
So let’s answer a few of your questions about advanced nuclear power. I’ve combined similar ones and edited them for clarity.
How are the fuel needs for next-generation nuclear reactors different, and how are companies addressing the supply chain?
Many next-generation reactors don’t use the low-enriched uranium used in conventional reactors.
It’s worth looking at high-assay low-enriched uranium, or HALEU, specifically. This fuel is enriched to higher concentrations of fissile uranium than conventional nuclear fuel, with a proportion of the isotope U-235 that falls between 5% and 20%. (In conventional fuel, it’s below 5%.)
HALEU can be produced with the same technology as low-enriched uranium, but the geopolitics are complicated. Today, Russia basically has a monopoly on HALEU production. In 2024, the US banned the import of Russian nuclear fuel through 2040 in an effort to reduce dependence on the country. Europe hasn’t taken the same measures, but it is working to move away from Russian energy as well.
That leaves companies in the US and Europe with the major challenge of securing the fuel they need when their regular Russian supply has been cut off or restricted.
The US Department of Energy has a stockpile of HALEU, which the government is doling out to companies to help power demonstration reactions. In the longer term, though, there’s still a major need to set up independent HALEU supply chains to support next-generation reactors.
How is safety being addressed, and what’s happening with nuclear safety regulation in the US?
There are some ways that next-generation nuclear power plants could be safer than conventional reactors. Some use alternative coolants that would prevent the need to run at the high pressure required in conventional water-cooled reactors. Many incorporate passive safety shutoffs, so if there are power supply issues, the reactors shut down harmlessly, avoiding risk of meltdown. (These can be incorporated in newer conventional reactors, too.)
But some experts have raised concerns that in the US, the current administration isn’t taking nuclear safety seriously enough.
A recent NPR investigation found that the Trump administration had secretly rewritten nuclear rules, stripping environmental protections and loosening safety and security measures. The government shared the new rules with companies that are part of a program building experimental nuclear reactors, but not with the public.
I’m reminded of a talk during our EmTech MIT event in November, where Koroush Shirvan, an MIT professor of nuclear engineering, spoke on this issue. “I’ve seen some disturbing trends in recent times, where words like ‘rubber-stamping nuclear projects’ are being said,” Shirvan said during that event.
During the talk, Shirvan shared statistics showing that nuclear power has a very low rate of injury and death. But that’s not inherent to the technology, and there’s a reason injuries and deaths have been low for nuclear power, he added: “It’s because of stringent regulatory oversight.”
Are next-generation reactors going to be financially competitive?
Building a nuclear power plant is not cheap. Let’s consider the up-front investment needed to build a power plant.
Plant Vogtle in Georgia hosts the most recent additions to the US nuclear fleet—Units 3 and 4 came online in 2023 and 2024. Together, they had a capital cost of $15,000 per kilowatt, adjusted for inflation, according to a recent report from the US Department of Energy. (This wonky unit I’m using divides the total cost to build the reactors by their expected power output, so we can compare reactors of different sizes.)
That number’s quite high, partly because those were the first of their kind built in the US, and because there were some inefficiencies in the planning. It’s worth noting that China builds reactors for much less, somewhere between $2,000/kW and $3,000/kW, depending on the estimate.
The up-front capital cost for first-of-a-kind advanced nuclear plants will likely run between $6,000 and $10,000 per kilowatt, according to that DOE report. That could come down by up to 40% after the technologies are scaled up and mass-produced.
So new reactors will (hopefully) be cheaper than the ultra-over-budget and behind-schedule Vogtle project, but they aren’t necessarily significantly cheaper than efficiently built conventional plants, if you normalize by their size.
It’ll certainly be cheaper to build new natural-gas plants (setting aside the likely equipment shortages we’re likely going to see for years.) Today’s most efficient natural-gas plants cost just $1,600/kW on the high end, according to data from Lazard.
An important caveat: Capital cost isn’t everything—running a nuclear plant is relatively inexpensive, which is why there’s so much interest in extending the lifetime of existing plants or reopening shuttered ones.
Ultimately, by many metrics, nuclear plants of any type are going to be more expensive than other sources, like wind and solar power. But they provide something many other power sources don’t: a reliable, stable source of electricity that can run for 60 years or more.
This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.




















