Stay Ahead, Stay ONMINE

2025 has already brought us the most performant AI ever: What can we do with these supercharged capabilities (and what’s next)?

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More The latest AI large language model (LLM) releases, such as Claude 3.7 from Anthropic and Grok 3 from xAI, are often performing at PhD levels — at least according to certain benchmarks. This accomplishment marks the […]

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More


The latest AI large language model (LLM) releases, such as Claude 3.7 from Anthropic and Grok 3 from xAI, are often performing at PhD levels — at least according to certain benchmarks. This accomplishment marks the next step toward what former Google CEO Eric Schmidt envisions: A world where everyone has access to “a great polymath,” an AI capable of drawing on vast bodies of knowledge to solve complex problems across disciplines.

Wharton Business School Professor Ethan Mollick noted on his One Useful Thing blog that these latest models were trained using significantly more computing power than GPT-4 at its launch two years ago, with Grok 3 trained on up to 10 times as much compute. He added that this would make Grok 3 the first “gen 3” AI model, emphasizing that “this new generation of AIs is smarter, and the jump in capabilities is striking.”

For example, Claude 3.7 shows emergent capabilities, such as anticipating user needs and the ability to consider novel angles in problem-solving. According to Anthropic, it is the first hybrid reasoning model, combining a traditional LLM for fast responses with advanced reasoning capabilities for solving complex problems.

Mollick attributed these advances to two converging trends: The rapid expansion of compute power for training LLMs, and AI’s increasing ability to tackle complex problem-solving (often described as reasoning or thinking). He concluded that these two trends are “supercharging AI abilities.”

What can we do with this supercharged AI?

In a significant step, OpenAI launched its “deep research” AI agent at the beginning of February. In his review on Platformer, Casey Newton commented that deep research appeared “impressively competent.” Newton noted that deep research and similar tools could significantly accelerate research, analysis and other forms of knowledge work, though their reliability in complex domains is still an open question.

Based on a variant of the still unreleased o3 reasoning model, deep research can engage in extended reasoning over long durations. It does this using chain-of-thought (COT) reasoning, breaking down complex tasks into multiple logical steps, just as a human researcher might refine their approach. It can also search the web, enabling it to access more up-to-date information than what is in the model’s training data.

Timothy Lee wrote in Understanding AI about several tests experts did of deep research, noting that “its performance demonstrates the impressive capabilities of the underlying o3 model.” One test asked for directions on how to build a hydrogen electrolysis plant. Commenting on the quality of the output, a mechanical engineer “estimated that it would take an experienced professional a week to create something as good as the 4,000-word report OpenAI generated in four minutes.”  

But wait, there’s more…

Google DeepMind also recently released “AI co-scientist,” a multi-agent AI system built on its Gemini 2.0 LLM. It is designed to help scientists create novel hypotheses and research plans. Already, Imperial College London has proved the value of this tool. According to Professor José R. Penadés, his team spent years unraveling why certain superbugs resist antibiotics. AI replicated their findings in just 48 hours. While the AI dramatically accelerated hypothesis generation, human scientists were still needed to confirm the findings. Nevertheless, Penadés said the new AI application “has the potential to supercharge science.”

What would it mean to supercharge science?

Last October, Anthropic CEO Dario Amodei wrote in his “Machines of Loving Grace” blog that he expected “powerful AI” — his term for what most call artificial general intelligence (AGI) — would lead to “the next 50 to 100 years of biological [research] progress in 5 to 10 years.” Four months ago, the idea of compressing up to a century of scientific progress into a single decade seemed extremely optimistic. With the recent advances in AI models now including Anthropic Claude 3.7, OpenAI deep research and Google AI co-scientist, what Amodei referred to as a near-term “radical transformation” is starting to look much more plausible.

However, while AI may fast-track scientific discovery, biology, at least, is still bound by real-world constraints — experimental validation, regulatory approval and clinical trials. The question is no longer whether AI will transform science (as it certainly will), but rather how quickly its full impact will be realized.

In a February 9 blog post, OpenAI CEO Sam Altman claimed that “systems that start to point to AGI are coming into view.” He described AGI as “a system that can tackle increasingly complex problems, at human level, in many fields.”  

Altman believes achieving this milestone could unlock a near-utopian future in which the “economic growth in front of us looks astonishing, and we can now imagine a world where we cure all diseases, have much more time to enjoy with our families and can fully realize our creative potential.”

A dose of humility

These advances of AI are hugely significant and portend a much different future in a brief period of time. Yet, AI’s meteoric rise has not been without stumbles. Consider the recent downfall of the Humane AI Pin — a device hyped as a smartphone replacement after a buzzworthy TED Talk. Barely a year later, the company collapsed, and its remnants were sold off for a fraction of their once-lofty valuation.

Real-world AI applications often face significant obstacles for many reasons, from lack of relevant expertise to infrastructure limitations. This has certainly been the experience of Sensei Ag, a startup backed by one of the world’s wealthiest investors. The company set out to apply AI to agriculture by breeding improved crop varieties and using robots for harvesting but has met major hurdles. According to the Wall Street Journal, the startup has faced many setbacks, from technical challenges to unexpected logistical difficulties, highlighting the gap between AI’s potential and its practical implementation.

What comes next?

As we look to the near future, science is on the cusp of a new golden age of discovery, with AI becoming an increasingly capable partner in research. Deep-learning algorithms working in tandem with human curiosity could unravel complex problems at record speed as AI systems sift vast troves of data, spot patterns invisible to humans and suggest cross-disciplinary hypotheses​.

Already, scientists are using AI to compress research timelines — predicting protein structures, scanning literature and reducing years of work to months or even days — unlocking opportunities across fields from climate science to medicine.

Yet, as the potential for radical transformation becomes clearer, so too do the looming risks of disruption and instability. Altman himself acknowledged in his blog that “the balance of power between capital and labor could easily get messed up,” a subtle but significant warning that AI’s economic impact could be destabilizing.

This concern is already materializing, as demonstrated in Hong Kong, as the city recently cut 10,000 civil service jobs while simultaneously ramping up AI investments. If such trends continue and become more expansive, we could see widespread workforce upheaval, heightening social unrest and placing intense pressure on institutions and governments worldwide.

Adapting to an AI-powered world

AI’s growing capabilities in scientific discovery, reasoning and decision-making mark a profound shift that presents both extraordinary promise and formidable challenges. While the path forward may be marked by economic disruptions and institutional strains, history has shown that societies can adapt to technological revolutions, albeit not always easily or without consequence.

To navigate this transformation successfully, societies must invest in governance, education and workforce adaptation to ensure that AI’s benefits are equitably distributed. Even as AI regulation faces political resistance, scientists, policymakers and business leaders must collaborate to build ethical frameworks, enforce transparency standards and craft policies that mitigate risks while amplifying AI’s transformative impact. If we rise to this challenge with foresight and responsibility, people and AI can tackle the world’s greatest challenges, ushering in a new age with breakthroughs that once seemed impossible.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

IBM readies commercially valuable quantum computer technology

But even at release, the system lets enterprises run longer quantum programs than before, with a wider variety of potential applications, says Crowder. Another breakthrough is its error correction. Last year, IBM demonstrated that it can do error correction on classical computers quickly and cheaply enough to be practical, on

Read More »

Cloudflare problems hit websites around the world

Ominously, 31 minutes before Cloudflare acknowledged the problems with its global network, it had also reported problems with its support portal. “Our support portal provider is currently experiencing issues, and as such customers might encounter errors viewing or responding to support cases. Responses on customer inquiries are not affected, and

Read More »

Energy Department Closes Loan to Restart Nuclear Power Plant in Pennsylvania

WASHINGTON—U.S. Secretary of Energy Chris Wright today announced the Department of Energy’s (DOE) Loan Programs Office (LPO) closed a loan to lower energy costs and restart a Pennsylvania nuclear power plant. The $1 billion loan to Constellation Energy Generation, LLC (Constellation) will help finance the Crane Clean Energy Center, an 835 MW plant located on the Susquehanna River in Londonderry Township, Pennsylvania. Today’s announcement, funded by the Energy Dominance Financing (EDF) Program created under the Working Families Tax Cut, highlights the Energy Department’s role in advancing President Trump’s Executive Order, Reinvigorating the Nuclear Industrial Base, by supporting the restart of nuclear power plants. “Thanks to President Trump’s bold leadership and the Working Families Tax Cut, the United States is taking unprecedented steps to lower energy costs and bring about the next American nuclear renaissance,” said Energy Secretary Wright. “Constellation’s restart of a nuclear power plant in Pennsylvania will provide affordable, reliable, and secure energy to Americans across the Mid-Atlantic region. It will also help ensure America has the energy it needs to grow its domestic manufacturing base and win the AI race.” This announcement marks the first project to receive a concurrent conditional commitment and financial close under the Trump Administration. The loan will partially finance the restart of a reactor which ceased operations in 2019 but was never fully decommissioned. Once restarted, pending U.S. Nuclear Regulatory Commission licensing approvals, the 835 MW reactor will provide reliable and affordable baseload power to the PJM Interconnection region, powering the equivalent of approximately 800,000 homes. The Crane Restart project will help lower electricity costs, strengthen grid reliability, create over 600 American jobs, and advance the Administration’s mission to lead in global AI innovation and restore domestic manufacturing industries. DOE remains committed to fulfilling this mission to maximize the speed and scale of

Read More »

Atlantic LNG Freight Rates at Highest in Nearly 2 Years

The cost of transporting liquefied natural gas across the Atlantic Ocean surged to the highest in almost two years, as expanding exports from North America boosted demand for tankers. The spot rate to hire an LNG vessel for delivery from the US to Europe jumped 19 percent to $98,250 per day on Monday, the highest since January 2024, according to Spark Commodities, which tracks shipping prices. Costs to hire a tanker in the Pacific Ocean also jumped 15 percent to the highest in over a year, the data show. This is a stark turnaround for the market, which had languished at rock-bottom prices for most of the year amid a glut of available ships. Output from North America has increased steadily as new projects ramp up, requiring more vessels to deliver the fuel to customers in Europe and Asia. The 30-day moving average for LNG exports from North America has climbed nearly 40 percent year-to-date, according to ship-tracking data compiled by Bloomberg.  Higher freight rates threaten to widen the spread between Asian and European gas prices, as it will be more expensive to send US shipments to the Pacific. A company booked a vessel for December in the Atlantic for about $100,000 per day, traders said. Likewise, when freight rates were lower, companies sent some vessels to Asia, further exacerbating a shortage of ships in the Atlantic, they added. Still, the surge in charter rates is likely to have peaked and has “limited potential to run much higher,” according to Han Wei, a BloombergNEF analyst. “On the LNG tanker supply side, we’ll continue to see strong new build deliveries, which should keep spot charter rates in check,” he said. What do you think? We’d love to hear from you, join the conversation on the Rigzone Energy Network. The Rigzone Energy Network is a new social

Read More »

Meeting America’s generation challenge: Why smarter permitting matters

Scott Corwin is president and CEO of the American Public Power Association. The United States faces a complex power challenge. The rise of data centers, the return of American manufacturing and the push to electrify vehicles and homes are all driving new demands on the nation’s electrical grid. Public power utilities, which are community-owned and not-for-profit providers, are prepared to meet these needs, serving nearly 55 million Americans in more than 2,000 communities across 49 states and several territories. However, these utilities are often slowed by an outdated, unpredictable federal permitting system. This is particularly challenging for new generation projects, as regulatory barriers and red tape can prolong timelines by years and raise costs by millions. In the end, these costs are borne by communities and leave families and businesses more vulnerable to supply disruptions or delayed improvements in reliability. Permitting reform is not about diminishing environmental protections. Instead, it is about removing unnecessary and duplicative regulatory hurdles that slow the construction of new generation resources and other needed energy infrastructure. The American Public Power Association supports pragmatic legislative efforts that streamline the permitting and siting process, provide clearer federal guidance, and produce timelier decisions. Reform must maintain strong environmental oversight but deliver outcomes that allow vital energy projects to proceed without unnecessary delay. When the permitting process is lengthy or unpredictable, the difficulty and expense of building new infrastructure grows. Customers are directly affected; they may see higher energy bills or even miss economic development opportunities because the process takes too long. Projects that meet environmental standards should move through federal review with clear milestones and prompt decisions. Federal policy must also ensure reviews are coordinated, not conducted in succession, so agencies work together with established schedules. Regulatory guidance should be consistent, even as administrations change, to enable local

Read More »

Insights: What’s next for Permian basin electrification?

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #c19a06 !important; border-color: #c19a06 !important; } This Insights episode of the Oil & Gas Journal ReEnterprised podcast examines the rapidly growing power demands in the Permian basin region and the implications for operators, utilities, and adjacent industries. OGJ Editor-in-Chief Chris Smith interviews Will Kernan, Power Solutions Strategy Manager for Caterpillar Oil & Gas, on why electricity demand has surged by multiple gigawatts since 2021 and why traditional reliance on the grid is no longer sufficient to ensure timely project development and stable operations. Kernan outlines how accelerating electricity demand from both oil and gas operations and new industrial entrants—particularly data centers—has strained transmission capacity, driving greater interest in on-site natural-gas-fired generation and microgrid models. The episode closes with a look at major grid-expansion proposals under consideration in Texas, their long lead-times, and how distributed generation, waste-gas utilization, and field-scale microgrids will shape a more flexible and resilient power ecosystem for the Permian in the years ahead. Highlights  1:50 – Permian electricity demand surgingUp ~4 Gw since 2021 to 7.5 Gw total—driven by upstream electrification, compression, midstream growth, and residential/commercial load. 3:13 – Grid is no longer the “easy button.” Utility interconnection timelines of 3–5+ years can’t

Read More »

Venture Global CEO: CP2 capacity could grow to 30 million tpy

The CP2 LNG plant Venture Global Inc. is building out in Cameron Parish, La., will be able to supply 30 million tonnes/year (tpy) versus its currently permitted capacity of 28 million tpy, Mike Sabel, the company’s chief executive officer and executive co-chairman said Nov. 10. Speaking after Virginia-based Venture Global reported its third-quarter results as well as the signing of a 1-million tpy supply agreement with Spain’s Naturgy, Sabel said teams have been applying learnings from the company’s Calcasieu Pass and Plaquemines plants. That includes from tens of thousands data points those plants are generating every minute. “We have a dedicated team of data scientists and process engineers and AI programmers that have been incorporating that data into our current operations, but also into design changes as we’ve learned some very surprising interactions of different parts of the facilities […] that we expect will carry over into CP2,” Sabel said. “We’ll have to go back and get the export authorization moved from 28 up to 30 but we think CP2 will be doing even better than Plaquemines, which is doing the best that any project has ever done.” As of Oct. 31, eight of the 26 planned liquefaction trains at CP2—which is forecast to cost a total of $29 billion—had been completed. Sabel said more than 3,500 construction workers are active at the site, which spans 700 acres. The Venture Global team this summer took final investment decision on the project and during the third quarter won final authorization from the US Department of Energy to export LNG to non-free trade agreement nations. During the 3 months that ended Sept. 30, Venture Global exported 100 LNG cargos, up from 89 in the spring and 31 in third-quarter 2024. That translated into net income of $429 million on more than $3.3 billion in

Read More »

TotalEnergies signs exploration license as operator of block offshore Guyana

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #c19a06 !important; border-color: #c19a06 !important; } TotalEnergies has become operator of a new oil and gas exploration license offshore Guyana. Following signing of a production sharing contract for Block S4 with Guyana’s Ministry of National Resoruces, TotalEnergies will hold 40% operated interest in the shallow-water block, alongside partners QatarEnergy (35%) and Petronas (25%). The signing follows the block’s 2023 award in the Guyana 2022 Licensing Round. Block S4 covers 1,788 sq km and lies about 50-100 km from shore. The initial work program consists of a 2,000 sq km 3D seismic acquisition.

Read More »

Nvidia’s first exascale system is the 4th fastest supercomputer in the world

The world’s fourth exascale supercomputer has arrived, pitting Nvidia’s proprietary chip technologies against the x86 systems that have dominated supercomputing for decades. For the 66th edition of the TOP500, El Capitan holds steady at No. 1 while JUPITER Booster becomes the fourth exascale system on the list. The JUPITER Booster supercomputer, installed in Germany, uses Nvidia CPUs and GPUs and delivers a peak performance of exactly 1 exaflop, according to the November TOP500 list of supercomputers, released on Monday. The exaflop measurement is considered a major milestone in pushing computing performance to the limits. Today’s computers are typically measured in gigaflops and teraflops—and an exaflop translates to 1 billion gigaflops. Nvidia’s GPUs dominate AI servers installed in data centers as computing shifts to AI. As part of this shift, AI servers with Nvidia’s ARM-based Grace CPUs are emerging as a high-performance alternative to x86 chips. JUPITER is the fourth-fastest supercomputer in the world, behind three systems with x86 chips from AMD and Intel, according to TOP500. The top three supercomputers on the TOP500 list are in the U.S. and owned by the U.S. Department of Energy. The top two supercomputers—the 1.8-exaflop El Capitan at Lawrence Livermore National Laboratory and the 1.35-exaflop Frontier at Oak Ridge National Laboratory—use AMD CPUs and GPUs. The third-ranked 1.01-exaflop Aurora at Argonne National Laboratory uses Intel CPUs and GPUs. Intel scrapped its GPU roadmap after the release of Aurora and is now restructuring operations. The JUPITER Booster, which was assembled by France-based Eviden, has Nvidia’s GH200 superchip, which links two Nvidia Hopper GPUs with CPUs based on ARM designs. The CPU and GPU are connected via Nvidia’s proprietary NVLink interconnect, which is based on InfiniBand and provides bandwidth of up to 900 gigabytes per second. JUPITER first entered the Top500 list at 793 petaflops, but

Read More »

Samsung’s 60% memory price hike signals higher data center costs for enterprises

Industry-wide price surge driven by AI Samsung is not alone in raising prices. In October, TrendForce reported that Samsung and SK Hynix raised DRAM and NAND flash prices by up to 30% for Q4. Similarly, SK Hynix said during its October earnings call that its HBM, DRAM, and NAND capacity is “essentially sold out” for 2026, with the company posting record quarterly operating profit exceeding $8 billion, driven by surging AI demand. Industry analysts attributed the price increases to manufacturers redirecting production capacity. HBM production for AI accelerators consumes three times the wafer capacity of standard DRAM, according to a TrendForce report, citing remarks from Micron’s Chief Business Officer. After two years of oversupply, memory inventories have dropped to approximately eight weeks from over 30 weeks in early 2023. “The memory industry is tightening faster than expected as AI server demand for HBM, DDR5, and enterprise SSDs far outpaces supply growth,” said Manish Rawat, semiconductor analyst at TechInsights. “Even with new fab capacity coming online, much of it is dedicated to HBM, leaving conventional DRAM and NAND undersupplied. Memory is shifting from a cyclical commodity to a strategic bottleneck where suppliers can confidently enforce price discipline.” This newfound pricing power was evident in Samsung’s approach to contract negotiations. “Samsung’s delayed pricing announcement signals tough behind-the-scenes negotiations, with Samsung ultimately securing the aggressive hike it wanted,” Rawat said. “The move reflects a clear power shift toward chipmakers: inventories are normalized, supply is tight, and AI demand is unavoidable, leaving buyers with little room to negotiate.” Charlie Dai, VP and principal analyst at Forrester, said the 60% increase “signals confidence in sustained AI infrastructure growth and underscores memory’s strategic role as the bottleneck in accelerated computing.” Servers to cost 10-25% more For enterprises building AI infrastructure, these supply dynamics translate directly into

Read More »

Arista, Palo Alto bolster AI data center security

“Based on this inspection, the NGFW creates a comprehensive, application-aware security policy. It then instructs the Arista fabric to enforce that policy at wire speed for all subsequent, similar flows,” Kotamraju wrote. “This ‘inspect-once, enforce-many’ model delivers granular zero trust security without the performance bottlenecks of hairpinning all traffic through a firewall or forcing a costly, disruptive network redesign.” The second capability is a dynamic quarantine feature that enables the Palo Alto NGFWs to identify evasive threats using Cloud-Delivered Security Services (CDSS). “These services, such as Advanced WildFire for zero-day malware and Advanced Threat Prevention for unknown exploits, leverage global threat intelligence to detect and block attacks that traditional security misses,” Kotamraju wrote. The Arista fabric can intelligently offload trusted, high-bandwidth “elephant flows” from the firewall after inspection, freeing it to focus on high-risk traffic. When a threat is detected, the NGFW signals Arista CloudVision, which programs the network switches to automatically quarantine the compromised workload at hardware line-rate, according to Kotamraju: “This immediate response halts the lateral spread of a threat without creating a performance bottleneck or requiring manual intervention.” The third feature is unified policy orchestration, where Palo Alto Networks’ management plane centralizes zone-based and microperimeter policies, and CloudVision MSS responds with the offload and enforcement of Arista switches. “This treats the entire geo-distributed network as a single logical switch, allowing workloads to be migrated freely across cloud networks and security domains,” Srikanta and Barbieri wrote. Lastly, the Arista Validated Design (AVD) data models enable network-as-a-code, integrating with CI/CD pipelines. AVDs can also be generated by Arista’s AVA (Autonomous Virtual Assist) AI agents that incorporate best practices, testing, guardrails, and generated configurations. “Our integration directly resolves this conflict by creating a clean architectural separation that decouples the network fabric from security policy. This allows the NetOps team (managing the Arista

Read More »

AMD outlines ambitious plan for AI-driven data centers

“There are very beefy workloads that you must have that performance for to run the enterprise,” he said. “The Fortune 500 mainstream enterprise customers are now … adopting Epyc faster than anyone. We’ve seen a 3x adoption this year. And what that does is drives back to the on-prem enterprise adoption, so that the hybrid multi-cloud is end-to-end on Epyc.” One of the key focus areas for AMD’s Epyc strategy has been our ecosystem build out. It has almost 180 platforms, from racks to blades to towers to edge devices, and 3,000 solutions in the market on top of those platforms. One of the areas where AMD pushes into the enterprise is what it calls industry or vertical workloads. “These are the workloads that drive the end business. So in semiconductors, that’s telco, it’s the network, and the goal there is to accelerate those workloads and either driving more throughput or drive faster time to market or faster time to results. And we almost double our competition in terms of faster time to results,” said McNamara. And it’s paying off. McNamara noted that over 60% of the Fortune 100 are using AMD, and that’s growing quarterly. “We track that very, very closely,” he said. The other question is are they getting new customer acquisitions, customers with Epyc for the first time? “We’ve doubled that year on year.” AMD didn’t just brag, it laid out a road map for the next two years, and 2026 is going to be a very busy year. That will be the year that new CPUs, both client and server, built on the Zen 6 architecture begin to appear. On the server side, that means the Venice generation of Epyc server processors. Zen 6 processors will be built on 2 nanometer design generated by (you guessed

Read More »

Building the Regional Edge: DartPoints CEO Scott Willis on High-Density AI Workloads in Non-Tier-One Markets

When DartPoints CEO Scott Willis took the stage on “the Distributed Edge” panel at the 2025 Data Center Frontier Trends Summit, his message resonated across a room full of developers, operators, and hyperscale strategists: the future of AI infrastructure will be built far beyond the nation’s tier-one metros. On the latest episode of the Data Center Frontier Show, Willis expands on that thesis, mapping out how DartPoints has positioned itself for a moment when digital infrastructure inevitably becomes more distributed, and why that moment has now arrived. DartPoints’ strategy centers on what Willis calls the “regional edge”—markets in the Midwest, Southeast, and South Central regions that sit outside traditional cloud hubs but are increasingly essential to the evolving AI economy. These are not tower-edge micro-nodes, nor hyperscale mega-campuses. Instead, they are regional data centers designed to serve enterprises with colocation, cloud, hybrid cloud, multi-tenant cloud, DRaaS, and backup workloads, while increasingly accommodating the AI-driven use cases shaping the next phase of digital infrastructure. As inference expands and latency-sensitive applications proliferate, Willis sees the industry’s momentum bending toward the very markets DartPoints has spent years cultivating. Interconnection as Foundation for Regional AI Growth A key part of the company’s differentiation is its interconnection strategy. Every DartPoints facility is built to operate as a deeply interconnected environment, drawing in all available carriers within a market and stitching sites together through a regional fiber fabric. Willis describes fiber as the “nervous system” of the modern data center, and for DartPoints that means creating an interconnection model robust enough to support a mix of enterprise cloud, multi-site disaster recovery, and emerging AI inference workloads. The company is already hosting latency-sensitive deployments in select facilities—particularly inference AI and specialized healthcare applications—and Willis expects such deployments to expand significantly as regional AI architectures become more widely

Read More »

Key takeaways from Cisco Partner Summit

Brian Ortbals, senior vice president from World Wide Technology, which is one of Cisco’s biggest and most important partners stated: “Cisco engaged partners early in the process and took our feedback along the way. We believe now is the right time for these changes as it will enable us to capitalize on the changes in the market.” The reality is, the more successful its more-than-half-a-million partners are, the more successful Cisco will be. Platform approach is coming together When Jeetu Patel took the reigns as chief product officer, one of his goals was to make the Cisco portfolio a “force multiple.” Patel has stated repeatedly that, historically, Cisco acted more as a technology holding company with good products in networking, security, collaboration, data center and other areas. In this case, product breadth was not an advantage, as everything must be sold as “best of breed,” which is a tough ask of the salesforce and partner community. Since then, there have been many examples of the coming together of the portfolio to create products that leverage the breadth of the platform. The latest is the Unified Edge appliance, an all-in-one solution that brings together compute, networking, storage and security. Cisco has been aggressive with AI products in the data center, and Cisco Unified Edge compliments that work with a device designed to bring AI to edge locations. This is ideally suited for retail, manufacturing, healthcare, factories and other industries where it’s more cost effecting and performative to run AI where the data lives.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »