Stay Ahead, Stay ONMINE

Understanding Model Calibration: A Gentle Introduction & Visual Exploration

How Reliable Are Your Predictions? About To be considered reliable, a model must be calibrated so that its confidence in each decision closely reflects its true outcome. In this blog post we’ll take a look at the most commonly used definition for calibration and then dive into a frequently used evaluation measure for Model Calibration. […]

How Reliable Are Your Predictions?

About

To be considered reliable, a model must be calibrated so that its confidence in each decision closely reflects its true outcome. In this blog post we’ll take a look at the most commonly used definition for calibration and then dive into a frequently used evaluation measure for Model Calibration. We’ll then cover some of the drawbacks of this measure and how these surfaced the need for additional notions of calibration, which require their own new evaluation measures. This post is not intended to be an in-depth dissection of all works on calibration, nor does it focus on how to calibrate models. Instead, it is meant to provide a gentle introduction to the different notions and their evaluation measures as well as to re-highlight some issues with a measure that is still widely used to evaluate calibration.

Table of Contents

What is Calibration?

Calibration makes sure that a model’s estimated probabilities match real-world outcomes. For example, if a weather forecasting model predicts a 70% chance of rain on several days, then roughly 70% of those days should actually be rainy for the model to be considered well calibrated. This makes model predictions more reliable and trustworthy, which makes calibration relevant for many applications across various domains.

Reliability Diagram —  image by author

Now, what calibration means more precisely depends on the specific definition being considered. We will have a look at the most common notion in machine learning (ML) formalised by Guo and termed confidence calibration by Kull. But first, let’s define a bit of formal notation for this blog. 

In this blog post we consider a classification task with K possible classes, with labels Y ∈ {1, …, K} and a classification model :𝕏 → Δᴷ, that takes inputs in 𝕏 (e.g. an image or text) and returns a probability vector as its output. Δᴷ refers to the K-simplex, which just means that the output vector must sum to 1 and that each estimated probability in the vector is between 0 & 1. These individual probabilities (or confidences) indicate how likely an input belongs to each of the K classes.

Notation — image by author — input example sourced from Uma

1.1 (Confidence) Calibration

A model is considered confidence-calibrated if, for all confidences c, the model is correct c proportion of the time:

where (X,Y) is a datapoint and p̂ : 𝕏 → Δᴷ returns a probability vector as its output

This definition of calibration, ensures that the model’s final predictions align with their observed accuracy at that confidence level. The left chart below visualises the perfectly calibrated outcome (green diagonal line) for all confidences using a binned reliability diagram. On the right hand side it shows two examples for a specific confidence level across 10 samples.

Confidence Calibration  —  image by author

For simplification, we assume that we only have 3 classes as in image 2 (Notation) and we zoom into confidence c=0.7, see image above. Let’s assume we have 10 inputs here whose most confident prediction (max) equals 0.7. If the model correctly classifies 7 out of 10 predictions (true), it is considered calibrated at confidence level 0.7. For the model to be fully calibrated this has to hold across all confidence levels from 0 to 1. At the same level c=0.7, a model would be considered miscalibrated if it makes only 4 correct predictions.


2 Evaluating Calibration — Expected Calibration Error (ECE)

One widely used evaluation measure for confidence calibration is the Expected Calibration Error (ECE). ECE measures how well a model’s estimated probabilities match the observed probabilities by taking a weighted average over the absolute difference between average accuracy (acc) and average confidence (conf). The measure involves splitting all n datapoints into M equally spaced bins:

where B is used for representing “bins” and m for the bin number, while acc and conf are:

ŷᵢ is the model’s predicted class (arg max) for sample i and yᵢ is the true label for sample i. 1 is an indicator function, meaning when the predicted label ŷᵢ equals the true label yᵢ it evaluates to 1, otherwise 0. Let’s look at an example, which will clarify acc, conf and the whole binning approach in a visual step-by-step manner.

2.1 ECE — Visual Step by Step Example

In the image below, we can see that we have 9 samples indexed by i with estimated probabilities p̂(xᵢ) (simplified as p̂ᵢ) for class cat (C), dog (D) or toad (T). The final column shows the true class yᵢ and the penultimate column contains the predicted class ŷᵢ.

Table 1 — ECE toy example — image by author

Only the maximum probabilities, which determine the predicted label are used in ECE. Therefore, we will only bin samples based on the maximum probability across classes (see left table in below image). To keep the example simple we split the data into 5 equally spaced bins M=5. If we now look at each sample’s maximum estimated probability, we can group it into one of the 5 bins (see right side of image below).

Table 2 & Binning Diagram — image by author

We still need to determine if the predicted class is correct or not to be able to determine the average accuracy per bin. If the model predicts the class correctly (i.e.  yᵢ = ŷᵢ), the prediction is highlighted in green; incorrect predictions are marked in red:

Table 3 & Binning Diagram — image by author

We now have visualised all the information needed for ECE and will briefly run through how to

calculate the values for bin 5 (B). The other bins then simply follow the same process, see below.

Table 4 & Example for bin 5  — image by author

We can get the empirical probability of a sample falling into B, by assessing how many out of all 9 samples fall into B, see ( 1 ). We then get the average accuracy for B, see ( 2 ) and lastly the average estimated probability for B, see ( 3 ). Repeat this for all bins and in our small example of 9 samples we end up with an ECE of 0.10445. A perfectly calibrated model would have an ECE of 0.

For a more detailed, step-by-step explanation of the ECE, have a look at this blog post.

2.1.1  EXPECTED CALIBRATION ERROR DRAWBACKS

The images of binning above provide a visual guide of how ECE could result in very different values if we used more bins or perhaps binned the same number of items instead of using equal bin widths. Such and more drawbacks of ECE have been highlighted by several works early on. However, despite the known weaknesses ECE is still widely used to evaluate confidence calibration in ML. 

3 Most frequently mentioned Drawbacks of ECE

3.1 Pathologies — Low ECE ≠ high accuracy

A model which minimises ECE, does not necessarily have a high accuracy. For instance, if a model always predicts the majority class with that class’s average prevalence as the probability, it will have an ECE of 0. This is visualised in the image above, where we have a dataset with 10 samples, 7 of those are cat, 2 dog and only one is a toad. Now if the model always predicts cat with on average 0.7 confidence it would have an ECE of 0. There are more of such pathologies. To not only rely on ECE, some researchers use additional measures such as the Brier score or LogLoss alongside ECE.

Sample Pathology —  image by author

3.2 Binning Approach

One of the most frequently mentioned issues with ECE is its sensitivity to the change in binning. This is sometimes referred to as the Bias-Variance trade-off: Fewer bins reduce variance but increase bias, while more bins lead to sparsely populated bins increasing variance. If we look back to our ECE example with 9 samples and change the bins from 5 to 10 here too, we end up with the following:

More Bins Example — image by author

We can see that bin 8 and 9 each contain only a single sample and also that half the bins now contain no samples. The above is only a toy example, however since modern models tend to have higher confidence values samples often end up in the last few bins, which means they get all the weight in ECE, while the average error for the empty bins contributes 0 to ECE.

To mitigate these issues of fixed bin widths some authors have proposed a more adaptive binning approach:

Adaptive Bins Example — image by author

Binning-based evaluation with bins containing an equal number of samples are shown to have lower bias than a fixed binning approach such as ECE. This leads Roelofs to urge against using equal width binning and they suggest the use of an alternative: ECEsweep, which maximizes the number of equal-mass bins while ensuring the calibration function remains monotonic. The Adaptive Calibration Error (ACE) and Threshold Adaptive calibration Error (TACE) are two other variations of ECE that use flexible binning. However, some find it sensitive to the choice of bins and thresholds, leading to inconsistencies in ranking different models. Two other approaches aim to eliminate binning altogether: MacroCE does this by averaging over instance-level calibration errors of correct and wrong predictions and the KDE-based ECE does so by replacing the bins with non-parametric density estimators, specifically kernel density estimation (KDE).

3.3 Only maximum probabilities considered

Another frequently mentioned drawback of ECE is that it only considers the maximum estimated probabilities. The idea that more than just the maximum confidence should be calibrated, is best illustrated with a simple example:

Only Max. Probabilities — image by author — input example sourced from Schwirten

Let’s say we trained two different models and now both need to determine if the same input image contains a person, an animal or no creature. The two models output vectors with slightly different estimated probabilities, but both have the same maximum confidence for “no creature”. Since ECE only looks at these top values it would consider these two outputs to be the same. Yet, when we think of real-world applications we might want our self-driving car to act differently in one situation over the other. This restriction to the maximum confidence prompted various authors to reconsider the definition of calibration, which gives us two additional interpretations of confidence: multi-class and class-wise calibration.

3.3.1 MULTI-CLASS CALIBRATION

A model is considered multi-class calibrated if, for any prediction vector q=(q₁​,…,qₖ) ∈ Δᴷ​, the class proportions among all values of X for which a model outputs the same prediction p̂(X)=q match the values in the prediction vector q.

where (X,Y) is a datapoint and p̂ : 𝕏 → Δᴷ returns a probability vector as its output

What does this mean in simple terms? Instead of c we now calibrate against a vector q, with k classes. Let’s look at an example below:

Multi-Class Calibration — image by author

On the left we have the space of all possible prediction vectors. Let’s zoom into one such vector that our model predicted and say the model has 10 instances for which it predicted the vector q=[0.1,0.2,0.7]. Now in order for it to be multi-class calibrated, the distribution of the true (actual) class needs to match the prediction vector q. The image above shows a calibrated example with [0.1,0.2,0.7] and a not calibrated case with [0.1,0.5,0.4].

3.3.2 CLASS-WISE CALIBRATION

A model is considered class-wise calibrated if, for each class k, all inputs that share an estimated probability (X) align with the true frequency of class k when considered on its own:

where (X,Y) is a datapoint; q ∈ Δᴷ and p̂ : 𝕏 → Δᴷ returns a probability vector as its output

Class-wise calibration is a weaker definition than multi-class calibration as it considers each class probability in isolation rather than needing the full vector to align. The image below illustrates this by zooming into a probability estimate for class 1 specifically: q=0.1. Yet again, we assume we have 10 instances for which the model predicted a probability estimate of 0.1 for class 1. We then look at the true class frequency amongst all classes with q=0.1. If the empirical frequency matches q it is calibrated.

Class-Wise Calibration — image by author

To evaluate such different notions of calibration, some updates are made to ECE to calculate a class-wise error. One idea is to calculate the ECE for each class and then take the average. Others, introduce the use of the KS-test for class-wise calibration and also suggest using statistical hypothesis tests instead of ECE based approaches. And other researchers develop a hypothesis test framework (TCal) to detect whether a model is significantly mis-calibrated and build on this by developing confidence intervals for the L2 ECE.


All the approaches mentioned above share a key assumption: ground-truth labels are available. Within this gold-standard mindset a prediction is either true or false. However, annotators might unresolvably and justifiably disagree on the real label. Let’s look at a simple example below:

Gold-Standard Labelling | One-Hot-Vector —  image by author

We have the same image as in our entry example and can see that the chosen label differs between annotators. A common approach to resolving such issues in the labelling process is to use some form of aggregation. Let’s say that in our example the majority vote is selected, so we end up evaluating how well our model is calibrated against such ‘ground truth’. One might think, the image is small and pixelated; of course humans will not be certain about their choice. However, rather than being an exception such disagreements are widespread. So, when there is a lot of human disagreement in a dataset it might not be a good idea to calibrate against an aggregated ‘gold’ label. Instead of gold labels more and more researchers are using soft or smooth labels which are more representative of the human uncertainty, see example below:

Collective Opinion Labelling | Soft-label — image by author

In the same example as above, instead of aggregating the annotator votes we could simply use their frequencies to create a distribution Pᵥₒₜₑ over the labels instead, which is then our new yᵢ. This shift towards training models on collective annotator views, rather than relying on a single source-of-truth motivates another definition of calibration: calibrating the model against human uncertainty.

3.3.3 HUMAN UNCERTAINTY CALIBRATION

A model is considered human-uncertainty calibrated if, for each specific sample x, the predicted probability for each class k matches the ‘actual’ probability Pᵥₒₜₑ of that class being correct.

where (X,Y) is a datapoint and p̂ : 𝕏 → Δᴷ returns a probability vector as its output.

This interpretation of calibration aligns the model’s prediction with human uncertainty, which means each prediction made by the model is individually reliable and matches human-level uncertainty for that instance. Let’s have a look at an example below:

Human Uncertainty Calibration — image by author

We have our sample data (left) and zoom into a single sample x with index i=1. The model’s predicted probability vector for this sample is [0.1,0.2,0.7]. If the human labelled distribution yᵢ matches this predicted vector then this sample is considered calibrated.

This definition of calibration is more granular and strict than the previous ones as it applies directly at the level of individual predictions rather than being averaged or assessed over a set of samples. It also relies heavily on having an accurate estimate of the human judgement distribution, which requires a large number of annotations per item. Datasets with such properties of annotations are gradually becoming more available.

To evaluate human uncertainty calibration the researchers introduce three new measures: the Human Entropy Calibration Error (EntCE), the Human Ranking Calibration Score (RankCS) and the Human Distribution Calibration Error (DistCE).

where H(.) signifies entropy.

EntCE aims to capture the agreement between the model’s uncertainty H(ᵢ) and the human uncertainty H(yᵢ) for a sample i. However, entropy is invariant to the permutations of the probability values; in other words it doesn’t change when you rearrange the probability values. This is visualised in the image below:

EntCE drawbacks — image by author

On the left, we can see the human label distribution yᵢ, on the right are two different model predictions for that same sample. All three distributions would have the same entropy, so comparing them would result in 0 EntCE. While this is not ideal for comparing distributions, entropy is still helpful in assessing the noise level of label distributions.

where argsort simply returns the indices that would sort an array.

So, RankCS checks if the sorted order of estimated probabilities p̂ᵢ matches the sorted order of yᵢ for each sample. If they match for a particular sample i one can count it as 1; if not, it can be counted as 0, which is then used to average over all samples N.¹

Since this approach uses ranking it doesn’t care about the actual size of the probability values. The two predictions below, while not the same in class probabilities would have the same ranking. This is helpful in assessing the overall ranking capability of models and looks beyond just the maximum confidence. At the same time though, it doesn’t fully capture human uncertainty calibration as it ignores the actual probability values.

RankCS drawbacks  — image by author

DistCE has been proposed as an additional evaluation for this notion of calibration. It simply uses the total variation distance (TVD) between the two distributions, which aims to reflect how much they diverge from one another. DistCE and EntCE capture instance level information. So to get a feeling for the full dataset one can simply take the average expected value over the absolute value of each measure: E[∣DistCE∣] and E[∣EntCE∣]. Perhaps future efforts will introduce further measures that combine the benefits of ranking and noise estimation for this notion of calibration.

4 Final thoughts

We have run through the most common definition of calibration, the shortcomings of ECE and how several new notions of calibration exist. We also touched on some of the newly proposed evaluation measures and their shortcomings. Despite several works arguing against the use of ECE for evaluating calibration, it remains widely used. The aim of this blog post is to draw attention to these works and their alternative approaches. Determining which notion of calibration best fits a specific context and how to evaluate it should avoid misleading results. Maybe, however, ECE is simply so easy, intuitive and just good enough for most applications that it is here to stay?

This was accepted at the ICLR conference Blog Post Track & is estimated to appear on the site ~ April

In the meantime, you can cite/reference the ArXiv preprint.

Footnotes

¹In the paper it is stated more generally: If the argsorts match, it means the ranking is aligned, contributing to the overall RankCS score.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Nissan, SK On announce $661M EV battery supply deal

Dive Brief: Nissan Motor Corp. and SK On inked a battery agreement to bolster the automaker’s electric vehicle production in North America, according to a Wednesday press release. Under the $661 million deal, the battery manufacturer will supply Nissan with roughly 100 GWh of high-nickel batteries from 2028 to 2033.

Read More »

Nvidia launches research center to accelerate quantum computing breakthrough

The new research center aims to tackle quantum computing’s most significant challenges, including qubit noise reduction and the transformation of experimental quantum processors into practical devices. “By combining quantum processing units (QPUs) with state-of-the-art GPU technology, Nvidia hopes to accelerate the timeline to practical quantum computing applications,” the statement added.

Read More »

Keysight network packet brokers gain AI-powered features

The technology has matured considerably since then. Over the last five years, Singh said that most of Keysight’s NPB customers are global Fortune 500 organizations that have large network visibility practices. Meaning they deploy a lot of packet brokers with capabilities ranging anywhere from one gigabit networking at the edge,

Read More »

Adding, managing and deleting groups on Linux

$ sudo groupadd -g 1111 techs In this case, a specific group ID (1111) is being assigned. Omit the -g option to use the next available group ID (e.g., sudo groupadd techs). Once a group is added, you will find it in the /etc/group file. $ grep techs /etc/grouptechs:x:1111: Adding

Read More »

Power Moves: New renewables managing director for PX Group and more

Tracy Wilson-Long has been appointed to Teesside-based PX Group as its new managing director for power and renewables. Originally from Teesside, Wilson-Long brings a wealth of experience to the role, having previously held strategic leadership positions at BP, working on global large-scale projects across North America, Europe, Asia, and Africa. Most recently she has worked in the Canadian clean technology space, helping start-ups advance to commercialisation, with a key focus and expertise in the developing hydrogen market. Tracy succeeds Neil Grimley, who has been with PX Group for over three decades and has shown outstanding, dedication and contribution, most recently in his leadership role building the power and renewables portfolio. He will now transition to the role of group business development director, where he will leverage his extensive experience to drive growth in fuels, terminals, and major net zero projects. Wilson-Long said: “PX Group’s vision, strategy and culture are a fantastic fit for me, I’m really looking forward to getting out to all our sites, meeting our people and customers, whilst learning all about the diverse operations in our business. I’m looking forward to working with PX Group’s talented team to unlock new possibilities.” PX Group recently scored a major contract win as it landed an operations and maintenance deal for the Tees Renewable Energy Plant (Tees REP). © Supplied by EnerMechEnerMech head of regional management in the Asia Pacific region Jason Jeow. Jason Jeow has been promoted to head Aberdeen-based EnerMech’s regional management in the Asia Pacific region. Jeow joined EnerMech in February as vice-president for Asia Pacific and will take on responsibility for managing relationships with regulatory bodies and environmental agencies as well as collaborate with business lines and local leaders to ensure adherence to high HSE standards and the safety of EnerMech personnel. EnerMech CEO Charles ‘Chuck’

Read More »

USA Crude Oil Inventories Rise Week on Week

U.S. commercial crude oil inventories, excluding those in the Strategic Petroleum Reserve (SPR), increased by 1.7 million barrels from the week ending March 7 to the week ending March 14, the U.S. Energy Information Administration (EIA) highlighted in its latest weekly petroleum status report. That report was released on March 19 and included data for the week ending March 14. This EIA report showed that crude oil stocks, not including the SPR, stood at 437.0 million barrels on March 14, 435.2 million barrels on March 7, and 445.0 million barrels on March 15, 2024. Crude oil in the SPR stood at 395.9 million barrels on March 14, 395.6 million barrels on March 7, and 362.3 million barrels on March 15, 2024, the report outlined. The EIA report highlighted that data may not add up to totals due to independent rounding. Total petroleum stocks – including crude oil, total motor gasoline, fuel ethanol, kerosene type jet fuel, distillate fuel oil, residual fuel oil, propane/propylene, and other oils – stood at 1.596 billion barrels on March 14, the report showed. Total petroleum stocks were up 1.9 million barrels week on week and up 22.5 million barrels year on year, the report revealed. “At 437.0 million barrels, U.S. crude oil inventories are about five percent below the five year average for this time of year,” the EIA said in its latest weekly petroleum status report. “Total motor gasoline inventories decreased by 0.5 million barrels from last week and are two percent above the five year average for this time of year. Finished gasoline inventories and blending components inventories both decreased last week,” it added. “Distillate fuel inventories decreased by 2.8 million barrels last week and are about six percent below the five year average for this time of year. Propane/propylene inventories decreased by

Read More »

Ceres Power strikes ‘record’ 2024

Fuel cell and electrolyser company Ceres Power generated record revenues and orders which narrowed losses in 2024, according to its final results for the year to 31 December. “This past year has been a record,” the company’s chief executive Phil Caldwell said on a call on Friday. “Looking ahead to next year… if we can get similar performance in 2025, that would also be a very good year.” The Horsham-based company’s revenues more than doubled over the year to £51.9 million, up from £22.3m a year earlier. Its gross margin rose to 77%, with gross profit nearly quadrupling to £40.2m, up from £13.6m in 2023. Healthy sales of services and licences and increased profitability meant pre-tax losses for the year halved to £25.9m, from a £53.6m loss in the prior year. Caldwell attributed the results, including a record order book of £112.8m for the period, to “progress” that the company has made with its partners. The firm signed three “significant” partner licence agreements in the year, although it was also disappointed” that its shareholder Bosch announced in February it would cease production of the firm’s fuel cells and divest its minority stake. During the period, Ceres signed two new manufacturing licensees, Taiwan-based Delta Electronics and Denso in Japan, together with India’s electrolyser company Thermax. “What that does is that builds out our market share and really where this business becomes profitable is, as those partners get to market and we’ve started to get products in the market, that’s where we get royalties and that’s what really drives the business forwards,” he said. “So, making progress with existing partners and also adding new partners to that is really how we grow the business.” First hydrogen production This fiscal year, the fuel cell and electrolyser company said it expects to reach initial

Read More »

UK net zero innovators to showcase pioneering tech in Aberdeen

Leading energy technology companies from across the UK will head to Aberdeen in April for the Net Zero Innovators conference at the P&J Live. Organised by the Net Zero Technology Centre (NZTC), the event comes amid a multibillion-pound boom in the UK’s energy transition sector. Taking place on 3 April, the conference will feature 50 exhibiting startups including previous participants from the NZTC TechX Accelerator programme. Firms including Frontier Robotics, Wastewater Fuels and JET Connectivity will showcase their innovations, alongside a series of panel discussions. Technologies on display range from renewables to energy storage, carbon capture, hydrogen, alternative fuels and industrial decarbonisation. Since its launch, the Aberdeen-headquartered NZTC has co-invested £420 million in technology development and demonstration projects. Jointly funded by the UK and Scottish governments as part of the Aberdeen City Region Deal, the NZTC said its investment programme has created 1,550 direct jobs in Scotland. Net Zero Innovators NZTC chief acceleration officer Mark Anderson said events like the Net Zero Innovators conference “are about more than just ideas”. “They’re about bringing people together and driving real change,” he said. “As our first-ever Net Zero Innovators conference, this event is a major step forward in our journey to connect the brightest minds and most impactful innovations with their potential customers and backers in the energy industry. © Supplied by NZTCNZTC TechX director Mark Anderson. “It’s happening at an exciting time for Scotland’s net zero economy, which is growing at the fastest rate in the UK.” Anderson said the conference will demonstration how collaboration can “accelerate the transition to net zero” and boost “not also sustainability but also the economy”. “We’re thrilled to bring together experts and innovators who, through our TechX Accelerator, are turning cutting-edge ideas into scalable, commercial solutions,” he said. “These startups are making a real impact

Read More »

US deploys record energy storage in 2024, but Trump policies cloud outlook: WoodMac/ACP

Dive Brief: U.S. energy storage installations reached 12.3 GW/37.1 GWh in 2024 despite a 20% year-over-year drop in the fourth quarter, Wood Mackenzie and the American Clean Power Association said Wednesday. The full-year 2024 and Q1 2025 Energy Storage Monitor projected 15 GW/48 GWh of energy storage deployments in 2025, a 25% increase over 2024, due to strong growth in the utility-scale segment and an expected 47% jump in the residential segment. But state and federal policy uncertainty cloud the medium-term outlook for energy storage, resulting in a 27-GW gap between Wood Mackenzie’s five-year “high” and “low” cases, the report said.  Dive Insight: U.S. energy storage deployments rose 34% from 2023 to 2024, and all three energy storage segments Wood Mackenzie tracks saw double-digit growth. The utility-scale segment grew 32% to 33.7 GWh, while the residential segment jumped 64% to just over 3 GWh and the community-scale, commercial and industrial segment rose 11% to 370 MWh, Wood Mackenzie said. The residential and CCI segments saw strong growth in Q4 2024, but utility-scale deployments fell 28%, resulting in a decline in total deployments during the quarter. Development delays in late 2024 pushed about 2 GW of projects originally expected for last year into 2025, boosting Wood Mackenzie’s 2025 forecast for utility-scale deployments by 11% from the previous quarter. Q4 2024 saw a noticeable increase in installations outside California and Texas, the United States’ largest energy storage markets. The two states accounted for 61% of deployments in the fourth quarter, a 30% drop from Q3 2024, as New Mexico (400 MW), Oregon (292 MW), Arizona (185 MW) and North Carolina (115 MW) made meaningful contributions. In the residential market, the storage attachment rate reached 34% despite slower-than-expected progress to retire California’s backlog of projects under the legacy NEM 2.0 tariff, Wood Mackenzie

Read More »

FERC approves SPP’s RTO West, plus 4 other open meeting takeaways

The Southwest Power Pool will expand its regional transmission organization operations into the Western Interconnection as soon as early next year under its RTO West plan, which the Federal Energy Regulatory Commission approved on Thursday. “This proposal will likely enhance grid reliability and operational efficiency by consolidating transmission management under a single RTO,” FERC Commissioner Willie Phillips said during the agency’s monthly meeting. The approval of SPP’s RTO West plan “is another major milestone for the market evolution in the Western part of the U.S.,” FERC Commissioner Judy Chang said. Chang and Phillips said more work needs to occur on RTO West, however, especially on how the seams between markets and nonmarket areas will be managed. “In the near future, I hope we can address seams issues — like data sharing, congestion management, market power mitigation, transmission availability, export-import management and intertie optimization — to maximize reliability and consumer benefits,” Phillips said. In its decision, FERC said it was too soon to address the seams issues, which were raised by the Colorado Public Service Commission, Xcel Energy’s Public Service Co. of Colorado and Black Hills utilities. Entities pursuing RTO membership or expanded participation in SPP’s markets include Basin Electric Power Cooperative, Colorado Springs Utilities, Deseret Generation and Transmission Cooperative, Municipal Energy Agency of Nebraska, Platte River Power Authority, Tri-State Generation and Transmission Association, Western Area Power Administration – Colorado River Storage Project Management Center, WAPA – Rocky Mountain Region and WAPA – Upper Great Plains Region. “We greatly value the full benefits of the SPP RTO, including day-ahead and ancillary services markets, efficient regional transmission planning, a common transmission tariff and participatory governance model that help us to further reduce costs for our members across the West,” Tri-State CEO Duane Highley said in an SPP press release. SPP is working with additional Western utilities that are considering joining

Read More »

PEAK:AIO adds power, density to AI storage server

There is also the fact that many people working with AI are not IT professionals, such as professors, biochemists, scientists, doctors, clinicians, and they don’t have a traditional enterprise department or a data center. “It’s run by people that wouldn’t really know, nor want to know, what storage is,” he said. While the new AI Data Server is a Dell design, PEAK:AIO has worked with Lenovo, Supermicro, and HPE as well as Dell over the past four years, offering to convert their off the shelf storage servers into hyper fast, very AI-specific, cheap, specific storage servers that work with all the protocols at Nvidia, like NVLink, along with NFS and NVMe over Fabric. It also greatly increased storage capacity by going with 61TB drives from Solidigm. SSDs from the major server vendors typically maxed out at 15TB, according to the vendor. PEAK:AIO competes with VAST, WekaIO, NetApp, Pure Storage and many others in the growing AI workload storage arena. PEAK:AIO’s AI Data Server is available now.

Read More »

SoftBank to buy Ampere for $6.5B, fueling Arm-based server market competition

SoftBank’s announcement suggests Ampere will collaborate with other SBG companies, potentially creating a powerful ecosystem of Arm-based computing solutions. This collaboration could extend to SoftBank’s numerous portfolio companies, including Korean/Japanese web giant LY Corp, ByteDance (TikTok’s parent company), and various AI startups. If SoftBank successfully steers its portfolio companies toward Ampere processors, it could accelerate the shift away from x86 architecture in data centers worldwide. Questions remain about Arm’s server strategy The acquisition, however, raises questions about how SoftBank will balance its investments in both Arm and Ampere, given their potentially competing server CPU strategies. Arm’s recent move to design and sell its own server processors to Meta signaled a major strategic shift that already put it in direct competition with its own customers, including Qualcomm and Nvidia. “In technology licensing where an entity is both provider and competitor, boundaries are typically well-defined without special preferences beyond potential first-mover advantages,” Kawoosa explained. “Arm will likely continue making independent licensing decisions that serve its broader interests rather than favoring Ampere, as the company can’t risk alienating its established high-volume customers.” Industry analysts speculate that SoftBank might position Arm to focus on custom designs for hyperscale customers while allowing Ampere to dominate the market for more standardized server processors. Alternatively, the two companies could be merged or realigned to present a unified strategy against incumbents Intel and AMD. “While Arm currently dominates processor architecture, particularly for energy-efficient designs, the landscape isn’t static,” Kawoosa added. “The semiconductor industry is approaching a potential inflection point, and we may witness fundamental disruptions in the next 3-5 years — similar to how OpenAI transformed the AI landscape. SoftBank appears to be maximizing its Arm investments while preparing for this coming paradigm shift in processor architecture.”

Read More »

Nvidia, xAI and two energy giants join genAI infrastructure initiative

The new AIP members will “further strengthen the partnership’s technology leadership as the platform seeks to invest in new and expanded AI infrastructure. Nvidia will also continue in its role as a technical advisor to AIP, leveraging its expertise in accelerated computing and AI factories to inform the deployment of next-generation AI data center infrastructure,” the group’s statement said. “Additionally, GE Vernova and NextEra Energy have agreed to collaborate with AIP to accelerate the scaling of critical and diverse energy solutions for AI data centers. GE Vernova will also work with AIP and its partners on supply chain planning and in delivering innovative and high efficiency energy solutions.” The group claimed, without offering any specifics, that it “has attracted significant capital and partner interest since its inception in September 2024, highlighting the growing demand for AI-ready data centers and power solutions.” The statement said the group will try to raise “$30 billion in capital from investors, asset owners, and corporations, which in turn will mobilize up to $100 billion in total investment potential when including debt financing.” Forrester’s Nguyen also noted that the influence of two of the new members — xAI, owned by Elon Musk, along with Nvidia — could easily help with fundraising. Musk “with his connections, he does not make small quiet moves,” Nguyen said. “As for Nvidia, they are the face of AI. Everything they do attracts attention.” Info-Tech’s Bickley said that the astronomical dollars involved in genAI investments is mind-boggling. And yet even more investment is needed — a lot more.

Read More »

IBM broadens access to Nvidia technology for enterprise AI

The IBM Storage Scale platform will support CAS and now will respond to queries using the extracted and augmented data, speeding up the communications between GPUs and storage using Nvidia BlueField-3 DPUs and Spectrum-X networking, IBM stated. The multimodal document data extraction workflow will also support Nvidia NeMo Retriever microservices. CAS will be embedded in the next update of IBM Fusion, which is planned for the second quarter of this year. Fusion simplifies the deployment and management of AI applications and works with Storage Scale, which will handle high-performance storage support for AI workloads, according to IBM. IBM Cloud instances with Nvidia GPUs In addition to the software news, IBM said its cloud customers can now use Nvidia H200 instances in the IBM Cloud environment. With increased memory bandwidth (1.4x higher than its predecessor) and capacity, the H200 Tensor Core can handle larger datasets, accelerating the training of large AI models and executing complex simulations, with high energy efficiency and low total cost of ownership, according to IBM. In addition, customers can use the power of the H200 to process large volumes of data in real time, enabling more accurate predictive analytics and data-driven decision-making, IBM stated. IBM Consulting capabilities with Nvidia Lastly, IBM Consulting is adding Nvidia Blueprint to its recently introduced AI Integration Service, which offers customers support for developing, building and running AI environments. Nvidia Blueprints offer a suite pre-validated, optimized, and documented reference architectures designed to simplify and accelerate the deployment of complex AI and data center infrastructure, according to Nvidia.  The IBM AI Integration service already supports a number of third-party systems, including Oracle, Salesforce, SAP and ServiceNow environments.

Read More »

Nvidia’s silicon photonics switches bring better power efficiency to AI data centers

Nvidia typically uses partnerships where appropriate, and the new switch design was done in collaboration with multiple vendors across different aspects, including creating the lasers, packaging, and other elements as part of the silicon photonics. Hundreds of patents were also included. Nvidia will licensing the innovations created to its partners and customers with the goal of scaling this model. Nvidia’s partner ecosystem includes TSMC, which provides advanced chip fabrication and 3D chip stacking to integrate silicon photonics into Nvidia’s hardware. Coherent, Eoptolink, Fabrinet, and Innolight are involved in the development, manufacturing, and supply of the transceivers. Additional partners include Browave, Coherent, Corning Incorporated, Fabrinet, Foxconn, Lumentum, SENKO, SPIL, Sumitomo Electric Industries, and TFC Communication. AI has transformed the way data centers are being designed. During his keynote at GTC, CEO Jensen Huang talked about the data center being the “new unit of compute,” which refers to the entire data center having to act like one massive server. That has driven compute to be primarily CPU based to being GPU centric. Now the network needs to evolve to ensure data is being fed to the GPUs at a speed they can process the data. The new co-packaged switches remove external parts, which have historically added a small amount of overhead to networking. Pre-AI this was negligible, but with AI, any slowness in the network leads to dollars being wasted.

Read More »

Critical vulnerability in AMI MegaRAC BMC allows server takeover

“In disruptive or destructive attacks, attackers can leverage the often heterogeneous environments in data centers to potentially send malicious commands to every other BMC on the same management segment, forcing all devices to continually reboot in a way that victim operators cannot stop,” the Eclypsium researchers said. “In extreme scenarios, the net impact could be indefinite, unrecoverable downtime until and unless devices are re-provisioned.” BMC vulnerabilities and misconfigurations, including hardcoded credentials, have been of interest for attackers for over a decade. In 2022, security researchers found a malicious implant dubbed iLOBleed that was likely developed by an APT group and was being deployed through vulnerabilities in HPE iLO (HPE’s Integrated Lights-Out) BMC. In 2018, a ransomware group called JungleSec used default credentials for IPMI interfaces to compromise Linux servers. And back in 2016, Intel’s Active Management Technology (AMT) Serial-over-LAN (SOL) feature which is part of Intel’s Management Engine (Intel ME), was exploited by an APT group as a covert communication channel to transfer files. OEM, server manufacturers in control of patching AMI released an advisory and patches to its OEM partners, but affected users must wait for their server manufacturers to integrate them and release firmware updates. In addition to this vulnerability, AMI also patched a flaw tracked as CVE-2024-54084 that may lead to arbitrary code execution in its AptioV UEFI implementation. HPE and Lenovo have already released updates for their products that integrate AMI’s patch for CVE-2024-54085.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »