests he is unlikely to double down on

Read More »

SUSE expands AI tools to control workloads, LLM usage

“And every few weeks we’ll continue to add to the library,” Puri says. SUSE also announced a partnership with Infosys today. The system integrator has the Topaz AI platform, which includes a set of services and solutions to help enterprises build and deploy AI applications. SUSE is also integrating the

Read More »

D-Wave uses quantum to solve real-world problem

D-Wave published its results today, peer-reviewed in the journal Science. The classical supercomputer that D-Wave benchmarked against was the Frontier supercomputer at the Department of Energy’s Oak Ridge National Laboratory. It was, until recently, the most powerful supercomputer in the world but moved to second place in November. Two different

Read More »

Crude Edges Higher After Seven Weeks of Declines

Oil snapped a seven-week losing streak as US equity markets rebounded and peace talks between Russia and Ukraine stalled, damping expectations that Moscow’s crude will return to the market soon. West Texas Intermediate rose almost 1% to settle above $67 a barrel, supported by a weaker dollar and an advance in US equities. Brent climbed to settle below $71. Russian President Vladimir Putin said Ukrainian troops in the Kursk region should lay down their arms, and Ukraine pushed back on the request, raising doubts about how soon a ceasefire could be achieved. US crude eked out a 0.2% gain for the week, barely skirting an eighth straight weekly decline that would have been its longest such losing streak since 2015. US President Donald Trump’s salvos against the country’s major trading partners have weighed on crude prices since mid-January, raising the prospect of sputtering economic growth and falling oil consumption. Long-term inflation expectations jumped by the most since 1993, painting a gloomy picture for future energy demand. US crude earlier rose as much as 1.4% after the White House imposed sanctions on Iran’s oil minister and on more companies and vessels used by the OPEC member, while also restricting payment options for Russian energy, before paring the gains. Still, the ceasefire negotiations unfolding between Russia and Ukraine, as well as macroeconomic risk, are holding traders’ attention for now, said Rebecca Babin, senior energy trader at CIBC Private Wealth Group. The sanctions developments are “all just words until they’re enforced, so the market is less reactive to the headlines recently,” Babin said. The potential return of Russian barrels comes amid projections the market already is headed for an oversupply. The IEA forecasts the global supply surplus is set to deepen as an escalating trade war pressures demand at the same time that

Read More »

Qatar Supplies Syria With Natural Gas in Latest Post-Assad Boost

Qatar began supplying natural gas to Syria through Jordan, the latest boost to the war-torn country’s interim government following the fall of former president Bashar al-Assad. About 2 million cubic meters a day will be sent via the Arab Gas Pipeline, eventually contributing a total of 400 megawatts to the power grid, Syrian state-run news agency Sana said. The supplies were approved by Washington, Reuters reported earlier, without providing numbers.  The contract signals further recognition for the government of Ahmed Al-Sharaa, who led the battle to overthrow Assad. It should help increase average power supply for Syrians to four hours a day, up from two, helping ease severe energy shortages. The UK removed the Syrian central bank and 23 other entities, mainly lenders and energy companies, from a list of sanctioned institutions earlier this month, following similar moves by several Western countries. Natural gas supplies through the Arab Gas Pipeline to Syria, and by extension to Lebanon, have been disrupted since 2011 due to the war and have been largely inactive since then.  The exact mechanism by which Qatar will transport the gas to Syria and reactivate that section of the pipeline is unclear, as years of conflict have damaged vital energy infrastructure. Plus, the only LNG storage facility in Jordan, a vessel off the Red Sea port city of Aqaba, will be leased to Egypt for 10 years starting mid-2025. The power supply hinges on raising the production capacity of Syria’s Deir Ali power station, state-run Qatar News Agency said. This supply level is the “first phase” of a deal signed between Qatar Fund for Development and the Jordanian Ministry of Energy, in cooperation with the United Nations Development Program, which will oversee the “executive aspects of the project”. Syria’s interim government is seeking to replace oil imports from

Read More »

Energy Bosses Shrug Off DeepSeek to Focus on Powering AI Boom

While tariffs and macroeconomic concerns weighed on the outlook for oil at a major energy conference in Houston this week, the mood around artificial intelligence and its sky-high power needs could scarcely be different. For a second year, energy executives at the CERAWeek by S&P Global gathering hailed the looming data center requirements for AI as both a huge challenge and a once-in-a-generation opportunity.  “The only way we win the AI arms race with China is if we have electricity,” US Interior Secretary Doug Burgum said in his address. “They are moving at a speed that would suggest we are in a serious cyberwar with them.” The energy world appears to have shrugged off investor doubts that emerged over the AI-power narrative in January, when Chinese startup DeepSeek released a chat bot purported to use just a fraction of the electricity required by established US rivals. Despite that wobble, many forecasts for US power demand are still unprecedented — and come after more than two decades of stable consumption. Jenny Yang, head of power and renewables research at S&P, told conference delegates Thursday that US utilities’ estimates for additional power demand coming just from data centers by 2030 are equivalent to the entire Ercot power market in Texas. “We’re seeing load forecasts that, in my experience as a state regulator, are mind-boggling,” said Mark Christie, a former energy regulator in Virginia, the data-center capital of the US, and who now chairs the Federal Energy Regulatory Commission. The so-called hyperscalers continue to race ahead with their build-out of AI infrastructure. Google parent Alphabet Inc. reported last month it plans capital expenditures of $75 billion this year.  The power demand related to that spending “is coming so fast and from so many different directions,” Alan Armstrong, chief executive officer of US pipeline operator Williams

Read More »

The Emperor’s New Clothes: BP and Shell’s duck diplomacy

BP’s (LON:BP) undressing of its energy transition goals is the latest and most significant example of an oil supermajor reneging on its green investment pledges. It is easy to speculate that companies such as BP, and similarly Shell (LON:SHEL), have attempted to diversify into renewable energy too quickly. However, diversification in the energy transition could be the very thing that pulls the cart out of danger. This week, BP’s chief executive Murray Auchincloss defended the company’s decision to jettison renewable energy pledges and increase oil and gas production. In late February, he said the oil major had accelerated “too far, too fast” in the transition to renewable energy. “Our optimism for a fast transition was misplaced,” he said, after profits fell across its low-carbon and gas division, precipitating a sudden strategic about-face. The company, which has been under pressure from analysts and shareholders to reduce its low-carbon investments and double down on its core business of oil and gas, plans to cut investment in low-carbon projects by $5 billion (£4bn), Auchincloss said. © Image: BloombergLondon’s Old Oil Stocks Diverge | BP underperforms Shell on worries about green transition, payouts. “The challenge that faces BP and Equinor, and to varying degrees Shell and Equinor, is the marked underperformance of their shares relative to that of their US peers,” says Russ Mould, investment director at AJ Bell. “Whether this is down to the relatively greater emphasis they have placed upon investment in renewables to facilitate a move away from hydrocarbons or simply down to their stock market domicile (given how US equities continue to dominate across the board) is hard to divine, but the truth may well lie somewhere between. There is a sense that shareholders are becoming restless.” BP’s shares have shown a marked underperformance relative to global peers since former

Read More »

Peterhead’s Acorn CCS key to unlocking future of Grangemouth

Grangemouth will need the Acorn Carbon Capture and Storage (CCS) development to go ahead to take full advantage of the upcoming £13 billion Project Willow plan. Colin Pritchard, sustainability and external relations director at Ineos, which runs the Grangemouth refinery Petroineos in a joint venture with PetroChina, said: “If you want to really go for all of the things that are within Willow and take them to the full extent, you will need a CO2 transportation and storage system. “In that case, the full extent of Willow needs Acorn.” Project Willow is the plan currently being developed by the UK and Scottish Governments to ameliorate the closure of the Scotland’s only oil refinery with the expected loss of 400 jobs. Due for release soon, Project Willow  will lay out nine potential projects to overhaul the Grangemouth refinery in Scotland and create a long-term sustainable future for the site. A feasibility study exploring options for overhauling the Grangemouth refinery in Scotland is reportedly set to propose £3.8bn of investments in low-carbon alternatives for the site over ten years, with a best-case scenario could see the amount rise to almost £13bn. These options include recycling plastics, the production of biomethane, sustainable aviation fuel (SAF) and renewable diesel. In turn, these are hoped to avert the shutdown of Grangemouth, scheduled for the second quarter of this year, and preserve jobs at the facility. Speaking to Energy Voice on the side-lines of the DeCarbScotland event, Pritchard added: “There are some projects there are not dependent on Acorn, but there are some projects within Willow, like e-methanol, which are.” He added that the nine projects envisioned in Project Willow are an initial project set and could evolve, making CCS essential “if you want to get the full benefit of what we put in Willow”. Based in

Read More »

EIA Reveals Latest Brent Oil Price Forecast for 2025 and 2026

The U.S. Energy Information Administration (EIA) has revealed its latest Brent spot price forecast for 2025 and 2026 in its March Short Term Energy Outlook (STEO), which was released this week. According to the STEO, the EIA now sees the Brent spot price averaging $74.22 per barrel this year and $68.47 per barrel next year. In its previous STEO, which was released in February, the EIA projected that the Brent spot price would average $74.50 per barrel in 2025 and $66.46 per barrel in 2026. The EIA outlined in its latest STEO that it sees the Brent spot price coming in at $74.89 per barrel in the first quarter of this year, $74.00 per barrel in the second quarter, $75.00 per barrel in the third quarter, $73.02 per barrel in the fourth quarter, $71.00 per barrel in the first quarter of 2026, $69.00 per barrel in the second quarter, $68.00 per barrel in the third quarter, and $66.00 per barrel in the fourth quarter. In its previous February STEO, the EIA forecast that the Brent spot price would average $77.13 per barrel in the first quarter of 2025, $75.00 per barrel in the second quarter, $74.00 per barrel in the third quarter, $72.00 per barrel in the fourth quarter, $68.97 per barrel in the first quarter of 2026, $67.33 per barrel in the second quarter, $65.68 per barrel in the third quarter, and $64.00 per barrel in the fourth quarter of next year. In its latest STEO, the EIA highlighted that the Brent crude oil spot price averaged $75 per barrel in February, which it pointed out was $4 per barrel lower than in January and $8 per barrel lower than at the same time last year. “Crude oil prices fell during February driven largely by economic growth concerns related

Read More »

IBM laying foundation for mainframe as ultimate AI server

“It will truly change what customers are able to do with AI,” Stowell said. IBM’s mainframe processors The next generation of processors is expected to continue a long history of generation-to-generation improvements, IBM stated in a new white paper on AI and the mainframe. “They are projected to clock in at 5.5 GHz. and include ten 36 MB level 2 caches. They’ll feature built-in low-latency data processing for accelerated I/O as well as a completely redesigned cache and chip-interconnection infrastructure for more on-chip cache and compute capacity,” IBM wrote.  Today’s mainframes also have extensions and accelerators that integrate with the core systems. These specialized add-ons are designed to enable the adoption of technologies such as Java, cloud and AI by accelerating computing paradigms that are essential for high-volume, low-latency transaction processing, IBM wrote.  “The next crop of AI accelerators are expected to be significantly enhanced—with each accelerator designed to deliver 4 times more compute power, reaching 24 trillion operations per second (TOPS),” IBM wrote. “The I/O and cache improvements will enable even faster processing and analysis of large amounts of data and consolidation of workloads running across multiple servers, for savings in data center space and power costs. And the new accelerators will provide increased capacity to enable additional transaction clock time to perform enhanced in-transaction AI inferencing.” In addition, the next generation of the accelerator architecture is expected to be more efficient for AI tasks. “Unlike standard CPUs, the chip architecture will have a simpler layout, designed to send data directly from one compute engine, and use a range of lower- precision numeric formats. These enhancements are expected to make running AI models more energy efficient and far less memory intensive. As a result, mainframe users can leverage much more complex AI models and perform AI inferencing at a greater scale

Read More »

VergeIO enhances VergeFabric network virtualization offering

VergeIO is not, however, using an off-the-shelf version of KVM. Rather, it is using what Crump referred to as a heavily modified KVM hypervisor base, with significant proprietary enhancements while still maintaining connections to the open-source community. VergeIO’s deployment profile is currently 70% on premises and about 30% via bare-metal service providers, with a particularly strong following among cloud service providers that host applications for their customers. The software requires direct hardware access due to its low-level integration with physical resources. “Since November of 2023, the normal number one customer we’re attracting right now is guys that have had a heart attack when they got their VMware renewal license,” Crump said. “The more of the stack you own, the better our story becomes.” A 2024 report from Data Center Intelligence Group (DCIG) identified VergeOS as one of the top 5 alternatives to VMware. “VergeIO starts by installing VergeOS on bare metal servers,” the report stated. “It then brings the servers’ hardware resources under its management, catalogs these resources, and makes them available to VMs. By directly accessing and managing the server’s hardware resources, it optimizes them in ways other hypervisors often cannot.” Advanced networking features in VergeFabric VergeFabric is the networking component within the VergeOS ecosystem, providing software-defined networking capabilities as an integrated service rather than as a separate virtual machine or application.

Read More »

Podcast: On the Frontier of Modular Edge AI Data Centers with Flexnode’s Andrew Lindsey

The modular data center industry is undergoing a seismic shift in the age of AI, and few are as deeply embedded in this transformation as Andrew Lindsey, Co-Founder and CEO of Flexnode. In a recent episode of the Data Center Frontier Show podcast, Lindsey joined Editor-in-Chief Matt Vincent and Senior Editor David Chernicoff to discuss the evolution of modular data centers, the growing demand for high-density liquid-cooled solutions, and the industry factors driving this momentum. A Background Rooted in Innovation Lindsey’s career has been defined by the intersection of technology and the built environment. Prior to launching Flexnode, he worked at Alpha Corporation, a top 100 engineering and construction management firm founded by his father in 1979. His early career involved spearheading technology adoption within the firm, with a focus on high-security infrastructure for both government and private clients. Recognizing a massive opportunity in the data center space, Lindsey saw a need for an innovative approach to infrastructure deployment. “The construction industry is relatively uninnovative,” he explained, citing a McKinsey study that ranked construction as the second least-digitized industry—just above fishing and wildlife, which remains deliberately undigitized. Given the billions of square feet of data center infrastructure required in a relatively short timeframe, Lindsey set out to streamline and modernize the process. Founded four years ago, Flexnode delivers modular data centers with a fully integrated approach, handling everything from site selection to design, engineering, manufacturing, deployment, operations, and even end-of-life decommissioning. Their core mission is to provide an “easy button” for high-density computing solutions, including cloud and dedicated GPU infrastructure, allowing faster and more efficient deployment of modular data centers. The Rising Momentum for Modular Data Centers As Vincent noted, Data Center Frontier has closely tracked the increasing traction of modular infrastructure. Lindsey has been at the forefront of this

Read More »

Last Energy to Deploy 30 Microreactors in Texas for Data Centers

As the demand for data center power surges in Texas, nuclear startup Last Energy has now announced plans to build 30 microreactors in the state’s Haskell County near the Dallas-Fort Worth Metroplex. The reactors will serve a growing customer base of data center operators in the region looking for reliable, carbon-free energy. The plan marks Last Energy’s largest project to date and a significant step in advancing modular nuclear power as a viable solution for high-density computing infrastructure. Meeting the Looming Power Demands of Texas Data Centers Texas is already home to over 340 data centers, with significant expansion underway. Google is increasing its data center footprint in Dallas, while OpenAI’s Stargate has announced plans for a new facility in Abilene, just an hour south of Last Energy’s planned site. The company notes the Dallas-Fort Worth metro area alone is projected to require an additional 43 gigawatts of power in the coming years, far surpassing current grid capacity. To help remediate, Last Energy has secured a 200+ acre site in Haskell County, approximately three and a half hours west of Dallas. The company has also filed for a grid connection with ERCOT, with plans to deliver power via a mix of private wire and grid transmission. Additionally, Last Energy has begun pre-application engagement with the U.S. Nuclear Regulatory Commission (NRC) for an Early Site Permit, a key step in securing regulatory approval. According to Last Energy CEO Bret Kugelmass, the company’s modular approach is designed to bring nuclear energy online faster than traditional projects. “Nuclear power is the most effective way to meet Texas’ growing energy demand, but it needs to be deployed faster and at scale,” Kugelmass said. “Our microreactors are designed to be plug-and-play, enabling data center operators to bypass the constraints of an overloaded grid.” Scaling Nuclear for

Read More »

Data Center Jobs: Engineering and Technician Jobs Available in Major Markets

Each month Data Center Frontier, in partnership with Pkaza, posts some of the hottest data center career opportunities in the market. Here’s a look at some of the latest data center jobs posted on the Data Center Frontier jobs board, powered by Pkaza Critical Facilities Recruiting.  Data Center Facility Engineer (Night Shift Available) Ashburn, VAThis position is also available in: Tacoma, WA (Nights), Days/Nights: Needham, MA and New York City, NY. This opportunity is working directly with a leading mission-critical data center developer / wholesaler / colo provider. This firm provides data center solutions custom-fit to the requirements of their client’s mission-critical operational facilities. They provide reliability of mission-critical facilities for many of the world’s largest organizations facilities supporting enterprise clients and hyperscale companies. This opportunity provides a career-growth minded role with exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits. Electrical Commissioning Engineer New Albany, OHThis traveling position is also available in: Somerset, NJ; Boydton, VA; Richmond, VA; Ashburn, VA; Charlotte, NC; Atlanta, GA; Hampton, GA; Fayetteville, GA; Des Moines, IA; San Jose, CA; Portland, OR; St Louis, MO; Phoenix, AZ;  Dallas, TX;  Chicago, IL; or Toronto, ON. *** ALSO looking for a LEAD EE and ME CxA agents.*** Our client is an engineering design and commissioning company that has a national footprint and specializes in MEP critical facilities design. They provide design, commissioning, consulting and management expertise in the critical facilities space. They have a mindset to provide reliability, energy efficiency, sustainable design and LEED expertise when providing these consulting services for enterprise, colocation and hyperscale companies. This career-growth minded opportunity offers exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits. Switchgear Field Service Technician – Critical Facilities Nationwide TravelThis position is also available in: Charlotte, NC; Atlanta, GA; Dallas,

Read More »

Amid Shifting Regional Data Center Policies, Iron Mountain and DC Blox Both Expand in Virginia’s Henrico County

The dynamic landscape of data center developments in Maryland and Virginia exemplify the intricate balance between fostering technological growth and addressing community and environmental concerns. Data center developers in this region find themselves both in the crosshairs of groups worried about the environment and other groups looking to drive economic growth. In some cases, the groups are different components of the same organizations, such as local governments. For data center development, meeting the needs of these competing interests often means walking a none-too-stable tightrope. Rapid Government Action Encourages Growth In May 2024, Maryland demonstrated its commitment to attracting data center investments by enacting the Critical Infrastructure Streamlining Act. This legislation provides a clear framework for the use of emergency backup power generation, addressing previous regulatory challenges that a few months earlier had hindered projects like Aligned Data Centers’ proposed 264-megawatt campus in Frederick County, causing Aligned to pull out of the project. However, just days after the Act was signed by the governor, Aligned reiterated its plans to move forward with development in Maryland.  With the Quantum Loop and the related data center development making Frederick County a focal point for a balanced approach, the industry is paying careful attention to the pace of development and the relations between developers, communities and the government. In September of 2024, Frederick County Executive Jessica Fitzwater revealed draft legislation that would potentially restrict where in the county data centers could be built. The legislation was based on information found in the Frederick County Data Centers Workgroup’s final report. Those bills would update existing regulations and create a floating zone for Critical Digital Infrastructure and place specific requirements on siting data centers. Statewide, a cautious approach to environmental and community impacts statewide has been deemed important. In January 2025, legislators introduced SB116,  a bill

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »