Stay Ahead, Stay ONMINE

Fueling the future of digital transformation

In partnership withInfosys Cobalt In the rapidly evolving landscape of digital innovation, staying adaptable isn’t just a strategy—it’s a survival skill. “Everybody has a plan until they get punched in the face,” says Luis Niño, digital manager for technology ventures and innovation at Chevron, quoting Mike Tyson. Drawing from a career that spans IT, HR, and infrastructure operations across the globe, Niño offers a unique perspective on innovation and how organizational microcultures within Chevron shape how digital transformation evolves.  Centralized functions prioritize efficiency, relying on tools like AI, data analytics, and scalable system architectures. Meanwhile, business units focus on simplicity and effectiveness, deploying robotics and edge computing to meet site-specific needs and ensure safety. “From a digital transformation standpoint, what I have learned is that you have to tie your technology to what outcomes drive results for both areas, but you have to allow yourself to be flexible, to be nimble, and to understand that change is constant,” he says. Central to this transformation is the rise of industrial AI. Unlike consumer applications, industrial AI operates in high-stakes environments where the cost of errors can be severe.  “The wealth of potential information needs to be contextualized, modeled, and governed because of the safety of those underlying processes,” says Niño. “If a machine reacts in ways you don’t expect, people could get hurt, and so there’s an extra level of care that needs to happen and that we need to think about as we deploy these technologies.” Niño highlights Chevron’s efforts to use AI for predictive maintenance, subsurface analytics, and process automation, noting that “AI sits on top of that foundation of strong data management and robust telecommunications capabilities.” As such, AI is not just a tool but a transformation catalyst redefining how talent is managed, procurement is optimized, and safety is ensured. Looking ahead, Niño emphasizes the importance of adaptability and collaboration: “Transformation is as much about technology as it is about people.” With initiatives like the Citizen Developer Program and Learn Digital, Chevron is empowering its workforce to bridge the gap between emerging technologies and everyday operations using an iterative mindset.  Niño is also keeping watch over the convergence of technologies like AI, quantum computing, Internet of Things, and robotics, which hold the potential to transform how we produce and manage energy. “My job is to keep an eye on those developments,” says Niño, “to make sure that we’re managing these things responsibly and the things that we test and trial and the things that we deploy, that we maintain a strict sense of responsibility to make sure that we keep everyone safe, our employees, our customers, and also our stakeholders from a broader perspective.” This episode of Business Lab is produced in association with Infosys Cobalt. Full Transcript  Megan Tatum: From MIT Technology Review, I’m Megan Tatum and this is Business Lab, the show that helps business leaders make sense of new technologies coming out of the lab and into the marketplace.  Our topic today is digital transformation, from back office operations to infrastructure in the field like oil rigs, companies continue to look for ways to increase profit, meet sustainability goals, and invest in the latest and greatest technology.  Two words for you: enabling innovation.  My guest is Luis Niño, who is the digital manager of technology ventures, and innovation at Chevron. This podcast is produced in association with Infosys Cobalt.  Welcome, Luis.  Luis Niño: Thank you, Megan. Thank you for having me.  Megan: Thank you so much for joining us. Just to set some context, Luis, you’ve had a really diverse career at Chevron, spanning IT, HR, and infrastructure operations. I wonder, how have those different roles shaped your approach to innovation and digital strategy?  Luis: Thank you for the question. And you’re right, my career has spanned many different areas and geographies in the company. It really feels like I’ve worked for different companies every time I change roles. Like I said, different functions, organizations, locations I’ve had since here in Houston and in Bakersfield, California and in Buenos Aires, Argentina. From an organizational standpoint, I’ve seen central teams international service centers, as you mentioned, field infrastructure and operation organizations in our business units, and I’ve also had corporate function roles.  And the reason why I mentioned that diversity is that each one of those looks at digital transformation and innovation through its own lens. From the priority to scale and streamline in central organizations to the need to optimize and simplify out in business units and what I like to call the periphery, you really learn about the concept first off of microcultures and how different these organizations can be even within our own walls, but also how those come together in organizations like Chevron.  Over time, I would highlight two things. In central organizations, whether that’s functions like IT, HR, or our technical center, we have a central technical center, where we continuously look for efficiencies in scaling, for system architectures that allow for economies of scale. As you can imagine, the name of the game is efficiency. We have also looked to improve employee experience. We want to orchestrate ecosystems of large technology vendors that give us an edge and move the massive organization forward. In areas like this, in central areas like this, I would say that it is data analytics, data science, and artificial intelligence that has become the sort of the fundamental tools to achieve those objectives.  Now, if you allow that pendulum to swing out to the business units and to the periphery, the name of the game is effectiveness and simplicity. The priority for the business units is to find and execute technologies that help us achieve the local objectives and keep our people safe. Especially when we are talking about our manufacturing environments where there’s risk for our folks. In these areas, technologies like robotics, the Internet of Things, and obviously edge computing are currently the enablers of information.  I wouldn’t want to miss the opportunity to say that both of those, let’s call it, areas of the company, rely on the same foundation and that is a foundation of strong data management, of strong network and telecommunications capabilities because those are the veins through which the data flows and everything relies on data.  In my experience, this pendulum also drives our technology priorities and our technology strategy. From a digital transformation standpoint, what I have learned is that you have to tie your technology to what outcomes drive results for both areas, but you have to allow yourself to be flexible, to be nimble, and to understand that change is constant. If you are deploying something in the center and you suddenly realize that some business unit already has a solution, you cannot just say, let’s shut it down and go with what I said. You have to adapt, you have to understand behavioral change management and you really have to make sure that change and adjustments are your bread and butter.  I don’t know if you know this, Megan, but there’s a popular fight happening this weekend with Mike Tyson and he has a saying, and that is everybody has a plan until they get punched in the face. And what he’s trying to say is you have to be adaptable. The plan is good, but you have to make sure that you remain agile.  Megan: Yeah, absolutely.  Luis: And then I guess the last lesson really quick is about risk management or maybe risk appetite. Each group has its own risk appetite depending on the lens or where they’re sitting, and this may create some conflict between organizations that want to move really, really fast and have urgency and others that want to take a step back and make sure that we’re doing things right at the balance. I think that at the end, I think that’s a question for leadership to make sure that they have a pulse on our ability to change.  Megan: Absolutely, and you’ve mentioned a few different elements and technologies I’d love to dig into a bit more detail on. One of which is artificial intelligence because I know Chevron has been exploring AI for several years now. I wonder if you could tell us about some of the AI use cases it’s working on and what frameworks you’ve developed for effective adoption as well.  Luis: Yeah, absolutely. This is the big one, isn’t it? Everybody’s talking about AI. As you can imagine, the focus in our company is what is now being branded as industrial AI. That’s really a simple term to explain that AI is being applied to industrial and manufacturing settings. And like other AI, and as I mentioned before, the foundation remains data. I want to stress the importance of data here.  One of the differences however is that in the case of industrial AI, data comes from a variety of sources. Some of them are very critical. Some of them are non-critical. Sources like operating technologies, process control networks, and SCADA, all the way to Internet of Things sensors or industrial Internet of Things sensors, and unstructured data like engineering documentation and IT data. These are massive amounts of information coming from different places and also from different security structures. The complexity of industrial AI is considerably higher than what I would call consumer or productivity AI.  Megan: Right.  Luis: The wealth of potential information needs to be contextualized, modeled, and governed because of the safety of those underlying processes. When you’re in an industrial setting, if a machine reacts in ways you don’t expect, people could get hurt, and so there’s an extra level of care that needs to happen and that we need to think about as we deploy these technologies.  AI sits on top of that foundation and it takes different shapes. It can show up as a copilot like the ones that have been popularized recently, or it can show up as agentic AI, which is something that we’re looking at closely now. And agentic AI is just a term to mean that AI can operate autonomously and can use complex reasoning to solve multistep problems in an industrial setting.  So with that in mind, going back to your question, we use both kinds of AI for multiple use cases, including predictive maintenance, subsurface analytics, process automation, and workflow optimization, and also end-user productivity. Each one of those use cases obviously needs specific objectives that the business is looking at in each area of the value chain.  In predictive maintenance, for example, we monitor and we analyze equipment health, we prevent failures, and we allow for preventive maintenance and reduced downtime. The AI helps us understand when machinery needs to be maintained in order to prevent failure instead of just waiting for it to happen. In subsurface analysis, we’re exploring AI to develop better models of hydrocarbon reservoirs. We are exploring AI to forecast geomechanical models and to capture and understand data from fiber optic sensing. Fiber optic sensing is a capability that has proven very valuable to us, and AI is helping us make sense of the wealth of information that comes out of the whole, as we like to say. Of course, we don’t do this alone. We partner with many third-party organizations, with vendors, and with people inside subject matter experts inside of Chevron to move the projects forward.  There are several other areas beyond industrial AI that we are looking at. AI really is a transformation catalyst, and so areas like finance and law and procurement and HR, we’re also doing testing in those corporate areas. I can tell you that I’ve been part of projects in procurement, in HR. When I was in HR we ran a pretty amazing effort in partnership with a third-party company, and what they do is they seek to transform the way we understand talent, and the way they do that is they are trying to provide data-driven frameworks to make talent decisions.  And so they redefine talent by framing data in the form of skills, and as they do this, they help de-bias processes that are usually or can be usually prone to unconscious biases and perspectives. It really is fascinating to think of your talent-based skills and to start decoupling them from what we know since the industrial era began, which is people fit in jobs. Now the question is more the other way around. How can jobs adapt to people’s skills? And then in procurement, AI is basically helping us open the aperture to a wider array of vendors in an automated fashion that makes us better partners. It’s more cost-effective. It’s really helpful.  Before I close here, you did reference frameworks, so the framework of industrial AI versus what I call productivity AI, the understanding of the use cases. All of this sits on top of our responsible AI frameworks. We have set up a central enterprise AI organization and they have really done a great job in developing key areas of responsible AI as well as training and adoption frameworks. This includes how to use AI, how not to use AI, what data we can share with the different GPTs that are available to us.  We are now members of organizations like the Responsible AI Institute. This is an organization that fosters the safe use of AI and trustworthy AI. But our own responsible AI framework, it involves four pillars. The first one is the principles, and this is how we make sure we continue to stay aligned with the values that drive this company, which we call The Chevron Way. It includes assessment, making sure that we evaluate these solutions in proportion to impact and risk. As I mentioned, when you’re talking about industrial processes, people’s lives are at stake. And so we take a very close look at what we are putting out there and how we ensure that it keeps our people safe. It includes education, I mentioned training our people to augment their capabilities and reinforcing responsible principles, and the last of the four is governance oversight and accountability through control structures that we are putting in place.  Megan: Fantastic. Thank you so much for those really fascinating specific examples as well. It’s great to hear about. And digital transformation, which you did touch on briefly, has become critical of course to enable business growth and innovation. I wonder what has Chevron’s digital transformation looked like and how has the shift affected overall operations and the way employees engage with technology as well?  Luis: Yeah, yeah. That’s a really good question. The term digital transformation is interpreted in many different ways. For me, it really is about leveraging technology to drive business results and to drive business transformation. We usually tend to specify emerging technology as the catalyst for transformation. I think that is okay, but I also think that there are ways that you can drive digital transformation with technology that’s not necessarily emerging but is being optimized, and so under this umbrella, we include everything from our Citizen Developer Program to complex industry partnerships that help us maximize the value of data.  The Citizen Developer Program has been very successful in helping bridge the gap between our technical software engineer and software development practices and people who are out there doing the work, getting familiar, and demystifying the way to build solutions.  I do believe that transformation is as much about technology as it is about people. And so to go back to the responsible AI framework, we are actively training and upskilling the workforce. We created a program called Learn Digital that helps employees embrace the technologies. I mentioned the concept of demystifying. It’s really important that people don’t fall into the trap of getting scared by the potential of the technology or the fact that it is new and we help them and we give them the tools to bridge the change management gap so they can get to use them and get the most out of them.  At a high level, our transformation has followed the cyclical nature that pretty much any transformation does. We have identified the data foundations that we need to have. We have understood the impact of the processes that we are trying to digitize. We organize that information, then we streamline and automate processes, we learn, and now machines learn and then we do it all over again. And so this cyclical mindset, this iterative mindset has really taken hold in our culture and it has made us a little bit better at accepting the technologies that are driving the change.  Megan: And to look at one of those technologies in a bit more detail, cloud computing has revolutionized infrastructure across industries. But there’s also a pendulum ship now toward hybrid and edge computing models. How is Chevron balancing cloud, hybrid, and edge strategies for optimal performance as well?  Luis: Yeah, that’s a great question and I think you could argue that was the genesis of the digital transformation effort. It’s been a journey for us and it’s a journey that I think we’re not the only ones that may have started it as a cost savings and storage play, but then we got to this ever-increasing need for multiple things like scaling compute power to support large language models and maximize how we run complex models. There’s an increasing need to store vast amounts of data for training and inference models while we improve data management and, while we predict future needs.  There’s a need for the opportunity to eliminate hardware constraints. One of the promises of cloud was that you would be able to ramp up and down depending on your compute needs as projects demanded. And that hasn’t stopped, that has only increased. And then there’s a need to be able to do this at a global level. For a company like ours that is distributed across the globe, we want to do this everywhere while actively managing those resources without the weight of the infrastructure that we used to carry on our books. Cloud has really helped us change the way we think about the digital assets that we have.  It’s important also that it has created this symbiotic need to grow between AI and the cloud. So you don’t have the AI without the cloud, but now you don’t have the cloud without AI. In reality, we work on balancing the benefits of cloud and hybrid and edge computing, and we keep operational efficiency as our North Star. We have key partnerships in cloud, that’s something that I want to make sure I talk about. Microsoft is probably the most strategic of our partnerships because they’ve helped us set our foundation for cloud. But we also think of the convenience of hybrid through the lens of leveraging a convenient, scalable public cloud and a very secure private cloud that helps us meet our operational and safety needs.  Edge computing fills the gap or the need for low latency and real-time data processing, which are critical constraints for decision-making in most of the locations where we operate. You can think of an offshore rig, a refinery, an oil rig out in the field, and maybe even not-so-remote areas like here in our corporate offices. Putting that compute power close to the data source is critical. So we work and we partner with vendors to enable lighter compute that we can set at the edge and, I mentioned the foundation earlier, faster communication protocols at the edge that also solve the need for speed.  But it is important to remember that you don’t want to think about edge computing and cloud as separate things. Cloud supports edge by providing centralized management by providing advanced analytics among others. You can train models in the cloud and then deploy them to edge devices, keeping real-time priorities in mind. I would say that edge computing also supports our cybersecurity strategy because it allows us to control and secure sensitive environments and information while we embed machine learning and AI capabilities out there.  So I have mentioned use cases like predictive maintenance and safety, those are good examples of areas where we want to make sure our cybersecurity strategy is front and center. When I was talking about my experience I talked about the center and the edge. Our strategy to balance that pendulum relies on flexibility and on effective asset management. And so making sure that our cloud reflects those strategic realities gives us a good footing to achieve our corporate objectives.  Megan: As you say, safety is a top priority. How do technologies like the Internet of Things and AI help enhance safety protocols specifically too, especially in the context of emissions tracking and leak detection?  Luis: Yeah, thank you for the question. Safety is the most important thing that we think and talk about here at Chevron. There is nothing more important than ensuring that our people are safe and healthy, so I would break safety down into two. Before I jump to emissions tracking and leak detection, I just want to make a quick point on personal safety and how we leverage IoT and AI to that end.  We use sensing capabilities that help us keep workers out of harm’s way, and so things like computer vision to identify and alert people who are coming into safety areas. We also use computer vision, for example, to identify PPE requirements—personal protective equipment requirements—and so if there are areas that require a certain type of clothing, a certain type of identification, or a hard hat, we are using technologies that can help us make sure people have that before they go into a particular area.  We’re also using wearables. Wearables help us in one of the use cases is they help us track exhaustion and dehydration in locations where that creates inherent risk, and so locations that are very hot, whether it’s because of the weather or because they are enclosed, we can use wearables that tell us how fast the person’s getting dehydrated, what are the levels of liquid or sodium that they need to make sure that they’re safe or if they need to take a break. We have those capabilities now.  Going back to emissions tracking and leak detection, I think it’s actually the combination of IoT and AI that can transform how we prevent and react to those. In this case, we also deploy sensing capabilities. We use things like computer vision, like infrared capabilities, and we use others that deliver data to the AI models, which then alert and enable rapid response.  The way I would explain how we use IoT and AI for safety, whether it’s personnel safety or emissions tracking and leak detection, is to think about sensors as the extension of human ability to sense. In some cases, you could argue it’s super abilities. And so if you think of sight normally you would’ve had supervisors or people out there that would be looking at the field and identifying issues. Well, now we can use computer vision with traditional RGB vision, we can use them with infrared, we can use multi-angle to identify patterns, and have AI tell us what’s going on.  If you keep thinking about the human senses, that’s sight, but you can also use sound through ultrasonic sensors or microphone sensors. You can use touch through vibration recognition and heat recognition. And even more recently, this is something that we are testing more recently, you can use smell. There are companies that are starting to digitize smell. Pretty exciting, also a little bit crazy. But it is happening. And so these are all tools that any human would use to identify risk. Well, so now we can do it as an extension of our human abilities to do so. This way we can react much faster and better to the anomalies.  A specific example with methane. We have a simple goal with methane, we want to keep methane in the pipe. Once it’s out, it’s really hard or almost impossible to take it back. Over the last six to seven years, we have reduced our methane intensity by over 60% and we’re leveraging technology to achieve that. We have deployed a methane detection program. We have trialed over 10 to 15 advanced methane detection technologies.  A technology that I have been looking at recently is called Aquanta Vision. This is a company supported by an incubator program we have called Chevron Studio. We did this in partnership with the National Renewable Energy Laboratory, and what they do is they leverage optical gas imaging to detect methane effectively and to allow us to prevent it from escaping the pipe. So that’s just an example of the technologies that we’re leveraging in this space.  Megan: Wow, that’s fascinating stuff. And on emissions as well, Chevron has made significant investments in new energy technologies like hydrogen, carbon capture, and renewables. How do these technologies fit into Chevron’s broader goal of reducing its carbon footprint?  Luis: This is obviously a fascinating space for us, one that is ever-changing. It is honestly not my area of expertise. But what I can say is we truly believe we can achieve high returns and lower carbon, and that’s something that we communicate broadly. A few years ago, I believe it was 2021, we established our Chevron New Energies company and they actively explore lower carbon alternatives including hydrogen, renewables, and carbon capture offsets.  My area, the digital area, and the convergence between digital technologies and the technical sciences will enable the techno-commercial viability of those business lines. Thinking about carbon capture, is something that we’ve done for a long time. We have decades of experience in carbon capture technologies across the world.  One of our larger projects, the Gorgon Project in Australia, I think they’ve captured something between 5 and 10 million tons of CO2 emissions in the past few years, and so we have good expertise in that space. But we also actively partner in carbon capture. We have joined hubs of carbon capture here in Houston, for example, where we investing in companies like there’s a company called Carbon Clean, a company called Carbon Engineering, and one called Svante. I’m familiar with these names because the corporate VC team is close to me. These companies provide technologies for direct air capture. They provide solutions for hard-to-abate industries. And so we want to keep an eye on these emerging capabilities and make use of them to continuously lower our carbon footprint.  There are two areas here that I would like to talk about. Hydrogen first. This is another area that we’re familiar with. Our plan is to build on our existing assets and capabilities to deliver a large-scale hydrogen business. Since 2005, I think we’ve been doing retail hydrogen, and we also have several partnerships there. In renewables, we are creating a range of fuels for different transportation types. We use diesel, bio-based diesel, we use renewable natural gas, we use sustainable aviation fuel. Yeah, so these are all areas of importance to us. They’re emerging business lines that are young in comparison to the rest of our company. We’ve been a company for 140 years plus, and this started in 2021, so you can imagine how steep that learning curve is.  I mentioned how we leverage our corporate venture capital team to learn and to keep an eye out on what are these emerging trends and technologies that we want to learn about. They leverage two things. They leverage a core fund, which is focused on areas that can seek innovation for our core business for the title. And we have a separate future energy fund that explores areas that are emerging. Not only do they invest in places like hydrogen, carbon capture, and renewables, but they also may invest in other areas like wind and geothermal and nuclear capability. So we constantly keep our eyes open for these emerging technologies.  Megan: I see. And I wonder if you could share a bit more actually about Chevron’s role in driving sustainable business innovation. I’m thinking of initiatives like converting used cooking oil into biodiesel, for example. I wonder how those contribute to that overall goal of creating a circular economy.  Luis: Yeah, this is fascinating and I was so happy to learn a little bit more about this year when I had the chance to visit our offices in Iowa. I’ll get into that in a second. But happy to talk about this, again with the caveat that it’s not my area of expertise.  Megan: Of course.  Luis: In the case of biodiesel, we acquired a company called REG in 2022. They were one of the founders of the renewable fuels industry, and they honestly do incredible work to create energy through a process, I forget the name of the process to be honest. But at the most basic level what they do is they prepare feedstocks that come from different types of biomass, you mentioned cooking oils, there’s also soybeans, there’s animal fats. And through various chemical reactions, what they do is convert components of the feedstock into biodiesel and glycerin. After that process, what they do is they separate un-reactive methanol, which is recovered and recycled into the process, and the biodiesel goes through a final processing to make sure that it meets the standards necessary to be commercialized.  What REG has done is it has boosted our knowledge as a broader organization on how to do this better. They continuously look for bio-feedstocks that can help us deliver new types of energy. I had mentioned bio-based diesel. One of the areas that we’re very focused on right now is sustainable aviation fuel. I find that fascinating. The reason why this is working and the reason why this is exciting is because they brought this great expertise and capability into Chevron. And in turn, as a larger organization, we’re able to leverage our manufacturing and distribution capabilities to continue to provide that value to our customers.  I mentioned that I learned a little bit more about this this year. I was lucky earlier in the year I was able to visit our REG offices in Ames, Iowa. That’s where they’re located. And I will tell you that the passion and commitment that those people have for the work that they do was incredibly energizing. These are folks who have helped us believe, really, that our promise of lower carbon is attainable.  Megan: Wow. Sounds like there’s some fascinating work going on. Which brings me to my final question. Which is sort of looking ahead, what emerging technologies are you most excited about and how do you see them impacting both Chevron’s core business and the energy sector as a whole as well?  Luis: Yeah, that’s a great question. I have no doubt that the energy business is changing and will continue to change only faster, both our core business as well as the future energy, or the way it’s going to look in the future. Honestly, in my line of work, I come across exciting technology every day. The obvious answers are AI and industrial AI. These are things that are already changing the way we live without a doubt. You can see it in people’s productivity. You can see it in how we optimize and transform workflows. AI is changing everything. I am actually very, very interested in IoT, in the Internet of Things, and robotics, the ability to protect humans in high-risk environments, like I mentioned, is critical to us, the opportunity to prevent high-risk events and predict when they’re likely to happen.  This is pretty massive, both for our productivity objectives as well as for our lower carbon objectives. If we can predict when we are at risk of particular events, we could avoid them altogether. As I mentioned before, this ubiquitous ability to sense our surroundings is a capability that our industry and I’m going to say humankind, is only beginning to explore.  There’s another area that I didn’t talk too much about, which I think is coming, and that is quantum computing. Quantum computing promises to change the way we think of compute power and it will unlock our ability to simulate chemistry, to simulate molecular dynamics in ways we have not been able to do before. We’re working really hard in this space. When I say molecular dynamics, think of the way that we produce energy today. It is all about the molecule and understanding the interactions between hydrocarbon molecules and the environment. The ability to do that in multi-variable systems is something that quantum, we believe, can provide an edge on, and so we’re working really hard in this space.  Yeah, there are so many, and having talked about all of them, AI, IoT, robotics, quantum, the most interesting thing to me is the convergence of all of them. If you think about the opportunity to leverage robotics, but also do it as the machines continue to control limited processes and understand what it is they need to do in a preventive and predictive way, this is such an incredible potential to transform our lives, to make an impact in the world for the better. We see that potential.  My job is to keep an eye on those developments, to make sure that we’re managing these things responsibly and the things that we test and trial and the things that we deploy, that we maintain a strict sense of responsibility to make sure that we keep everyone safe, our employees, our customers, and also our stakeholders from a broader perspective.  Megan: Absolutely. Such an important point to finish on. And unfortunately, that is all the time we have for today, but what a fascinating conversation. Thank you so much for joining us on the Business Lab, Luis.  Luis: Great to talk to you.  Megan:  Thank you so much. That was Luis Niño, who is the digital manager of technology ventures and innovation at Chevron, who I spoke with today from Brighton, England.  That’s it for this episode of Business Lab. I’m Megan Tatum, I’m your host and a contributing editor at Insights, the custom publishing division of MIT Technology Review. We were founded in 1899 at the Massachusetts Institute of Technology, and you can find us in print on the web and at events each year around the world. For more information about us and the show, please check out our website at technologyreview.com.  This show is available wherever you get your podcasts, and if you enjoyed this episode, we really hope you’ll take a moment to rate and review us. Business Lab is a production of MIT Technology Review, and this episode was produced by Giro Studios. Thank you so much for listening. 

In partnership withInfosys Cobalt

In the rapidly evolving landscape of digital innovation, staying adaptable isn’t just a strategy—it’s a survival skill. “Everybody has a plan until they get punched in the face,” says Luis Niño, digital manager for technology ventures and innovation at Chevron, quoting Mike Tyson.

Drawing from a career that spans IT, HR, and infrastructure operations across the globe, Niño offers a unique perspective on innovation and how organizational microcultures within Chevron shape how digital transformation evolves. 

Centralized functions prioritize efficiency, relying on tools like AI, data analytics, and scalable system architectures. Meanwhile, business units focus on simplicity and effectiveness, deploying robotics and edge computing to meet site-specific needs and ensure safety.

“From a digital transformation standpoint, what I have learned is that you have to tie your technology to what outcomes drive results for both areas, but you have to allow yourself to be flexible, to be nimble, and to understand that change is constant,” he says.

Central to this transformation is the rise of industrial AI. Unlike consumer applications, industrial AI operates in high-stakes environments where the cost of errors can be severe. 

“The wealth of potential information needs to be contextualized, modeled, and governed because of the safety of those underlying processes,” says Niño. “If a machine reacts in ways you don’t expect, people could get hurt, and so there’s an extra level of care that needs to happen and that we need to think about as we deploy these technologies.”

Niño highlights Chevron’s efforts to use AI for predictive maintenance, subsurface analytics, and process automation, noting that “AI sits on top of that foundation of strong data management and robust telecommunications capabilities.” As such, AI is not just a tool but a transformation catalyst redefining how talent is managed, procurement is optimized, and safety is ensured.

Looking ahead, Niño emphasizes the importance of adaptability and collaboration: “Transformation is as much about technology as it is about people.” With initiatives like the Citizen Developer Program and Learn Digital, Chevron is empowering its workforce to bridge the gap between emerging technologies and everyday operations using an iterative mindset. 

Niño is also keeping watch over the convergence of technologies like AI, quantum computing, Internet of Things, and robotics, which hold the potential to transform how we produce and manage energy.

“My job is to keep an eye on those developments,” says Niño, “to make sure that we’re managing these things responsibly and the things that we test and trial and the things that we deploy, that we maintain a strict sense of responsibility to make sure that we keep everyone safe, our employees, our customers, and also our stakeholders from a broader perspective.”

This episode of Business Lab is produced in association with Infosys Cobalt.

Full Transcript 

Megan Tatum: From MIT Technology Review, I’m Megan Tatum and this is Business Lab, the show that helps business leaders make sense of new technologies coming out of the lab and into the marketplace. 

Our topic today is digital transformation, from back office operations to infrastructure in the field like oil rigs, companies continue to look for ways to increase profit, meet sustainability goals, and invest in the latest and greatest technology. 

Two words for you: enabling innovation. 

My guest is Luis Niño, who is the digital manager of technology ventures, and innovation at Chevron. This podcast is produced in association with Infosys Cobalt. 

Welcome, Luis. 

Luis Niño: Thank you, Megan. Thank you for having me. 

Megan: Thank you so much for joining us. Just to set some context, Luis, you’ve had a really diverse career at Chevron, spanning IT, HR, and infrastructure operations. I wonder, how have those different roles shaped your approach to innovation and digital strategy? 

Luis: Thank you for the question. And you’re right, my career has spanned many different areas and geographies in the company. It really feels like I’ve worked for different companies every time I change roles. Like I said, different functions, organizations, locations I’ve had since here in Houston and in Bakersfield, California and in Buenos Aires, Argentina. From an organizational standpoint, I’ve seen central teams international service centers, as you mentioned, field infrastructure and operation organizations in our business units, and I’ve also had corporate function roles. 

And the reason why I mentioned that diversity is that each one of those looks at digital transformation and innovation through its own lens. From the priority to scale and streamline in central organizations to the need to optimize and simplify out in business units and what I like to call the periphery, you really learn about the concept first off of microcultures and how different these organizations can be even within our own walls, but also how those come together in organizations like Chevron. 

Over time, I would highlight two things. In central organizations, whether that’s functions like IT, HR, or our technical center, we have a central technical center, where we continuously look for efficiencies in scaling, for system architectures that allow for economies of scale. As you can imagine, the name of the game is efficiency. We have also looked to improve employee experience. We want to orchestrate ecosystems of large technology vendors that give us an edge and move the massive organization forward. In areas like this, in central areas like this, I would say that it is data analytics, data science, and artificial intelligence that has become the sort of the fundamental tools to achieve those objectives. 

Now, if you allow that pendulum to swing out to the business units and to the periphery, the name of the game is effectiveness and simplicity. The priority for the business units is to find and execute technologies that help us achieve the local objectives and keep our people safe. Especially when we are talking about our manufacturing environments where there’s risk for our folks. In these areas, technologies like robotics, the Internet of Things, and obviously edge computing are currently the enablers of information. 

I wouldn’t want to miss the opportunity to say that both of those, let’s call it, areas of the company, rely on the same foundation and that is a foundation of strong data management, of strong network and telecommunications capabilities because those are the veins through which the data flows and everything relies on data. 

In my experience, this pendulum also drives our technology priorities and our technology strategy. From a digital transformation standpoint, what I have learned is that you have to tie your technology to what outcomes drive results for both areas, but you have to allow yourself to be flexible, to be nimble, and to understand that change is constant. If you are deploying something in the center and you suddenly realize that some business unit already has a solution, you cannot just say, let’s shut it down and go with what I said. You have to adapt, you have to understand behavioral change management and you really have to make sure that change and adjustments are your bread and butter. 

I don’t know if you know this, Megan, but there’s a popular fight happening this weekend with Mike Tyson and he has a saying, and that is everybody has a plan until they get punched in the face. And what he’s trying to say is you have to be adaptable. The plan is good, but you have to make sure that you remain agile. 

Megan: Yeah, absolutely. 

Luis: And then I guess the last lesson really quick is about risk management or maybe risk appetite. Each group has its own risk appetite depending on the lens or where they’re sitting, and this may create some conflict between organizations that want to move really, really fast and have urgency and others that want to take a step back and make sure that we’re doing things right at the balance. I think that at the end, I think that’s a question for leadership to make sure that they have a pulse on our ability to change. 

Megan: Absolutely, and you’ve mentioned a few different elements and technologies I’d love to dig into a bit more detail on. One of which is artificial intelligence because I know Chevron has been exploring AI for several years now. I wonder if you could tell us about some of the AI use cases it’s working on and what frameworks you’ve developed for effective adoption as well. 

Luis: Yeah, absolutely. This is the big one, isn’t it? Everybody’s talking about AI. As you can imagine, the focus in our company is what is now being branded as industrial AI. That’s really a simple term to explain that AI is being applied to industrial and manufacturing settings. And like other AI, and as I mentioned before, the foundation remains data. I want to stress the importance of data here. 

One of the differences however is that in the case of industrial AI, data comes from a variety of sources. Some of them are very critical. Some of them are non-critical. Sources like operating technologies, process control networks, and SCADA, all the way to Internet of Things sensors or industrial Internet of Things sensors, and unstructured data like engineering documentation and IT data. These are massive amounts of information coming from different places and also from different security structures. The complexity of industrial AI is considerably higher than what I would call consumer or productivity AI. 

Megan: Right. 

Luis: The wealth of potential information needs to be contextualized, modeled, and governed because of the safety of those underlying processes. When you’re in an industrial setting, if a machine reacts in ways you don’t expect, people could get hurt, and so there’s an extra level of care that needs to happen and that we need to think about as we deploy these technologies. 

AI sits on top of that foundation and it takes different shapes. It can show up as a copilot like the ones that have been popularized recently, or it can show up as agentic AI, which is something that we’re looking at closely now. And agentic AI is just a term to mean that AI can operate autonomously and can use complex reasoning to solve multistep problems in an industrial setting. 

So with that in mind, going back to your question, we use both kinds of AI for multiple use cases, including predictive maintenance, subsurface analytics, process automation, and workflow optimization, and also end-user productivity. Each one of those use cases obviously needs specific objectives that the business is looking at in each area of the value chain. 

In predictive maintenance, for example, we monitor and we analyze equipment health, we prevent failures, and we allow for preventive maintenance and reduced downtime. The AI helps us understand when machinery needs to be maintained in order to prevent failure instead of just waiting for it to happen. In subsurface analysis, we’re exploring AI to develop better models of hydrocarbon reservoirs. We are exploring AI to forecast geomechanical models and to capture and understand data from fiber optic sensing. Fiber optic sensing is a capability that has proven very valuable to us, and AI is helping us make sense of the wealth of information that comes out of the whole, as we like to say. Of course, we don’t do this alone. We partner with many third-party organizations, with vendors, and with people inside subject matter experts inside of Chevron to move the projects forward. 

There are several other areas beyond industrial AI that we are looking at. AI really is a transformation catalyst, and so areas like finance and law and procurement and HR, we’re also doing testing in those corporate areas. I can tell you that I’ve been part of projects in procurement, in HR. When I was in HR we ran a pretty amazing effort in partnership with a third-party company, and what they do is they seek to transform the way we understand talent, and the way they do that is they are trying to provide data-driven frameworks to make talent decisions. 

And so they redefine talent by framing data in the form of skills, and as they do this, they help de-bias processes that are usually or can be usually prone to unconscious biases and perspectives. It really is fascinating to think of your talent-based skills and to start decoupling them from what we know since the industrial era began, which is people fit in jobs. Now the question is more the other way around. How can jobs adapt to people’s skills? And then in procurement, AI is basically helping us open the aperture to a wider array of vendors in an automated fashion that makes us better partners. It’s more cost-effective. It’s really helpful. 

Before I close here, you did reference frameworks, so the framework of industrial AI versus what I call productivity AI, the understanding of the use cases. All of this sits on top of our responsible AI frameworks. We have set up a central enterprise AI organization and they have really done a great job in developing key areas of responsible AI as well as training and adoption frameworks. This includes how to use AI, how not to use AI, what data we can share with the different GPTs that are available to us. 

We are now members of organizations like the Responsible AI Institute. This is an organization that fosters the safe use of AI and trustworthy AI. But our own responsible AI framework, it involves four pillars. The first one is the principles, and this is how we make sure we continue to stay aligned with the values that drive this company, which we call The Chevron Way. It includes assessment, making sure that we evaluate these solutions in proportion to impact and risk. As I mentioned, when you’re talking about industrial processes, people’s lives are at stake. And so we take a very close look at what we are putting out there and how we ensure that it keeps our people safe. It includes education, I mentioned training our people to augment their capabilities and reinforcing responsible principles, and the last of the four is governance oversight and accountability through control structures that we are putting in place. 

Megan: Fantastic. Thank you so much for those really fascinating specific examples as well. It’s great to hear about. And digital transformation, which you did touch on briefly, has become critical of course to enable business growth and innovation. I wonder what has Chevron’s digital transformation looked like and how has the shift affected overall operations and the way employees engage with technology as well? 

Luis: Yeah, yeah. That’s a really good question. The term digital transformation is interpreted in many different ways. For me, it really is about leveraging technology to drive business results and to drive business transformation. We usually tend to specify emerging technology as the catalyst for transformation. I think that is okay, but I also think that there are ways that you can drive digital transformation with technology that’s not necessarily emerging but is being optimized, and so under this umbrella, we include everything from our Citizen Developer Program to complex industry partnerships that help us maximize the value of data. 

The Citizen Developer Program has been very successful in helping bridge the gap between our technical software engineer and software development practices and people who are out there doing the work, getting familiar, and demystifying the way to build solutions. 

I do believe that transformation is as much about technology as it is about people. And so to go back to the responsible AI framework, we are actively training and upskilling the workforce. We created a program called Learn Digital that helps employees embrace the technologies. I mentioned the concept of demystifying. It’s really important that people don’t fall into the trap of getting scared by the potential of the technology or the fact that it is new and we help them and we give them the tools to bridge the change management gap so they can get to use them and get the most out of them. 

At a high level, our transformation has followed the cyclical nature that pretty much any transformation does. We have identified the data foundations that we need to have. We have understood the impact of the processes that we are trying to digitize. We organize that information, then we streamline and automate processes, we learn, and now machines learn and then we do it all over again. And so this cyclical mindset, this iterative mindset has really taken hold in our culture and it has made us a little bit better at accepting the technologies that are driving the change. 

Megan: And to look at one of those technologies in a bit more detail, cloud computing has revolutionized infrastructure across industries. But there’s also a pendulum ship now toward hybrid and edge computing models. How is Chevron balancing cloud, hybrid, and edge strategies for optimal performance as well? 

Luis: Yeah, that’s a great question and I think you could argue that was the genesis of the digital transformation effort. It’s been a journey for us and it’s a journey that I think we’re not the only ones that may have started it as a cost savings and storage play, but then we got to this ever-increasing need for multiple things like scaling compute power to support large language models and maximize how we run complex models. There’s an increasing need to store vast amounts of data for training and inference models while we improve data management and, while we predict future needs. 

There’s a need for the opportunity to eliminate hardware constraints. One of the promises of cloud was that you would be able to ramp up and down depending on your compute needs as projects demanded. And that hasn’t stopped, that has only increased. And then there’s a need to be able to do this at a global level. For a company like ours that is distributed across the globe, we want to do this everywhere while actively managing those resources without the weight of the infrastructure that we used to carry on our books. Cloud has really helped us change the way we think about the digital assets that we have. 

It’s important also that it has created this symbiotic need to grow between AI and the cloud. So you don’t have the AI without the cloud, but now you don’t have the cloud without AI. In reality, we work on balancing the benefits of cloud and hybrid and edge computing, and we keep operational efficiency as our North Star. We have key partnerships in cloud, that’s something that I want to make sure I talk about. Microsoft is probably the most strategic of our partnerships because they’ve helped us set our foundation for cloud. But we also think of the convenience of hybrid through the lens of leveraging a convenient, scalable public cloud and a very secure private cloud that helps us meet our operational and safety needs. 

Edge computing fills the gap or the need for low latency and real-time data processing, which are critical constraints for decision-making in most of the locations where we operate. You can think of an offshore rig, a refinery, an oil rig out in the field, and maybe even not-so-remote areas like here in our corporate offices. Putting that compute power close to the data source is critical. So we work and we partner with vendors to enable lighter compute that we can set at the edge and, I mentioned the foundation earlier, faster communication protocols at the edge that also solve the need for speed. 

But it is important to remember that you don’t want to think about edge computing and cloud as separate things. Cloud supports edge by providing centralized management by providing advanced analytics among others. You can train models in the cloud and then deploy them to edge devices, keeping real-time priorities in mind. I would say that edge computing also supports our cybersecurity strategy because it allows us to control and secure sensitive environments and information while we embed machine learning and AI capabilities out there. 

So I have mentioned use cases like predictive maintenance and safety, those are good examples of areas where we want to make sure our cybersecurity strategy is front and center. When I was talking about my experience I talked about the center and the edge. Our strategy to balance that pendulum relies on flexibility and on effective asset management. And so making sure that our cloud reflects those strategic realities gives us a good footing to achieve our corporate objectives. 

Megan: As you say, safety is a top priority. How do technologies like the Internet of Things and AI help enhance safety protocols specifically too, especially in the context of emissions tracking and leak detection? 

Luis: Yeah, thank you for the question. Safety is the most important thing that we think and talk about here at Chevron. There is nothing more important than ensuring that our people are safe and healthy, so I would break safety down into two. Before I jump to emissions tracking and leak detection, I just want to make a quick point on personal safety and how we leverage IoT and AI to that end. 

We use sensing capabilities that help us keep workers out of harm’s way, and so things like computer vision to identify and alert people who are coming into safety areas. We also use computer vision, for example, to identify PPE requirements—personal protective equipment requirements—and so if there are areas that require a certain type of clothing, a certain type of identification, or a hard hat, we are using technologies that can help us make sure people have that before they go into a particular area. 

We’re also using wearables. Wearables help us in one of the use cases is they help us track exhaustion and dehydration in locations where that creates inherent risk, and so locations that are very hot, whether it’s because of the weather or because they are enclosed, we can use wearables that tell us how fast the person’s getting dehydrated, what are the levels of liquid or sodium that they need to make sure that they’re safe or if they need to take a break. We have those capabilities now. 

Going back to emissions tracking and leak detection, I think it’s actually the combination of IoT and AI that can transform how we prevent and react to those. In this case, we also deploy sensing capabilities. We use things like computer vision, like infrared capabilities, and we use others that deliver data to the AI models, which then alert and enable rapid response. 

The way I would explain how we use IoT and AI for safety, whether it’s personnel safety or emissions tracking and leak detection, is to think about sensors as the extension of human ability to sense. In some cases, you could argue it’s super abilities. And so if you think of sight normally you would’ve had supervisors or people out there that would be looking at the field and identifying issues. Well, now we can use computer vision with traditional RGB vision, we can use them with infrared, we can use multi-angle to identify patterns, and have AI tell us what’s going on. 

If you keep thinking about the human senses, that’s sight, but you can also use sound through ultrasonic sensors or microphone sensors. You can use touch through vibration recognition and heat recognition. And even more recently, this is something that we are testing more recently, you can use smell. There are companies that are starting to digitize smell. Pretty exciting, also a little bit crazy. But it is happening. And so these are all tools that any human would use to identify risk. Well, so now we can do it as an extension of our human abilities to do so. This way we can react much faster and better to the anomalies. 

A specific example with methane. We have a simple goal with methane, we want to keep methane in the pipe. Once it’s out, it’s really hard or almost impossible to take it back. Over the last six to seven years, we have reduced our methane intensity by over 60% and we’re leveraging technology to achieve that. We have deployed a methane detection program. We have trialed over 10 to 15 advanced methane detection technologies. 

A technology that I have been looking at recently is called Aquanta Vision. This is a company supported by an incubator program we have called Chevron Studio. We did this in partnership with the National Renewable Energy Laboratory, and what they do is they leverage optical gas imaging to detect methane effectively and to allow us to prevent it from escaping the pipe. So that’s just an example of the technologies that we’re leveraging in this space. 

Megan: Wow, that’s fascinating stuff. And on emissions as well, Chevron has made significant investments in new energy technologies like hydrogen, carbon capture, and renewables. How do these technologies fit into Chevron’s broader goal of reducing its carbon footprint? 

Luis: This is obviously a fascinating space for us, one that is ever-changing. It is honestly not my area of expertise. But what I can say is we truly believe we can achieve high returns and lower carbon, and that’s something that we communicate broadly. A few years ago, I believe it was 2021, we established our Chevron New Energies company and they actively explore lower carbon alternatives including hydrogen, renewables, and carbon capture offsets. 

My area, the digital area, and the convergence between digital technologies and the technical sciences will enable the techno-commercial viability of those business lines. Thinking about carbon capture, is something that we’ve done for a long time. We have decades of experience in carbon capture technologies across the world. 

One of our larger projects, the Gorgon Project in Australia, I think they’ve captured something between 5 and 10 million tons of CO2 emissions in the past few years, and so we have good expertise in that space. But we also actively partner in carbon capture. We have joined hubs of carbon capture here in Houston, for example, where we investing in companies like there’s a company called Carbon Clean, a company called Carbon Engineering, and one called Svante. I’m familiar with these names because the corporate VC team is close to me. These companies provide technologies for direct air capture. They provide solutions for hard-to-abate industries. And so we want to keep an eye on these emerging capabilities and make use of them to continuously lower our carbon footprint. 

There are two areas here that I would like to talk about. Hydrogen first. This is another area that we’re familiar with. Our plan is to build on our existing assets and capabilities to deliver a large-scale hydrogen business. Since 2005, I think we’ve been doing retail hydrogen, and we also have several partnerships there. In renewables, we are creating a range of fuels for different transportation types. We use diesel, bio-based diesel, we use renewable natural gas, we use sustainable aviation fuel. Yeah, so these are all areas of importance to us. They’re emerging business lines that are young in comparison to the rest of our company. We’ve been a company for 140 years plus, and this started in 2021, so you can imagine how steep that learning curve is. 

I mentioned how we leverage our corporate venture capital team to learn and to keep an eye out on what are these emerging trends and technologies that we want to learn about. They leverage two things. They leverage a core fund, which is focused on areas that can seek innovation for our core business for the title. And we have a separate future energy fund that explores areas that are emerging. Not only do they invest in places like hydrogen, carbon capture, and renewables, but they also may invest in other areas like wind and geothermal and nuclear capability. So we constantly keep our eyes open for these emerging technologies. 

Megan: I see. And I wonder if you could share a bit more actually about Chevron’s role in driving sustainable business innovation. I’m thinking of initiatives like converting used cooking oil into biodiesel, for example. I wonder how those contribute to that overall goal of creating a circular economy. 

Luis: Yeah, this is fascinating and I was so happy to learn a little bit more about this year when I had the chance to visit our offices in Iowa. I’ll get into that in a second. But happy to talk about this, again with the caveat that it’s not my area of expertise. 

Megan: Of course. 

Luis: In the case of biodiesel, we acquired a company called REG in 2022. They were one of the founders of the renewable fuels industry, and they honestly do incredible work to create energy through a process, I forget the name of the process to be honest. But at the most basic level what they do is they prepare feedstocks that come from different types of biomass, you mentioned cooking oils, there’s also soybeans, there’s animal fats. And through various chemical reactions, what they do is convert components of the feedstock into biodiesel and glycerin. After that process, what they do is they separate un-reactive methanol, which is recovered and recycled into the process, and the biodiesel goes through a final processing to make sure that it meets the standards necessary to be commercialized. 

What REG has done is it has boosted our knowledge as a broader organization on how to do this better. They continuously look for bio-feedstocks that can help us deliver new types of energy. I had mentioned bio-based diesel. One of the areas that we’re very focused on right now is sustainable aviation fuel. I find that fascinating. The reason why this is working and the reason why this is exciting is because they brought this great expertise and capability into Chevron. And in turn, as a larger organization, we’re able to leverage our manufacturing and distribution capabilities to continue to provide that value to our customers. 

I mentioned that I learned a little bit more about this this year. I was lucky earlier in the year I was able to visit our REG offices in Ames, Iowa. That’s where they’re located. And I will tell you that the passion and commitment that those people have for the work that they do was incredibly energizing. These are folks who have helped us believe, really, that our promise of lower carbon is attainable. 

Megan: Wow. Sounds like there’s some fascinating work going on. Which brings me to my final question. Which is sort of looking ahead, what emerging technologies are you most excited about and how do you see them impacting both Chevron’s core business and the energy sector as a whole as well? 

Luis: Yeah, that’s a great question. I have no doubt that the energy business is changing and will continue to change only faster, both our core business as well as the future energy, or the way it’s going to look in the future. Honestly, in my line of work, I come across exciting technology every day. The obvious answers are AI and industrial AI. These are things that are already changing the way we live without a doubt. You can see it in people’s productivity. You can see it in how we optimize and transform workflows. AI is changing everything. I am actually very, very interested in IoT, in the Internet of Things, and robotics, the ability to protect humans in high-risk environments, like I mentioned, is critical to us, the opportunity to prevent high-risk events and predict when they’re likely to happen. 

This is pretty massive, both for our productivity objectives as well as for our lower carbon objectives. If we can predict when we are at risk of particular events, we could avoid them altogether. As I mentioned before, this ubiquitous ability to sense our surroundings is a capability that our industry and I’m going to say humankind, is only beginning to explore. 

There’s another area that I didn’t talk too much about, which I think is coming, and that is quantum computing. Quantum computing promises to change the way we think of compute power and it will unlock our ability to simulate chemistry, to simulate molecular dynamics in ways we have not been able to do before. We’re working really hard in this space. When I say molecular dynamics, think of the way that we produce energy today. It is all about the molecule and understanding the interactions between hydrocarbon molecules and the environment. The ability to do that in multi-variable systems is something that quantum, we believe, can provide an edge on, and so we’re working really hard in this space. 

Yeah, there are so many, and having talked about all of them, AI, IoT, robotics, quantum, the most interesting thing to me is the convergence of all of them. If you think about the opportunity to leverage robotics, but also do it as the machines continue to control limited processes and understand what it is they need to do in a preventive and predictive way, this is such an incredible potential to transform our lives, to make an impact in the world for the better. We see that potential. 

My job is to keep an eye on those developments, to make sure that we’re managing these things responsibly and the things that we test and trial and the things that we deploy, that we maintain a strict sense of responsibility to make sure that we keep everyone safe, our employees, our customers, and also our stakeholders from a broader perspective. 

Megan: Absolutely. Such an important point to finish on. And unfortunately, that is all the time we have for today, but what a fascinating conversation. Thank you so much for joining us on the Business Lab, Luis. 

Luis: Great to talk to you. 

Megan:  Thank you so much. That was Luis Niño, who is the digital manager of technology ventures and innovation at Chevron, who I spoke with today from Brighton, England. 

That’s it for this episode of Business Lab. I’m Megan Tatum, I’m your host and a contributing editor at Insights, the custom publishing division of MIT Technology Review. We were founded in 1899 at the Massachusetts Institute of Technology, and you can find us in print on the web and at events each year around the world. For more information about us and the show, please check out our website at technologyreview.com. 

This show is available wherever you get your podcasts, and if you enjoyed this episode, we really hope you’ll take a moment to rate and review us. Business Lab is a production of MIT Technology Review, and this episode was produced by Giro Studios. Thank you so much for listening. 

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

ExxonMobil bumps up 2030 target for Permian production

ExxonMobil Corp., Houston, is looking to grow production in the Permian basin to about 2.5 MMboe/d by 2030, an increase of 200,000 boe/d from executives’ previous forecasts and a jump of more than 45% from this year’s output. Helping drive that higher target is an expected 2030 cost profile that

Read More »

Eni Fires Up New Andalusia Solar Plant

Eni SpA, through Eni Plenitude SpA Società Benefit, has put online its second photovoltaic generation facility in Andalusia, the 150-megawatt (MW) Caparacena project in Granada. The latest start-up raises the Italian state-backed oil and gas producer’s installed renewables capacity in Spain to nearly 1.5 gigawatts (GW), it said in a press release. “The project, one of the most significant in the company’s portfolio in Spain, covers 264 hectares and comprises three photovoltaic parks of 50 MW each”, Eni said. With over 274,000 bifacial modules, the plant has an annual capacity of 320 gigawatt hours, it said. The Caparacena plant, in Chimeneas and Ventas de Huelma, is among renewable installations totaling about 400 MW – all solar – that Eni completed in Spain last year, according to a press release by the company January 7, 2025. Eni only announced activation now. Announcing the start-up, Eni noted the project had been completed while successfully preserving a sixth-century Iberian necropolis. Archaeological monitoring works at the site in April 2024 had led to the discovery, which yielded funerary ceramic urns and period artefacts, according to Eni. “In compliance with the requirements established for the project authorization process, during the construction of the plant, several measures were implemented to protect the natural environment and preserve the soil”, it said. Eni already produces solar power in Andalusia through Seville’s 230-MW Guillena plant. Eni is building another solar plant with a capacity of 200 MW in Seville, the Entrenúcleo project between the municipalities of Dos Hermanas and Coria del RÍo. It expects to start up the project next year. Eni announced the start of construction July 3. Elsewhere in Spain, Eni said June 30 the northern block of its Renopool solar plant in the municipality of Solana de los Barros, Badajoz, Extremadura, had begun production with a capacity of 130

Read More »

OPEC Data Points to Balanced Global Oil Market in 2026

OPEC kept forecasts for global oil supplies and demand in 2026 steady, pointing to a balanced world market that clashes with widespread predictions of a surplus. The Organization of the Petroleum Exporting Countries and its allies will need to produce an average of 43 million barrels a day next year to balance supply and demand, roughly in line with the amount pumped last month, according to a report on OPEC’s website. This runs counter to prevailing industry expectations for a supply excess in 2026. Top trader Trafigura Group said this week it could amount to a “super glut,” and the International Energy Agency — while paring its projections in its report earlier Thursday — continues to expect a record overhang. Key OPEC+ nations led by Saudi Arabia acknowledged the fragile backdrop last month by agreeing to pause further output increases during the first quarter after rapidly ramping up production earlier this year.  The outlook from OPEC’s Vienna-based secretariat has proven excessively bullish in recent years. Last year, OPEC was ultimately forced to slash demand projections by 32% over the course of six monthly downgrades. In late 2023, it forecast a record inventory deficit that never materialized. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

Antero adds to Marcellus portfolio, Infinity picks up divested Ohio Utica interests

Antero Resources Corp., Denver, Co., has signed deals to expand its Marcellus shale footprint in West Virginia and to divest its certain Ohio Utica shale assets. Adding the Marcellus assets expands Antero Resources’ core acreage position, enhancing its position “as the premier liquids developer in the Marcellus,” and provides the company “with further dry gas optionality for local demand from data centers and natural gas fired power plants,” said Michael Kennedy, president and chief executive officer, in a release Dec. 8. Marcellus acquisition from HG Energy Through a deal to acquire the upstream assets of HG Energy II LLC, Parkersburg, WV, Antero aims to add 850 MMcfed of expected Marcellus production in 2026. The deal, expected to close in second-quarter 2026, was signed for $2.8 billion in cash plus the assumption of HG Energy’s commodity hedge book. Antero said about 90% of HG natural gas production is hedged in 2026 and 2027 at average NYMEX prices of $4.00 and $3.88, respectively. The deal adds 385,000 net acres offsetting Antero’s existing 475,000 net core Marcellus acreage position and includes over 400 additional locations that immediately compete for capital (75% liquids), the company said in a related investor presentation.  Antero said it anticipates capital synergies of about $550 million inclusive of development planning optimization and drilling and completions savings. Another $400 in income-related synergies is expected. Separately, Antero Midstream agreed to acquire the midstream assets from HG Energy for $1.1 billion in cash. The deal includes about 50 miles of bi-directional dry and rich gas gathering pipelines and water assets in which Antero plans to invest about $25 million to integrate with its legacy gathering and water system. Utica sale to Infinity Natural Resources Infinity Natural Resources Inc., in a release Dec. 8, said subsidiary Infinity Natural Resources LLC will acquire upstream and

Read More »

Market Focus: Oversupply takes center stage, fundamentals catch up with the market

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #c19a06 !important; border-color: #c19a06 !important; } <!–> In this Market Focus episode of the Oil & Gas Journal ReEnterprised podcast, Conglin Xu, managing editor, economics, takes a look at the growing oversupply in global crude markets and the shift now under way as fundamentals begin overtaking sentiment and geopolitics as the primary price driver. ]–>

Read More »

Aramco, ExxonMobil weigh new chemical complex for Samref refinery

Saudi Aramco and partner ExxonMobil Corp. subsidiary Mobil Yanbu Refining Co. Inc. are discussing the possibility of executing a major overhaul and expansion of 50-50 joint venture Saudi Aramco-Mobil Refinery Co. Ltd.’s (Samref) 400,000-b/d Samref refinery in Yanbu, Saudi Arabia. As part of a venture framework agreement (VFA) signed on Dec. 8, the partners will evaluate potential capital investments to expand and diversify the refinery’s existing production slate, including the addition of a grassroots petrochemical complex at the site, Aramco said in a statement. In addition to upgrading and diversifying Samref’s production to include lower-emission, high-quality distillates and high-performance chemicals, the project scope would involve works to improve the refinery’s energy efficiency and implement a sitewide integrated emissions reduction strategy, according to Aramco. With the VFA now signed, the companies said they will begin the project’s preliminary front-end engineering and design (pre-FEED) study, which will focus on opportunities to maximize the site’s operational advantage and enhance its competitiveness while meeting Saudi Arabia’s growing demand for high-quality petrochemical products. For Aramco, the proposed project—the design of which aims to increase the conversion of crude oil and other petroleum liquids into higher-value chemicals—further reinforces the company’s commitment to creating further value of its overall downstream business as well as its liquids-to-chemicals strategy, according to Mohammed Y. Al Qahtani, Aramco’s downstream president. “[The proposed expansion and integration project] will also position Samref as a key driver in the growth of [Saudi Arabia’s] petrochemical sector,” Al Qahtani added. Without disclosing a timeline as to when the partners expect to complete the pre-FEED study or reach final investment decision, Aramco confirmed existing plans for the potential project would remain subject to market conditions and necessary regulatory approvals. Samref previously completed modifications and renovations at the Yanbu refinery in 2014-15 related to a two-phased clean-fuels project

Read More »

Harbour Energy to add North Sea assets through Waldorf acquisition

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #c19a06 !important; border-color: #c19a06 !important; } Harbour Energy plc has agreed to acquire substantially all the subsidiaries of Waldorf Energy Partners Ltd. and Waldorf Production Ltd., currently in administration, for $170 million. The company, in a release Dec. 12, said the deal would add oil-weighted production of 20,000 boe/d and 2P reserves of 35 MMboe. In addition, the deal would increase Harbour’s interest in its operated Catcher oil and gas field to 90% from 50% and provide a new production base  for Harbour in the northern North Sea with the addition of a 29.5% non-operated interest in the EnQuest plc-operated Kraken oil field. The deal is expected to close in second-quarter 2026, subject to regulatory approvals and full and final settlement of all creditor claims against Waldorf’s subsidiaries.

Read More »

Executive Roundtable: Converging Disciplines in the AI Buildout

At Data Center Frontier, we rely on industry leaders to help us understand the most urgent challenges facing digital infrastructure. And in the fourth quarter of 2025, the data center industry is adjusting to a new kind of complexity.  AI-scale infrastructure is redefining what “mission critical” means, from megawatt density and modular delivery to the chemistry of cooling fluids and the automation of energy systems. Every project has arguably in effect now become an ecosystem challenge, demanding that electrical, mechanical, construction, and environmental disciplines act as one.  For this quarter’s Executive Roundtable, DCF convened subject matter experts from Ecolab, EdgeConneX, Rehlko and Schneider Electric – leaders spanning the full chain of facilities design, deployment, and operation. Their insights illuminate how liquid cooling, energy management, and sustainable process design in data centers are now converging to set the pace for the AI era. Our distinguished executive panelists for this quarter include: Rob Lowe, Director RD&E – Global High Tech, Ecolab Phillip Marangella, Chief Marketing and Product Officer, EdgeConneX Ben Rapp, Manager, Strategic Project Development, Rehlko Joe Reele, Vice President, Datacenter Solution Architects, Schneider Electric Today: Engineering the New Normal – Liquid Cooling at Scale  Today’s kickoff article grapples with how, as liquid cooling technology transitions to default hyperscale design, the challenge is no longer if, but how to scale builds safely, repeatably, and globally.  Cold plates, immersion, dielectric fluids, and liquid-to-chip loops are converging into factory-integrated building blocks, yet variability in chemistry, serviceability, materials, commissioning practices, and long-term maintenance threatens to fragment adoption just as demand accelerates.  Success now hinges on shared standards and tighter collaboration across OEMs, builders, and process specialists worldwide. So how do developers coordinate across the ecosystem to make liquid cooling a safe, maintainable global default? What’s Ahead in the Roundtable Over the coming days, our panel

Read More »

DCF Trends Summit 2025: AI for Good – How Operators, Vendors and Cooling Specialists See the Next Phase of AI Data Centers

At the 2025 Data Center Frontier Trends Summit (Aug. 26-28) in Reston, Va., the conversation around AI and infrastructure moved well past the hype. In a panel sponsored by Schneider Electric—“AI for Good: Building for AI Workloads and Using AI for Smarter Data Centers”—three industry leaders explored what it really means to design, cool and operate the new class of AI “factories,” while also turning AI inward to run those facilities more intelligently. Moderated by Data Center Frontier Editor in Chief Matt Vincent, the session brought together: Steve Carlini, VP, Innovation and Data Center Energy Management Business, Schneider Electric Sudhir Kalra, Chief Data Center Operations Officer, Compass Datacenters Andrew Whitmore, VP of Sales, Motivair Together, they traced both sides of the “AI for Good” equation: building for AI workloads at densities that would have sounded impossible just a few years ago, and using AI itself to reduce risk, improve efficiency and minimize environmental impact. From Bubble Talk to “AI Factories” Carlini opened by acknowledging the volatility surrounding AI investments, citing recent headlines and even Sam Altman’s public use of the word “bubble” to describe the current phase of exuberance. “It’s moving at an incredible pace,” Carlini noted, pointing out that roughly half of all VC money this year has flowed into AI, with more already spent than in all of the previous year. Not every investor will win, he said, and some companies pouring in hundreds of billions may not recoup their capital. But for infrastructure, the signal is clear: the trajectory is up and to the right. GPU generations are cycling faster than ever. Densities are climbing from high double-digits per rack toward hundreds of kilowatts. The hyperscale “AI factories,” as NVIDIA calls them, are scaling to campus capacities measured in gigawatts. Carlini reminded the audience that in 2024,

Read More »

FinOps Foundation sharpens FOCUS to reduce cloud cost chaos

“The big change that’s really started to happen in late 2024 early 2025 is that the FinOps practice started to expand past the cloud,” Storment said. “A lot of organizations got really good at using FinOps to manage the value of cloud, and then their organizations went, ‘oh, hey, we’re living in this happily hybrid state now where we’ve got cloud, SaaS, data center. Can you also apply the FinOps practice to our SaaS? Or can you apply it to our Snowflake? Can you apply it to our data center?’” The FinOps Foundation’s community has grown to approximately 100,000 practitioners. The organization now includes major cloud vendors, hardware providers like Nvidia and AMD, data center operators and data cloud platforms like Snowflake and Databricks. Some 96 of the Fortune 100 now participate in FinOps Foundation programs. The practice itself has shifted in two directions. It has moved left into earlier architectural and design processes, becoming more proactive rather than reactive. It has also moved up organizationally, from director-level cloud management roles to SVP and COO positions managing converged technology portfolios spanning multiple infrastructure types. This expansion has driven the evolution of FOCUS beyond its original cloud billing focus. Enterprises are implementing FOCUS as an internal standard for chargeback reporting even when their providers don’t generate native FOCUS data. Some newer cloud providers, particularly those focused on AI infrastructure, are using the FOCUS specification to define their billing data structures from the ground up rather than retrofitting existing systems. The FOCUS 1.3 release reflects this maturation, addressing technical gaps that have emerged as organizations apply cost management practices across increasingly complex hybrid environments. FOCUS 1.3 exposes cost allocation logic for shared infrastructure The most significant technical enhancement in FOCUS 1.3 addresses a gap in how shared infrastructure costs are allocated and

Read More »

Aetherflux joins the race to launch orbital data centers by 2027

Enterprises will connect to and manage orbital workloads “the same way they manage cloud workloads today,” using optical links, the spokesperson added. The company’s approach is to “continuously launch new hardware and quickly integrate the latest architectures,” with older systems running lower-priority tasks to serve out the full useful lifetime of their high-end GPUs. The company declined to disclose pricing. Aetherflux plans to launch about 30 satellites at a time on SpaceX Falcon 9 rockets. Before the data center launch, the company will launch a power-beaming demonstration satellite in 2026 to test transmission of one kilowatt of energy from orbit to ground stations, using infrared lasers. Competition in the sector has intensified in recent months. In November, Starcloud launched its Starcloud-1 satellite carrying an Nvidia H100 GPU, which is 100 times more powerful than any previous GPU flown in space, according to the company, and demonstrated running Google’s Gemma AI model in orbit. In the same month, Google announced Project Suncatcher, with a 2027 demonstration mission planned. Analysts see limited near-term applications Despite the competitive activity, orbital data centers won’t replace terrestrial cloud regions for general hosting through 2030, said Ashish Banerjee, senior principal analyst at Gartner. Instead, they suit specific workloads, including meeting data sovereignty requirements for jurisdictionally complex scenarios, offering disaster recovery immune to terrestrial risks, and providing asynchronous high-performance computing, he said. “Orbital centers are ideal for high-compute, low-I/O batch jobs,” Banerjee said. “Think molecular folding simulations for pharma, massive Monte Carlo financial simulations, or training specific AI model weights. If the job takes 48 hours, the 500ms latency penalty of LEO is irrelevant.” One immediate application involves processing satellite-generated data in orbit, he said. Earth observation satellites using synthetic aperture radar generate roughly 10 gigabytes per second, but limited downlink bandwidth creates bottlenecks. Processing data in

Read More »

Here’s what Oracle’s soaring infrastructure spend could mean for enterprises

He said he had earlier told analysts in a separate call that margins for AI workloads in these data centers would be in the 30% to 40% range over the life of a customer contract. Kehring reassured that there would be demand for the data centers when they were completed, pointing to Oracle’s increasing remaining performance obligations, or services contracted but not yet delivered, up $68 billion on the previous quarter, saying that Oracle has been seeing unprecedented demand for AI workloads driven by the likes of Meta and Nvidia. Rising debt and margin risks raise flags for CIOs For analysts, though, the swelling debt load is hard to dismiss, even with Oracle’s attempts to de-risk its spend and squeeze more efficiency out of its buildouts. Gogia sees Oracle already under pressure, with the financial ecosystem around the company pricing the risk — one of the largest debts in corporate history, crossing $100 billion even before the capex spend this quarter — evident in the rising cost of insuring the debt and the shift in credit outlook. “The combination of heavy capex, negative free cash flow, increasing financing cost and long-dated revenue commitments forms a structural pressure that will invariably finds its way into the commercial posture of the vendor,” Gogia said, hinting at an “eventual” increase in pricing of the company’s offerings. He was equally unconvinced by Magouyrk’s assurances about the margin profile of AI workloads as he believes that AI infrastructure, particularly GPU-heavy clusters, delivers significantly lower margins in the early years because utilisation takes time to ramp.

Read More »

New Nvidia software gives data centers deeper visibility into GPU thermals and reliability

Addressing the challenge Modern AI accelerators now draw more than 700W per GPU, and multi-GPU nodes can reach 6kW, creating concentrated heat zones, rapid power swings, and a higher risk of interconnect degradation in dense racks, according to Manish Rawat, semiconductor analyst at TechInsights. Traditional cooling methods and static power planning increasingly struggle to keep pace with these loads. “Rich vendor telemetry covering real-time power draw, bandwidth behavior, interconnect health, and airflow patterns shifts operators from reactive monitoring to proactive design,” Rawat said. “It enables thermally aware workload placement, faster adoption of liquid or hybrid cooling, and smarter network layouts that reduce heat-dense traffic clusters.” Rawat added that the software’s fleet-level configuration insights can also help operators catch silent errors caused by mismatched firmware or driver versions. This can improve training reproducibility and strengthen overall fleet stability. “Real-time error and interconnect health data also significantly accelerates root-cause analysis, reducing MTTR and minimizing cluster fragmentation,” Rawat said. These operational pressures can shape budget decisions and infrastructure strategy at the enterprise level.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »