Stay Ahead, Stay ONMINE

The State of AI: A vision of the world in 2030

Welcome back to The State of AI, a new collaboration between the Financial Times and MIT Technology Review. Every Monday, writers from both publications debate one aspect of the generative AI revolution reshaping global power. You can read the rest of the series here. In this final edition, MIT Technology Review’s senior AI editor Will Douglas Heaven talks with Tim Bradshaw, FT global tech correspondent, about where AI will go next, and what our world will look like in the next five years. (As part of this series, join MIT Technology Review’s editor in chief, Mat Honan, and editor at large, David Rotman, for an exclusive conversation with Financial Times columnist Richard Waters on how AI is reshaping the global economy. Live on Tuesday, December 9 at 1:00 p.m. ET. This is a subscriber-only event and you can sign up here.) Will Douglas Heaven writes:  Every time I’m asked what’s coming next, I get a Luke Haines song stuck in my head: “Please don’t ask me about the future / I am not a fortune teller.” But here goes. What will things be like in 2030? My answer: same but different.  There are huge gulfs of opinion when it comes to predicting the near-future impacts of generative AI. In one camp we have the AI Futures Project, a small donation-funded research outfit led by former OpenAI researcher Daniel Kokotajlo. The nonprofit made a big splash back in April with AI 2027, a speculative account of what the world will look like two years from now.  The story follows the runaway advances of an AI firm called OpenBrain (any similarities are coincidental, etc.) all the way to a choose-your-own-adventure-style boom or doom ending. Kokotajlo and his coauthors make no bones about their expectation that in the next decade the impact of AI will exceed that of the Industrial Revolution—a 150-year period of economic and social upheaval so great that we still live in the world it wrought. At the other end of the scale we have team Normal Technology: Arvind Narayanan and Sayash Kapoor, a pair of Princeton University researchers and coauthors of the book AI Snake Oil, who push back not only on most of AI 2027’s predictions but, more important, on its foundational worldview. That’s not how technology works, they argue. Advances at the cutting edge may come thick and fast, but change across the wider economy, and society as a whole, moves at human speed. Widespread adoption of new technologies can be slow; acceptance slower. AI will be no different.  What should we make of these extremes? ChatGPT came out three years ago last month, but it’s still not clear just how good the latest versions of this tech are at replacing lawyers or software developers or (gulp) journalists. And new updates no longer bring the step changes in capability that they once did.  And yet this radical technology is so new it would be foolish to write it off so soon. Just think: Nobody even knows exactly how this technology works—let alone what it’s really for.  As the rate of advance in the core technology slows down, applications of that tech will become the main differentiator between AI firms. (Witness the new browser wars and the chatbot pick-and-mix already on the market.) At the same time, high-end models are becoming cheaper to run and more accessible. Expect this to be where most of the action is: New ways to use existing models will keep them fresh and distract people waiting in line for what comes next.  Meanwhile, progress continues beyond LLMs. (Don’t forget—there was AI before ChatGPT, and there will be AI after it too.) Technologies such as reinforcement learning—the powerhouse behind AlphaGo, DeepMind’s board-game-playing AI that beat a Go grand master in 2016—is set to make a comeback. There’s also a lot of buzz around world models, a type of generative AI with a stronger grip on how the physical world fits together than LLMs display.  Ultimately, I agree with team Normal Technology that rapid technological advances do not translate to economic or societal ones straight away. There’s just too much messy human stuff in the middle.  But Tim, over to you. I’m curious to hear what your tea leaves are saying.  FT/MIT TECHNOLOGY REVIEW | ADOBE STOCK Tim Bradshaw responds” Will, I am more confident than you that the world will look quite different in 2030. In five years’ time, I expect the AI revolution to have proceeded apace. But who gets to benefit from those gains will create a world of AI haves and have-nots. It seems inevitable that the AI bubble will burst sometime before the end of the decade. Whether a venture capital funding shakeout comes in six months or two years (I feel the current frenzy still has some way to run), swathes of AI app developers will disappear overnight. Some will see their work absorbed by the models upon which they depend. Others will learn the hard way that you can’t sell services that cost $1 for 50 cents without a firehose of VC funding. How many of the foundation model companies survive is harder to call, but it already seems clear that OpenAI’s chain of interdependencies within Silicon Valley make it too big to fail. Still, a funding reckoning will force it to ratchet up pricing for its services. When OpenAI was created in 2015, it pledged to “advance digital intelligence in the way that is most likely to benefit humanity as a whole.” That seems increasingly untenable. Sooner or later, the investors who bought in at a $500 billion price tag will push for returns. Those data centers won’t pay for themselves. By that point, many companies and individuals will have come to depend on ChatGPT or other AI services for their everyday workflows. Those able to pay will reap the productivity benefits, scooping up the excess computing power as others are priced out of the market. Being able to layer several AI services on top of each other will provide a compounding effect. One example I heard on a recent trip to San Francisco: Ironing out the kinks in vibe coding is simply a matter of taking several passes at the same problem and then running a few more AI agents to look for bugs and security issues. That sounds incredibly GPU-intensive, implying that making AI really deliver on the current productivity promise will require customers to pay far more than most do today. The same holds true in physical AI. I fully expect robotaxis to be commonplace in every major city by the end of the decade, and I even expect to see humanoid robots in many homes. But while Waymo’s Uber-like prices in San Francisco and the kinds of low-cost robots produced by China’s Unitree give the impression today that these will soon be affordable for all, the compute cost involved in making them useful and ubiquitous seems destined to turn them into luxuries for the well-off, at least in the near term. The rest of us, meanwhile, will be left with an internet full of slop and unable to afford AI tools that actually work. Perhaps some breakthrough in computational efficiency will avert this fate. But the current AI boom means Silicon Valley’s AI companies lack the incentives to make leaner models or experiment with radically different kinds of chips. That only raises the likelihood that the next wave of AI innovation will come from outside the US, be that China, India, or somewhere even farther afield. Silicon Valley’s AI boom will surely end before 2030, but the race for global influence over the technology’s development—and the political arguments about how its benefits are distributed—seem set to continue well into the next decade.  Will replies:  I am with you that the cost of this technology is going to lead to a world of haves and have-nots. Even today, $200+ a month buys power users of ChatGPT or Gemini a very different experience from that of people on the free tier. That capability gap is certain to increase as model makers seek to recoup costs.  We’re going to see massive global disparities too. In the Global North, adoption has been off the charts. A recent report from Microsoft’s AI Economy Institute notes that AI is the fastest-spreading technology in human history: “In less than three years, more than 1.2 billion people have used AI tools, a rate of adoption faster than the internet, the personal computer, or even the smartphone.” And yet AI is useless without ready access to electricity and the internet; swathes of the world still have neither.  I still remain skeptical that we will see anything like the revolution that many insiders promise (and investors pray for) by 2030. When Microsoft talks about adoption here, it’s counting casual users rather than measuring long-term technological diffusion, which takes time. Meanwhile, casual users get bored and move on.  How about this: If I live with a domestic robot in five years’ time, you can send your laundry to my house in a robotaxi any day of the week.  JK! As if I could afford one.  Further reading  What is AI? It sounds like a stupid question, but it’s one that’s never been more urgent. In this deep dive, Will unpacks decades of spin and speculation to get to the heart of our collective technodream.  AGI—the idea that machines will be as smart as humans—has hijacked an entire industry (and possibly the US economy). For MIT Technology Review’s recent New Conspiracy Age package, Will takes a provocative look at how AGI is like a conspiracy.  The FT examined the economics of self-driving cars this summer, asking who will foot the multi-billion-dollar bill to buy enough robotaxis to serve a big city like London or New York.A plausible counter-argument to Tim’s thesis on AI inequalities is that freely available open-source (or more accurately, “open weight”) models will keep pulling down prices. The US may want frontier models to be built on US chips but it is already losing the global south to Chinese software.

Welcome back to The State of AI, a new collaboration between the Financial Times and MIT Technology Review. Every Monday, writers from both publications debate one aspect of the generative AI revolution reshaping global power. You can read the rest of the series here.

In this final edition, MIT Technology Review’s senior AI editor Will Douglas Heaven talks with Tim Bradshaw, FT global tech correspondent, about where AI will go next, and what our world will look like in the next five years.

(As part of this series, join MIT Technology Review’s editor in chief, Mat Honan, and editor at large, David Rotman, for an exclusive conversation with Financial Times columnist Richard Waters on how AI is reshaping the global economy. Live on Tuesday, December 9 at 1:00 p.m. ET. This is a subscriber-only event and you can sign up here.)

state of AI

Will Douglas Heaven writes: 

Every time I’m asked what’s coming next, I get a Luke Haines song stuck in my head: “Please don’t ask me about the future / I am not a fortune teller.” But here goes. What will things be like in 2030? My answer: same but different. 

There are huge gulfs of opinion when it comes to predicting the near-future impacts of generative AI. In one camp we have the AI Futures Project, a small donation-funded research outfit led by former OpenAI researcher Daniel Kokotajlo. The nonprofit made a big splash back in April with AI 2027, a speculative account of what the world will look like two years from now. 

The story follows the runaway advances of an AI firm called OpenBrain (any similarities are coincidental, etc.) all the way to a choose-your-own-adventure-style boom or doom ending. Kokotajlo and his coauthors make no bones about their expectation that in the next decade the impact of AI will exceed that of the Industrial Revolution—a 150-year period of economic and social upheaval so great that we still live in the world it wrought.

At the other end of the scale we have team Normal Technology: Arvind Narayanan and Sayash Kapoor, a pair of Princeton University researchers and coauthors of the book AI Snake Oil, who push back not only on most of AI 2027’s predictions but, more important, on its foundational worldview. That’s not how technology works, they argue.

Advances at the cutting edge may come thick and fast, but change across the wider economy, and society as a whole, moves at human speed. Widespread adoption of new technologies can be slow; acceptance slower. AI will be no different. 

What should we make of these extremes? ChatGPT came out three years ago last month, but it’s still not clear just how good the latest versions of this tech are at replacing lawyers or software developers or (gulp) journalists. And new updates no longer bring the step changes in capability that they once did. 

And yet this radical technology is so new it would be foolish to write it off so soon. Just think: Nobody even knows exactly how this technology works—let alone what it’s really for. 

As the rate of advance in the core technology slows down, applications of that tech will become the main differentiator between AI firms. (Witness the new browser wars and the chatbot pick-and-mix already on the market.) At the same time, high-end models are becoming cheaper to run and more accessible. Expect this to be where most of the action is: New ways to use existing models will keep them fresh and distract people waiting in line for what comes next. 

Meanwhile, progress continues beyond LLMs. (Don’t forget—there was AI before ChatGPT, and there will be AI after it too.) Technologies such as reinforcement learning—the powerhouse behind AlphaGo, DeepMind’s board-game-playing AI that beat a Go grand master in 2016—is set to make a comeback. There’s also a lot of buzz around world models, a type of generative AI with a stronger grip on how the physical world fits together than LLMs display. 

Ultimately, I agree with team Normal Technology that rapid technological advances do not translate to economic or societal ones straight away. There’s just too much messy human stuff in the middle. 

But Tim, over to you. I’m curious to hear what your tea leaves are saying. 

Tim Bradshaw and Will Douglas Heaven

FT/MIT TECHNOLOGY REVIEW | ADOBE STOCK

Tim Bradshaw responds

Will, I am more confident than you that the world will look quite different in 2030. In five years’ time, I expect the AI revolution to have proceeded apace. But who gets to benefit from those gains will create a world of AI haves and have-nots.

It seems inevitable that the AI bubble will burst sometime before the end of the decade. Whether a venture capital funding shakeout comes in six months or two years (I feel the current frenzy still has some way to run), swathes of AI app developers will disappear overnight. Some will see their work absorbed by the models upon which they depend. Others will learn the hard way that you can’t sell services that cost $1 for 50 cents without a firehose of VC funding.

How many of the foundation model companies survive is harder to call, but it already seems clear that OpenAI’s chain of interdependencies within Silicon Valley make it too big to fail. Still, a funding reckoning will force it to ratchet up pricing for its services.

When OpenAI was created in 2015, it pledged to “advance digital intelligence in the way that is most likely to benefit humanity as a whole.” That seems increasingly untenable. Sooner or later, the investors who bought in at a $500 billion price tag will push for returns. Those data centers won’t pay for themselves. By that point, many companies and individuals will have come to depend on ChatGPT or other AI services for their everyday workflows. Those able to pay will reap the productivity benefits, scooping up the excess computing power as others are priced out of the market.

Being able to layer several AI services on top of each other will provide a compounding effect. One example I heard on a recent trip to San Francisco: Ironing out the kinks in vibe coding is simply a matter of taking several passes at the same problem and then running a few more AI agents to look for bugs and security issues. That sounds incredibly GPU-intensive, implying that making AI really deliver on the current productivity promise will require customers to pay far more than most do today.

The same holds true in physical AI. I fully expect robotaxis to be commonplace in every major city by the end of the decade, and I even expect to see humanoid robots in many homes. But while Waymo’s Uber-like prices in San Francisco and the kinds of low-cost robots produced by China’s Unitree give the impression today that these will soon be affordable for all, the compute cost involved in making them useful and ubiquitous seems destined to turn them into luxuries for the well-off, at least in the near term.

The rest of us, meanwhile, will be left with an internet full of slop and unable to afford AI tools that actually work.

Perhaps some breakthrough in computational efficiency will avert this fate. But the current AI boom means Silicon Valley’s AI companies lack the incentives to make leaner models or experiment with radically different kinds of chips. That only raises the likelihood that the next wave of AI innovation will come from outside the US, be that China, India, or somewhere even farther afield.

Silicon Valley’s AI boom will surely end before 2030, but the race for global influence over the technology’s development—and the political arguments about how its benefits are distributed—seem set to continue well into the next decade. 

Will replies: 

I am with you that the cost of this technology is going to lead to a world of haves and have-nots. Even today, $200+ a month buys power users of ChatGPT or Gemini a very different experience from that of people on the free tier. That capability gap is certain to increase as model makers seek to recoup costs. 

We’re going to see massive global disparities too. In the Global North, adoption has been off the charts. A recent report from Microsoft’s AI Economy Institute notes that AI is the fastest-spreading technology in human history: “In less than three years, more than 1.2 billion people have used AI tools, a rate of adoption faster than the internet, the personal computer, or even the smartphone.” And yet AI is useless without ready access to electricity and the internet; swathes of the world still have neither. 

I still remain skeptical that we will see anything like the revolution that many insiders promise (and investors pray for) by 2030. When Microsoft talks about adoption here, it’s counting casual users rather than measuring long-term technological diffusion, which takes time. Meanwhile, casual users get bored and move on. 

How about this: If I live with a domestic robot in five years’ time, you can send your laundry to my house in a robotaxi any day of the week. 

JK! As if I could afford one. 

Further reading 

What is AI? It sounds like a stupid question, but it’s one that’s never been more urgent. In this deep dive, Will unpacks decades of spin and speculation to get to the heart of our collective technodream. 

AGI—the idea that machines will be as smart as humans—has hijacked an entire industry (and possibly the US economy). For MIT Technology Review’s recent New Conspiracy Age package, Will takes a provocative look at how AGI is like a conspiracy

The FT examined the economics of self-driving cars this summer, asking who will foot the multi-billion-dollar bill to buy enough robotaxis to serve a big city like London or New York.
A plausible counter-argument to Tim’s thesis on AI inequalities is that freely available open-source (or more accurately, “open weight”) models will keep pulling down prices. The US may want frontier models to be built on US chips but it is already losing the global south to Chinese software.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Chinese cyberspies target VMware vSphere for long-term persistence

Designed to work in virtualized environments The CISA, NSA, and Canadian Cyber Center analysts note that some of the BRICKSTORM samples are virtualization-aware and they create a virtual socket (VSOCK) interface that enables inter-VM communication and data exfiltration. The malware also checks the environment upon execution to ensure it’s running

Read More »

IBM boosts DNS protection for multicloud operations

“In addition to this DNS synchronization, you can publish DNS configurations to your Amazon Simple Storage Service (S3) bucket. As you implement DNS changes, the S3 bucket will automatically update. The ability to store multiple configurations in your S3 bucket allows you to choose the most appropriate restore point if

Read More »

Cloudflare firewall reacts badly to React exploit mitigation

During the same window, Downdetector saw a spike in problem reports for enterprise services including Shopify, Zoom, Claude AI, and Amazon Web Services, and a host of consumer services from games to dating apps. Cloudflare explained the outage on its service status page: “A change made to how Cloudflare’s Web

Read More »

No Hurricanes Strike USA For 1st Time in a Decade

For the first time in a decade, not a single hurricane struck the U.S. this season, and that was a much needed break. That’s what Neil Jacobs, Under Secretary of Commerce for Oceans and Atmosphere, and National Oceanic and Atmospheric Administration (NOAA) Administrator, said in a statement posted on NOAA’s site recently, which summarized the Atlantic, Eastern Pacific, and Central Pacific hurricane seasons. “Still, a tropical storm caused damage and casualties in the Carolinas, distant hurricanes created rough ocean waters that caused property damage along the East Coast, and neighboring countries experienced direct hits from hurricanes,” Jacobs said in the statement. The NOAA statement noted that the Atlantic basin produced 13 named storms. Of these, five became hurricanes, including four major hurricanes, NOAA highlighted, pointing out that an average season has 14 named storms, seven hurricanes, and three major hurricanes. In the statement, NOAA said, overall, the season fell within the predicted ranges for named storms, hurricanes, and major hurricanes issued in NOAA’s seasonal outlooks. Hurricane season activity was near-normal for both the Eastern Pacific basin and Central Pacific basin and fell within predicted ranges, respectively, NOAA added in the statement. The organization highlighted that the Eastern Pacific basin hurricane season produced 18 named storms, “with nine becoming hurricanes and three intensifying to major hurricane status”. “Two named storms formed in the Central Pacific basin, with one, Iona, becoming a major hurricane well south of Hawaii,” NOAA added. “Eastern Pacific storms Henriette and Kiko were also hurricanes in the Central Pacific that passed northeast of Hawaii with little impact to the state,” it continued. AI Guidance In the NOAA statement, Jacobs said “the 2025 season was the first year NOAA’s National Hurricane Center incorporated Artificial Intelligence model guidance into their forecasts”. “The NHC [National Hurricane Center] performed exceedingly well when it came to forecasting rapid intensification for

Read More »

Chile Pens Nearly $12B Deals to Buy Vaca Muerta Oil

Chile’s Empresa Nacional del Petróleo (Enap) has signed contracts to purchase crude from Argentina’s Vaca Muerta shale patch from Argentina’s state-owned YPF SA, Norway’s majority state-owned Equinor ASA, Britain’s Shell PLC and Mexico’s Vista Energy SAB de CV. The agreements, which last through June 2033, amount to about 35 percent of Enap’s annual crude demand, Enap said in an online statement. YPF said separately the initial combined volume is up to 70,000 barrels per day (bpd). YPF said its share is around 32,000 bpd or 45.45 percent of the total volume. “The contracts, signed after a negotiation process and operational testing that lasted more than two years, involve a projected value of nearly $12 billion, making it the largest commercial agreement in Enap’s history”, Enap said. “As a reference, the total annual trade between Chile and Argentina is currently close to $8 billion”. The volumes will be delivered via the more than 400-kilometer (248.55 miles) Trans-Andean pipeline, co-owned between Enap, YPF and Chevron Corp. After 17 years, the pipeline resumed flows July 2023, delivering about 40,000 barrels per day of Vaca Muerta oil to Enap’s facilities in Hualpén, Región del Biobío, as previously reported by Enap. “The subscription of these contracts provides greater security and stability to the supply of crude oil, strengthens the country’s energy security, enhances the logistics chain on both sides of the mountain range and reduces dependence on maritime transport that is regularly impacted by factors such as weather conditions or port congestion”, Enap said. “In addition, it allows for the purchase of crude oil with a lower sulfur content, which is beneficial from an environmental point of view. “It also reinforces Enap’s recently announced positioning with regard to its logistics business, as it will enable the export of crude oil from Vaca Muerta through the

Read More »

WoodMac Flags ‘Key Themes’ Shaping Lower 48 in 2026

Wood Mackenzie (WoodMac) identified several “key themes shaping the U.S. Lower 48 landscape” next year in a statement sent to Rigzone recently. Among these was a projection that the horizontal rig count will fall below 500. “Oil focused activity levels will decline as operators face macro headwinds, particularly in H1 2026,” WoodMac said in the statement. “This sits below the $60 per barrel threshold that sparks questions around investment strategy,” it added. WoodMac said in the statement, however, that declining rig count is no longer the needle mover it once was. “Major strides in operational efficiency have reduced the number of active rigs required to maintain base business,” the company stated. “Operators are drilling faster, and cycle times are improving,” it added. WoodMac went on to note in the statement that “the activity taper will create deflationary pressures on costs”. “Wood Mackenzie expects to see a modest reduction in drilling and completion costs across the Lower 48 in 2026, including tariffs,” it said. “Lower costs help protect most of the new drill supply curve. Even at $60 per barrel Brent, more than 90 percent of U.S. Lower 48 assets can cover their capex requirements, with all assets covering operating costs,” it continued. Another theme was a projection that core Permian plays produce more than 50 percent of U.S. onshore liquids next year. “Lower 48 oil production will stall in 2026 for the first time since the pandemic,” WoodMac warned. “Rigs falling throughout 2025 and less activity in the year create this culmination. The Permian remains resilient and the powerhouse of U.S. oil supply,” it added. “Combined 2026 production from the Delaware Wolfcamp, Bone Spring, Midland Wolfcamp, and Midland Spraberry will account for more than 50 percent of onshore U.S. oil output for the first time ever,” it continued. “Delaware Wolfcamp

Read More »

DTECH 2026: 5 observations ahead of the biggest grid event of the year

The energy transition isn’t coming — it’s here. Across North America, utilities are navigating an unprecedented convergence of challenges: exponential load growth from data centers and electrification, rising reliability expectations and an accelerating influx of distributed energy resources (DERs). At DTECH 2026, Feb. 2-5 in San Diego, OATI will showcase how utilities can turn these pressures into opportunities through a simple, unifying concept: flexibility. “Flexibility is no longer optional — it’s the operating principle of the modern grid,” says Sasan Mokhtari, OATI’s president & CEO. “The future belongs to the utilities that can orchestrate DERs, manage load growth intelligently and connect operations from meters to markets.” 1. From DER chaos to DERMS clarity Distributed Energy Resource Management Systems (DERMS) have evolved from niche pilots to mission-critical platforms. OATI would know—we deployed the first DERMS in North America in 2009 and created what would define a generation of grid modernization. What was once an experiment in aggregation is now the foundation of reliable, data-driven grid management. Modern DERMS platforms, like OATI DERMS, enable utilities to see, forecast and control a complex web of rooftop solar, battery storage, EV chargers and flexible loads in real time. They bring together three critical capabilities: Visibility — a unified picture of all DERs across the grid Optimization — dispatch decisions that balance economics, carbon and reliability Market Integration — the ability to monetize flexibility through participation in wholesale markets At DTECH 2026, OATI will demonstrate how its DERMS platform bridges the divide between bulk power and distribution operations, uniting IT and OT operations and helping utilities truly manage the grid from meters to markets. 2. The new face of load growth: Data centers, EVs and electrification The growth of data centers and electric transportation is transforming grid demand faster than many planners ever imagined. In 2024 alone, U.S. data

Read More »

Solving the AI power puzzle: Taming data center demand with flexible grid-scale storage

Data centers – the vast, physical warehouses where IT servers and systems are kept – are experiencing a boom in demand, particularly across the USA. Driven by the rapid ascent of AI, analysts project that the global electricity demand for data centers is expected to double by 2030, reaching consumption levels that rival entire developed nations. Still, the challenge goes beyond the sheer volume of power needed. Data centers operate 24/7 and experience pronounced swings in demand which legacy grids simply aren’t engineered to handle. Luckily, answers are emerging. Grid-scale batteries can respond quickly enough to tame this volatile demand, and when properly coordinated by a sophisticated operating system – like Kraken – they can contribute to building a healthier, better-balanced grid overall. Data centers have uniquely volatile demand profiles The fundamental nature of data center electrical loads distinguishes them from traditional industrial consumption, being not just especially large, but unusually “spiky” and unpredictable. When tech companies launch AI training algorithms or massive computing clusters activate, the resulting power draw is instantaneous and intense. This poses a pressing stability problem. The grid’s legacy generators, such as slow-ramping gas-fired peaker plants, aren’t merely relatively expensive and slow to build, but are ultimately technically incapable of matching huge demand spikes that occur in milliseconds. This critical mismatch between fast demand and slow supply results in immediate frequency instability, severe stress on local transmission and distribution networks and significantly higher balancing costs for grid operators (if they can meet that demand at all). And this volatility is only compounded as clusters of data centers concentrate in particular geographical regions. A faster, smarter solution is clearly needed. Coordinating grid-scale storage to tame demand Fortunately, the flexibility afforded by large batteries is well-suited to addressing pronounced immediate swings, charging up whenever energy is cheapest and cleanest

Read More »

How flexible loads are revolutionizing grid capacity

It’s well known that the electric grid faces a capacity crisis. Energy-intensive operations such as data centers, commercial and industrial electrification and bitcoin mining are driving unprecedented demand while transmission constraints and permitting timelines limit infrastructure expansion. For power suppliers, a critical solution is transforming energy-intensive loads from liabilities into assets through intelligent control. Understanding Controllable Loads Flexible, controllable loads represent a fundamental shift in capacity management. Rather than viewing large industrial customers solely as demand to be met, controllable load technology allows these operations to be part of the larger Distributed Energy Resource Management System (DERMS) ecosystem, effectively increasing generation capacity without building new plants. A controllable load gives grid operators or power suppliers the ability to dynamically adjust consumption in real-time. This capability becomes essential as the grid integrates more intermittent renewable generation and faces tightening capacity margins. The Market Context: Why Now? Several converging forces are driving unprecedented growth in power demand. The number of AI data centers is growing and bitcoin mining continues to scale in deregulated markets. Commercial and industrial (C&I) electrification is accelerating across sectors—from manufacturing facilities converting to electric processes to transportation fleets transitioning to EVs. While surging demand presents the primary challenge, other factors make controllable loads essential for modern grid management: Renewable Integration Volatility: Renewable energy production such as solar and wind fluctuates throughout the day, while transmission constraints prevent power from moving freely between regions, creating price volatility and reliability challenges. Outdated Grid Infrastructure: Traditional infrastructure operates with binary logic—generators on or off, loads consuming or not—clashing with dynamic grid requirements. Evolving Market Structures: Real-time pricing and ancillary service markets reward flexibility. ERCOT’s Controllable Load Resource (CLR) program integrates flexible loads directly into grid dispatch. New Regulatory Requirements: Texas Senate Bill 6 (SB6) is likely to mandate that loads above

Read More »

At the Crossroads of AI and the Edge: Inside 1623 Farnam’s Rising Role as a Midwest Interconnection Powerhouse

That was the thread that carried through our recent conversation for the DCF Show podcast, where Severn walked through the role Farnam now plays in AI-driven networking, multi-cloud connectivity, and the resurgence of regional interconnection as a core part of U.S. digital infrastructure. Aggregation, Not Proximity: The Practical Edge Severn is clear-eyed about what makes the edge work and what doesn’t. The idea that real content delivery could aggregate at the base of cell towers, he noted, has never been realistic. The traffic simply isn’t there. Content goes where the network already concentrates, and the network concentrates where carriers, broadband providers, cloud onramps, and CDNs have amassed critical mass. In Farnam’s case, that density has grown steadily since the building changed hands in 2018. At the time an “underappreciated asset,” the facility has since become a meeting point for more than 40 broadband providers and over 60 carriers, with major content operators and hyperscale platforms routing traffic directly through its MMRs. That aggregation effect feeds on itself; as more carrier and content traffic converges, more participants anchor themselves to the hub, increasing its gravitational pull. Geography only reinforces that position. Located on the 41st parallel, the building sits at the historical shortest-distance path for early transcontinental fiber routes. It also lies at the crossroads of major east–west and north–south paths that have made Omaha a natural meeting point for backhaul routes and hyperscale expansions across the Midwest. AI and the New Interconnection Economy Perhaps the clearest sign of Farnam’s changing role is the sheer volume of fiber entering the building. More than 5,000 new strands are being brought into the property, with another 5,000 strands being added internally within the Meet-Me Rooms in 2025 alone. These are not incremental upgrades—they are hyperscale-grade expansions driven by the demands of AI traffic,

Read More »

Schneider Electric’s $2.3 Billion in AI Power and Cooling Deals Sends Message to Data Center Sector

When Schneider Electric emerged from its 2025 North American Innovation Summit in Las Vegas last week with nearly $2.3 billion in fresh U.S. data center commitments, it didn’t just notch a big sales win. It arguably put a stake in the ground about who controls the AI power-and-cooling stack over the rest of this decade. Within a single news cycle, Schneider announced: Together, the deals total about $2.27 billion in U.S. data center infrastructure, a number Schneider confirmed in background with multiple outlets and which Reuters highlighted as a bellwether for AI-driven demand.  For the AI data center ecosystem, these contracts function like early-stage fuel supply deals for the power and cooling systems that underpin the “AI factory.” Supply Capacity Agreements: Locking in the AI Supply Chain Significantly, both deals are structured as supply capacity agreements, not traditional one-off equipment purchase orders. Under the SCA model, Schneider is committing dedicated manufacturing lines and inventory to these customers, guaranteeing output of power and cooling systems over a multi-year horizon. In return, Switch and Digital Realty are providing Schneider with forecastable volume and visibility at the scale of gigawatt-class campus build-outs.  A Schneider spokesperson told Reuters that the two contracts are phased across 2025 and 2026, underscoring that this arrangement is about pipeline, as opposed to a one-time backlog spike.  That structure does three important things for the market: Signals confidence that AI demand is durable.You don’t ring-fence billions of dollars of factory output for two customers unless you’re highly confident the AI load curve runs beyond the current GPU cycle. Pre-allocates power & cooling the way the industry pre-allocated GPUs.Hyperscalers and neoclouds have already spent two years locking up Nvidia and AMD capacity. These SCAs suggest power trains and thermal systems are joining chips on the list of constrained strategic resources.

Read More »

The Data Center Power Squeeze: Mapping the Real Limits of AI-Scale Growth

As we all know, the data center industry is at a crossroads. As artificial intelligence reshapes the already insatiable digital landscape, the demand for computing power is surging at a pace that outstrips the growth of the US electric grid. As engines of the AI economy, an estimated 1,000 new data centers1 are needed to process, store, and analyze the vast datasets that run everything from generative models to autonomous systems. But this transformation comes with a steep price and the new defining criteria for real estate: power. Our appetite for electricity is now the single greatest constraint on our expansion, threatening to stall the very innovation we enable. In 2024, US data centers consumed roughly 4% of the nation’s total electricity, a figure that is projected to triple by 2030, reaching 12% or more.2 For AI-driven hyperscale facilities, the numbers are even more staggering. With the largest planned data centers requiring gigawatts of power, enough to supply entire cities, the cumulative demand from all data centers is expected to reach 134 gigawatts by 2030, nearly three times the current load.​3 This presents a systemic challenge. The U.S. power grid, built for a different era, is struggling to keep pace. Utilities are reporting record interconnection requests, with some regions seeing demand projections that exceed their total system capacity by fivefold.4 In Virginia and Texas, the epicenters of data center expansion, grid operators are warning of tight supply-demand balances and the risk of blackouts during peak periods.5 The problem is not just the sheer volume of power needed, but the speed at which it must be delivered. Data center operators are racing to secure power for projects that could be online in as little as 18 months, but grid upgrades and new generation can take years, if not decades. The result

Read More »

The Future of Hyperscale: Neoverse Joins NVLink Fusion as SC25 Accelerates Rack-Scale AI Architectures

Neoverse’s Expanding Footprint and the Power-Efficiency Imperative With Neoverse deployments now approaching roughly 50% of all compute shipped into top hyperscalers in 2025 (representing more than a billion Arm cores) and with nation-scale AI campuses such as the Stargate project already anchored on Arm compute, the addition of NVLink Fusion becomes a pivotal extension of the Neoverse roadmap. Partners can now connect custom Arm CPUs to their preferred NVIDIA accelerators across a coherent, high-bandwidth, rack-scale fabric. Arm characterized the shift as a generational inflection point in data-center architecture, noting that “power—not FLOPs—is the bottleneck,” and that future design priorities hinge on maximizing “intelligence per watt.” Ian Buck, vice president and general manager of accelerated computing at NVIDIA, underscored the practical impact: “Folks building their own Arm CPU, or using an Arm IP, can actually have access to NVLink Fusion—be able to connect that Arm CPU to an NVIDIA GPU or to the rest of the NVLink ecosystem—and that’s happening at the racks and scale-up infrastructure.” Despite the expanded design flexibility, this is not being positioned as an open interconnect ecosystem. NVIDIA continues to control the NVLink Fusion fabric, and all connections ultimately run through NVIDIA’s architecture. For data-center planners, the SC25 announcement translates into several concrete implications: 1.   NVIDIA “Grace-style” Racks Without Buying Grace With NVLink Fusion now baked into Neoverse, hyperscalers and sovereign operators can design their own Arm-based control-plane or pre-processing CPUs that attach coherently to NVIDIA GPU domains—such as NVL72 racks or HGX B200/B300 systems—without relying on Grace CPUs. A rack-level architecture might now resemble: Custom Neoverse SoC for ingest, orchestration, agent logic, and pre/post-processing NVLink Fusion fabric Blackwell GPU islands and/or NVLink-attached custom accelerators (Marvell, MediaTek, others) This decouples CPU choice from NVIDIA’s GPU roadmap while retaining the full NVLink fabric. In practice, it also opens

Read More »

Flex’s Integrated Data Center Bet: How a Manufacturing Giant Plans to Reshape AI-Scale Infrastructure

At this year’s OCP Global Summit, Flex made a declaration that resonated across the industry: the era of slow, bespoke data center construction is over. AI isn’t just stressing the grid or forcing new cooling techniques—it’s overwhelming the entire design-build process. To meet this moment, Flex introduced a globally manufactured, fully integrated data center platform aimed directly at multi-gigawatt AI campuses. The company claims it can cut deployment timelines by as much as 30 percent by shifting integration upstream into the factory and unifying power, cooling, compute, and lifecycle services into pre-engineered modules. This is not a repositioning on the margins. Flex is effectively asserting that the future hyperscale data center will be manufactured like a complex industrial system, not built like a construction project. On the latest episode of The Data Center Frontier Show, we spoke with Rob Campbell, President of Flex Communications, Enterprise & Cloud, and Chris Butler, President of Flex Power, about why Flex believes this new approach is not only viable but necessary in the age of AI. The discussion revealed a company leaning heavily on its global manufacturing footprint, its cross-industry experience, and its expanding cooling and power technology stack to redefine what deployment speed and integration can look like at scale. AI Has Broken the Old Data Center Model From the outset, Campbell and Butler made clear that Flex’s strategy is a response to a structural shift. AI workloads no longer allow power, cooling, and compute to evolve independently. Densities have jumped so quickly—and thermals have risen so sharply—that the white space, gray space, and power yard are now interdependent engineering challenges. Higher chip TDPs, liquid-cooled racks approaching one to two megawatts, and the need to assemble entire campuses in record time have revealed deep fragility in traditional workflows. As Butler put it, AI

Read More »

Data Center Jobs: Engineering, Construction, Commissioning, Sales, Field Service and Facility Tech Jobs Available in Major Data Center Hotspots

Each month Data Center Frontier, in partnership with Pkaza, posts some of the hottest data center career opportunities in the market. Here’s a look at some of the latest data center jobs posted on the Data Center Frontier jobs board, powered by Pkaza Critical Facilities Recruiting. Looking for Data Center Candidates? Check out Pkaza’s Active Candidate / Featured Candidate Hotlist Data Center Facility Technician (All Shifts Available) Impact, TX This position is also available in: Ashburn, VA; Abilene, TX; Needham, MA and New York, NY. Navy Nuke / Military Vets leaving service accepted!  This opportunity is working with a leading mission-critical data center provider. This firm provides data center solutions custom-fit to the requirements of their client’s mission-critical operational facilities. They provide reliability of mission-critical facilities for many of the world’s largest organizations facilities supporting enterprise clients, colo providers and hyperscale companies. This opportunity provides a career-growth minded role with exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits. Electrical Commissioning Engineer Montvale, NJ This traveling position is also available in: New York, NY; White Plains, NY;  Richmond, VA; Ashburn, VA; Charlotte, NC; Atlanta, GA; Hampton, GA; Fayetteville, GA; New Albany, OH; Cedar Rapids, IA; Phoenix, AZ; Salt Lake City, UT; Dallas, TX or Chicago, IL. *** ALSO looking for a LEAD EE and ME CxA Agents and CxA PMs. *** Our client is an engineering design and commissioning company that has a national footprint and specializes in MEP critical facilities design. They provide design, commissioning, consulting and management expertise in the critical facilities space. They have a mindset to provide reliability, energy efficiency, sustainable design and LEED expertise when providing these consulting services for enterprise, colocation and hyperscale companies. This career-growth minded opportunity offers exciting projects with leading-edge technology and innovation as well as competitive salaries and

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »