Stay Ahead, Stay ONMINE

😲 Quantifying Surprise – A Data Scientist’s Intro To Information Theory – Part 1/4: Foundations

Surprise! Generated using Gemini. During the telecommunication boom, Claude Shannon, in his seminal 1948 paper¹, posed a question that would revolutionise technology: How can we quantify communication? Shannon’s findings remain fundamental to expressing information quantification, storage, and communication. These insights made major contributions to the creation of technologies ranging from signal processing, data compression (e.g., Zip files and compact discs) to the Internet and artificial intelligence. More broadly, his work has significantly impacted diverse fields such as neurobiology, statistical physics and computer science (e.g, cybersecurity, cloud computing, and machine learning). [Shannon’s paper is the] Magna Carta of the Information Age Scientific American This is the first article in a series that explores information quantification – an essential tool for data scientists. Its applications range from enhancing statistical analyses to serving as a go-to decision heuristic in cutting-edge machine learning algorithms. Broadly speaking, quantifying information is assessing uncertainty, which may be phrased as: “how surprising is an outcome?”. This article idea quickly grew into a series since I found this topic both fascinating and diverse. Most researchers, at one stage or another, come across commonly used metrics such as entropy, cross-entropy/KL-divergence and mutual-information. Diving into this topic I found that in order to fully appreciate these one needs to learn a bit about the basics which we cover in this first article. By reading this series you will gain an intuition and tools to quantify: Bits/Nats – Unit measures of information. Self-Information – **** The amount of information in a specific event. Pointwise Mutual Information – The amount of information shared between two specific events. Entropy – The average amount of information of a variable’s outcome. Cross-entropy – The misalignment between two probability distributions (also expressed by its derivative KL-Divergence – a distance measure). Mutual Information – The co-dependency of two variables by their conditional probability distributions. It expresses the information gain of one variable given another. No prior knowledge is required – just a basic understanding of probabilities. I demonstrate using common statistics such as coin and dice 🎲 tosses as well as machine learning applications such as in supervised classification, feature selection, model monitoring and clustering assessment. As for real world applications I’ll discuss a case study of quantifying DNA diversity 🧬. Finally, for fun, I also apply to the popular brain twister commonly known as the Monty Hall problem 🚪🚪 🐐 . Throughout I provide python code 🐍 , and try to keep formulas as intuitive as possible. If you have access to an integrated development environment (IDE) 🖥 you might want to plug 🔌 and play 🕹 around with the numbers to gain a better intuition. This series is divided into four articles, each exploring a key aspect of Information Theory: 😲 Quantifying Surprise: 👈 👈 👈 YOU ARE HERE In this opening article, you’ll learn how to quantify the “surprise” of an event using _self-informatio_n and understand its units of measurement, such as _bit_s and _nat_s. Mastering self-information is essential for building intuition about the subsequent concepts, as all later heuristics are derived from it. 🤷 Quantifying Uncertainty: Building on self-information, this article shifts focus to the uncertainty – or “average surprise” – associated with a variable, known as entropy. We’ll dive into entropy’s wide-ranging applications, from Machine Learning and data analysis to solving fun puzzles, showcasing its adaptability. 📏 Quantifying Misalignment: Here, we’ll explore how to measure the distance between two probability distributions using entropy-based metrics like cross-entropy and KL-divergence. These measures are particularly valuable for tasks like comparing predicted versus true distributions, as in classification loss functions and other alignment-critical scenarios. 💸 Quantifying Gain: Expanding from single-variable measures, this article investigates the relationships between two. You’ll discover how to quantify the information gained about one variable (e.g, target Y) by knowing another (e.g., predictor X). Applications include assessing variable associations, feature selection, and evaluating clustering performance. Each article is crafted to stand alone while offering cross-references for deeper exploration. Together, they provide a practical, data-driven introduction to information theory, tailored for data scientists, analysts and machine learning practitioners. Disclaimer: Unless otherwise mentioned the formulas analysed are for categorical variables with c≥2 classes (2 meaning binary). Continuous variables will be addressed in a separate article. 🚧 Articles (3) and (4) are currently under construction. I will share links once available. Follow me to be notified 🚧 Quantifying Surprise with Self-Information Self-information is considered the building block of information quantification. It is a way of quantifying the amount of “surprise” of a specific outcome. Formally self-information, or also referred to as Shannon Information or information content, quantifies the surprise of an event x occurring based on its probability, p(x). Here we denote it as hₓ: Self-information _h_ₓ is the information of event x that occurs with probability p(x). The units of measure are called bits. One bit (binary digit) is the amount of information for an event x that has probability of p(x)=½. Let’s plug in to verify: hₓ=-log₂(½)= log₂(2)=1 bit. This heuristic serves as an alternative to probabilities, odds and log-odds, with certain mathematical properties which are advantageous for information theory. We discuss these below when learning about Shannon’s axioms behind this choice. It’s always informative to explore how an equation behaves with a graph: Bernoulli trial self-information h(p). Key features: Monotonic, h(p=1)=0, h(p →)→∞. To deepen our understanding of self-information, we’ll use this graph to explore the said axioms that justify its logarithmic formulation. Along the way, we’ll also build intuition about key features of this heuristic. To emphasise the logarithmic nature of self-information, I’ve highlighted three points of interest on the graph: At p=1 an event is guaranteed, yielding no surprise and hence zero bits of information (zero bits). A useful analogy is a trick coin (where both sides show HEAD). Reducing the probability by a factor of two (p=½​) increases the information to _hₓ=_1 bit. This, of course, is the case of a fair coin. Further reducing it by a factor of four results in hₓ(p=⅛)=3 bits. If you are interested in coding the graph here is a python script: To summarise this section: Self-Information hₓ=-log₂(p(x)) quantifies the amount of “surprise” of a specific outcome x. Three Axioms Referencing prior work by Ralph Hartley, Shannon chose -log₂(p) as a manner to meet three axioms. We’ll use the equation and graph to examine how these are manifested: An event with probability 100% is not surprising and hence does not yield any information. In the trick coin case this is evident by p(x)=1 yielding hₓ=0. Less probable events are more surprising and provide more information. This is apparent by self-information decreasing monotonically with increasing probability. The property of Additivity – the total self-information of two independent events equals the sum of individual contributions. This will be explored further in the upcoming fourth article on Mutual Information. There are mathematical proofs (which are beyond the scope of this series) that show that only the log function adheres to all three². The application of these axioms reveals several intriguing and practical properties of self-information: Important properties : Minimum bound: The first axiom hₓ(p=1)=0 establishes that self-information is non-negative, with zero as its lower bound. This is highly practical for many applications. Monotonically decreasing: The second axiom ensures that self-information decreases monotonically with increasing probability. No Maximum bound: At the extreme where _p→_0, monotonicity leads to self-information growing without bound hₓ(_p→0) →_ ∞, a feature that requires careful consideration in some contexts. However, when averaging self-information – as we will later see in the calculation of entropy – probabilities act as weights, effectively limiting the contribution of highly improbable events to the overall average. This relationship will become clearer when we explore entropy in detail. It is useful to understand the close relationship to log-odds. To do so we define p(x) as the probability of event x to happen and p(¬x)=1-p(x) of it not to happen. log-odds(x) = log₂(p(x)/p(¬x))= h(¬x) – h(x). The main takeaways from this section are Axiom 1: An event with probability 100% is not surprising Axiom 2: Less probable events are more surprising and, when they occur, provide more information. Self information (1) monotonically decreases (2) with a minimum bound of zero and (3) no upper bound. In the next two sections we further discuss units of measure and choice of normalisation. Information Units of Measure Bits or Shannons? A bit, as mentioned, represents the amount of information associated with an event that has a 50% probability of occurring. The term is also sometimes referred to as a Shannon, a naming convention proposed by mathematician and physicist David MacKay to avoid confusion with the term ‘bit’ in the context of digital processing and storage. After some deliberation, I decided to use ‘bit’ throughout this series for several reasons: This series focuses on quantifying information, not on digital processing or storage, so ambiguity is minimal. Shannon himself, encouraged by mathematician and statistician John Tukey, used the term ‘bit’ in his landmark paper. ‘Bit’ is the standard term in much of the literature on information theory. For convenience – it’s more concise Normalisation: Log Base 2 vs. Natural Throughout this series we use base 2 for logarithms, reflecting the intuitive notion of a 50% chance of an event as a fundamental unit of information. An alternative commonly used in machine learning is the natural logarithm, which introduces a different unit of measure called nats (short for natural units of information). One nat corresponds to the information gained from an event occurring with a probability of 1/e where e is Euler’s number (≈2.71828). In other words, 1 nat = -ln(p=(1/e)). The relationship between bits (base 2) and nats (natural log) is as follows: 1 bit = ln(2) nats ≈ 0.693 nats. Think of it as similar to a monetary current exchange or converting centimeters to inches. In his seminal publication Shanon explained that the optimal choice of base depends on the specific system being analysed (paraphrased slightly from his original work): “A device with two stable positions […] can store one bit of information” (bit as in binary digit). “A digit wheel on a desk computing machine that has ten stable positions […] has a storage capacity of one decimal digit.”³ “In analytical work where integration and differentiation are involved the base e is sometimes useful. The resulting units of information will be called natural units.” Key aspects of machine learning, such as popular loss functions, often rely on integrals and derivatives. The natural logarithm is a practical choice in these contexts because it can be derived and integrated without introducing additional constants. This likely explains why the machine learning community frequently uses nats as the unit of information – it simplifies the mathematics by avoiding the need to account for factors like ln(2). As shown earlier, I personally find base 2 more intuitive for interpretation. In cases where normalisation to another base is more convenient, I will make an effort to explain the reasoning behind the choice. To summarise this section of units of measure: bit = amount of information to distinguish between two equally likely outcomes. Now that we are familiar with self-information and its unit of measure let’s examine a few use cases. Quantifying Event Information with Coins and Dice In this section, we’ll explore examples to help internalise the self-information axioms and key features demonstrated in the graph. Gaining a solid understanding of self-information is essential for grasping its derivatives, such as entropy, cross-entropy (or KL divergence), and mutual information – all of which are averages over self-information. The examples are designed to be simple, approachable, and lighthearted, accompanied by practical Python code to help you experiment and build intuition. Note: If you feel comfortable with self-information, feel free to skip these examples and go straight to the Quantifying Uncertainty article. Generated using Gemini. To further explore the self-information and bits, I find analogies like coin flips and dice rolls particularly effective, as they are often useful analogies for real-world phenomena. Formally, these can be described as multinomial trials with n=1 trial. Specifically: A coin flip is a Bernoulli trial, where there are c=2 possible outcomes (e.g., heads or tails). Rolling a die represents a categorical trial, where c≥3 outcomes are possible (e.g., rolling a six-sided or eight-sided die). As a use case we’ll use simplistic weather reports limited to featuring sun 🌞 , rain 🌧 , and snow ⛄️. Now, let’s flip some virtual coins 👍 and roll some funky-looking dice 🎲 … Fair Coins and Dice Generated using Gemini. We’ll start with the simplest case of a fair coin (i.e, 50% chance for success/Heads or failure/Tails). Imagine an area for which at any given day there is a 50:50 chance for sun or rain. We can write the probability of each event be: p(🌞 )=p(🌧 )=½. As seen above, according the the self-information formulation, when 🌞 or 🌧 is reported we are provided with h(🌞 __ )=h(🌧 )=-log₂(½)=1 bit of information. We will continue to build on this analogy later on, but for now let’s turn to a variable that has more than two outcomes (c≥3). Before we address the standard six sided die, to simplify the maths and intuition, let’s assume an 8 sided one (_c=_8) as in Dungeons Dragons and other tabletop games. In this case each event (i.e, landing on each side) has a probability of p(🔲 ) = ⅛. When a die lands on one side facing up, e.g, value 7️⃣, we are provided with h(🔲 =7️⃣)=-log₂(⅛)=3 bits of information. For a standard six sided fair die: p(🔲 ) = ⅙ → an event yields __ h(🔲 )=-log₂(⅙)=2.58 bits. Comparing the amount of information from the fair coin (1 bit), 6 sided die (2.58 bits) and 8 sided (3 bits) we identify the second axiom: The less probable an event is, the more surprising it is and the more information it yields. Self information becomes even more interesting when probabilities are skewed to prefer certain events. Loaded Coins and Dice Generated using Gemini. Let’s assume a region where p(🌞 ) = ¾ and p(🌧 )= ¼. When rain is reported the amount of information conveyed is not 1 bit but rather h(🌧 )=-log₂(¼)=2 bits. When sun is reported less information is conveyed: h(🌞 )=-log₂(¾)=0.41 bits. As per the second axiom— a rarer event, like p(🌧 )=¼, reveals more information than a more likely one, like p(🌞 )=¾ – and vice versa. To further drive this point let’s now assume a desert region where p(🌞 ) =99% and p(🌧 )= 1%. If sunshine is reported – that is kind of expected – so nothing much is learnt (“nothing new under the sun” 🥁) and this is quantified as h(🌞 )=0.01 bits. If rain is reported, however, you can imagine being quite surprised. This is quantified as h(🌧 )=6.64 bits. In the following python scripts you can examine all the above examples, and I encourage you to play with your own to get a feeling. First let’s define the calculation and printout function: import numpy as np def print_events_self_information(probs): for ps in probs: print(f”Given distribution {ps}”) for event in ps: if ps[event] != 0: self_information = -np.log2(ps[event]) #same as: -np.log(ps[event])/np.log(2) text_ = f’When `{event}` occurs {self_information:0.2f} bits of information is communicated’ print(text_) else: print(f’a `{event}` event cannot happen p=0 ‘) print(“=” * 20) Next we’ll set a few example distributions of weather frequencies # Setting multiple probability distributions (each sums to 100%) # Fun fact – 🐍 💚 Emojis! probs = [{‘🌞 ‘: 0.5, ‘🌧 ‘: 0.5}, # half-half {‘🌞 ‘: 0.75, ‘🌧 ‘: 0.25}, # more sun than rain {‘🌞 ‘: 0.99, ‘🌧 ‘: 0.01} , # mostly sunshine ] print_events_self_information(probs) This yields printout Given distribution {‘🌞 ‘: 0.5, ‘🌧 ‘: 0.5} When `🌞 ` occurs 1.00 bits of information is communicated When `🌧 ` occurs 1.00 bits of information is communicated ==================== Given distribution {‘🌞 ‘: 0.75, ‘🌧 ‘: 0.25} When `🌞 ` occurs 0.42 bits of information is communicated When `🌧 ` occurs 2.00 bits of information is communicated ==================== Given distribution {‘🌞 ‘: 0.99, ‘🌧 ‘: 0.01} When `🌞 ` occurs 0.01 bits of information is communicated When `🌧 ` occurs 6.64 bits of information is communicated Let’s examine a case of a loaded three sided die. E.g, information of a weather in an area that reports sun, rain and snow at uneven probabilities: p(🌞 ) = 0.2, p(🌧 )=0.7, p(⛄️)=0.1. Running the following print_events_self_information([{‘🌞 ‘: 0.2, ‘🌧 ‘: 0.7, ‘⛄️’: 0.1}]) yields Given distribution {‘🌞 ‘: 0.2, ‘🌧 ‘: 0.7, ‘⛄️’: 0.1} When `🌞 ` occurs 2.32 bits of information is communicated When `🌧 ` occurs 0.51 bits of information is communicated When `⛄️` occurs 3.32 bits of information is communicated What we saw for the binary case applies to higher dimensions. To summarise – we clearly see the implications of the second axiom: When a highly expected event occurs – we do not learn much, the bit count is low. When an unexpected event occurs – we learn a lot, the bit count is high. Event Information Summary In this article we embarked on a journey into the foundational concepts of information theory, defining how to measure the surprise of an event. Notions introduced serve as the bedrock of many tools in information theory, from assessing data distributions to unraveling the inner workings of machine learning algorithms. Through simple yet insightful examples like coin flips and dice rolls, we explored how self-information quantifies the unpredictability of specific outcomes. Expressed in bits, this measure encapsulates Shannon’s second axiom: rarer events convey more information. While we’ve focused on the information content of specific events, this naturally leads to a broader question: what is the average amount of information associated with all possible outcomes of a variable? In the next article, Quantifying Uncertainty, we build on the foundation of self-information and bits to explore entropy – the measure of average uncertainty. Far from being just a beautiful theoretical construct, it has practical applications in data analysis and machine learning, powering tasks like decision tree optimisation, estimating diversity and more. Claude Shannon. Credit: Wikipedia Loved this post? ❤️🍕 💌 Follow me here, join me on LinkedIn or 🍕 buy me a pizza slice! About This Series Even though I have twenty years of experience in data analysis and predictive modelling I always felt quite uneasy about using concepts in information theory without truly understanding them. The purpose of this series was to put me more at ease with concepts of information theory and hopefully provide for others the explanations I needed. 🤷 Quantifying Uncertainty – A Data Scientist’s Intro To Information Theory – Part 2/4: EntropyGa_in intuition into Entropy and master its applications in Machine Learning and Data Analysis. Python code included. 🐍 me_dium.com Check out my other articles which I wrote to better understand Causality and Bayesian Statistics: Footnotes ¹ A Mathematical Theory of Communication, Claude E. Shannon, Bell System Technical Journal 1948. It was later renamed to a book The Mathematical Theory of Communication in 1949. [Shannon’s “A Mathematical Theory of Communication”] the blueprint for the digital era – Historian James Gleick ² See Wikipedia page on Information Content (i.e, self-information) for a detailed derivation that only the log function meets all three axioms. ³ The decimal-digit was later renamed to a hartley (symbol Hart), a ban or a dit. See Hartley (unit) Wikipedia page. Credits Unless otherwise noted, all images were created by the author. Many thanks to Will Reynolds and Pascal Bugnion for their useful comments.
Surprise! Generated using Gemini.
Surprise! Generated using Gemini.

During the telecommunication boom, Claude Shannon, in his seminal 1948 paper¹, posed a question that would revolutionise technology:

How can we quantify communication?

Shannon’s findings remain fundamental to expressing information quantification, storage, and communication. These insights made major contributions to the creation of technologies ranging from signal processing, data compression (e.g., Zip files and compact discs) to the Internet and artificial intelligence. More broadly, his work has significantly impacted diverse fields such as neurobiology, statistical physics and computer science (e.g, cybersecurity, cloud computing, and machine learning).

[Shannon’s paper is the]

Magna Carta of the Information Age

  • Scientific American

This is the first article in a series that explores information quantification – an essential tool for data scientists. Its applications range from enhancing statistical analyses to serving as a go-to decision heuristic in cutting-edge machine learning algorithms.

Broadly speaking, quantifying information is assessing uncertainty, which may be phrased as: “how surprising is an outcome?”.

This article idea quickly grew into a series since I found this topic both fascinating and diverse. Most researchers, at one stage or another, come across commonly used metrics such as entropy, cross-entropy/KL-divergence and mutual-information. Diving into this topic I found that in order to fully appreciate these one needs to learn a bit about the basics which we cover in this first article.

By reading this series you will gain an intuition and tools to quantify:

  • Bits/Nats – Unit measures of information.
  • Self-Information – **** The amount of information in a specific event.
  • Pointwise Mutual Information – The amount of information shared between two specific events.
  • Entropy – The average amount of information of a variable’s outcome.
  • Cross-entropy – The misalignment between two probability distributions (also expressed by its derivative KL-Divergence – a distance measure).
  • Mutual Information – The co-dependency of two variables by their conditional probability distributions. It expresses the information gain of one variable given another.

No prior knowledge is required – just a basic understanding of probabilities.

I demonstrate using common statistics such as coin and dice 🎲 tosses as well as machine learning applications such as in supervised classification, feature selection, model monitoring and clustering assessment. As for real world applications I’ll discuss a case study of quantifying DNA diversity 🧬. Finally, for fun, I also apply to the popular brain twister commonly known as the Monty Hall problem 🚪🚪 🐐 .

Throughout I provide python code 🐍 , and try to keep formulas as intuitive as possible. If you have access to an integrated development environment (IDE) 🖥 you might want to plug 🔌 and play 🕹 around with the numbers to gain a better intuition.

This series is divided into four articles, each exploring a key aspect of Information Theory:

  1. 😲 Quantifying Surprise: 👈 👈 👈 YOU ARE HERE
    In this opening article, you’ll learn how to quantify the “surprise” of an event using _self-informatio_n and understand its units of measurement, such as _bit_s and _nat_s. Mastering self-information is essential for building intuition about the subsequent concepts, as all later heuristics are derived from it.

  2. 🤷 Quantifying Uncertainty: Building on self-information, this article shifts focus to the uncertainty – or “average surprise” – associated with a variable, known as entropy. We’ll dive into entropy’s wide-ranging applications, from Machine Learning and data analysis to solving fun puzzles, showcasing its adaptability.
  3. 📏 Quantifying Misalignment: Here, we’ll explore how to measure the distance between two probability distributions using entropy-based metrics like cross-entropy and KL-divergence. These measures are particularly valuable for tasks like comparing predicted versus true distributions, as in classification loss functions and other alignment-critical scenarios.
  4. 💸 Quantifying Gain: Expanding from single-variable measures, this article investigates the relationships between two. You’ll discover how to quantify the information gained about one variable (e.g, target Y) by knowing another (e.g., predictor X). Applications include assessing variable associations, feature selection, and evaluating clustering performance.

Each article is crafted to stand alone while offering cross-references for deeper exploration. Together, they provide a practical, data-driven introduction to information theory, tailored for data scientists, analysts and machine learning practitioners.

Disclaimer: Unless otherwise mentioned the formulas analysed are for categorical variables with c≥2 classes (2 meaning binary). Continuous variables will be addressed in a separate article.

🚧 Articles (3) and (4) are currently under construction. I will share links once available. Follow me to be notified 🚧


Quantifying Surprise with Self-Information

Self-information is considered the building block of information quantification.

It is a way of quantifying the amount of “surprise” of a specific outcome.

Formally self-information, or also referred to as Shannon Information or information content, quantifies the surprise of an event x occurring based on its probability, p(x). Here we denote it as hₓ:

Self-information _h_ₓ is the information of event x that occurs with probability p(x).
Self-information _h_ₓ is the information of event x that occurs with probability p(x).

The units of measure are called bits. One bit (binary digit) is the amount of information for an event x that has probability of p(x)=½. Let’s plug in to verify: hₓ=-log₂(½)= log₂(2)=1 bit.

This heuristic serves as an alternative to probabilities, odds and log-odds, with certain mathematical properties which are advantageous for information theory. We discuss these below when learning about Shannon’s axioms behind this choice.

It’s always informative to explore how an equation behaves with a graph:

Bernoulli trial self-information h(p). Key features: Monotonic, h(p=1)=0, h(p →)→∞.
Bernoulli trial self-information h(p). Key features: Monotonic, h(p=1)=0, h(p →)→∞.

To deepen our understanding of self-information, we’ll use this graph to explore the said axioms that justify its logarithmic formulation. Along the way, we’ll also build intuition about key features of this heuristic.

To emphasise the logarithmic nature of self-information, I’ve highlighted three points of interest on the graph:

  • At p=1 an event is guaranteed, yielding no surprise and hence zero bits of information (zero bits). A useful analogy is a trick coin (where both sides show HEAD).
  • Reducing the probability by a factor of two (p=½​) increases the information to _hₓ=_1 bit. This, of course, is the case of a fair coin.
  • Further reducing it by a factor of four results in hₓ(p=⅛)=3 bits.

If you are interested in coding the graph here is a python script:

To summarise this section:

Self-Information hₓ=-log₂(p(x)) quantifies the amount of “surprise” of a specific outcome x.

Three Axioms

Referencing prior work by Ralph Hartley, Shannon chose -log₂(p) as a manner to meet three axioms. We’ll use the equation and graph to examine how these are manifested:

  1. An event with probability 100% is not surprising and hence does not yield any information.
    In the trick coin case this is evident by p(x)=1 yielding hₓ=0.

  2. Less probable events are more surprising and provide more information.
    This is apparent by self-information decreasing monotonically with increasing probability.

  3. The property of Additivity – the total self-information of two independent events equals the sum of individual contributions. This will be explored further in the upcoming fourth article on Mutual Information.

There are mathematical proofs (which are beyond the scope of this series) that show that only the log function adheres to all three².

The application of these axioms reveals several intriguing and practical properties of self-information:

Important properties :

  • Minimum bound: The first axiom hₓ(p=1)=0 establishes that self-information is non-negative, with zero as its lower bound. This is highly practical for many applications.
  • Monotonically decreasing: The second axiom ensures that self-information decreases monotonically with increasing probability.
  • No Maximum bound: At the extreme where _p→_0, monotonicity leads to self-information growing without bound hₓ(_p→0) →_ ∞, a feature that requires careful consideration in some contexts. However, when averaging self-information – as we will later see in the calculation of entropy – probabilities act as weights, effectively limiting the contribution of highly improbable events to the overall average. This relationship will become clearer when we explore entropy in detail.

It is useful to understand the close relationship to log-odds. To do so we define p(x) as the probability of event x to happen and px)=1-p(x) of it not to happen. log-odds(x) = log₂(p(x)/px))= hx) – h(x).

The main takeaways from this section are

Axiom 1: An event with probability 100% is not surprising

Axiom 2: Less probable events are more surprising and, when they occur, provide more information.

Self information (1) monotonically decreases (2) with a minimum bound of zero and (3) no upper bound.

In the next two sections we further discuss units of measure and choice of normalisation.

Information Units of Measure

Bits or Shannons?

A bit, as mentioned, represents the amount of information associated with an event that has a 50% probability of occurring.

The term is also sometimes referred to as a Shannon, a naming convention proposed by mathematician and physicist David MacKay to avoid confusion with the term ‘bit’ in the context of digital processing and storage.

After some deliberation, I decided to use ‘bit’ throughout this series for several reasons:

  • This series focuses on quantifying information, not on digital processing or storage, so ambiguity is minimal.
  • Shannon himself, encouraged by mathematician and statistician John Tukey, used the term ‘bit’ in his landmark paper.
  • ‘Bit’ is the standard term in much of the literature on information theory.
  • For convenience – it’s more concise

Normalisation: Log Base 2 vs. Natural

Throughout this series we use base 2 for logarithms, reflecting the intuitive notion of a 50% chance of an event as a fundamental unit of information.

An alternative commonly used in machine learning is the natural logarithm, which introduces a different unit of measure called nats (short for natural units of information). One nat corresponds to the information gained from an event occurring with a probability of 1/e where e is Euler’s number (≈2.71828). In other words, 1 nat = -ln(p=(1/e)).

The relationship between bits (base 2) and nats (natural log) is as follows:

1 bit = ln(2) nats ≈ 0.693 nats.

Think of it as similar to a monetary current exchange or converting centimeters to inches.

In his seminal publication Shanon explained that the optimal choice of base depends on the specific system being analysed (paraphrased slightly from his original work):

  • “A device with two stable positions […] can store one bit of information” (bit as in binary digit).
  • “A digit wheel on a desk computing machine that has ten stable positions […] has a storage capacity of one decimal digit.”³
  • “In analytical work where integration and differentiation are involved the base e is sometimes useful. The resulting units of information will be called natural units.

Key aspects of machine learning, such as popular loss functions, often rely on integrals and derivatives. The natural logarithm is a practical choice in these contexts because it can be derived and integrated without introducing additional constants. This likely explains why the machine learning community frequently uses nats as the unit of information – it simplifies the mathematics by avoiding the need to account for factors like ln(2).

As shown earlier, I personally find base 2 more intuitive for interpretation. In cases where normalisation to another base is more convenient, I will make an effort to explain the reasoning behind the choice.

To summarise this section of units of measure:

bit = amount of information to distinguish between two equally likely outcomes.

Now that we are familiar with self-information and its unit of measure let’s examine a few use cases.

Quantifying Event Information with Coins and Dice

In this section, we’ll explore examples to help internalise the self-information axioms and key features demonstrated in the graph. Gaining a solid understanding of self-information is essential for grasping its derivatives, such as entropy, cross-entropy (or KL divergence), and mutual information – all of which are averages over self-information.

The examples are designed to be simple, approachable, and lighthearted, accompanied by practical Python code to help you experiment and build intuition.

Note: If you feel comfortable with self-information, feel free to skip these examples and go straight to the Quantifying Uncertainty article.

Generated using Gemini.
Generated using Gemini.

To further explore the self-information and bits, I find analogies like coin flips and dice rolls particularly effective, as they are often useful analogies for real-world phenomena. Formally, these can be described as multinomial trials with n=1 trial. Specifically:

  • A coin flip is a Bernoulli trial, where there are c=2 possible outcomes (e.g., heads or tails).
  • Rolling a die represents a categorical trial, where c≥3 outcomes are possible (e.g., rolling a six-sided or eight-sided die).

As a use case we’ll use simplistic weather reports limited to featuring sun 🌞 , rain 🌧 , and snow ⛄️.

Now, let’s flip some virtual coins 👍 and roll some funky-looking dice 🎲 …

Fair Coins and Dice

Generated using Gemini.
Generated using Gemini.

We’ll start with the simplest case of a fair coin (i.e, 50% chance for success/Heads or failure/Tails).

Imagine an area for which at any given day there is a 50:50 chance for sun or rain. We can write the probability of each event be: p(🌞 )=p(🌧 )=½.

As seen above, according the the self-information formulation, when 🌞 or 🌧 is reported we are provided with h(🌞 __ )=h(🌧 )=-log₂(½)=1 bit of information.

We will continue to build on this analogy later on, but for now let’s turn to a variable that has more than two outcomes (c≥3).

Before we address the standard six sided die, to simplify the maths and intuition, let’s assume an 8 sided one (_c=_8) as in Dungeons Dragons and other tabletop games. In this case each event (i.e, landing on each side) has a probability of p(🔲 ) = ⅛.

When a die lands on one side facing up, e.g, value 7️⃣, we are provided with h(🔲 =7️⃣)=-log₂(⅛)=3 bits of information.

For a standard six sided fair die: p(🔲 ) = ⅙ → an event yields __ h(🔲 )=-log₂(⅙)=2.58 bits.

Comparing the amount of information from the fair coin (1 bit), 6 sided die (2.58 bits) and 8 sided (3 bits) we identify the second axiom: The less probable an event is, the more surprising it is and the more information it yields.

Self information becomes even more interesting when probabilities are skewed to prefer certain events.

Loaded Coins and Dice

Generated using Gemini.
Generated using Gemini.

Let’s assume a region where p(🌞 ) = ¾ and p(🌧 )= ¼.

When rain is reported the amount of information conveyed is not 1 bit but rather h(🌧 )=-log₂(¼)=2 bits.

When sun is reported less information is conveyed: h(🌞 )=-log₂(¾)=0.41 bits.

As per the second axiom— a rarer event, like p(🌧 )=¼, reveals more information than a more likely one, like p(🌞 )=¾ – and vice versa.

To further drive this point let’s now assume a desert region where p(🌞 ) =99% and p(🌧 )= 1%.

If sunshine is reported – that is kind of expected – so nothing much is learnt (“nothing new under the sun” 🥁) and this is quantified as h(🌞 )=0.01 bits. If rain is reported, however, you can imagine being quite surprised. This is quantified as h(🌧 )=6.64 bits.

In the following python scripts you can examine all the above examples, and I encourage you to play with your own to get a feeling.

First let’s define the calculation and printout function:

import numpy as np

def print_events_self_information(probs):
    for ps in probs:
        print(f"Given distribution {ps}")
        for event in ps:
            if ps[event] != 0:
                self_information = -np.log2(ps[event]) #same as: -np.log(ps[event])/np.log(2) 
                text_ = f'When `{event}` occurs {self_information:0.2f} bits of information is communicated'
                print(text_)
            else:
                print(f'a `{event}` event cannot happen p=0 ')
        print("=" * 20)

Next we’ll set a few example distributions of weather frequencies

# Setting multiple probability distributions (each sums to 100%)
# Fun fact - 🐍  💚  Emojis!
probs = [{'🌞   ': 0.5, '🌧   ': 0.5},   # half-half
        {'🌞   ': 0.75, '🌧   ': 0.25},  # more sun than rain
        {'🌞   ': 0.99, '🌧   ': 0.01} , # mostly sunshine
]

print_events_self_information(probs)

This yields printout

Given distribution {'🌞      ': 0.5, '🌧      ': 0.5}
When `🌞      ` occurs 1.00 bits of information is communicated 
When `🌧      ` occurs 1.00 bits of information is communicated 
====================
Given distribution {'🌞      ': 0.75, '🌧      ': 0.25}
When `🌞      ` occurs 0.42 bits of information is communicated 
When `🌧      ` occurs 2.00 bits of information is communicated 
====================
Given distribution {'🌞      ': 0.99, '🌧      ': 0.01}
When `🌞      ` occurs 0.01 bits of information is communicated 
When `🌧      ` occurs 6.64 bits of information is communicated  

Let’s examine a case of a loaded three sided die. E.g, information of a weather in an area that reports sun, rain and snow at uneven probabilities: p(🌞 ) = 0.2, p(🌧 )=0.7, p(⛄️)=0.1.

Running the following

print_events_self_information([{'🌞 ': 0.2, '🌧 ': 0.7, '⛄️': 0.1}])

yields

Given distribution {'🌞  ': 0.2, '🌧  ': 0.7, '⛄️': 0.1}
When `🌞  ` occurs 2.32 bits of information is communicated 
When `🌧  ` occurs 0.51 bits of information is communicated 
When `⛄️` occurs 3.32 bits of information is communicated 

What we saw for the binary case applies to higher dimensions.

To summarise – we clearly see the implications of the second axiom:

  • When a highly expected event occurs – we do not learn much, the bit count is low.
  • When an unexpected event occurs – we learn a lot, the bit count is high.

Event Information Summary

In this article we embarked on a journey into the foundational concepts of information theory, defining how to measure the surprise of an event. Notions introduced serve as the bedrock of many tools in information theory, from assessing data distributions to unraveling the inner workings of machine learning algorithms.

Through simple yet insightful examples like coin flips and dice rolls, we explored how self-information quantifies the unpredictability of specific outcomes. Expressed in bits, this measure encapsulates Shannon’s second axiom: rarer events convey more information.

While we’ve focused on the information content of specific events, this naturally leads to a broader question: what is the average amount of information associated with all possible outcomes of a variable?

In the next article, Quantifying Uncertainty, we build on the foundation of self-information and bits to explore entropy – the measure of average uncertainty. Far from being just a beautiful theoretical construct, it has practical applications in data analysis and machine learning, powering tasks like decision tree optimisation, estimating diversity and more.

Claude Shannon. Credit: Wikipedia
Claude Shannon. Credit: Wikipedia

Loved this post? ❤️🍕

💌 Follow me here, join me on LinkedIn or 🍕 buy me a pizza slice!

About This Series

Even though I have twenty years of experience in data analysis and predictive modelling I always felt quite uneasy about using concepts in information theory without truly understanding them.

The purpose of this series was to put me more at ease with concepts of information theory and hopefully provide for others the explanations I needed.

🤷 Quantifying Uncertainty – A Data Scientist’s Intro To Information Theory – Part 2/4: EntropyGa_in intuition into Entropy and master its applications in Machine Learning and Data Analysis. Python code included. 🐍 me_dium.com

Check out my other articles which I wrote to better understand Causality and Bayesian Statistics:

Footnotes

¹ A Mathematical Theory of Communication, Claude E. Shannon, Bell System Technical Journal 1948.

It was later renamed to a book The Mathematical Theory of Communication in 1949.

[Shannon’s “A Mathematical Theory of Communication”] the blueprint for the digital era – Historian James Gleick

² See Wikipedia page on Information Content (i.e, self-information) for a detailed derivation that only the log function meets all three axioms.

³ The decimal-digit was later renamed to a hartley (symbol Hart), a ban or a dit. See Hartley (unit) Wikipedia page.

Credits

Unless otherwise noted, all images were created by the author.

Many thanks to Will Reynolds and Pascal Bugnion for their useful comments.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Chronosphere unveils logging package with cost control features

According to a study by Chronosphere, enterprise log data is growing at 250% year-over-year, and Chronosphere Logs helps engineers and observability teams to resolve incidents faster while controlling costs. The usage and volume analysis and proactive recommendations can help reduce data before it’s stored, the company says. “Organizations are drowning

Read More »

Cisco CIO on the future of IT: AI, simplicity, and employee power

AI can democratize access to information to deliver a “white-glove experience” once reserved for senior executives, Previn said. That might include, for example, real-time information retrieval and intelligent process execution for every employee. “Usually, in a large company, you’ve got senior executives, and you’ve got early career hires, and it’s

Read More »

AMI MegaRAC authentication bypass flaw is being exploitated, CISA warns

The spoofing attack works by manipulating HTTP request headers sent to the Redfish interface. Attackers can add specific values to headers like “X-Server-Addr” to make their external requests appear as if they’re coming from inside the server itself. Since the system automatically trusts internal requests as authenticated, this spoofing technique

Read More »

Israeli Gas Flows to Egypt Return to Normal as Iran Truce Holds

Israeli natural gas flows to Egypt returned to normal levels after a truce with Iran allowed the Jewish state to reopen facilities shuttered by the 12-day conflict. Daily exports have climbed to 1 billion cubic feet per day, according to two people with direct knowledge of the situation. That’s up from 260 million cubic feet when Israel’s Leviathan gas field, the country’s biggest, restarted on Wednesday, they said, declining to be identified because they’re not authorized to speak to the media.  The increased flows have let Egyptian authorities resume supplies to some factories that had been halted because of the shortages. Israel temporarily closed two of its three gas fields – Chevron-operated Leviathan and Energean’s Karish – shortly after launching attacks on Iran on June 13. The facilities that provided the bulk of exports to Egypt and Jordan resumed operations last week after a US-brokered ceasefire with the Islamic Republic took hold. The ramped-up supplies are a relief for Cairo, which has swung from a net exporter to importer of natural gas in recent years. As Israel and Iran traded blows, Egypt enacted contingency plans that included seeking alternative fuel purchases, limiting gas to some industries and switching power stations to fuel oil and diesel to maintain electricity output. What do you think? We’d love to hear from you, join the conversation on the Rigzone Energy Network. The Rigzone Energy Network is a new social experience created for you and all energy professionals to Speak Up about our industry, share knowledge, connect with peers and industry insiders and engage in a professional community that will empower your career in energy.

Read More »

California Regulator Wants to Pause Newsom Refinery Profit Cap

California’s energy market regulator is backing off a plan to place a profit cap on oil refiners in the state.  Siva Gunda, vice chair of the California Energy Commission, said during a Friday briefing that the cap would “serve as a deterrent” to refiners boosting investments in the state. Gunda said the commission wants to increase gasoline supply in California after two refineries announced plans to close in the next year, accounting for about one-fifth of the state’s crude-processing capacity. The recommendation marks a reversal from years of regulatory scrutiny by Governor Gavin Newsom and the California Energy Commission that contributed to plans by Phillips 66 and Valero Energy Corp. to shut their refineries. The closings prompted Newsom to adjust course in April and urge the energy regulator to collaborate with fuel makers to ensure affordable and reliable supply. Gunda wrote in a Friday letter to Newsom that the commission should pause implementation of a profit margin cap and focus on fuel resupply strategies instead. It comes more than two years after Newsom and state lawmakers gave the energy commission authority to determine a profit margin on refiners and impose financial penalties for violations. The state will be looking to increase fuel imports to make up for the loss of refining capacity, Gunda said. In the short term, California gas prices could rise 15 to 30 cents a gallon because of the loss of production, he said. A spokesperson for the energy commission said the estimated price increases would be mitigated by the plan presented on Friday. Californians already pay the highest gasoline prices in the country. Wade Crowfoot, secretary of the California Natural Resources Agency, said residents want the state to transition away from oil and gas yet they need to prevent cost spikes. “We get it,” he said.

Read More »

State utility regulators urge FERC to slash ROE transmission incentive

Utility regulators from about 35 states are urging the Federal Energy Regulatory Commission to sharply limit a 0.5% return on equity incentive the agency gives to utilities that join regional transmission organizations. “The time has come for the Commission to eliminate its policy of granting the RTO Participation Adder in perpetuity, if not to eliminate this incentive altogether,” the Organization of PJM States, the Organization of MISO States, the New England States Committee on Electricity and the Southwest Power Pool Regional State Committee said in a Friday letter to FERC. The state regulators and others contends the RTO incentive adds millions to ratepayer costs to encourage behavior — being an RTO member — that they would likely do anyway. In 2021, FERC proposed limiting its ROE adder to three years. FERC Chairman Mark Christie supports the proposal as well as limiting other incentives aimed at encouraging utilities to build transmission lines. However, it appears he has been unable to convince a majority of FERC commissioners to reduce those incentives. Christie’s term ends today, although he plans to stay at the agency until at least FERC’s next open meeting on July 24. Limiting the ROE incentive could reduce utility income. Public Service Enterprise Group, for example, estimates that removing the incentive would cut annual net income and cash inflows by about $40 million for its Public Service Electric & Gas subsidiary, according to a Feb. 25 filing at the U.S. Securities and Exchange Commission. The utility earned about $1.5 billion in 2024. Ending the incentive would reduce American Electric Power’s pretax income by $35 million to $50 million a year, the utility company said in its 2023 annual report with the SEC. In April, WIRES, a transmission-focused trade group, the Edison Electric Institute, which represents investor-owned utilities, and GridWise Alliance, a

Read More »

Affordability a ‘formidable challenge’ as load shifts to tech, industrial customers: ICF

Dive Brief: Keeping electricity affordable for consumers is a “formidable challenge” amid projections of declining generation capacity reserves and persistent uncertainty around the scale and pace of future load growth, ICF International Vice President of Energy Markets Maria Scheller said Thursday.  Meanwhile, broad policy uncertainty and an increasingly shaky regulatory environment give utilities and capital markets pause about expensive new infrastructure investments that could become stranded assets, Scheller said in a webinar on ICF’s “Powering the Future: Addressing Surging U.S. Electricity Demand” report. Policy conversations around import tariffs, federal energy tax credits and permitting reform are unfolding as the balance of electricity demand shifts from residential and business consumers to technology and industrial customers, which tend to require around-the-clock power, Scheller added. Dive Insight: The coming shift in U.S. electricity consumption represents less of a new paradigm than a return to the industrial-driven demand the country saw from the 1950s into the 1980s, after which deindustrialization and consumer-centric trends like the widespread adoption of air conditioning, electric resistance heating and personal computing shifted the balance toward the residential segment, Scheller said. The shift is important because unlike residential loads, which show considerable seasonal and intraday variation, industrial loads are flatter, less weather-dependent and more sensitive to voltage fluctuations, Scheller said. By 2035, ICF expects nearly 40% of total U.S. load will have a “flat, power-quality-sensitive profile,” and that overall load will grow faster than peak load, she said. In 2030, ICF projects more than 3% annual power consumption growth, compared with less than 2% annual peak load growth, according to a webinar slide. That’s not to say residential demand won’t also grow in the next few years as consumers electrify home heating and buy more electric vehicles — only that data centers and other industrial demand will “dwarf” it, Scheller

Read More »

Trump attacks on NRC independence pose health, safety risks

Edwin Lyman is director of nuclear power safety at the Union of Concerned Scientists. A White House executive order issued last month targeting the independence of the Nuclear Regulatory Commission, the federal agency that oversees the safety and security of U.S. commercial nuclear facilities and materials, as well as the possibly illegal firing earlier this month of Commissioner Christopher Hanson by President Donald Trump, are raising serious concerns about the agency’s effectiveness as a regulator going forward. While I’ve often been a critic of the NRC for taking actions favoring the nuclear industry at the expense of public health and safety, preserving the NRC in its current form is the best hope for heading off a U.S. nuclear plant disaster like the 2011 Fukushima Daiichi reactor meltdowns in Japan. My long-standing beef with the NRC has primarily been with its political leadership, not with the rank-and-file staff of highly knowledgeable inspectors, analysts and researchers committed to helping ensure that nuclear power remains safe and secure. These professionals are well aware how quickly things can go south at a nuclear power plant without rigorous oversight. They know from experience what obscure corners to look in and what questions to ask. And they can tell — and are not afraid to push back — when they are getting sold snake oil by fly-by-night startups looking to make easy money by capitalizing on the current nuclear power craze. Technical rigor and expert judgment form the bedrock of this work. But when staff are compelled to sweep legitimate safety concerns under the rug in the interest of political expediency, many will leave rather than compromise their scientific integrity. So there is little wonder that a wave of experienced personnel is headed out the door in the wake of the executive order on NRC “reform,”

Read More »

North America Loses Rigs Week on Week

North America dropped six rigs week on week, according to Baker Hughes’ latest North America rotary rig count, which was released on June 27. Although the U.S. dropped seven rigs week on week, Canada added one rig during the same timeframe, taking the total North America rig count down to 687, comprising 547 rigs from the U.S. and 140 rigs from Canada, the count outlined. Of the total U.S. rig count of 547, 533 rigs are categorized as land rigs, 12 are categorized as offshore rigs, and two are categorized as inland water rigs. The total U.S. rig count is made up of 432 oil rigs, 109 gas rigs, and six miscellaneous rigs, according to Baker Hughes’ count, which revealed that the U.S. total comprises 496 horizontal rigs, 38 directional rigs, and 13 vertical rigs. Week on week, the U.S. land rig count reduced by five, its offshore rig count decreased by two, and its inland water rig count remained unchanged, the count highlighted. The country’s oil rig count dropped by six, its gas rig count dropped by two, and its miscellaneous rig count increased by one, week on week, the count showed. The U.S. horizontal rig count dropped by six, its directional rig count dropped by two, and its vertical rig count increased by one, week on week, the count revealed. A major state variances subcategory included in the rig count showed that, week on week, Wyoming dropped five rigs, and Oklahoma, Louisiana, and Colorado each dropped one rig. A major basin variances subcategory included in Baker Hughes’ rig count showed that, week on week, the Granite Wash basin dropped one rig and the Permian basin dropped one rig. Canada’s total rig count of 140 is made up of 94 oil rigs and 46 gas rigs, Baker Hughes pointed

Read More »

Datacenter industry calls for investment after EU issues water consumption warning

CISPE’s response to the European Commission’s report warns that the resulting regulatory uncertainty could hurt the region’s economy. “Imposing new, standalone water regulations could increase costs, create regulatory fragmentation, and deter investment. This risks shifting infrastructure outside the EU, undermining both sustainability and sovereignty goals,” CISPE said in its latest policy recommendation, Advancing water resilience through digital innovation and responsible stewardship. “Such regulatory uncertainty could also reduce Europe’s attractiveness for climate-neutral infrastructure investment at a time when other regions offer clear and stable frameworks for green data growth,” it added. CISPE’s recommendations are a mix of regulatory harmonization, increased investment, and technological improvement. Currently, water reuse regulation is directed towards agriculture. Updated regulation across the bloc would encourage more efficient use of water in industrial settings such as datacenters, the asosciation said. At the same time, countries struggling with limited public sector budgets are not investing enough in water infrastructure. This could only be addressed by tapping new investment by encouraging formal public-private partnerships (PPPs), it suggested: “Such a framework would enable the development of sustainable financing models that harness private sector innovation and capital, while ensuring robust public oversight and accountability.” Nevertheless, better water management would also require real-time data gathered through networks of IoT sensors coupled to AI analytics and prediction systems. To that end, cloud datacenters were less a drain on water resources than part of the answer: “A cloud-based approach would allow water utilities and industrial users to centralize data collection, automate operational processes, and leverage machine learning algorithms for improved decision-making,” argued CISPE.

Read More »

HPE-Juniper deal clears DOJ hurdle, but settlement requires divestitures

In HPE’s press release following the court’s decision, the vendor wrote that “After close, HPE will facilitate limited access to Juniper’s advanced Mist AIOps technology.” In addition, the DOJ stated that the settlement requires HPE to divest its Instant On business and mandates that the merged firm license critical Juniper software to independent competitors. Specifically, HPE must divest its global Instant On campus and branch WLAN business, including all assets, intellectual property, R&D personnel, and customer relationships, to a DOJ-approved buyer within 180 days. Instant On is aimed primarily at the SMB arena and offers a cloud-based package of wired and wireless networking gear that’s designed for so-called out-of-the-box installation and minimal IT involvement, according to HPE. HPE and Juniper focused on the positive in reacting to the settlement. “Our agreement with the DOJ paves the way to close HPE’s acquisition of Juniper Networks and preserves the intended benefits of this deal for our customers and shareholders, while creating greater competition in the global networking market,” HPE CEO Antonio Neri said in a statement. “For the first time, customers will now have a modern network architecture alternative that can best support the demands of AI workloads. The combination of HPE Aruba Networking and Juniper Networks will provide customers with a comprehensive portfolio of secure, AI-native networking solutions, and accelerate HPE’s ability to grow in the AI data center, service provider and cloud segments.” “This marks an exciting step forward in delivering on a critical customer need – a complete portfolio of modern, secure networking solutions to connect their organizations and provide essential foundations for hybrid cloud and AI,” said Juniper Networks CEO Rami Rahim. “We look forward to closing this transaction and turning our shared vision into reality for enterprise, service provider and cloud customers.”

Read More »

Data center costs surge up to 18% as enterprises face two-year capacity drought

“AI workloads, especially training and archival, can absorb 10-20ms latency variance if offset by 30-40% cost savings and assured uptime,” said Gogia. “Des Moines and Richmond offer better interconnection diversity today than some saturated Tier-1 hubs.” Contract flexibility is also crucial. Rather than traditional long-term leases, enterprises are negotiating shorter agreements with renewal options and exploring revenue-sharing arrangements tied to business performance. Maximizing what you have With expansion becoming more costly, enterprises are getting serious about efficiency through aggressive server consolidation, sophisticated virtualization and AI-driven optimization tools that squeeze more performance from existing space. The companies performing best in this constrained market are focusing on optimization rather than expansion. Some embrace hybrid strategies blending existing on-premises infrastructure with strategic cloud partnerships, reducing dependence on traditional colocation while maintaining control over critical workloads. The long wait When might relief arrive? CBRE’s analysis shows primary markets had a record 6,350 MW under construction at year-end 2024, more than double 2023 levels. However, power capacity constraints are forcing aggressive pre-leasing and extending construction timelines to 2027 and beyond. The implications for enterprises are stark: with construction timelines extending years due to power constraints, companies are essentially locked into current infrastructure for at least the next few years. Those adapting their strategies now will be better positioned when capacity eventually returns.

Read More »

Cisco backs quantum networking startup Qunnect

In partnership with Deutsche Telekom’s T-Labs, Qunnect has set up quantum networking testbeds in New York City and Berlin. “Qunnect understands that quantum networking has to work in the real world, not just in pristine lab conditions,” Vijoy Pandey, general manager and senior vice president of Outshift by Cisco, stated in a blog about the investment. “Their room-temperature approach aligns with our quantum data center vision.” Cisco recently announced it is developing a quantum entanglement chip that could ultimately become part of the gear that will populate future quantum data centers. The chip operates at room temperature, uses minimal power, and functions using existing telecom frequencies, according to Pandey.

Read More »

HPE announces GreenLake Intelligence, goes all-in with agentic AI

Like a teammate who never sleeps Agentic AI is coming to Aruba Central as well, with an autonomous supervisory module talking to multiple specialized models to, for example, determine the root cause of an issue and provide recommendations. David Hughes, SVP and chief product officer, HPE Aruba Networking, said, “It’s like having a teammate who can work while you’re asleep, work on problems, and when you arrive in the morning, have those proposed answers there, complete with chain of thought logic explaining how they got to their conclusions.” Several new services for FinOps and sustainability in GreenLake Cloud are also being integrated into GreenLake Intelligence, including a new workload and capacity optimizer, extended consumption analytics to help organizations control costs, and predictive sustainability forecasting and a managed service mode in the HPE Sustainability Insight Center. In addition, updates to the OpsRamp operations copilot, launched in 2024, will enable agentic automation including conversational product help, an agentic command center that enables AI/ML-based alerts, incident management, and root cause analysis across the infrastructure when it is released in the fourth quarter of 2025. It is now a validated observability solution for the Nvidia Enterprise AI Factory. OpsRamp will also be part of the new HPE CloudOps software suite, available in the fourth quarter, which will include HPE Morpheus Enterprise and HPE Zerto. HPE said the new suite will provide automation, orchestration, governance, data mobility, data protection, and cyber resilience for multivendor, multi cloud, multi-workload infrastructures. Matt Kimball, principal analyst for datacenter, compute, and storage at Moor Insights & strategy, sees HPE’s latest announcements aligning nicely with enterprise IT modernization efforts, using AI to optimize performance. “GreenLake Intelligence is really where all of this comes together. I am a huge fan of Morpheus in delivering an agnostic orchestration plane, regardless of operating stack

Read More »

MEF goes beyond metro Ethernet, rebrands as Mplify with expanded scope on NaaS and AI

While MEF is only now rebranding, Vachon said that the scope of the organization had already changed by 2005. Instead of just looking at metro Ethernet, the organization at the time had expanded into carrier Ethernet requirements.  The organization has also had a growing focus on solving the challenge of cross-provider automation, which is where the LSO framework fits in. LSO provides the foundation for an automation framework that allows providers to more efficiently deliver complex services across partner networks, essentially creating a standardized language for service integration.  NaaS leadership and industry blueprint Building on the LSO automation framework, the organization has been working on efforts to help providers with network-as-a-service (NaaS) related guidance and specifications. The organization’s evolution toward NaaS reflects member-driven demands for modern service delivery models. Vachon noted that MEF member organizations were asking for help with NaaS, looking for direction on establishing common definitions and some standard work. The organization responded by developing comprehensive industry guidance. “In 2023 we launched the first blueprint, which is like an industry North Star document. It includes what we think about NaaS and the work we’re doing around it,” Vachon said. The NaaS blueprint encompasses the complete service delivery ecosystem, with APIs including last mile, cloud, data center and security services. (Read more about its vision for NaaS, including easy provisioning and integrated security across a federated network of providers)

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »