Stay Ahead, Stay ONMINE

😲 Quantifying Surprise – A Data Scientist’s Intro To Information Theory – Part 1/4: Foundations

Surprise! Generated using Gemini. During the telecommunication boom, Claude Shannon, in his seminal 1948 paper¹, posed a question that would revolutionise technology: How can we quantify communication? Shannon’s findings remain fundamental to expressing information quantification, storage, and communication. These insights made major contributions to the creation of technologies ranging from signal processing, data compression (e.g., Zip files and compact discs) to the Internet and artificial intelligence. More broadly, his work has significantly impacted diverse fields such as neurobiology, statistical physics and computer science (e.g, cybersecurity, cloud computing, and machine learning). [Shannon’s paper is the] Magna Carta of the Information Age Scientific American This is the first article in a series that explores information quantification – an essential tool for data scientists. Its applications range from enhancing statistical analyses to serving as a go-to decision heuristic in cutting-edge machine learning algorithms. Broadly speaking, quantifying information is assessing uncertainty, which may be phrased as: “how surprising is an outcome?”. This article idea quickly grew into a series since I found this topic both fascinating and diverse. Most researchers, at one stage or another, come across commonly used metrics such as entropy, cross-entropy/KL-divergence and mutual-information. Diving into this topic I found that in order to fully appreciate these one needs to learn a bit about the basics which we cover in this first article. By reading this series you will gain an intuition and tools to quantify: Bits/Nats – Unit measures of information. Self-Information – **** The amount of information in a specific event. Pointwise Mutual Information – The amount of information shared between two specific events. Entropy – The average amount of information of a variable’s outcome. Cross-entropy – The misalignment between two probability distributions (also expressed by its derivative KL-Divergence – a distance measure). Mutual Information – The co-dependency of two variables by their conditional probability distributions. It expresses the information gain of one variable given another. No prior knowledge is required – just a basic understanding of probabilities. I demonstrate using common statistics such as coin and dice 🎲 tosses as well as machine learning applications such as in supervised classification, feature selection, model monitoring and clustering assessment. As for real world applications I’ll discuss a case study of quantifying DNA diversity 🧬. Finally, for fun, I also apply to the popular brain twister commonly known as the Monty Hall problem 🚪🚪 🐐 . Throughout I provide python code 🐍 , and try to keep formulas as intuitive as possible. If you have access to an integrated development environment (IDE) 🖥 you might want to plug 🔌 and play 🕹 around with the numbers to gain a better intuition. This series is divided into four articles, each exploring a key aspect of Information Theory: 😲 Quantifying Surprise: 👈 👈 👈 YOU ARE HERE In this opening article, you’ll learn how to quantify the “surprise” of an event using _self-informatio_n and understand its units of measurement, such as _bit_s and _nat_s. Mastering self-information is essential for building intuition about the subsequent concepts, as all later heuristics are derived from it. 🤷 Quantifying Uncertainty: Building on self-information, this article shifts focus to the uncertainty – or “average surprise” – associated with a variable, known as entropy. We’ll dive into entropy’s wide-ranging applications, from Machine Learning and data analysis to solving fun puzzles, showcasing its adaptability. 📏 Quantifying Misalignment: Here, we’ll explore how to measure the distance between two probability distributions using entropy-based metrics like cross-entropy and KL-divergence. These measures are particularly valuable for tasks like comparing predicted versus true distributions, as in classification loss functions and other alignment-critical scenarios. 💸 Quantifying Gain: Expanding from single-variable measures, this article investigates the relationships between two. You’ll discover how to quantify the information gained about one variable (e.g, target Y) by knowing another (e.g., predictor X). Applications include assessing variable associations, feature selection, and evaluating clustering performance. Each article is crafted to stand alone while offering cross-references for deeper exploration. Together, they provide a practical, data-driven introduction to information theory, tailored for data scientists, analysts and machine learning practitioners. Disclaimer: Unless otherwise mentioned the formulas analysed are for categorical variables with c≥2 classes (2 meaning binary). Continuous variables will be addressed in a separate article. 🚧 Articles (3) and (4) are currently under construction. I will share links once available. Follow me to be notified 🚧 Quantifying Surprise with Self-Information Self-information is considered the building block of information quantification. It is a way of quantifying the amount of “surprise” of a specific outcome. Formally self-information, or also referred to as Shannon Information or information content, quantifies the surprise of an event x occurring based on its probability, p(x). Here we denote it as hₓ: Self-information _h_ₓ is the information of event x that occurs with probability p(x). The units of measure are called bits. One bit (binary digit) is the amount of information for an event x that has probability of p(x)=½. Let’s plug in to verify: hₓ=-log₂(½)= log₂(2)=1 bit. This heuristic serves as an alternative to probabilities, odds and log-odds, with certain mathematical properties which are advantageous for information theory. We discuss these below when learning about Shannon’s axioms behind this choice. It’s always informative to explore how an equation behaves with a graph: Bernoulli trial self-information h(p). Key features: Monotonic, h(p=1)=0, h(p →)→∞. To deepen our understanding of self-information, we’ll use this graph to explore the said axioms that justify its logarithmic formulation. Along the way, we’ll also build intuition about key features of this heuristic. To emphasise the logarithmic nature of self-information, I’ve highlighted three points of interest on the graph: At p=1 an event is guaranteed, yielding no surprise and hence zero bits of information (zero bits). A useful analogy is a trick coin (where both sides show HEAD). Reducing the probability by a factor of two (p=½​) increases the information to _hₓ=_1 bit. This, of course, is the case of a fair coin. Further reducing it by a factor of four results in hₓ(p=⅛)=3 bits. If you are interested in coding the graph here is a python script: To summarise this section: Self-Information hₓ=-log₂(p(x)) quantifies the amount of “surprise” of a specific outcome x. Three Axioms Referencing prior work by Ralph Hartley, Shannon chose -log₂(p) as a manner to meet three axioms. We’ll use the equation and graph to examine how these are manifested: An event with probability 100% is not surprising and hence does not yield any information. In the trick coin case this is evident by p(x)=1 yielding hₓ=0. Less probable events are more surprising and provide more information. This is apparent by self-information decreasing monotonically with increasing probability. The property of Additivity – the total self-information of two independent events equals the sum of individual contributions. This will be explored further in the upcoming fourth article on Mutual Information. There are mathematical proofs (which are beyond the scope of this series) that show that only the log function adheres to all three². The application of these axioms reveals several intriguing and practical properties of self-information: Important properties : Minimum bound: The first axiom hₓ(p=1)=0 establishes that self-information is non-negative, with zero as its lower bound. This is highly practical for many applications. Monotonically decreasing: The second axiom ensures that self-information decreases monotonically with increasing probability. No Maximum bound: At the extreme where _p→_0, monotonicity leads to self-information growing without bound hₓ(_p→0) →_ ∞, a feature that requires careful consideration in some contexts. However, when averaging self-information – as we will later see in the calculation of entropy – probabilities act as weights, effectively limiting the contribution of highly improbable events to the overall average. This relationship will become clearer when we explore entropy in detail. It is useful to understand the close relationship to log-odds. To do so we define p(x) as the probability of event x to happen and p(¬x)=1-p(x) of it not to happen. log-odds(x) = log₂(p(x)/p(¬x))= h(¬x) – h(x). The main takeaways from this section are Axiom 1: An event with probability 100% is not surprising Axiom 2: Less probable events are more surprising and, when they occur, provide more information. Self information (1) monotonically decreases (2) with a minimum bound of zero and (3) no upper bound. In the next two sections we further discuss units of measure and choice of normalisation. Information Units of Measure Bits or Shannons? A bit, as mentioned, represents the amount of information associated with an event that has a 50% probability of occurring. The term is also sometimes referred to as a Shannon, a naming convention proposed by mathematician and physicist David MacKay to avoid confusion with the term ‘bit’ in the context of digital processing and storage. After some deliberation, I decided to use ‘bit’ throughout this series for several reasons: This series focuses on quantifying information, not on digital processing or storage, so ambiguity is minimal. Shannon himself, encouraged by mathematician and statistician John Tukey, used the term ‘bit’ in his landmark paper. ‘Bit’ is the standard term in much of the literature on information theory. For convenience – it’s more concise Normalisation: Log Base 2 vs. Natural Throughout this series we use base 2 for logarithms, reflecting the intuitive notion of a 50% chance of an event as a fundamental unit of information. An alternative commonly used in machine learning is the natural logarithm, which introduces a different unit of measure called nats (short for natural units of information). One nat corresponds to the information gained from an event occurring with a probability of 1/e where e is Euler’s number (≈2.71828). In other words, 1 nat = -ln(p=(1/e)). The relationship between bits (base 2) and nats (natural log) is as follows: 1 bit = ln(2) nats ≈ 0.693 nats. Think of it as similar to a monetary current exchange or converting centimeters to inches. In his seminal publication Shanon explained that the optimal choice of base depends on the specific system being analysed (paraphrased slightly from his original work): “A device with two stable positions […] can store one bit of information” (bit as in binary digit). “A digit wheel on a desk computing machine that has ten stable positions […] has a storage capacity of one decimal digit.”³ “In analytical work where integration and differentiation are involved the base e is sometimes useful. The resulting units of information will be called natural units.” Key aspects of machine learning, such as popular loss functions, often rely on integrals and derivatives. The natural logarithm is a practical choice in these contexts because it can be derived and integrated without introducing additional constants. This likely explains why the machine learning community frequently uses nats as the unit of information – it simplifies the mathematics by avoiding the need to account for factors like ln(2). As shown earlier, I personally find base 2 more intuitive for interpretation. In cases where normalisation to another base is more convenient, I will make an effort to explain the reasoning behind the choice. To summarise this section of units of measure: bit = amount of information to distinguish between two equally likely outcomes. Now that we are familiar with self-information and its unit of measure let’s examine a few use cases. Quantifying Event Information with Coins and Dice In this section, we’ll explore examples to help internalise the self-information axioms and key features demonstrated in the graph. Gaining a solid understanding of self-information is essential for grasping its derivatives, such as entropy, cross-entropy (or KL divergence), and mutual information – all of which are averages over self-information. The examples are designed to be simple, approachable, and lighthearted, accompanied by practical Python code to help you experiment and build intuition. Note: If you feel comfortable with self-information, feel free to skip these examples and go straight to the Quantifying Uncertainty article. Generated using Gemini. To further explore the self-information and bits, I find analogies like coin flips and dice rolls particularly effective, as they are often useful analogies for real-world phenomena. Formally, these can be described as multinomial trials with n=1 trial. Specifically: A coin flip is a Bernoulli trial, where there are c=2 possible outcomes (e.g., heads or tails). Rolling a die represents a categorical trial, where c≥3 outcomes are possible (e.g., rolling a six-sided or eight-sided die). As a use case we’ll use simplistic weather reports limited to featuring sun 🌞 , rain 🌧 , and snow ⛄️. Now, let’s flip some virtual coins 👍 and roll some funky-looking dice 🎲 … Fair Coins and Dice Generated using Gemini. We’ll start with the simplest case of a fair coin (i.e, 50% chance for success/Heads or failure/Tails). Imagine an area for which at any given day there is a 50:50 chance for sun or rain. We can write the probability of each event be: p(🌞 )=p(🌧 )=½. As seen above, according the the self-information formulation, when 🌞 or 🌧 is reported we are provided with h(🌞 __ )=h(🌧 )=-log₂(½)=1 bit of information. We will continue to build on this analogy later on, but for now let’s turn to a variable that has more than two outcomes (c≥3). Before we address the standard six sided die, to simplify the maths and intuition, let’s assume an 8 sided one (_c=_8) as in Dungeons Dragons and other tabletop games. In this case each event (i.e, landing on each side) has a probability of p(🔲 ) = ⅛. When a die lands on one side facing up, e.g, value 7️⃣, we are provided with h(🔲 =7️⃣)=-log₂(⅛)=3 bits of information. For a standard six sided fair die: p(🔲 ) = ⅙ → an event yields __ h(🔲 )=-log₂(⅙)=2.58 bits. Comparing the amount of information from the fair coin (1 bit), 6 sided die (2.58 bits) and 8 sided (3 bits) we identify the second axiom: The less probable an event is, the more surprising it is and the more information it yields. Self information becomes even more interesting when probabilities are skewed to prefer certain events. Loaded Coins and Dice Generated using Gemini. Let’s assume a region where p(🌞 ) = ¾ and p(🌧 )= ¼. When rain is reported the amount of information conveyed is not 1 bit but rather h(🌧 )=-log₂(¼)=2 bits. When sun is reported less information is conveyed: h(🌞 )=-log₂(¾)=0.41 bits. As per the second axiom— a rarer event, like p(🌧 )=¼, reveals more information than a more likely one, like p(🌞 )=¾ – and vice versa. To further drive this point let’s now assume a desert region where p(🌞 ) =99% and p(🌧 )= 1%. If sunshine is reported – that is kind of expected – so nothing much is learnt (“nothing new under the sun” 🥁) and this is quantified as h(🌞 )=0.01 bits. If rain is reported, however, you can imagine being quite surprised. This is quantified as h(🌧 )=6.64 bits. In the following python scripts you can examine all the above examples, and I encourage you to play with your own to get a feeling. First let’s define the calculation and printout function: import numpy as np def print_events_self_information(probs): for ps in probs: print(f”Given distribution {ps}”) for event in ps: if ps[event] != 0: self_information = -np.log2(ps[event]) #same as: -np.log(ps[event])/np.log(2) text_ = f’When `{event}` occurs {self_information:0.2f} bits of information is communicated’ print(text_) else: print(f’a `{event}` event cannot happen p=0 ‘) print(“=” * 20) Next we’ll set a few example distributions of weather frequencies # Setting multiple probability distributions (each sums to 100%) # Fun fact – 🐍 💚 Emojis! probs = [{‘🌞 ‘: 0.5, ‘🌧 ‘: 0.5}, # half-half {‘🌞 ‘: 0.75, ‘🌧 ‘: 0.25}, # more sun than rain {‘🌞 ‘: 0.99, ‘🌧 ‘: 0.01} , # mostly sunshine ] print_events_self_information(probs) This yields printout Given distribution {‘🌞 ‘: 0.5, ‘🌧 ‘: 0.5} When `🌞 ` occurs 1.00 bits of information is communicated When `🌧 ` occurs 1.00 bits of information is communicated ==================== Given distribution {‘🌞 ‘: 0.75, ‘🌧 ‘: 0.25} When `🌞 ` occurs 0.42 bits of information is communicated When `🌧 ` occurs 2.00 bits of information is communicated ==================== Given distribution {‘🌞 ‘: 0.99, ‘🌧 ‘: 0.01} When `🌞 ` occurs 0.01 bits of information is communicated When `🌧 ` occurs 6.64 bits of information is communicated Let’s examine a case of a loaded three sided die. E.g, information of a weather in an area that reports sun, rain and snow at uneven probabilities: p(🌞 ) = 0.2, p(🌧 )=0.7, p(⛄️)=0.1. Running the following print_events_self_information([{‘🌞 ‘: 0.2, ‘🌧 ‘: 0.7, ‘⛄️’: 0.1}]) yields Given distribution {‘🌞 ‘: 0.2, ‘🌧 ‘: 0.7, ‘⛄️’: 0.1} When `🌞 ` occurs 2.32 bits of information is communicated When `🌧 ` occurs 0.51 bits of information is communicated When `⛄️` occurs 3.32 bits of information is communicated What we saw for the binary case applies to higher dimensions. To summarise – we clearly see the implications of the second axiom: When a highly expected event occurs – we do not learn much, the bit count is low. When an unexpected event occurs – we learn a lot, the bit count is high. Event Information Summary In this article we embarked on a journey into the foundational concepts of information theory, defining how to measure the surprise of an event. Notions introduced serve as the bedrock of many tools in information theory, from assessing data distributions to unraveling the inner workings of machine learning algorithms. Through simple yet insightful examples like coin flips and dice rolls, we explored how self-information quantifies the unpredictability of specific outcomes. Expressed in bits, this measure encapsulates Shannon’s second axiom: rarer events convey more information. While we’ve focused on the information content of specific events, this naturally leads to a broader question: what is the average amount of information associated with all possible outcomes of a variable? In the next article, Quantifying Uncertainty, we build on the foundation of self-information and bits to explore entropy – the measure of average uncertainty. Far from being just a beautiful theoretical construct, it has practical applications in data analysis and machine learning, powering tasks like decision tree optimisation, estimating diversity and more. Claude Shannon. Credit: Wikipedia Loved this post? ❤️🍕 💌 Follow me here, join me on LinkedIn or 🍕 buy me a pizza slice! About This Series Even though I have twenty years of experience in data analysis and predictive modelling I always felt quite uneasy about using concepts in information theory without truly understanding them. The purpose of this series was to put me more at ease with concepts of information theory and hopefully provide for others the explanations I needed. 🤷 Quantifying Uncertainty – A Data Scientist’s Intro To Information Theory – Part 2/4: EntropyGa_in intuition into Entropy and master its applications in Machine Learning and Data Analysis. Python code included. 🐍 me_dium.com Check out my other articles which I wrote to better understand Causality and Bayesian Statistics: Footnotes ¹ A Mathematical Theory of Communication, Claude E. Shannon, Bell System Technical Journal 1948. It was later renamed to a book The Mathematical Theory of Communication in 1949. [Shannon’s “A Mathematical Theory of Communication”] the blueprint for the digital era – Historian James Gleick ² See Wikipedia page on Information Content (i.e, self-information) for a detailed derivation that only the log function meets all three axioms. ³ The decimal-digit was later renamed to a hartley (symbol Hart), a ban or a dit. See Hartley (unit) Wikipedia page. Credits Unless otherwise noted, all images were created by the author. Many thanks to Will Reynolds and Pascal Bugnion for their useful comments.
Surprise! Generated using Gemini.
Surprise! Generated using Gemini.

During the telecommunication boom, Claude Shannon, in his seminal 1948 paper¹, posed a question that would revolutionise technology:

How can we quantify communication?

Shannon’s findings remain fundamental to expressing information quantification, storage, and communication. These insights made major contributions to the creation of technologies ranging from signal processing, data compression (e.g., Zip files and compact discs) to the Internet and artificial intelligence. More broadly, his work has significantly impacted diverse fields such as neurobiology, statistical physics and computer science (e.g, cybersecurity, cloud computing, and machine learning).

[Shannon’s paper is the]

Magna Carta of the Information Age

  • Scientific American

This is the first article in a series that explores information quantification – an essential tool for data scientists. Its applications range from enhancing statistical analyses to serving as a go-to decision heuristic in cutting-edge machine learning algorithms.

Broadly speaking, quantifying information is assessing uncertainty, which may be phrased as: “how surprising is an outcome?”.

This article idea quickly grew into a series since I found this topic both fascinating and diverse. Most researchers, at one stage or another, come across commonly used metrics such as entropy, cross-entropy/KL-divergence and mutual-information. Diving into this topic I found that in order to fully appreciate these one needs to learn a bit about the basics which we cover in this first article.

By reading this series you will gain an intuition and tools to quantify:

  • Bits/Nats – Unit measures of information.
  • Self-Information – **** The amount of information in a specific event.
  • Pointwise Mutual Information – The amount of information shared between two specific events.
  • Entropy – The average amount of information of a variable’s outcome.
  • Cross-entropy – The misalignment between two probability distributions (also expressed by its derivative KL-Divergence – a distance measure).
  • Mutual Information – The co-dependency of two variables by their conditional probability distributions. It expresses the information gain of one variable given another.

No prior knowledge is required – just a basic understanding of probabilities.

I demonstrate using common statistics such as coin and dice 🎲 tosses as well as machine learning applications such as in supervised classification, feature selection, model monitoring and clustering assessment. As for real world applications I’ll discuss a case study of quantifying DNA diversity 🧬. Finally, for fun, I also apply to the popular brain twister commonly known as the Monty Hall problem 🚪🚪 🐐 .

Throughout I provide python code 🐍 , and try to keep formulas as intuitive as possible. If you have access to an integrated development environment (IDE) 🖥 you might want to plug 🔌 and play 🕹 around with the numbers to gain a better intuition.

This series is divided into four articles, each exploring a key aspect of Information Theory:

  1. 😲 Quantifying Surprise: 👈 👈 👈 YOU ARE HERE
    In this opening article, you’ll learn how to quantify the “surprise” of an event using _self-informatio_n and understand its units of measurement, such as _bit_s and _nat_s. Mastering self-information is essential for building intuition about the subsequent concepts, as all later heuristics are derived from it.

  2. 🤷 Quantifying Uncertainty: Building on self-information, this article shifts focus to the uncertainty – or “average surprise” – associated with a variable, known as entropy. We’ll dive into entropy’s wide-ranging applications, from Machine Learning and data analysis to solving fun puzzles, showcasing its adaptability.
  3. 📏 Quantifying Misalignment: Here, we’ll explore how to measure the distance between two probability distributions using entropy-based metrics like cross-entropy and KL-divergence. These measures are particularly valuable for tasks like comparing predicted versus true distributions, as in classification loss functions and other alignment-critical scenarios.
  4. 💸 Quantifying Gain: Expanding from single-variable measures, this article investigates the relationships between two. You’ll discover how to quantify the information gained about one variable (e.g, target Y) by knowing another (e.g., predictor X). Applications include assessing variable associations, feature selection, and evaluating clustering performance.

Each article is crafted to stand alone while offering cross-references for deeper exploration. Together, they provide a practical, data-driven introduction to information theory, tailored for data scientists, analysts and machine learning practitioners.

Disclaimer: Unless otherwise mentioned the formulas analysed are for categorical variables with c≥2 classes (2 meaning binary). Continuous variables will be addressed in a separate article.

🚧 Articles (3) and (4) are currently under construction. I will share links once available. Follow me to be notified 🚧


Quantifying Surprise with Self-Information

Self-information is considered the building block of information quantification.

It is a way of quantifying the amount of “surprise” of a specific outcome.

Formally self-information, or also referred to as Shannon Information or information content, quantifies the surprise of an event x occurring based on its probability, p(x). Here we denote it as hₓ:

Self-information _h_ₓ is the information of event x that occurs with probability p(x).
Self-information _h_ₓ is the information of event x that occurs with probability p(x).

The units of measure are called bits. One bit (binary digit) is the amount of information for an event x that has probability of p(x)=½. Let’s plug in to verify: hₓ=-log₂(½)= log₂(2)=1 bit.

This heuristic serves as an alternative to probabilities, odds and log-odds, with certain mathematical properties which are advantageous for information theory. We discuss these below when learning about Shannon’s axioms behind this choice.

It’s always informative to explore how an equation behaves with a graph:

Bernoulli trial self-information h(p). Key features: Monotonic, h(p=1)=0, h(p →)→∞.
Bernoulli trial self-information h(p). Key features: Monotonic, h(p=1)=0, h(p →)→∞.

To deepen our understanding of self-information, we’ll use this graph to explore the said axioms that justify its logarithmic formulation. Along the way, we’ll also build intuition about key features of this heuristic.

To emphasise the logarithmic nature of self-information, I’ve highlighted three points of interest on the graph:

  • At p=1 an event is guaranteed, yielding no surprise and hence zero bits of information (zero bits). A useful analogy is a trick coin (where both sides show HEAD).
  • Reducing the probability by a factor of two (p=½​) increases the information to _hₓ=_1 bit. This, of course, is the case of a fair coin.
  • Further reducing it by a factor of four results in hₓ(p=⅛)=3 bits.

If you are interested in coding the graph here is a python script:

To summarise this section:

Self-Information hₓ=-log₂(p(x)) quantifies the amount of “surprise” of a specific outcome x.

Three Axioms

Referencing prior work by Ralph Hartley, Shannon chose -log₂(p) as a manner to meet three axioms. We’ll use the equation and graph to examine how these are manifested:

  1. An event with probability 100% is not surprising and hence does not yield any information.
    In the trick coin case this is evident by p(x)=1 yielding hₓ=0.

  2. Less probable events are more surprising and provide more information.
    This is apparent by self-information decreasing monotonically with increasing probability.

  3. The property of Additivity – the total self-information of two independent events equals the sum of individual contributions. This will be explored further in the upcoming fourth article on Mutual Information.

There are mathematical proofs (which are beyond the scope of this series) that show that only the log function adheres to all three².

The application of these axioms reveals several intriguing and practical properties of self-information:

Important properties :

  • Minimum bound: The first axiom hₓ(p=1)=0 establishes that self-information is non-negative, with zero as its lower bound. This is highly practical for many applications.
  • Monotonically decreasing: The second axiom ensures that self-information decreases monotonically with increasing probability.
  • No Maximum bound: At the extreme where _p→_0, monotonicity leads to self-information growing without bound hₓ(_p→0) →_ ∞, a feature that requires careful consideration in some contexts. However, when averaging self-information – as we will later see in the calculation of entropy – probabilities act as weights, effectively limiting the contribution of highly improbable events to the overall average. This relationship will become clearer when we explore entropy in detail.

It is useful to understand the close relationship to log-odds. To do so we define p(x) as the probability of event x to happen and px)=1-p(x) of it not to happen. log-odds(x) = log₂(p(x)/px))= hx) – h(x).

The main takeaways from this section are

Axiom 1: An event with probability 100% is not surprising

Axiom 2: Less probable events are more surprising and, when they occur, provide more information.

Self information (1) monotonically decreases (2) with a minimum bound of zero and (3) no upper bound.

In the next two sections we further discuss units of measure and choice of normalisation.

Information Units of Measure

Bits or Shannons?

A bit, as mentioned, represents the amount of information associated with an event that has a 50% probability of occurring.

The term is also sometimes referred to as a Shannon, a naming convention proposed by mathematician and physicist David MacKay to avoid confusion with the term ‘bit’ in the context of digital processing and storage.

After some deliberation, I decided to use ‘bit’ throughout this series for several reasons:

  • This series focuses on quantifying information, not on digital processing or storage, so ambiguity is minimal.
  • Shannon himself, encouraged by mathematician and statistician John Tukey, used the term ‘bit’ in his landmark paper.
  • ‘Bit’ is the standard term in much of the literature on information theory.
  • For convenience – it’s more concise

Normalisation: Log Base 2 vs. Natural

Throughout this series we use base 2 for logarithms, reflecting the intuitive notion of a 50% chance of an event as a fundamental unit of information.

An alternative commonly used in machine learning is the natural logarithm, which introduces a different unit of measure called nats (short for natural units of information). One nat corresponds to the information gained from an event occurring with a probability of 1/e where e is Euler’s number (≈2.71828). In other words, 1 nat = -ln(p=(1/e)).

The relationship between bits (base 2) and nats (natural log) is as follows:

1 bit = ln(2) nats ≈ 0.693 nats.

Think of it as similar to a monetary current exchange or converting centimeters to inches.

In his seminal publication Shanon explained that the optimal choice of base depends on the specific system being analysed (paraphrased slightly from his original work):

  • “A device with two stable positions […] can store one bit of information” (bit as in binary digit).
  • “A digit wheel on a desk computing machine that has ten stable positions […] has a storage capacity of one decimal digit.”³
  • “In analytical work where integration and differentiation are involved the base e is sometimes useful. The resulting units of information will be called natural units.

Key aspects of machine learning, such as popular loss functions, often rely on integrals and derivatives. The natural logarithm is a practical choice in these contexts because it can be derived and integrated without introducing additional constants. This likely explains why the machine learning community frequently uses nats as the unit of information – it simplifies the mathematics by avoiding the need to account for factors like ln(2).

As shown earlier, I personally find base 2 more intuitive for interpretation. In cases where normalisation to another base is more convenient, I will make an effort to explain the reasoning behind the choice.

To summarise this section of units of measure:

bit = amount of information to distinguish between two equally likely outcomes.

Now that we are familiar with self-information and its unit of measure let’s examine a few use cases.

Quantifying Event Information with Coins and Dice

In this section, we’ll explore examples to help internalise the self-information axioms and key features demonstrated in the graph. Gaining a solid understanding of self-information is essential for grasping its derivatives, such as entropy, cross-entropy (or KL divergence), and mutual information – all of which are averages over self-information.

The examples are designed to be simple, approachable, and lighthearted, accompanied by practical Python code to help you experiment and build intuition.

Note: If you feel comfortable with self-information, feel free to skip these examples and go straight to the Quantifying Uncertainty article.

Generated using Gemini.
Generated using Gemini.

To further explore the self-information and bits, I find analogies like coin flips and dice rolls particularly effective, as they are often useful analogies for real-world phenomena. Formally, these can be described as multinomial trials with n=1 trial. Specifically:

  • A coin flip is a Bernoulli trial, where there are c=2 possible outcomes (e.g., heads or tails).
  • Rolling a die represents a categorical trial, where c≥3 outcomes are possible (e.g., rolling a six-sided or eight-sided die).

As a use case we’ll use simplistic weather reports limited to featuring sun 🌞 , rain 🌧 , and snow ⛄️.

Now, let’s flip some virtual coins 👍 and roll some funky-looking dice 🎲 …

Fair Coins and Dice

Generated using Gemini.
Generated using Gemini.

We’ll start with the simplest case of a fair coin (i.e, 50% chance for success/Heads or failure/Tails).

Imagine an area for which at any given day there is a 50:50 chance for sun or rain. We can write the probability of each event be: p(🌞 )=p(🌧 )=½.

As seen above, according the the self-information formulation, when 🌞 or 🌧 is reported we are provided with h(🌞 __ )=h(🌧 )=-log₂(½)=1 bit of information.

We will continue to build on this analogy later on, but for now let’s turn to a variable that has more than two outcomes (c≥3).

Before we address the standard six sided die, to simplify the maths and intuition, let’s assume an 8 sided one (_c=_8) as in Dungeons Dragons and other tabletop games. In this case each event (i.e, landing on each side) has a probability of p(🔲 ) = ⅛.

When a die lands on one side facing up, e.g, value 7️⃣, we are provided with h(🔲 =7️⃣)=-log₂(⅛)=3 bits of information.

For a standard six sided fair die: p(🔲 ) = ⅙ → an event yields __ h(🔲 )=-log₂(⅙)=2.58 bits.

Comparing the amount of information from the fair coin (1 bit), 6 sided die (2.58 bits) and 8 sided (3 bits) we identify the second axiom: The less probable an event is, the more surprising it is and the more information it yields.

Self information becomes even more interesting when probabilities are skewed to prefer certain events.

Loaded Coins and Dice

Generated using Gemini.
Generated using Gemini.

Let’s assume a region where p(🌞 ) = ¾ and p(🌧 )= ¼.

When rain is reported the amount of information conveyed is not 1 bit but rather h(🌧 )=-log₂(¼)=2 bits.

When sun is reported less information is conveyed: h(🌞 )=-log₂(¾)=0.41 bits.

As per the second axiom— a rarer event, like p(🌧 )=¼, reveals more information than a more likely one, like p(🌞 )=¾ – and vice versa.

To further drive this point let’s now assume a desert region where p(🌞 ) =99% and p(🌧 )= 1%.

If sunshine is reported – that is kind of expected – so nothing much is learnt (“nothing new under the sun” 🥁) and this is quantified as h(🌞 )=0.01 bits. If rain is reported, however, you can imagine being quite surprised. This is quantified as h(🌧 )=6.64 bits.

In the following python scripts you can examine all the above examples, and I encourage you to play with your own to get a feeling.

First let’s define the calculation and printout function:

import numpy as np

def print_events_self_information(probs):
    for ps in probs:
        print(f"Given distribution {ps}")
        for event in ps:
            if ps[event] != 0:
                self_information = -np.log2(ps[event]) #same as: -np.log(ps[event])/np.log(2) 
                text_ = f'When `{event}` occurs {self_information:0.2f} bits of information is communicated'
                print(text_)
            else:
                print(f'a `{event}` event cannot happen p=0 ')
        print("=" * 20)

Next we’ll set a few example distributions of weather frequencies

# Setting multiple probability distributions (each sums to 100%)
# Fun fact - 🐍  💚  Emojis!
probs = [{'🌞   ': 0.5, '🌧   ': 0.5},   # half-half
        {'🌞   ': 0.75, '🌧   ': 0.25},  # more sun than rain
        {'🌞   ': 0.99, '🌧   ': 0.01} , # mostly sunshine
]

print_events_self_information(probs)

This yields printout

Given distribution {'🌞      ': 0.5, '🌧      ': 0.5}
When `🌞      ` occurs 1.00 bits of information is communicated 
When `🌧      ` occurs 1.00 bits of information is communicated 
====================
Given distribution {'🌞      ': 0.75, '🌧      ': 0.25}
When `🌞      ` occurs 0.42 bits of information is communicated 
When `🌧      ` occurs 2.00 bits of information is communicated 
====================
Given distribution {'🌞      ': 0.99, '🌧      ': 0.01}
When `🌞      ` occurs 0.01 bits of information is communicated 
When `🌧      ` occurs 6.64 bits of information is communicated  

Let’s examine a case of a loaded three sided die. E.g, information of a weather in an area that reports sun, rain and snow at uneven probabilities: p(🌞 ) = 0.2, p(🌧 )=0.7, p(⛄️)=0.1.

Running the following

print_events_self_information([{'🌞 ': 0.2, '🌧 ': 0.7, '⛄️': 0.1}])

yields

Given distribution {'🌞  ': 0.2, '🌧  ': 0.7, '⛄️': 0.1}
When `🌞  ` occurs 2.32 bits of information is communicated 
When `🌧  ` occurs 0.51 bits of information is communicated 
When `⛄️` occurs 3.32 bits of information is communicated 

What we saw for the binary case applies to higher dimensions.

To summarise – we clearly see the implications of the second axiom:

  • When a highly expected event occurs – we do not learn much, the bit count is low.
  • When an unexpected event occurs – we learn a lot, the bit count is high.

Event Information Summary

In this article we embarked on a journey into the foundational concepts of information theory, defining how to measure the surprise of an event. Notions introduced serve as the bedrock of many tools in information theory, from assessing data distributions to unraveling the inner workings of machine learning algorithms.

Through simple yet insightful examples like coin flips and dice rolls, we explored how self-information quantifies the unpredictability of specific outcomes. Expressed in bits, this measure encapsulates Shannon’s second axiom: rarer events convey more information.

While we’ve focused on the information content of specific events, this naturally leads to a broader question: what is the average amount of information associated with all possible outcomes of a variable?

In the next article, Quantifying Uncertainty, we build on the foundation of self-information and bits to explore entropy – the measure of average uncertainty. Far from being just a beautiful theoretical construct, it has practical applications in data analysis and machine learning, powering tasks like decision tree optimisation, estimating diversity and more.

Claude Shannon. Credit: Wikipedia
Claude Shannon. Credit: Wikipedia

Loved this post? ❤️🍕

💌 Follow me here, join me on LinkedIn or 🍕 buy me a pizza slice!

About This Series

Even though I have twenty years of experience in data analysis and predictive modelling I always felt quite uneasy about using concepts in information theory without truly understanding them.

The purpose of this series was to put me more at ease with concepts of information theory and hopefully provide for others the explanations I needed.

🤷 Quantifying Uncertainty – A Data Scientist’s Intro To Information Theory – Part 2/4: EntropyGa_in intuition into Entropy and master its applications in Machine Learning and Data Analysis. Python code included. 🐍 me_dium.com

Check out my other articles which I wrote to better understand Causality and Bayesian Statistics:

Footnotes

¹ A Mathematical Theory of Communication, Claude E. Shannon, Bell System Technical Journal 1948.

It was later renamed to a book The Mathematical Theory of Communication in 1949.

[Shannon’s “A Mathematical Theory of Communication”] the blueprint for the digital era – Historian James Gleick

² See Wikipedia page on Information Content (i.e, self-information) for a detailed derivation that only the log function meets all three axioms.

³ The decimal-digit was later renamed to a hartley (symbol Hart), a ban or a dit. See Hartley (unit) Wikipedia page.

Credits

Unless otherwise noted, all images were created by the author.

Many thanks to Will Reynolds and Pascal Bugnion for their useful comments.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Cloudflare problems hit websites around the world

Ominously, 31 minutes before Cloudflare acknowledged the problems with its global network, it had also reported problems with its support portal. “Our support portal provider is currently experiencing issues, and as such customers might encounter errors viewing or responding to support cases. Responses on customer inquiries are not affected, and

Read More »

Azure blocks record 15 Tbps DDoS attack as IoT botnets gain new firepower

Varkey added that modern DDoS attacks increasingly resemble hit-and-run incidents, striking suddenly, lasting only minutes, and disappearing before defenses fully engage. He said their speed and intensity require always-on protection and preemptive resilience rather than reactive mitigation. The attack shows how millions of consumer devices have effectively become strategic weapons capable of

Read More »

Insights: What’s next for Permian basin electrification?

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #c19a06 !important; border-color: #c19a06 !important; } This Insights episode of the Oil & Gas Journal ReEnterprised podcast examines the rapidly growing power demands in the Permian basin region and the implications for operators, utilities, and adjacent industries. OGJ Editor-in-Chief Chris Smith interviews Will Kernan, Power Solutions Strategy Manager for Caterpillar Oil & Gas, on why electricity demand has surged by multiple gigawatts since 2021 and why traditional reliance on the grid is no longer sufficient to ensure timely project development and stable operations. Kernan outlines how accelerating electricity demand from both oil and gas operations and new industrial entrants—particularly data centers—has strained transmission capacity, driving greater interest in on-site natural-gas-fired generation and microgrid models. The episode closes with a look at major grid-expansion proposals under consideration in Texas, their long lead-times, and how distributed generation, waste-gas utilization, and field-scale microgrids will shape a more flexible and resilient power ecosystem for the Permian in the years ahead. Highlights  1:50 – Permian electricity demand surgingUp ~4 Gw since 2021 to 7.5 Gw total—driven by upstream electrification, compression, midstream growth, and residential/commercial load. 3:13 – Grid is no longer the “easy button.” Utility interconnection timelines of 3–5+ years can’t

Read More »

Venture Global CEO: CP2 capacity could grow to 30 million tpy

The CP2 LNG plant Venture Global Inc. is building out in Cameron Parish, La., will be able to supply 30 million tonnes/year (tpy) versus its currently permitted capacity of 28 million tpy, Mike Sabel, the company’s chief executive officer and executive co-chairman said Nov. 10. Speaking after Virginia-based Venture Global reported its third-quarter results as well as the signing of a 1-million tpy supply agreement with Spain’s Naturgy, Sabel said teams have been applying learnings from the company’s Calcasieu Pass and Plaquemines plants. That includes from tens of thousands data points those plants are generating every minute. “We have a dedicated team of data scientists and process engineers and AI programmers that have been incorporating that data into our current operations, but also into design changes as we’ve learned some very surprising interactions of different parts of the facilities […] that we expect will carry over into CP2,” Sabel said. “We’ll have to go back and get the export authorization moved from 28 up to 30 but we think CP2 will be doing even better than Plaquemines, which is doing the best that any project has ever done.” As of Oct. 31, eight of the 26 planned liquefaction trains at CP2—which is forecast to cost a total of $29 billion—had been completed. Sabel said more than 3,500 construction workers are active at the site, which spans 700 acres. The Venture Global team this summer took final investment decision on the project and during the third quarter won final authorization from the US Department of Energy to export LNG to non-free trade agreement nations. During the 3 months that ended Sept. 30, Venture Global exported 100 LNG cargos, up from 89 in the spring and 31 in third-quarter 2024. That translated into net income of $429 million on more than $3.3 billion in

Read More »

TotalEnergies signs exploration license as operator of block offshore Guyana

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #c19a06 !important; border-color: #c19a06 !important; } TotalEnergies has become operator of a new oil and gas exploration license offshore Guyana. Following signing of a production sharing contract for Block S4 with Guyana’s Ministry of National Resoruces, TotalEnergies will hold 40% operated interest in the shallow-water block, alongside partners QatarEnergy (35%) and Petronas (25%). The signing follows the block’s 2023 award in the Guyana 2022 Licensing Round. Block S4 covers 1,788 sq km and lies about 50-100 km from shore. The initial work program consists of a 2,000 sq km 3D seismic acquisition.

Read More »

Equinor drills dry well in North Sea Snorre area

Equinor Energy AS has plugged a North Sea well drilled in the Snorre area. Wildcat well 34/6-9 S (Avbitertang) was drilled by the COSL Innovator drilling rig in production license 554, 35 km northeast of Snorre field and 125 km west of Florø. It was drilled to respective measured and vertical depths of 4,042 and 4,001 m subsea and was terminated in the Burton formation in the Lower Jurassic. Water depth at the site is 387 m. The well is the ninth wildcat well drilled within the license acreage and is the third exploration well drilled in this area this year. Like wells 34/8-20 S (Narvi Nord) and 34/6-8 S (Garantiana NV), the well was dry, the Norwegian Offshore Directorate said in a release Nov. 11. Geological information The objective of the well was to prove petroleum in Lower Jurassic reservoir rocks in the Cook formation, which it encountered in a total of about 106 m, 39 m of which with moderate to good reservoir quality. Data was collected, including pressure points in the Cook formation. Equinor is operator of the license with 40% interest. Partners are Aker BP ASA (30%) and Var Energi ASA (30%). 

Read More »

Hollub says Occidental ready for ‘harvesting’ phase after OxyChem deal

Occidental Petroleum Corp., Houston, will emphasize using existing infrastructure to get more from its reserves while building its unconventional enhanced oil recovery work in coming years. The greater focus on US assets—with the Permian basin at the core—comes after a 2-year span in which Vicki Hollub, president and chief executive officer, and her team spent $12 billion to buy CrownRock LP and announced a deal to sell the company’s OxyChem petrochemicals subsidiary to Berkshire Hathaway Inc. for $9.7 billion and use $6.5 billion of that amount to pay down debt.  Asked on a conference call Nov. 11 by Melius Research analyst James West if she is ready for “a quieter period, maybe a harvesting-type of a period,” Hollub chuckled and said, “Absolutely.” “I’m thankful to be at this point, finally,” she added. “This is where we wanted to be and this is where we needed to be. We’ve done everything that we set out to do with respect to being mostly a US company and with very high-quality, high-margin assets and assets that can sustain over the long term.” In the 3 months that ended Sept. 30, Occidental produced nearly 1.47 MMboe/d globally, which was an increase of almost 5% from the second quarter and up 4% from the same period in 2024. US oil production was 634,000 b/d—which was also up 4% year over year—while total output was 1.23 MMboe/d.  Production growth from US assets came predominantly from the Permian basin, where oil production rose to 422,000 b/d and total output rose to a record 800,000 boe/d. Helping drive the company’s results in the Permian was a 14% improvement from a year ago in shale well costs.

Read More »

Glenfarne awards Alaska LNG compression contract to Baker Hughes

Alaska LNG, majority owned and developed by Glenfarne Alaska LNG LLC, has signed agreements with Baker Hughes to advance the Alaska LNG project, the companies said in separate releases Nov. 10. The Alaska LNG project is aimed at developing Alaska’s North Slope natural gas resource, primarily Prudhoe Bay and Point Thomson fields. Glenfarne has contracted Baker Hughes as its supplier for main refrigerant compressors for the LNG plant and power generation equipment for the North Slope gas treatment plant in Prudhoe Bay. Baker Hughes also has committed to a strategic investment to support Alaska LNG. Glenfarne is developing Alaska LNG in two financially independent phases. Phase One consists of an 807-mile, 42-in. OD pipeline to transport natural gas from Alaska’s North Slope to meet Alaska’s domestic energy needs. Average throughput of 3.1 bcfd with maximum capacity of 3.3 bcfd is expected. Worley is expected to complete final engineering and cost analysis for the pipeline in December leading into a final investment decision (FID) on this phase of the project, Glenfarne said. Phase Two of the project will add the LNG plant and related infrastructure to enable 20 million tonnes/year of LNG exports and is expected to declare FID in late 2026. Glenfarne became lead developer of Alaska LNG in March. Since then, Glenfarne has secured preliminary commercial commitments with LNG buyers in Japan, Korea, Taiwan, and Thailand for 11 million tpy of LNG, more than 60% of the volume needed to reach FID, the company said.

Read More »

Nvidia’s first exascale system is the 4th fastest supercomputer in the world

The world’s fourth exascale supercomputer has arrived, pitting Nvidia’s proprietary chip technologies against the x86 systems that have dominated supercomputing for decades. For the 66th edition of the TOP500, El Capitan holds steady at No. 1 while JUPITER Booster becomes the fourth exascale system on the list. The JUPITER Booster supercomputer, installed in Germany, uses Nvidia CPUs and GPUs and delivers a peak performance of exactly 1 exaflop, according to the November TOP500 list of supercomputers, released on Monday. The exaflop measurement is considered a major milestone in pushing computing performance to the limits. Today’s computers are typically measured in gigaflops and teraflops—and an exaflop translates to 1 billion gigaflops. Nvidia’s GPUs dominate AI servers installed in data centers as computing shifts to AI. As part of this shift, AI servers with Nvidia’s ARM-based Grace CPUs are emerging as a high-performance alternative to x86 chips. JUPITER is the fourth-fastest supercomputer in the world, behind three systems with x86 chips from AMD and Intel, according to TOP500. The top three supercomputers on the TOP500 list are in the U.S. and owned by the U.S. Department of Energy. The top two supercomputers—the 1.8-exaflop El Capitan at Lawrence Livermore National Laboratory and the 1.35-exaflop Frontier at Oak Ridge National Laboratory—use AMD CPUs and GPUs. The third-ranked 1.01-exaflop Aurora at Argonne National Laboratory uses Intel CPUs and GPUs. Intel scrapped its GPU roadmap after the release of Aurora and is now restructuring operations. The JUPITER Booster, which was assembled by France-based Eviden, has Nvidia’s GH200 superchip, which links two Nvidia Hopper GPUs with CPUs based on ARM designs. The CPU and GPU are connected via Nvidia’s proprietary NVLink interconnect, which is based on InfiniBand and provides bandwidth of up to 900 gigabytes per second. JUPITER first entered the Top500 list at 793 petaflops, but

Read More »

Samsung’s 60% memory price hike signals higher data center costs for enterprises

Industry-wide price surge driven by AI Samsung is not alone in raising prices. In October, TrendForce reported that Samsung and SK Hynix raised DRAM and NAND flash prices by up to 30% for Q4. Similarly, SK Hynix said during its October earnings call that its HBM, DRAM, and NAND capacity is “essentially sold out” for 2026, with the company posting record quarterly operating profit exceeding $8 billion, driven by surging AI demand. Industry analysts attributed the price increases to manufacturers redirecting production capacity. HBM production for AI accelerators consumes three times the wafer capacity of standard DRAM, according to a TrendForce report, citing remarks from Micron’s Chief Business Officer. After two years of oversupply, memory inventories have dropped to approximately eight weeks from over 30 weeks in early 2023. “The memory industry is tightening faster than expected as AI server demand for HBM, DDR5, and enterprise SSDs far outpaces supply growth,” said Manish Rawat, semiconductor analyst at TechInsights. “Even with new fab capacity coming online, much of it is dedicated to HBM, leaving conventional DRAM and NAND undersupplied. Memory is shifting from a cyclical commodity to a strategic bottleneck where suppliers can confidently enforce price discipline.” This newfound pricing power was evident in Samsung’s approach to contract negotiations. “Samsung’s delayed pricing announcement signals tough behind-the-scenes negotiations, with Samsung ultimately securing the aggressive hike it wanted,” Rawat said. “The move reflects a clear power shift toward chipmakers: inventories are normalized, supply is tight, and AI demand is unavoidable, leaving buyers with little room to negotiate.” Charlie Dai, VP and principal analyst at Forrester, said the 60% increase “signals confidence in sustained AI infrastructure growth and underscores memory’s strategic role as the bottleneck in accelerated computing.” Servers to cost 10-25% more For enterprises building AI infrastructure, these supply dynamics translate directly into

Read More »

Arista, Palo Alto bolster AI data center security

“Based on this inspection, the NGFW creates a comprehensive, application-aware security policy. It then instructs the Arista fabric to enforce that policy at wire speed for all subsequent, similar flows,” Kotamraju wrote. “This ‘inspect-once, enforce-many’ model delivers granular zero trust security without the performance bottlenecks of hairpinning all traffic through a firewall or forcing a costly, disruptive network redesign.” The second capability is a dynamic quarantine feature that enables the Palo Alto NGFWs to identify evasive threats using Cloud-Delivered Security Services (CDSS). “These services, such as Advanced WildFire for zero-day malware and Advanced Threat Prevention for unknown exploits, leverage global threat intelligence to detect and block attacks that traditional security misses,” Kotamraju wrote. The Arista fabric can intelligently offload trusted, high-bandwidth “elephant flows” from the firewall after inspection, freeing it to focus on high-risk traffic. When a threat is detected, the NGFW signals Arista CloudVision, which programs the network switches to automatically quarantine the compromised workload at hardware line-rate, according to Kotamraju: “This immediate response halts the lateral spread of a threat without creating a performance bottleneck or requiring manual intervention.” The third feature is unified policy orchestration, where Palo Alto Networks’ management plane centralizes zone-based and microperimeter policies, and CloudVision MSS responds with the offload and enforcement of Arista switches. “This treats the entire geo-distributed network as a single logical switch, allowing workloads to be migrated freely across cloud networks and security domains,” Srikanta and Barbieri wrote. Lastly, the Arista Validated Design (AVD) data models enable network-as-a-code, integrating with CI/CD pipelines. AVDs can also be generated by Arista’s AVA (Autonomous Virtual Assist) AI agents that incorporate best practices, testing, guardrails, and generated configurations. “Our integration directly resolves this conflict by creating a clean architectural separation that decouples the network fabric from security policy. This allows the NetOps team (managing the Arista

Read More »

AMD outlines ambitious plan for AI-driven data centers

“There are very beefy workloads that you must have that performance for to run the enterprise,” he said. “The Fortune 500 mainstream enterprise customers are now … adopting Epyc faster than anyone. We’ve seen a 3x adoption this year. And what that does is drives back to the on-prem enterprise adoption, so that the hybrid multi-cloud is end-to-end on Epyc.” One of the key focus areas for AMD’s Epyc strategy has been our ecosystem build out. It has almost 180 platforms, from racks to blades to towers to edge devices, and 3,000 solutions in the market on top of those platforms. One of the areas where AMD pushes into the enterprise is what it calls industry or vertical workloads. “These are the workloads that drive the end business. So in semiconductors, that’s telco, it’s the network, and the goal there is to accelerate those workloads and either driving more throughput or drive faster time to market or faster time to results. And we almost double our competition in terms of faster time to results,” said McNamara. And it’s paying off. McNamara noted that over 60% of the Fortune 100 are using AMD, and that’s growing quarterly. “We track that very, very closely,” he said. The other question is are they getting new customer acquisitions, customers with Epyc for the first time? “We’ve doubled that year on year.” AMD didn’t just brag, it laid out a road map for the next two years, and 2026 is going to be a very busy year. That will be the year that new CPUs, both client and server, built on the Zen 6 architecture begin to appear. On the server side, that means the Venice generation of Epyc server processors. Zen 6 processors will be built on 2 nanometer design generated by (you guessed

Read More »

Building the Regional Edge: DartPoints CEO Scott Willis on High-Density AI Workloads in Non-Tier-One Markets

When DartPoints CEO Scott Willis took the stage on “the Distributed Edge” panel at the 2025 Data Center Frontier Trends Summit, his message resonated across a room full of developers, operators, and hyperscale strategists: the future of AI infrastructure will be built far beyond the nation’s tier-one metros. On the latest episode of the Data Center Frontier Show, Willis expands on that thesis, mapping out how DartPoints has positioned itself for a moment when digital infrastructure inevitably becomes more distributed, and why that moment has now arrived. DartPoints’ strategy centers on what Willis calls the “regional edge”—markets in the Midwest, Southeast, and South Central regions that sit outside traditional cloud hubs but are increasingly essential to the evolving AI economy. These are not tower-edge micro-nodes, nor hyperscale mega-campuses. Instead, they are regional data centers designed to serve enterprises with colocation, cloud, hybrid cloud, multi-tenant cloud, DRaaS, and backup workloads, while increasingly accommodating the AI-driven use cases shaping the next phase of digital infrastructure. As inference expands and latency-sensitive applications proliferate, Willis sees the industry’s momentum bending toward the very markets DartPoints has spent years cultivating. Interconnection as Foundation for Regional AI Growth A key part of the company’s differentiation is its interconnection strategy. Every DartPoints facility is built to operate as a deeply interconnected environment, drawing in all available carriers within a market and stitching sites together through a regional fiber fabric. Willis describes fiber as the “nervous system” of the modern data center, and for DartPoints that means creating an interconnection model robust enough to support a mix of enterprise cloud, multi-site disaster recovery, and emerging AI inference workloads. The company is already hosting latency-sensitive deployments in select facilities—particularly inference AI and specialized healthcare applications—and Willis expects such deployments to expand significantly as regional AI architectures become more widely

Read More »

Key takeaways from Cisco Partner Summit

Brian Ortbals, senior vice president from World Wide Technology, which is one of Cisco’s biggest and most important partners stated: “Cisco engaged partners early in the process and took our feedback along the way. We believe now is the right time for these changes as it will enable us to capitalize on the changes in the market.” The reality is, the more successful its more-than-half-a-million partners are, the more successful Cisco will be. Platform approach is coming together When Jeetu Patel took the reigns as chief product officer, one of his goals was to make the Cisco portfolio a “force multiple.” Patel has stated repeatedly that, historically, Cisco acted more as a technology holding company with good products in networking, security, collaboration, data center and other areas. In this case, product breadth was not an advantage, as everything must be sold as “best of breed,” which is a tough ask of the salesforce and partner community. Since then, there have been many examples of the coming together of the portfolio to create products that leverage the breadth of the platform. The latest is the Unified Edge appliance, an all-in-one solution that brings together compute, networking, storage and security. Cisco has been aggressive with AI products in the data center, and Cisco Unified Edge compliments that work with a device designed to bring AI to edge locations. This is ideally suited for retail, manufacturing, healthcare, factories and other industries where it’s more cost effecting and performative to run AI where the data lives.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »