Stay Ahead, Stay ONMINE

The second wave of AI coding is here

Ask people building generative AI what generative AI is good for right now—what they’re really fired up about—and many will tell you: coding.  “That’s something that’s been very exciting for developers,” Jared Kaplan, chief scientist at Anthropic, told MIT Technology Review this month: “It’s really understanding what’s wrong with code, debugging it.” Copilot, a tool built on top of OpenAI’s large language models and launched by Microsoft-backed GitHub in 2022, is now used by millions of developers around the world. Millions more turn to general-purpose chatbots like Anthropic’s Claude, OpenAI’s ChatGPT, and Google DeepMind’s Gemini for everyday help. “Today, more than a quarter of all new code at Google is generated by AI, then reviewed and accepted by engineers,” Alphabet CEO Sundar Pichai claimed on an earnings call in October: “This helps our engineers do more and move faster.” Expect other tech companies to catch up, if they haven’t already. It’s not just the big beasts rolling out AI coding tools. A bunch of new startups have entered this buzzy market too. Newcomers such as Zencoder, Merly, Cosine, Tessl (valued at $750 million within months of being set up), and Poolside (valued at $3 billion before it even released a product) are all jostling for their slice of the pie. “It actually looks like developers are willing to pay for copilots,” says Nathan Benaich, an analyst at investment firm Air Street Capital: “And so code is one of the easiest ways to monetize AI.” Such companies promise to take generative coding assistants to the next level. Instead of providing developers with a kind of supercharged autocomplete, like most existing tools, this next generation can prototype, test, and debug code for you. The upshot is that developers could essentially turn into managers, who may spend more time reviewing and correcting code written by a model than writing it from scratch themselves.  But there’s more. Many of the people building generative coding assistants think that they could be a fast track to artificial general intelligence (AGI), the hypothetical superhuman technology that a number of top firms claim to have in their sights. “The first time we will see a massively economically valuable activity to have reached human-level capabilities will be in software development,” says Eiso Kant, CEO and cofounder of Poolside. (OpenAI has already boasted that its latest o3 model beat the company’s own chief scientist in a competitive coding challenge.) Welcome to the second wave of AI coding.  Correct code  Software engineers talk about two types of correctness. There’s the sense in which a program’s syntax (its grammar) is correct—meaning all the words, numbers, and mathematical operators are in the right place. This matters a lot more than grammatical correctness in natural language. Get one tiny thing wrong in thousands of lines of code and none of it will run. The first generation of coding assistants are now pretty good at producing code that’s correct in this sense. Trained on billions of pieces of code, they have assimilated the surface-level structures of many types of programs.   But there’s also the sense in which a program’s function is correct: Sure, it runs, but does it actually do what you wanted it to? It’s that second level of correctness that the new wave of generative coding assistants are aiming for—and this is what will really change the way software is made. “Large language models can write code that compiles, but they may not always write the program that you wanted,” says Alistair Pullen, a cofounder of Cosine. “To do that, you need to re-create the thought processes that a human coder would have gone through to get that end result.” The problem is that the data most coding assistants have been trained on—the billions of pieces of code taken from online repositories—doesn’t capture those thought processes. It represents a finished product, not what went into making it. “There’s a lot of code out there,” says Kant. “But that data doesn’t represent software development.” What Pullen, Kant, and others are finding is that to build a model that does a lot more than autocomplete—one that can come up with useful programs, test them, and fix bugs—you need to show it a lot more than just code. You need to show it how that code was put together.   In short, companies like Cosine and Poolside are building models that don’t just mimic what good code looks like—whether it works well or not—but mimic the process that produces such code in the first place. Get it right and the models will come up with far better code and far better bug fixes.  Breadcrumbs But you first need a data set that captures that process—the steps that a human developer might take when writing code. Think of these steps as a breadcrumb trail that a machine could follow to produce a similar piece of code itself. Part of that is working out what materials to draw from: Which sections of the existing codebase are needed for a given programming task? “Context is critical,” says Zencoder founder Andrew Filev. “The first generation of tools did a very poor job on the context, they would basically just look at your open tabs. But your repo [code repository] might have 5000 files and they’d miss most of it.” Zencoder has hired a bunch of search engine veterans to help it build a tool that can analyze large codebases and figure out what is and isn’t relevant. This detailed context reduces hallucinations and improves the quality of code that large language models can produce, says Filev: “We call it repo grokking.” Cosine also thinks context is key. But it draws on that context to create a new kind of data set. The company has asked dozens of coders to record what they were doing as they worked through hundreds of different programming tasks. “We asked them to write down everything,” says Pullen: “Why did you open that file? Why did you scroll halfway through? Why did you close it?” They also asked coders to annotate finished pieces of code, marking up sections that would have required knowledge of other pieces of code or specific documentation to write. Cosine then takes all that information and generates a large synthetic data set that maps the typical steps coders take, and the sources of information they draw on, to finished pieces of code. They use this data set to train a model to figure out what breadcrumb trail it might need to follow to produce a particular program, and then how to follow it.   Poolside, based in San Francisco, is also creating a synthetic data set that captures the process of coding, but it leans more on a technique called RLCE—reinforcement learning from code execution. (Cosine uses this too, but to a lesser degree.) RLCE is analogous to the technique used to make chatbots like ChatGPT slick conversationalists, known as RLHF—reinforcement learning from human feedback. With RLHF, a model is trained to produce text that’s more like the kind human testers say they favor. With RLCE, a model is trained to produce code that’s more like the kind that does what it is supposed to do when it is run (or executed).   Gaming the system Cosine and Poolside both say they are inspired by the approach DeepMind took with its game-playing model AlphaZero. AlphaZero was given the steps it could take—the moves in a game—and then left to play against itself over and over again, figuring out via trial and error what sequence of moves were winning moves and which were not.   “They let it explore moves at every possible turn, simulate as many games as you can throw compute at—that led all the way to beating Lee Sedol,” says Pengming Wang, a founding scientist at Poolside, referring to the Korean Go grandmaster that AlphaZero beat in 2016. Before Poolside, Wang worked at Google DeepMind on applications of AlphaZero beyond board games, including FunSearch, a version trained to solve advanced math problems. When that AlphaZero approach is applied to coding, the steps involved in producing a piece of code—the breadcrumbs—become the available moves in a game, and a correct program becomes winning that game. Left to play by itself, a model can improve far faster than a human could. “A human coder tries and fails one failure at a time,” says Kant. “Models can try things 100 times at once.” A key difference between Cosine and Poolside is that Cosine is using a custom version of GPT-4o provided by OpenAI, which makes it possible to train on a larger data set than the base model can cope with, but Poolside is building its own large language model from scratch. Poolside’s Kant thinks that training a model on code from the start will give better results than adapting an existing model that has sucked up not only billions of pieces of code but most of the internet. “I’m perfectly fine with our model forgetting about butterfly anatomy,” he says.   Cosine claims that its generative coding assistant, called Genie, tops the leaderboard on SWE-Bench, a standard set of tests for coding models. Poolside is still building its model but claims that what it has so far already matches the performance of GitHub’s Copilot. “I personally have a very strong belief that large language models will get us all the way to being as capable as a software developer,” says Kant. Not everyone takes that view, however. Illogical LLMs To Justin Gottschlich, the CEO and founder of Merly, large language models are the wrong tool for the job—period. He invokes his dog: “No amount of training for my dog will ever get him to be able to code, it just won’t happen,” he says. “He can do all kinds of other things, but he’s just incapable of that deep level of cognition.”   Having worked on code generation for more than a decade, Gottschlich has a similar sticking point with large language models. Programming requires the ability to work through logical puzzles with unwavering precision. No matter how well large language models may learn to mimic what human programmers do, at their core they are still essentially statistical slot machines, he says: “I can’t train an illogical system to become logical.” Instead of training a large language model to generate code by feeding it lots of examples, Merly does not show its system human-written code at all. That’s because to really build a model that can generate code, Gottschlich argues, you need to work at the level of the underlying logic that code represents, not the code itself. Merly’s system is therefore trained on an intermediate representation—something like the machine-readable notation that most programming languages get translated into before they are run. Gottschlich won’t say exactly what this looks like or how the process works. But he throws out an analogy: There’s this idea in mathematics that the only numbers that have to exist are prime numbers, because you can calculate all other numbers using just the primes. “Take that concept and apply it to code,” he says. Not only does this approach get straight to the logic of programming; it’s also fast, because millions of lines of code are reduced to a few thousand lines of intermediate language before the system analyzes them. Shifting mindsets What you think of these rival approaches may depend on what you want generative coding assistants to be.   In November, Cosine banned its engineers from using tools other than its own products. It is now seeing the impact of Genie on its own engineers, who often find themselves watching the tool as it comes up with code for them. “You now give the model the outcome you would like, and it goes ahead and worries about the implementation for you,” says Yang Li, another Cosine cofounder. Pullen admits that it can be baffling, requiring a switch of mindset. “We have engineers doing multiple tasks at once, flitting between windows,” he says. “While Genie is running code in one, they might be prompting it to do something else in another.” These tools also make it possible to protype multiple versions of a system at once. Say you’re developing software that needs a payment system built in. You can get a coding assistant to simultaneously try out several different options—Stripe, Mango, Checkout—instead of having to code them by hand one at a time. Genie can be left to fix bugs around the clock. Most software teams use bug-reporting tools that let people upload descriptions of errors they have encountered. Genie can read these descriptions and come up with fixes. Then a human just needs to review them before updating the code base. No single human understands the trillions of lines of code in today’s biggest software systems, says Li, “and as more and more software gets written by other software, the amount of code will only get bigger.” This will make coding assistants that maintain that code for us essential. “The bottleneck will become how fast humans can review the machine-generated code,” says Li. How do Cosine’s engineers feel about all this? According to Pullen, at least, just fine. “If I give you a hard problem, you’re still going to think about how you want to describe that problem to the model,” he says. “Instead of writing the code, you have to write it in natural language. But there’s still a lot of thinking that goes into that, so you’re not really taking the joy of engineering away. The itch is still scratched.” Some may adapt faster than others. Cosine likes to invite potential hires to spend a few days coding with its team. A couple of months ago it asked one such candidate to build a widget that would let employees share cool bits of software they were working on to social media.  The task wasn’t straightforward, requiring working knowledge of multiple sections of Cosine’s millions of lines of code. But the candidate got it done in a matter of hours. “This person who had never seen our code base turned up on Monday and by Tuesday afternoon he’d shipped something,” says Li. “We thought it would take him all week.” (They hired him.) But there’s another angle too. Many companies will use this technology to cut down on the number of programmers they hire. Li thinks we will soon see tiers of software engineers. At one end there will be elite developers with million-dollar salaries who can diagnose problems when the AI goes wrong. At the other end, smaller teams of 10 to 20 people will do a job that once required hundreds of coders. “It will be like how ATMs transformed banking,” says Li. “Anything you want to do will be determined by compute and not head count,” he says. “I think it’s generally accepted that the era of adding another few thousand engineers to your organization is over.” Warp drives Indeed, for Gottschlich, machines that can code better than humans are going to be essential. For him, that’s the only way we will build the vast, complex software systems that he thinks we will eventually need. Like many in Silicon Valley, he anticipates a future in which humans move to other planets. That’s only going to be possible if we get AI to build the software required, he says: “Merly’s real goal is to get us to Mars.” Gottschlich prefers to talk about “machine programming” rather than “coding assistants,” because he thinks that term frames the problem the wrong way. “I don’t think that these systems should be assisting humans—I think humans should be assisting them,” he says. “They can move at the speed of AI. Why restrict their potential?” “There’s this cartoon called The Flintstones where they have these cars, but they only move when the drivers use their feet,” says Gottschlich. “This is sort of how I feel most people are doing AI for software systems.” “But what Merly’s building is, essentially, spaceships,” he adds. He’s not joking. “And I don’t think spaceships should be powered by humans on a bicycle. Spaceships should be powered by a warp engine.” If that sounds wild—it is. But there’s a serious point to be made about what the people building this technology think the end goal really is. Gottschlich is not an outlier with his galaxy-brained take. Despite their focus on products that developers will want to use today, most of these companies have their sights on a far bigger payoff. Visit Cosine’s website and the company introduces itself as a “Human Reasoning Lab.” It sees coding as just the first step toward a more general-purpose model that can mimic human problem-solving in a number of domains. Poolside has similar goals: The company states upfront that it is building AGI. “Code is a way of formalizing reasoning,” says Kant. Wang invokes agents. Imagine a system that can spin up its own software to do any task on the fly, he says. “If you get to a point where your agent can really solve any computational task that you want through the means of software—that is a display of AGI, essentially.” Down here on Earth, such systems may remain a pipe dream. And yet software engineering is changing faster than many at the cutting edge expected.  “We’re not at a point where everything’s just done by machines, but we’re definitely stepping away from the usual role of a software engineer,” says Cosine’s Pullen. “We’re seeing the sparks of that new workflow—what it means to be a software engineer going into the future.”

Ask people building generative AI what generative AI is good for right now—what they’re really fired up about—and many will tell you: coding. 

“That’s something that’s been very exciting for developers,” Jared Kaplan, chief scientist at Anthropic, told MIT Technology Review this month: “It’s really understanding what’s wrong with code, debugging it.”

Copilot, a tool built on top of OpenAI’s large language models and launched by Microsoft-backed GitHub in 2022, is now used by millions of developers around the world. Millions more turn to general-purpose chatbots like Anthropic’s Claude, OpenAI’s ChatGPT, and Google DeepMind’s Gemini for everyday help.

“Today, more than a quarter of all new code at Google is generated by AI, then reviewed and accepted by engineers,” Alphabet CEO Sundar Pichai claimed on an earnings call in October: “This helps our engineers do more and move faster.” Expect other tech companies to catch up, if they haven’t already.

It’s not just the big beasts rolling out AI coding tools. A bunch of new startups have entered this buzzy market too. Newcomers such as Zencoder, Merly, Cosine, Tessl (valued at $750 million within months of being set up), and Poolside (valued at $3 billion before it even released a product) are all jostling for their slice of the pie. “It actually looks like developers are willing to pay for copilots,” says Nathan Benaich, an analyst at investment firm Air Street Capital: “And so code is one of the easiest ways to monetize AI.”

Such companies promise to take generative coding assistants to the next level. Instead of providing developers with a kind of supercharged autocomplete, like most existing tools, this next generation can prototype, test, and debug code for you. The upshot is that developers could essentially turn into managers, who may spend more time reviewing and correcting code written by a model than writing it from scratch themselves. 

But there’s more. Many of the people building generative coding assistants think that they could be a fast track to artificial general intelligence (AGI), the hypothetical superhuman technology that a number of top firms claim to have in their sights.

“The first time we will see a massively economically valuable activity to have reached human-level capabilities will be in software development,” says Eiso Kant, CEO and cofounder of Poolside. (OpenAI has already boasted that its latest o3 model beat the company’s own chief scientist in a competitive coding challenge.)

Welcome to the second wave of AI coding. 

Correct code 

Software engineers talk about two types of correctness. There’s the sense in which a program’s syntax (its grammar) is correct—meaning all the words, numbers, and mathematical operators are in the right place. This matters a lot more than grammatical correctness in natural language. Get one tiny thing wrong in thousands of lines of code and none of it will run.

The first generation of coding assistants are now pretty good at producing code that’s correct in this sense. Trained on billions of pieces of code, they have assimilated the surface-level structures of many types of programs.  

But there’s also the sense in which a program’s function is correct: Sure, it runs, but does it actually do what you wanted it to? It’s that second level of correctness that the new wave of generative coding assistants are aiming for—and this is what will really change the way software is made.

“Large language models can write code that compiles, but they may not always write the program that you wanted,” says Alistair Pullen, a cofounder of Cosine. “To do that, you need to re-create the thought processes that a human coder would have gone through to get that end result.”

The problem is that the data most coding assistants have been trained on—the billions of pieces of code taken from online repositories—doesn’t capture those thought processes. It represents a finished product, not what went into making it. “There’s a lot of code out there,” says Kant. “But that data doesn’t represent software development.”

What Pullen, Kant, and others are finding is that to build a model that does a lot more than autocomplete—one that can come up with useful programs, test them, and fix bugs—you need to show it a lot more than just code. You need to show it how that code was put together.  

In short, companies like Cosine and Poolside are building models that don’t just mimic what good code looks like—whether it works well or not—but mimic the process that produces such code in the first place. Get it right and the models will come up with far better code and far better bug fixes. 

Breadcrumbs

But you first need a data set that captures that process—the steps that a human developer might take when writing code. Think of these steps as a breadcrumb trail that a machine could follow to produce a similar piece of code itself.

Part of that is working out what materials to draw from: Which sections of the existing codebase are needed for a given programming task? “Context is critical,” says Zencoder founder Andrew Filev. “The first generation of tools did a very poor job on the context, they would basically just look at your open tabs. But your repo [code repository] might have 5000 files and they’d miss most of it.”

Zencoder has hired a bunch of search engine veterans to help it build a tool that can analyze large codebases and figure out what is and isn’t relevant. This detailed context reduces hallucinations and improves the quality of code that large language models can produce, says Filev: “We call it repo grokking.”

Cosine also thinks context is key. But it draws on that context to create a new kind of data set. The company has asked dozens of coders to record what they were doing as they worked through hundreds of different programming tasks. “We asked them to write down everything,” says Pullen: “Why did you open that file? Why did you scroll halfway through? Why did you close it?” They also asked coders to annotate finished pieces of code, marking up sections that would have required knowledge of other pieces of code or specific documentation to write.

Cosine then takes all that information and generates a large synthetic data set that maps the typical steps coders take, and the sources of information they draw on, to finished pieces of code. They use this data set to train a model to figure out what breadcrumb trail it might need to follow to produce a particular program, and then how to follow it.  

Poolside, based in San Francisco, is also creating a synthetic data set that captures the process of coding, but it leans more on a technique called RLCE—reinforcement learning from code execution. (Cosine uses this too, but to a lesser degree.)

RLCE is analogous to the technique used to make chatbots like ChatGPT slick conversationalists, known as RLHF—reinforcement learning from human feedback. With RLHF, a model is trained to produce text that’s more like the kind human testers say they favor. With RLCE, a model is trained to produce code that’s more like the kind that does what it is supposed to do when it is run (or executed).  

Gaming the system

Cosine and Poolside both say they are inspired by the approach DeepMind took with its game-playing model AlphaZero. AlphaZero was given the steps it could take—the moves in a game—and then left to play against itself over and over again, figuring out via trial and error what sequence of moves were winning moves and which were not.  

“They let it explore moves at every possible turn, simulate as many games as you can throw compute at—that led all the way to beating Lee Sedol,” says Pengming Wang, a founding scientist at Poolside, referring to the Korean Go grandmaster that AlphaZero beat in 2016. Before Poolside, Wang worked at Google DeepMind on applications of AlphaZero beyond board games, including FunSearch, a version trained to solve advanced math problems.

When that AlphaZero approach is applied to coding, the steps involved in producing a piece of code—the breadcrumbs—become the available moves in a game, and a correct program becomes winning that game. Left to play by itself, a model can improve far faster than a human could. “A human coder tries and fails one failure at a time,” says Kant. “Models can try things 100 times at once.”

A key difference between Cosine and Poolside is that Cosine is using a custom version of GPT-4o provided by OpenAI, which makes it possible to train on a larger data set than the base model can cope with, but Poolside is building its own large language model from scratch.

Poolside’s Kant thinks that training a model on code from the start will give better results than adapting an existing model that has sucked up not only billions of pieces of code but most of the internet. “I’m perfectly fine with our model forgetting about butterfly anatomy,” he says.  

Cosine claims that its generative coding assistant, called Genie, tops the leaderboard on SWE-Bench, a standard set of tests for coding models. Poolside is still building its model but claims that what it has so far already matches the performance of GitHub’s Copilot.

“I personally have a very strong belief that large language models will get us all the way to being as capable as a software developer,” says Kant.

Not everyone takes that view, however.

Illogical LLMs

To Justin Gottschlich, the CEO and founder of Merly, large language models are the wrong tool for the job—period. He invokes his dog: “No amount of training for my dog will ever get him to be able to code, it just won’t happen,” he says. “He can do all kinds of other things, but he’s just incapable of that deep level of cognition.”  

Having worked on code generation for more than a decade, Gottschlich has a similar sticking point with large language models. Programming requires the ability to work through logical puzzles with unwavering precision. No matter how well large language models may learn to mimic what human programmers do, at their core they are still essentially statistical slot machines, he says: “I can’t train an illogical system to become logical.”

Instead of training a large language model to generate code by feeding it lots of examples, Merly does not show its system human-written code at all. That’s because to really build a model that can generate code, Gottschlich argues, you need to work at the level of the underlying logic that code represents, not the code itself. Merly’s system is therefore trained on an intermediate representation—something like the machine-readable notation that most programming languages get translated into before they are run.

Gottschlich won’t say exactly what this looks like or how the process works. But he throws out an analogy: There’s this idea in mathematics that the only numbers that have to exist are prime numbers, because you can calculate all other numbers using just the primes. “Take that concept and apply it to code,” he says.

Not only does this approach get straight to the logic of programming; it’s also fast, because millions of lines of code are reduced to a few thousand lines of intermediate language before the system analyzes them.

Shifting mindsets

What you think of these rival approaches may depend on what you want generative coding assistants to be.  

In November, Cosine banned its engineers from using tools other than its own products. It is now seeing the impact of Genie on its own engineers, who often find themselves watching the tool as it comes up with code for them. “You now give the model the outcome you would like, and it goes ahead and worries about the implementation for you,” says Yang Li, another Cosine cofounder.

Pullen admits that it can be baffling, requiring a switch of mindset. “We have engineers doing multiple tasks at once, flitting between windows,” he says. “While Genie is running code in one, they might be prompting it to do something else in another.”

These tools also make it possible to protype multiple versions of a system at once. Say you’re developing software that needs a payment system built in. You can get a coding assistant to simultaneously try out several different options—Stripe, Mango, Checkout—instead of having to code them by hand one at a time.

Genie can be left to fix bugs around the clock. Most software teams use bug-reporting tools that let people upload descriptions of errors they have encountered. Genie can read these descriptions and come up with fixes. Then a human just needs to review them before updating the code base.

No single human understands the trillions of lines of code in today’s biggest software systems, says Li, “and as more and more software gets written by other software, the amount of code will only get bigger.”

This will make coding assistants that maintain that code for us essential. “The bottleneck will become how fast humans can review the machine-generated code,” says Li.

How do Cosine’s engineers feel about all this? According to Pullen, at least, just fine. “If I give you a hard problem, you’re still going to think about how you want to describe that problem to the model,” he says. “Instead of writing the code, you have to write it in natural language. But there’s still a lot of thinking that goes into that, so you’re not really taking the joy of engineering away. The itch is still scratched.”

Some may adapt faster than others. Cosine likes to invite potential hires to spend a few days coding with its team. A couple of months ago it asked one such candidate to build a widget that would let employees share cool bits of software they were working on to social media. 

The task wasn’t straightforward, requiring working knowledge of multiple sections of Cosine’s millions of lines of code. But the candidate got it done in a matter of hours. “This person who had never seen our code base turned up on Monday and by Tuesday afternoon he’d shipped something,” says Li. “We thought it would take him all week.” (They hired him.)

But there’s another angle too. Many companies will use this technology to cut down on the number of programmers they hire. Li thinks we will soon see tiers of software engineers. At one end there will be elite developers with million-dollar salaries who can diagnose problems when the AI goes wrong. At the other end, smaller teams of 10 to 20 people will do a job that once required hundreds of coders. “It will be like how ATMs transformed banking,” says Li.

“Anything you want to do will be determined by compute and not head count,” he says. “I think it’s generally accepted that the era of adding another few thousand engineers to your organization is over.”

Warp drives

Indeed, for Gottschlich, machines that can code better than humans are going to be essential. For him, that’s the only way we will build the vast, complex software systems that he thinks we will eventually need. Like many in Silicon Valley, he anticipates a future in which humans move to other planets. That’s only going to be possible if we get AI to build the software required, he says: “Merly’s real goal is to get us to Mars.”

Gottschlich prefers to talk about “machine programming” rather than “coding assistants,” because he thinks that term frames the problem the wrong way. “I don’t think that these systems should be assisting humans—I think humans should be assisting them,” he says. “They can move at the speed of AI. Why restrict their potential?”

“There’s this cartoon called The Flintstones where they have these cars, but they only move when the drivers use their feet,” says Gottschlich. “This is sort of how I feel most people are doing AI for software systems.”

“But what Merly’s building is, essentially, spaceships,” he adds. He’s not joking. “And I don’t think spaceships should be powered by humans on a bicycle. Spaceships should be powered by a warp engine.”

If that sounds wild—it is. But there’s a serious point to be made about what the people building this technology think the end goal really is.

Gottschlich is not an outlier with his galaxy-brained take. Despite their focus on products that developers will want to use today, most of these companies have their sights on a far bigger payoff. Visit Cosine’s website and the company introduces itself as a “Human Reasoning Lab.” It sees coding as just the first step toward a more general-purpose model that can mimic human problem-solving in a number of domains.

Poolside has similar goals: The company states upfront that it is building AGI. “Code is a way of formalizing reasoning,” says Kant.

Wang invokes agents. Imagine a system that can spin up its own software to do any task on the fly, he says. “If you get to a point where your agent can really solve any computational task that you want through the means of software—that is a display of AGI, essentially.”

Down here on Earth, such systems may remain a pipe dream. And yet software engineering is changing faster than many at the cutting edge expected. 

“We’re not at a point where everything’s just done by machines, but we’re definitely stepping away from the usual role of a software engineer,” says Cosine’s Pullen. “We’re seeing the sparks of that new workflow—what it means to be a software engineer going into the future.”

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Chinese cyberspies target VMware vSphere for long-term persistence

Designed to work in virtualized environments The CISA, NSA, and Canadian Cyber Center analysts note that some of the BRICKSTORM samples are virtualization-aware and they create a virtual socket (VSOCK) interface that enables inter-VM communication and data exfiltration. The malware also checks the environment upon execution to ensure it’s running

Read More »

IBM boosts DNS protection for multicloud operations

“In addition to this DNS synchronization, you can publish DNS configurations to your Amazon Simple Storage Service (S3) bucket. As you implement DNS changes, the S3 bucket will automatically update. The ability to store multiple configurations in your S3 bucket allows you to choose the most appropriate restore point if

Read More »

Cloudflare firewall reacts badly to React exploit mitigation

During the same window, Downdetector saw a spike in problem reports for enterprise services including Shopify, Zoom, Claude AI, and Amazon Web Services, and a host of consumer services from games to dating apps. Cloudflare explained the outage on its service status page: “A change made to how Cloudflare’s Web

Read More »

New Fortress Energy Seals Deal to Continue Supplying Gas to Puerto Rico

New Fortress Energy Inc (NFE) has received approval from local authorities to continue delivering natural gas for Puerto Rico’s power system for seven more years. The consent from the Financial Oversight and Management Board for Puerto Rico provides for the supply of about 75 trillion British thermal units (TBtu), New York City-based NFE said in an online statement. “Under the terms of the agreement, NFE will supply reliable, lower-emission natural gas to help enhance grid stability and support cleaner power generation across Puerto Rico’s energy system”, NFE said. According to NFE’s September 16 announcement about the agreed contract terms, the agreement involved “minimum annual take-or-pay volumes of 40 TBtu, increasing to up to 50 TBtu if certain conditions are met”. “This landmark agreement provides two critical benefits to the island. First, it establishes security of supply in San Juan for the next seven years for power plants currently running on LNG”, NFE chief executive Wes Edens said then. “Second, it provides for incremental LNG volumes to be delivered, allowing for the conversion of additional gas-ready plants currently burning diesel, resulting in hundreds of millions of dollars in energy savings for Puerto Ricans”. NFE said at the time, “Pricing of the volumes supplied through the GSA [Gas Supply Agreement] is set at a blend of 115 percent of Henry Hub plus $7.95/million Btu, excluding natural gas supplied to the units at San Juan 5 & 6 (which has historically consumed ~20 TBtu per year). Instead, these volumes are priced at 115 percent of Henry Hub plus $6.50/MMBtu”. According to the September statement, NFE expects to source the LNG under the new GSA from its Fast LNG facility in Altamira, Mexico. With a capacity of 1.4 million metric tons per annum, the project started operations in the fourth quarter of 2024, according to NFE. On March 17 NFE said it had amended the

Read More »

BGN Plans Global Gas Push Ahead of New Supplies

Energy trader BGN is set to expand its fledgling natural gas business into a global portfolio with stakes in plants, vessels and pipelines.  The push comes as the market for liquefied natural gas is set to boom, with US exports ramping up and Qatar, another major producer, also adding output. While that’s likely to push prices lower, the wave of extra supplies is poised to create new trading opportunities. The firm is in talks to buy LNG on contracts as long as 15 years, as well as equity in U.S. export plants, the company’s co-heads of LNG, Ruben Mosquera Arias and Maria Eugenia Suardiaz, said in an interview in Istanbul on Thursday. BGN got its start in the market for liquefied petroleum gas and has amassed a fleet of about 40 ships. In recent years, it has expanded rapidly into crude, oil products and metals.    “In LNG, we would like to be present globally as well, from the Atlantic basin to Asia Pacific,” said Suardiaz, declining to provide details on the volume they plan to handle.  Producers are set to add a record 300 billion cubic meters of annual export capacity by 2030, the International Energy Agency wrote last month in a report. That’s poised to reshape the market after years of scarcity. “We want to capture this wave,” said Mosquera Arias.  The company is also applying for licenses to buy capacity in European pipelines. It expects to take delivery of its first newbuild LNG carriers in the next two years, although the executives declined to provide more details.  BGN started its LNG team in 2024 and sold spot cargoes to both Egypt and Germany earlier this year. In the summer, it struck a deal to supply as many as 42 shipments to the North African country, where it’s already a major

Read More »

Crude Finishes Higher on Short Covering

Oil gained, finishing the week positive as investors assessed the murky outlook for a cease-fire in Ukraine and as the commodity pushed past an important technical level. West Texas Intermediate rose 0.7% to settle above $60 a barrel, signaling that a risk premium persists as a peace deal between Russia and Ukraine remains elusive. Ukrainian negotiators continued talks with US officials in Florida for a second day, with Russia objecting to some of the points in a US-backed plan. The market is watching for progress on a settlement that could lower prices by potentially easing sanctions and boosting Russian oil flows just as an expected oversupply in the market starts to materialize. But an agreement appears distant: Ukraine took credit for an overnight attack on Russia’s Syzran refinery and the Temryuk seaport. Meanwhile, Washington reportedly lobbied European countries in an effort to block a plan to use Moscow’s frozen assets to back a massive loan for Ukraine. Adding to bullish momentum, WTI on Friday settled above its 50-day moving average, a key level of support for the commodity. Prices have also received a boost from algorithmic traders covering some of their bearish positions in recent sessions — and analysts say more buying could materialize in coming weeks. “This session should mark the first notable short covering program since algo selling activity exhausted itself, and the bar is low for subsequent CTA buying activity to hit the tapes over the coming week,” said Dan Ghali, a commodity strategist at TD Securities. Countering geopolitical risks, oversupply is putting downward pressure on prices globally. Saudi Aramco will reduce the price of its flagship Arab Light crude grade to the lowest level since 2021 for January, while Canadian oil has tumbled. And the number of crude oil rigs in the US rose by 6

Read More »

ITT Agrees to Buy Lone Star’s SPX Flow in $4.8B Deal

ITT Inc. has agreed to acquire industrial equipment manufacturer SPX Flow Inc. from Lone Star Funds in a $4.775 billion cash and stock deal. The deal will will consist of a combination of cash and $700 million in ITT common stock issued to Lone Star, according to a statement confirming an earlier report by Bloomberg News that the companies were nearing a deal. Charlotte, North Carolina-based SPX Flow makes products including valves and pumps under brands such as APV and Johnson Pump, as well as food processing equipment such as its Gerstenberg Schröder-branded butter maker. Lone Star Funds agreed in 2021 to take SPX Flow private for $3.8 billion including debt.  The SPX Flow acquisition is the largest ever by Stamford, Connecticut-based ITT, according to data compiled by Bloomberg. ITT’s shares have gained 28% this year, giving it a market value of $14.3 billion. ITT’s history dates to 1920, with its genesis as International Telephone and Telegraph, a provider of telephone switching equipment and services, according to the company’s website. In 1995, that conglomerate was split into three divisions, including the company that became the current manufacturer of components and technology for a range of transportation, industrial and energy markets. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

Energy Department Launches Breakthrough AI-Driven Biotechnology Platform at PNNL

Richland, Wash.—U.S. Secretary of Energy Chris Wright launched a new chapter to secure American leadership in autonomous biological discovery yesterday alongside scientists and private partners at Pacific Northwest National Laboratory (PNNL). As part of his visit to PNNL, Secretary Wright commissioned and signed the Anaerobic Microbial Phenotyping Platform (AMP2). PNNL scientists believe AMP2 will be the world’s largest autonomous-capable science system for anaerobic microbial experimentation. The platform supports the Trump Administration’s recently announced Genesis Mission, which calls on the Department of Energy (DOE) to transform American leadership in science and innovation with the development of artificial intelligence (AI). Built by Gingko Bioworks, AMP2 gives DOE scientists an unprecedented capability to explore the world of microbes—an invisible yet powerful workforce poised to boost biotech manufacturing as well as provide insights into basic life science questions. This first-of-its-kind capability will transform how the U.S. identifies, grows, and optimizes the use of microbes in days and weeks instead of years using automation and AI.  “President Trump launched the Genesis Mission to ensure American leadership in science and innovation,” said Secretary Chris Wright. “This ongoing public-private partnership at PNNL will help do exactly that in the field of biotechnology. By launching AI-enabled, autonomous platforms like AMP2, our DOE National Laboratories are driving scientific breakthroughs faster than ever before and ensuring the United States leads the world in technologies that will better human lives and secure our future.”  The AMP2 platform will serve as a prototype for DOE’s planned development of the larger Microbial Molecular Phenotyping Capability (M2PC). Together, the systems will establish the world’s largest autonomous microbial research infrastructure, and position the U.S. to lead in biotechnology, biomanufacturing, and next-generation materials innovation for decades to come. Secretary Wright visited PNNL as part of his ongoing tour of all 17 DOE National Laboratories. PNNL marks

Read More »

Chevron, Gorgon Partners OK $2B to Drill for More Gas

Chevron Corp’s Australian unit and its joint venture partners have reached a final investment decision to further develop the massive Gorgon natural gas project in Western Australia, it said in a statement on Friday. Chevron Australia and its partners — including Exxon Mobil Corp. and Shell Plc — will spend A$3 billion ($2 billion) connecting two offshore natural gas fields to existing infrastructure and processing facilities on Barrow Island as part of the Gorgon Stage 3 development, it said in the statement. Six wells will also be drilled.  Gorgon, on the remote Barrow Island in northwestern Australia, is the largest resource development in Australia’s history, and produces about 15.6 million tons of liquefied natural gas a year. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

At the Crossroads of AI and the Edge: Inside 1623 Farnam’s Rising Role as a Midwest Interconnection Powerhouse

That was the thread that carried through our recent conversation for the DCF Show podcast, where Severn walked through the role Farnam now plays in AI-driven networking, multi-cloud connectivity, and the resurgence of regional interconnection as a core part of U.S. digital infrastructure. Aggregation, Not Proximity: The Practical Edge Severn is clear-eyed about what makes the edge work and what doesn’t. The idea that real content delivery could aggregate at the base of cell towers, he noted, has never been realistic. The traffic simply isn’t there. Content goes where the network already concentrates, and the network concentrates where carriers, broadband providers, cloud onramps, and CDNs have amassed critical mass. In Farnam’s case, that density has grown steadily since the building changed hands in 2018. At the time an “underappreciated asset,” the facility has since become a meeting point for more than 40 broadband providers and over 60 carriers, with major content operators and hyperscale platforms routing traffic directly through its MMRs. That aggregation effect feeds on itself; as more carrier and content traffic converges, more participants anchor themselves to the hub, increasing its gravitational pull. Geography only reinforces that position. Located on the 41st parallel, the building sits at the historical shortest-distance path for early transcontinental fiber routes. It also lies at the crossroads of major east–west and north–south paths that have made Omaha a natural meeting point for backhaul routes and hyperscale expansions across the Midwest. AI and the New Interconnection Economy Perhaps the clearest sign of Farnam’s changing role is the sheer volume of fiber entering the building. More than 5,000 new strands are being brought into the property, with another 5,000 strands being added internally within the Meet-Me Rooms in 2025 alone. These are not incremental upgrades—they are hyperscale-grade expansions driven by the demands of AI traffic,

Read More »

Schneider Electric’s $2.3 Billion in AI Power and Cooling Deals Sends Message to Data Center Sector

When Schneider Electric emerged from its 2025 North American Innovation Summit in Las Vegas last week with nearly $2.3 billion in fresh U.S. data center commitments, it didn’t just notch a big sales win. It arguably put a stake in the ground about who controls the AI power-and-cooling stack over the rest of this decade. Within a single news cycle, Schneider announced: Together, the deals total about $2.27 billion in U.S. data center infrastructure, a number Schneider confirmed in background with multiple outlets and which Reuters highlighted as a bellwether for AI-driven demand.  For the AI data center ecosystem, these contracts function like early-stage fuel supply deals for the power and cooling systems that underpin the “AI factory.” Supply Capacity Agreements: Locking in the AI Supply Chain Significantly, both deals are structured as supply capacity agreements, not traditional one-off equipment purchase orders. Under the SCA model, Schneider is committing dedicated manufacturing lines and inventory to these customers, guaranteeing output of power and cooling systems over a multi-year horizon. In return, Switch and Digital Realty are providing Schneider with forecastable volume and visibility at the scale of gigawatt-class campus build-outs.  A Schneider spokesperson told Reuters that the two contracts are phased across 2025 and 2026, underscoring that this arrangement is about pipeline, as opposed to a one-time backlog spike.  That structure does three important things for the market: Signals confidence that AI demand is durable.You don’t ring-fence billions of dollars of factory output for two customers unless you’re highly confident the AI load curve runs beyond the current GPU cycle. Pre-allocates power & cooling the way the industry pre-allocated GPUs.Hyperscalers and neoclouds have already spent two years locking up Nvidia and AMD capacity. These SCAs suggest power trains and thermal systems are joining chips on the list of constrained strategic resources.

Read More »

The Data Center Power Squeeze: Mapping the Real Limits of AI-Scale Growth

As we all know, the data center industry is at a crossroads. As artificial intelligence reshapes the already insatiable digital landscape, the demand for computing power is surging at a pace that outstrips the growth of the US electric grid. As engines of the AI economy, an estimated 1,000 new data centers1 are needed to process, store, and analyze the vast datasets that run everything from generative models to autonomous systems. But this transformation comes with a steep price and the new defining criteria for real estate: power. Our appetite for electricity is now the single greatest constraint on our expansion, threatening to stall the very innovation we enable. In 2024, US data centers consumed roughly 4% of the nation’s total electricity, a figure that is projected to triple by 2030, reaching 12% or more.2 For AI-driven hyperscale facilities, the numbers are even more staggering. With the largest planned data centers requiring gigawatts of power, enough to supply entire cities, the cumulative demand from all data centers is expected to reach 134 gigawatts by 2030, nearly three times the current load.​3 This presents a systemic challenge. The U.S. power grid, built for a different era, is struggling to keep pace. Utilities are reporting record interconnection requests, with some regions seeing demand projections that exceed their total system capacity by fivefold.4 In Virginia and Texas, the epicenters of data center expansion, grid operators are warning of tight supply-demand balances and the risk of blackouts during peak periods.5 The problem is not just the sheer volume of power needed, but the speed at which it must be delivered. Data center operators are racing to secure power for projects that could be online in as little as 18 months, but grid upgrades and new generation can take years, if not decades. The result

Read More »

The Future of Hyperscale: Neoverse Joins NVLink Fusion as SC25 Accelerates Rack-Scale AI Architectures

Neoverse’s Expanding Footprint and the Power-Efficiency Imperative With Neoverse deployments now approaching roughly 50% of all compute shipped into top hyperscalers in 2025 (representing more than a billion Arm cores) and with nation-scale AI campuses such as the Stargate project already anchored on Arm compute, the addition of NVLink Fusion becomes a pivotal extension of the Neoverse roadmap. Partners can now connect custom Arm CPUs to their preferred NVIDIA accelerators across a coherent, high-bandwidth, rack-scale fabric. Arm characterized the shift as a generational inflection point in data-center architecture, noting that “power—not FLOPs—is the bottleneck,” and that future design priorities hinge on maximizing “intelligence per watt.” Ian Buck, vice president and general manager of accelerated computing at NVIDIA, underscored the practical impact: “Folks building their own Arm CPU, or using an Arm IP, can actually have access to NVLink Fusion—be able to connect that Arm CPU to an NVIDIA GPU or to the rest of the NVLink ecosystem—and that’s happening at the racks and scale-up infrastructure.” Despite the expanded design flexibility, this is not being positioned as an open interconnect ecosystem. NVIDIA continues to control the NVLink Fusion fabric, and all connections ultimately run through NVIDIA’s architecture. For data-center planners, the SC25 announcement translates into several concrete implications: 1.   NVIDIA “Grace-style” Racks Without Buying Grace With NVLink Fusion now baked into Neoverse, hyperscalers and sovereign operators can design their own Arm-based control-plane or pre-processing CPUs that attach coherently to NVIDIA GPU domains—such as NVL72 racks or HGX B200/B300 systems—without relying on Grace CPUs. A rack-level architecture might now resemble: Custom Neoverse SoC for ingest, orchestration, agent logic, and pre/post-processing NVLink Fusion fabric Blackwell GPU islands and/or NVLink-attached custom accelerators (Marvell, MediaTek, others) This decouples CPU choice from NVIDIA’s GPU roadmap while retaining the full NVLink fabric. In practice, it also opens

Read More »

Flex’s Integrated Data Center Bet: How a Manufacturing Giant Plans to Reshape AI-Scale Infrastructure

At this year’s OCP Global Summit, Flex made a declaration that resonated across the industry: the era of slow, bespoke data center construction is over. AI isn’t just stressing the grid or forcing new cooling techniques—it’s overwhelming the entire design-build process. To meet this moment, Flex introduced a globally manufactured, fully integrated data center platform aimed directly at multi-gigawatt AI campuses. The company claims it can cut deployment timelines by as much as 30 percent by shifting integration upstream into the factory and unifying power, cooling, compute, and lifecycle services into pre-engineered modules. This is not a repositioning on the margins. Flex is effectively asserting that the future hyperscale data center will be manufactured like a complex industrial system, not built like a construction project. On the latest episode of The Data Center Frontier Show, we spoke with Rob Campbell, President of Flex Communications, Enterprise & Cloud, and Chris Butler, President of Flex Power, about why Flex believes this new approach is not only viable but necessary in the age of AI. The discussion revealed a company leaning heavily on its global manufacturing footprint, its cross-industry experience, and its expanding cooling and power technology stack to redefine what deployment speed and integration can look like at scale. AI Has Broken the Old Data Center Model From the outset, Campbell and Butler made clear that Flex’s strategy is a response to a structural shift. AI workloads no longer allow power, cooling, and compute to evolve independently. Densities have jumped so quickly—and thermals have risen so sharply—that the white space, gray space, and power yard are now interdependent engineering challenges. Higher chip TDPs, liquid-cooled racks approaching one to two megawatts, and the need to assemble entire campuses in record time have revealed deep fragility in traditional workflows. As Butler put it, AI

Read More »

Data Center Jobs: Engineering, Construction, Commissioning, Sales, Field Service and Facility Tech Jobs Available in Major Data Center Hotspots

Each month Data Center Frontier, in partnership with Pkaza, posts some of the hottest data center career opportunities in the market. Here’s a look at some of the latest data center jobs posted on the Data Center Frontier jobs board, powered by Pkaza Critical Facilities Recruiting. Looking for Data Center Candidates? Check out Pkaza’s Active Candidate / Featured Candidate Hotlist Data Center Facility Technician (All Shifts Available) Impact, TX This position is also available in: Ashburn, VA; Abilene, TX; Needham, MA and New York, NY. Navy Nuke / Military Vets leaving service accepted!  This opportunity is working with a leading mission-critical data center provider. This firm provides data center solutions custom-fit to the requirements of their client’s mission-critical operational facilities. They provide reliability of mission-critical facilities for many of the world’s largest organizations facilities supporting enterprise clients, colo providers and hyperscale companies. This opportunity provides a career-growth minded role with exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits. Electrical Commissioning Engineer Montvale, NJ This traveling position is also available in: New York, NY; White Plains, NY;  Richmond, VA; Ashburn, VA; Charlotte, NC; Atlanta, GA; Hampton, GA; Fayetteville, GA; New Albany, OH; Cedar Rapids, IA; Phoenix, AZ; Salt Lake City, UT; Dallas, TX or Chicago, IL. *** ALSO looking for a LEAD EE and ME CxA Agents and CxA PMs. *** Our client is an engineering design and commissioning company that has a national footprint and specializes in MEP critical facilities design. They provide design, commissioning, consulting and management expertise in the critical facilities space. They have a mindset to provide reliability, energy efficiency, sustainable design and LEED expertise when providing these consulting services for enterprise, colocation and hyperscale companies. This career-growth minded opportunity offers exciting projects with leading-edge technology and innovation as well as competitive salaries and

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »