Stay Ahead, Stay ONMINE

Aramco Awards $9 Billion Contracts To Be Executed Locally

Saudi Arabian Oil Co. on Monday signed 145 deals totaling about $9 billion as part of the oil giant’s In-Kingdom Total Value Add (iktva) program. “The agreements and MoUs [memorandums of understanding] are expected to advance the localization of goods and services in Saudi Arabia, boosting local content in the supply chain and fostering collaboration”, Aramco […]

Saudi Arabian Oil Co. on Monday signed 145 deals totaling about $9 billion as part of the oil giant’s In-Kingdom Total Value Add (iktva) program.

“The agreements and MoUs [memorandums of understanding] are expected to advance the localization of goods and services in Saudi Arabia, boosting local content in the supply chain and fostering collaboration”, Aramco said in an online statement.

The agreements were inked at the launch of iktva Forum & Exhibition 2025, where Aramco also announced the start of operation of ASMO. It is a procurement and logistics services hub built as a joint venture with DHL Group. The Riyadh project, announced February 5, 2024, caters to the Middle East and North Africa.

Aramco also inaugurated the Novel Non-Metallic Solutions facility at King Salman Energy Park and the NMDC Offshore fabrication yard at Ras Al Khair. Novel is a joint venture with Baker Hughes Co. formed to develop and commercialize composite products. The NMDC fabrication yard will serve maritime engineering, equipment, material manufacturing and fabrication services, Aramco said.

“Since its launch in 2015, iktva has set new standards by creating best-in-class infrastructure, streamlining business processes, creating new opportunities, and building a world-class supply chain”, said Wail A Al Jaafari, Aramco executive vice president for technical services. “The program is actively driving domestic value creation and maximizing economic growth and diversification.

“iktva is a top priority in Aramco’s long-term planning, as we seek to build on the company’s already high levels of resilience”.

Aramco said it has identified 210 “localization opportunities” across 12 sectors, estimating the annual market size to be $28 billion.

The iktva program has so far helped establish 350 manufacturing facilities with a total capital expenditure of over $9 billion. These facilities span sectors such as chemicals, non-metallics, information technology, electrical and instrumentation, static and rotating equipment, and drilling and fire protections systems, Aramco said.

Investments from iktva have so far enabled the production of 47 products for the first time in the kingdom, according to Aramco.

Global energy engineering and tech companies Baker Hughes, Halliburton and SLB received awards at the event for their iktva contributions.

Last year Aramco awarded contracts worth a combined $25 billion for expansion, drilling and capacity maintenance projects for its natural gas assets.

The awards “progress its strategic gas expansion, which targets sales gas production growth of more than 60 percent by 2030, compared to 2021 levels”, Aramco said in a press release June 30, 2024.

To contact the author, email [email protected]

What do you think? We’d love to hear from you, join the conversation on the

Rigzone Energy Network.

The Rigzone Energy Network is a new social experience created for you and all energy professionals to Speak Up about our industry, share knowledge, connect with peers and industry insiders and engage in a professional community that will empower your career in energy.


MORE FROM THIS AUTHOR

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Gulf Energy Plans Production from Tullow Fields End-2026

Gulf Energy Ltd., a Nairobi-based oil and gas trader that bought Tullow Oil Plc’s crude discoveries in Kenya, plans to start production next year, according to a top official. Tullow agreed to sell the assets to the local firm in April for $120 million — after attempts over more than a decade to develop the finds — as it focuses on paying down debt. Kenya’s regulator required a field development plan from the buyer for the deal to proceed. Tullow received the first $40 million tranche in September. Kenya gave an initial approval for Gulf Energy’s plan for the South Lokichar project, Cabinet Secretary for Energy Opiyo Wandayi said. “I will be forwarding the approved FDP to Parliament for ratification.” After the plan is ratified, the contractor will start the project and investments will be outlined, Wandayi said. “First oil is expected by December 2026.” WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

Xcel, Colorado agencies propose extending life of Comanche 2 coal unit

Listen to the article 4 min This audio is auto-generated. Please let us know if you have feedback. Dive Brief: Xcel Energy, the Colorado Energy Office, Colorado Public Utilities Commission staff and the Colorado Office of the Utility Consumer Advocate have asked state regulators to approve a one-year operating extension for the coal-fired Comanche Unit 2, which is slated to close at the end of this year. Rising peak demand, an unplanned outage at Comanche Unit 3 and several other factors are driving the need, the parties said Monday. Comanche 2 has a nameplate capacity of 335 MW and an accredited capacity of 296 MW. The 750-MW Comanche 3 is not expected to resume operations until June at the earliest, according to the petition to the Colorado Public Utilities Commission. Operating Unit 2 in its stead is a “cost effective, nearterm solution,” the parties concluded. Dive Insight: Comanche 3 is the largest coal unit in Colorado and it’s been “an albatross around the neck of Xcel ratepayers,” Erin Overturf, clean energy director at Western Resources Advocates, said in a statement. The troubled unit has been offline for part or all of 138 days for the two years beginning in early August 2023, according to WRA. “This request to delay the long-planned retirement of Comanche 2 will lead to increased costs for utility customers at a time when people are already economically struggling,” Overturf said. And keeping Comanche 2 online without a requirement to limit operations, even if Comanche 3 resumes generating electricity, creates additional pollution risks, the group said.    “WRA will be reviewing this petition carefully, with a focus on reducing the potential environmental and economic harm” said Overturf. Xcel has been planning to retire Comanche 2 since 2018, but in its petition the utility and parties said “the ensuing years have brought numerous

Read More »

Sister Companies MODEC America, SOFEC Merge

MODEC Inc said Tuesday it is combining its wholly owned companies MODEC America Inc and SOFEC Inc to create an integrated mooring solutions business. “SOFEC will be fully integrated into the MODEC Group by becoming the new Mooring Solutions Business Unit”, Tokyo-based MODEC said in a statement on its website. “Importantly, the new Mooring Solutions Business Unit will maintain SOFEC’s commitment to the wider offshore market. “It will continue to provide SOFEC-branded mooring solutions for clients other than MODEC, ensuring the continuation of the same quality, performance and reliability that SOFEC mooring systems have delivered for over 50 years, now with the strong backing and financial strength of the MODEC Group. “As an industry leader, MODEC has over half a century of experience and a strong track record, having delivered more than 50 floating production solutions for offshore oil and gas projects worldwide. In support of these projects, SOFEC, renowned for its cutting-edge permanent mooring systems and fluid transfer technologies, has supplied mooring systems for a total of 49 FPSOs/FSOs [floating production, storage and offloading vessels] built by MODEC, including four currently under construction”. MODEC president and chief executive Hirohiko Miyata said, “This strategic merger will allow the MODEC Group to provide an integrated project team to supply floating facilities with SOFEC mooring solutions to their clients, while enabling the Mooring Solutions Business Unit to support other floater providers with SOFEC-branded mooring solutions that deliver added value”. MODEC expects to complete the merger January 2026. “The impact of this merger on MODEC’s consolidated results and financial position is expected to be immaterial”, MODEC said. On Wednesday MODEC reported an 11.9 percent year-on-year increase to $3.35 billion in revenue for the first nine months of 2025 “due to the recognition of revenue and gross profit from the steady progress of the FPSO

Read More »

US Urges NATO Allies to Shun Russian Energy

The US urged NATO allies to stop buying Russian energy in order to help end the war in Ukraine, adding pressure on member countries such as Turkey even as they cut back their purchases. The message was delivered by Vice President JD Vance and Secretary of State Marco Rubio in a meeting with Turkish Foreign Minister Hakan Fidan on Monday, the State Department said in a statement. Turkey is the third-largest buyer of Russian oil after China and India. Its refineries recently started to reduce purchases of Russian crude after the US sanctioned Moscow’s top two producers, but the country doesn’t plan to stop buying altogether, Bloomberg reported last week. Russia is also Turkey’s biggest supplier of natural gas and the two sides are currently negotiating long-term contracts as existing deals are set to expire at the end of the year. US pressure “could pose a potential headache” for Turkey, Bloomberg Economics’ Selva Bahar Baziki and Alex Kokcharov said in a note on Tuesday. “But thanks to diversification, Ankara appears well placed to absorb the impact and keep any rise in its import bill manageable.” Trump last week granted NATO ally Hungary an exemption from sanctions on purchases of Russian oil, providing a major win for Prime Minister Viktor Orban. What do you think? We’d love to hear from you, join the conversation on the Rigzone Energy Network. The Rigzone Energy Network is a new social experience created for you and all energy professionals to Speak Up about our industry, share knowledge, connect with peers and industry insiders and engage in a professional community that will empower your career in energy.

Read More »

Coterra’s net income surges, Kimmeridge calls for leadership change

Coterra Energy Inc. yesterday reported third-quarter 2025 net income of $322 million up sharply from $252 million from the year-earlier quarter. Year-to-date net income was nearly $1.35 billion, a 64% increase from the first 9 months of 2024. For third-quarter 2025, total barrels of oil equivalent (boe), natural gas production, and oil production were all near the high-end of the company’s guidance ranges, beating their respective mid-points by roughly 2.5%. Incurred capital expenditures from drilling, completion, and other fixed asset additions (non-GAAP) totaled $658 million, near the mid-point of Coterra’s guidance range of $625-675 million. The company turned in-line 48 net wells during the quarter. In the Permian, 38 net wells were turned in-line, below guidance of 40-50 net wells. Anadarko and Marcellus turned in-line six and four net wells, respectively, in line with guidance. Total equivalent production averaged 785,000 boe/d, near the high end of guidance (740,000-790,000 boe/d). But private investment firm Kimmeridge, describing itself as a significant Coterra shareholder, today released an open letter to Coterra’s board calling for “decisive action to address the company’s failures of governance and lack of strategic focus following the failed merger of Cabot Oil & Gas and Cimarex Energy,” up to and including a change of leadership. Coterra was created by the 2021 merger of these two companies. “Coterra’s history has been tainted by a boardroom unwilling to acknowledge its own missteps,” said Mark Viviano, managing partner at Kimmeridge. “Coterra now trades at a significant discount to both Permian and gas-focused peers, underscoring the market’s rejection of a merger that prioritized self-preservation over strategic merit. Kimmeridge maintains that Coterra’s path forward hinges on new leadership and a renewed focus on the Delaware basin. The Board should immediately appoint a non-executive chair who is independent and unassociated with the merger to restore objectivity

Read More »

Diamondback production and output ‘leveling off’ late this year and into 2026

Van’t Hof told analysts on the conference call that the demand picture looks strong these days and that “supply is the hot debate right now.” In a letter accompanying Diamondback’s third-quarter earnings report, he added that the company’s leaders are more aligned with OPEC’s forecast that oversupply through mid-2026 will be less than 500,000 b/d than they are with the International Energy Agency’s outlook of a nearly 4 million b/d surplus. Diamondback, which produced nearly 504,000 b/d of oil in Q3 from its roughly 750,000 net acres in the Permian basin, is content to hold its production levels steady but still be prepared to either boost or bring down output should market conditions change significantly. “We firmly believe there is no need for incremental oil barrels until there is a proper price signal,” Van’t Hof wrote in his letter. In the 3 months that ended Sept. 30, Diamondback’s total production came in at nearly 943,000 boe/d, up from about 920,000 boe/d in the second quarter. The company’s average price/bbl moved up to $64.60 from $63.23 in the spring but was still 12% below the figure from 2024’s third quarter. Its combined price ticked up slightly to $39.73/boe from $39.61 in Q2. Those data points translated into net income of $1.09 billion on total revenues of more than $3.9 billion. Looking to the current quarter, Van’t Hof and his team are forecasting oil output of 505,000 to 515,000 b/d. (That figure will dip to about 505,000 b/d after the company completes an asset sale to its Viper Energy mineral and royalty subsidiary.) They expect total production to be between 927,000 and 963,000 boe/d. Shares of Diamondback (Ticker: FANG) were down nearly 2% to $138.69 in early-afternoon trading Nov. 4, with broader market indices all down more than 1%. Diamondback stock is

Read More »

When the Cloud Leaves Earth: Google and NVIDIA Test Space Data Centers for the Orbital AI Era

On November 4, 2025, Google unveiled Project Suncatcher, a moonshot research initiative exploring the feasibility of AI data centers in space. The concept envisions constellations of solar-powered satellites in Low Earth Orbit (LEO), each equipped with Tensor Processing Units (TPUs) and interconnected via free-space optical laser links. Google’s stated objective is to launch prototype satellites by early 2027 to test the idea and evaluate scaling paths if the technology proves viable. Rather than a commitment to move production AI workloads off-planet, Suncatcher represents a time-bound research program designed to validate whether solar-powered, laser-linked LEO constellations can augment terrestrial AI factories, particularly for power-intensive, latency-tolerant tasks. The 2025–2027 window effectively serves as a go/no-go phase to assess key technical hurdles including thermal management, radiation resilience, launch economics, and optical-link reliability. If these milestones are met, Suncatcher could signal the emergence of a new cloud tier: one that scales AI with solar energy rather than substations. Inside Google’s Suncatcher Vision Google has released a detailed technical paper titled “Towards a Future Space-Based, Highly Scalable AI Infrastructure Design.” The accompanying Google Research blog describes Project Suncatcher as “a moonshot exploring a new frontier” – an early-stage effort to test whether AI compute clusters in orbit can become a viable complement to terrestrial data centers. The paper outlines several foundational design concepts: Orbit and Power Project Suncatcher targets Low Earth Orbit (LEO), where solar irradiance is significantly higher and can remain continuous in specific orbital paths. Google emphasizes that space-based solar generation will serve as the primary power source for the TPU-equipped satellites. Compute and Interconnect Each satellite would host Tensor Processing Unit (TPU) accelerators, forming a constellation connected through free-space optical inter-satellite links (ISLs). Together, these would function as a disaggregated orbital AI cluster, capable of executing large-scale batch and training workloads. Downlink

Read More »

Cloud-based GPU savings are real – for the nimble

The pattern points to an evolving GPU ecosystem: while top-tier chips like Nvidia’s new GB200 Blackwell processors remain in extremely short supply, older models such as the A100 and H100 are becoming cheaper and more available. Yet, customer behavior may not match practical needs. “Many are buying the newest GPUs because of FOMO—the fear of missing out,” he added. “ChatGPT itself was built on older architecture, and no one complained about its performance.” Gil emphasized that managing cloud GPU resources now requires agility, both operationally and geographically. Spot capacity fluctuates hourly or even by the minute, and availability varies across data center regions. Enterprises willing to move workloads dynamically between regions—often with the help of AI-driven automation—can achieve cost reductions of up to 80%. “If you can move your workloads where the GPUs are cheap and available, you pay five times less than a company that can’t move,” he said. “Human operators can’t respond that fast automation is essential.” Conveniently, Cast sells an AI automation solution. But it is not the only one and the argument is valid. If spot pricing can be found cheaper at another location, you want to take it to keep the cloud bill down/ Gil concluded by urging engineers and CTOs to embrace flexibility and automation rather than lock themselves into fixed regions or infrastructure providers. “If you want to win this game, you have to let your systems self-adjust and find capacity where it exists. That’s how you make AI infrastructure sustainable.”

Read More »

Harnessing Gravity: RRPT Hydro Reimagines Data Center Power

At the 2025 Data Center Frontier Trends Summit, amid panels on AI, nuclear, and behind-the-meter power, few technologies stirred more curiosity than a modular hydropower system without dams or flowing rivers. That concept—piston-driven hydropower—was presented by Expanse Energy Corporation President and CEO Ed Nichols and Chief Electrical Engineer Gregory Tarver during the Trends Summit’s closing “6 Moonshots for the 2026 Data Center Frontier” panel. Nichols and Tarver joined the Data Center Frontier Show recently to discuss how their Reliable Renewable Power Technology (RRPT Hydro) platform could rewrite the economics of clean, resilient power for the AI era. A New Kind of Hydropower Patented in the U.S. and entering commercial readiness, RRPT Hydro’s system replaces flowing water with a gravity-and-buoyancy engine housed in vertical cylinders. Multiple pistons alternately sink and rise inside these cylinders—heavy on the downward stroke, buoyant on the upward—creating continuous motion that drives electrical generation. “It’s not perpetual motion,” Nichols emphasizes. “You need a starter source—diesel, grid, solar, anything—but once in motion, the system sustains itself, converting gravity’s constant pull and buoyancy’s natural lift into renewable energy.” The concept traces its roots to a moment of natural awe. Its inventor, a gas-processing engineer, was moved to action by the 2004 Boxing Day tsunami, seeking a way to “containerize” and safely harvest the vast energy seen in that disaster. Two decades later, that spark has evolved into a patented, scalable system designed for industrial deployment. Physics-Based Power: Gravity Down, Buoyancy Up Each RRPT module operates as a closed-loop hydropower system: On the downstroke, pistons filled with water become dense and fall under gravity, generating kinetic energy. On the upstroke, air ballast tanks lighten the pistons, allowing buoyant forces to restore potential energy. By combining gravitational and buoyant forces—both constant, free, and renewable—RRPT converts natural equilibrium into sustained mechanical power.

Read More »

Buyer’s guide to AI networking technology

Extreme Networks: AI management over AI hardware Extreme deliberately prioritizes AI-powered network management over building specialized hyperscale AI infrastructure, a pragmatic positioning for a vendor targeting enterprise and mid-market.Named a Leader in IDC MarketScape: Worldwide Enterprise Wireless LAN 2025 (October 2025) for AI-powered automation, flexible deployment options and expertise in high-density environments. The company specializes in challenging wireless environments including stadiums, airports and historic venues (Fenway Park, Lambeau Field, Dubai World Trade Center, Liverpool FC’s Anfield Stadium). Key AI networking hardware 8730 Switch: 32×400GbE QSFP-DD fixed configuration delivering 12.8 Tbps throughput in 2RU for IP fabric spine/leaf designs. Designed for AI and HPC workloads with low latency, robust traffic management and power efficiency. Runs Extreme ONE OS (microservices architecture). Supports integrated application hosting with dedicated CPU for VM-based apps. Available Q3 2025. 7830 Switch: High-density 100G/400G fixed-modular core switch delivering 32×100Gb QSFP28 + 8×400Gb QSFP-DD ports with two VIM expansion slots. VIM modules enable up to 64×100Gb or 24×400Gb total capacity with 12.8 Tbps throughput in 2RU. Powered by Fabric Engine OS. Announced May 2025, available Q3 2025. Wi-Fi 7 access points: AP4020 (indoor) and AP4060 (outdoor with external antenna support, GA September 2025) completing premium Wi-Fi 7 portfolio. Extreme Platform ONE:Generally available Q3 2025 with 265+ customers. Integrates conversational, multimodal and agentic AI with three agents (AI Expert, AI Canvas, Service AI Agent) cutting resolution times 98%. Includes embedded Universal ZTNA and two-tier simplified licensing. ExtremeCloud IQ: Cloud-based network management integrating wireless, wired and SD-WAN with AI/ML capabilities and digital twin support for testing configurations before deployment. Extreme Fabric: Native SPB-based Layer 2 fabric with sub-second convergence, automated macro and micro-segmentation and free licensing (no controllers required). Multi-area fabric architecture solves traditional SPB scaling limitations. Analyst Rankings: Market leadership in AI networking Foundry Each of the vendors has its

Read More »

Microsoft’s In-Chip Microfluidics Technology Resets the Limits of AI Cooling

Raising the Thermal Ceiling for AI Hardware As Microsoft positions it, the significance of in-chip microfluidics goes well beyond a novel way to cool silicon. By removing heat at its point of generation, the technology raises the thermal ceiling that constrains today’s most power-dense compute devices. That shift could redefine how next-generation accelerators are designed, packaged, and deployed across hyperscale environments. Impact of this cooling change: Higher-TDP accelerators and tighter packing. Where thermal density has been the limiting factor, in-chip microfluidics could enable denser server sleds—such as NVL- or NVL-like trays—or allow higher per-GPU power budgets without throttling. 3D-stacked and HBM-heavy silicon. Microsoft’s documentation explicitly ties microfluidic cooling to future 3D-stacked and high-bandwidth-memory (HBM) architectures, which would otherwise be heat-limited. By extracting heat inside the package, the approach could unlock new levels of performance and packaging density for advanced AI accelerators. Implications for the AI Data Center If microfluidics can be scaled from prototype to production, its influence will ripple through every layer of the data center, from the silicon package to the white space and plant. The technology touches not only chip design but also rack architecture, thermal planning, and long-term cost models for AI infrastructure. Rack densities, white space topology, and facility thermals Raising thermal efficiency at the chip level has a cascading effect on system design: GPU TDP trajectory. Press materials and analysis around Microsoft’s collaboration with Corintis suggest the feasibility of far higher thermal design power (TDP) envelopes than today’s roughly 1–2 kW per device. Corintis executives have publicly referenced dissipation targets in the 4 kW to 10 kW range, highlighting how in-chip cooling could sustain next-generation GPU power levels without throttling. Rack, ring, and row design. By removing much of the heat directly within the package, microfluidics could reduce secondary heat spread into boards and

Read More »

Designing the AI Century: 7×24 Exchange Fall ’25 Charts the New Data Center Industrial Stack

SMRs and the AI Power Gap: Steve Fairfax Separates Promise from Physics If NVIDIA’s Sean Young made the case for AI factories, Steve Fairfax offered a sobering counterweight: even the smartest factories can’t run without power—and not just any power, but constant, high-availability, clean generation at a scale utilities are increasingly struggling to deliver. In his keynote “Small Modular Reactors for Data Centers,” Fairfax, president of Oresme and one of the data center industry’s most seasoned voices on reliability, walked through the long arc from nuclear fusion research to today’s resurgent interest in fission at modular scale. His presentation blended nuclear engineering history with pragmatic counsel for AI-era infrastructure leaders: SMRs are promising, but their road to reality is paved with physics, fuel, and policy—not PowerPoint. From Fusion Research to Data Center Reliability Fairfax began with his own story—a career that bridges nuclear reliability and data center engineering. As a young physicist and electrical engineer at MIT, he helped build the Alcator C-MOD fusion reactor, a 400-megawatt research facility that heated plasma to 100 million degrees with 3 million amps of current. The magnet system alone drew 265,000 amps at 1,400 volts, producing forces measured in millions of pounds. It was an extreme experiment in controlled power, and one that shaped his later philosophy: design for failure, test for truth, and assume nothing lasts forever. When the U.S. cooled on fusion power in the 1990s, Fairfax applied nuclear reliability methods to data center systems—quantifying uptime and redundancy with the same math used for reactor safety. By 1994, he was consulting for hyperscale pioneers still calling 10 MW “monstrous.” Today’s 400 MW campuses, he noted, are beginning to look a lot more like reactors in their energy intensity—and increasingly, in their regulatory scrutiny. Defining the Small Modular Reactor Fairfax defined SMRs

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »