Stay Ahead, Stay ONMINE

😲 Quantifying Surprise – A Data Scientist’s Intro To Information Theory – Part 1/4: Foundations

Surprise! Generated using Gemini. During the telecommunication boom, Claude Shannon, in his seminal 1948 paper¹, posed a question that would revolutionise technology: How can we quantify communication? Shannon’s findings remain fundamental to expressing information quantification, storage, and communication. These insights made major contributions to the creation of technologies ranging from signal processing, data compression (e.g., Zip files and compact discs) to the Internet and artificial intelligence. More broadly, his work has significantly impacted diverse fields such as neurobiology, statistical physics and computer science (e.g, cybersecurity, cloud computing, and machine learning). [Shannon’s paper is the] Magna Carta of the Information Age Scientific American This is the first article in a series that explores information quantification – an essential tool for data scientists. Its applications range from enhancing statistical analyses to serving as a go-to decision heuristic in cutting-edge machine learning algorithms. Broadly speaking, quantifying information is assessing uncertainty, which may be phrased as: “how surprising is an outcome?”. This article idea quickly grew into a series since I found this topic both fascinating and diverse. Most researchers, at one stage or another, come across commonly used metrics such as entropy, cross-entropy/KL-divergence and mutual-information. Diving into this topic I found that in order to fully appreciate these one needs to learn a bit about the basics which we cover in this first article. By reading this series you will gain an intuition and tools to quantify: Bits/Nats – Unit measures of information. Self-Information – **** The amount of information in a specific event. Pointwise Mutual Information – The amount of information shared between two specific events. Entropy – The average amount of information of a variable’s outcome. Cross-entropy – The misalignment between two probability distributions (also expressed by its derivative KL-Divergence – a distance measure). Mutual Information – The co-dependency of two variables by their conditional probability distributions. It expresses the information gain of one variable given another. No prior knowledge is required – just a basic understanding of probabilities. I demonstrate using common statistics such as coin and dice 🎲 tosses as well as machine learning applications such as in supervised classification, feature selection, model monitoring and clustering assessment. As for real world applications I’ll discuss a case study of quantifying DNA diversity 🧬. Finally, for fun, I also apply to the popular brain twister commonly known as the Monty Hall problem 🚪🚪 🐐 . Throughout I provide python code 🐍 , and try to keep formulas as intuitive as possible. If you have access to an integrated development environment (IDE) 🖥 you might want to plug 🔌 and play 🕹 around with the numbers to gain a better intuition. This series is divided into four articles, each exploring a key aspect of Information Theory: 😲 Quantifying Surprise: 👈 👈 👈 YOU ARE HERE In this opening article, you’ll learn how to quantify the “surprise” of an event using _self-informatio_n and understand its units of measurement, such as _bit_s and _nat_s. Mastering self-information is essential for building intuition about the subsequent concepts, as all later heuristics are derived from it. 🤷 Quantifying Uncertainty: Building on self-information, this article shifts focus to the uncertainty – or “average surprise” – associated with a variable, known as entropy. We’ll dive into entropy’s wide-ranging applications, from Machine Learning and data analysis to solving fun puzzles, showcasing its adaptability. 📏 Quantifying Misalignment: Here, we’ll explore how to measure the distance between two probability distributions using entropy-based metrics like cross-entropy and KL-divergence. These measures are particularly valuable for tasks like comparing predicted versus true distributions, as in classification loss functions and other alignment-critical scenarios. 💸 Quantifying Gain: Expanding from single-variable measures, this article investigates the relationships between two. You’ll discover how to quantify the information gained about one variable (e.g, target Y) by knowing another (e.g., predictor X). Applications include assessing variable associations, feature selection, and evaluating clustering performance. Each article is crafted to stand alone while offering cross-references for deeper exploration. Together, they provide a practical, data-driven introduction to information theory, tailored for data scientists, analysts and machine learning practitioners. Disclaimer: Unless otherwise mentioned the formulas analysed are for categorical variables with c≥2 classes (2 meaning binary). Continuous variables will be addressed in a separate article. 🚧 Articles (3) and (4) are currently under construction. I will share links once available. Follow me to be notified 🚧 Quantifying Surprise with Self-Information Self-information is considered the building block of information quantification. It is a way of quantifying the amount of “surprise” of a specific outcome. Formally self-information, or also referred to as Shannon Information or information content, quantifies the surprise of an event x occurring based on its probability, p(x). Here we denote it as hₓ: Self-information _h_ₓ is the information of event x that occurs with probability p(x). The units of measure are called bits. One bit (binary digit) is the amount of information for an event x that has probability of p(x)=½. Let’s plug in to verify: hₓ=-log₂(½)= log₂(2)=1 bit. This heuristic serves as an alternative to probabilities, odds and log-odds, with certain mathematical properties which are advantageous for information theory. We discuss these below when learning about Shannon’s axioms behind this choice. It’s always informative to explore how an equation behaves with a graph: Bernoulli trial self-information h(p). Key features: Monotonic, h(p=1)=0, h(p →)→∞. To deepen our understanding of self-information, we’ll use this graph to explore the said axioms that justify its logarithmic formulation. Along the way, we’ll also build intuition about key features of this heuristic. To emphasise the logarithmic nature of self-information, I’ve highlighted three points of interest on the graph: At p=1 an event is guaranteed, yielding no surprise and hence zero bits of information (zero bits). A useful analogy is a trick coin (where both sides show HEAD). Reducing the probability by a factor of two (p=½​) increases the information to _hₓ=_1 bit. This, of course, is the case of a fair coin. Further reducing it by a factor of four results in hₓ(p=⅛)=3 bits. If you are interested in coding the graph here is a python script: To summarise this section: Self-Information hₓ=-log₂(p(x)) quantifies the amount of “surprise” of a specific outcome x. Three Axioms Referencing prior work by Ralph Hartley, Shannon chose -log₂(p) as a manner to meet three axioms. We’ll use the equation and graph to examine how these are manifested: An event with probability 100% is not surprising and hence does not yield any information. In the trick coin case this is evident by p(x)=1 yielding hₓ=0. Less probable events are more surprising and provide more information. This is apparent by self-information decreasing monotonically with increasing probability. The property of Additivity – the total self-information of two independent events equals the sum of individual contributions. This will be explored further in the upcoming fourth article on Mutual Information. There are mathematical proofs (which are beyond the scope of this series) that show that only the log function adheres to all three². The application of these axioms reveals several intriguing and practical properties of self-information: Important properties : Minimum bound: The first axiom hₓ(p=1)=0 establishes that self-information is non-negative, with zero as its lower bound. This is highly practical for many applications. Monotonically decreasing: The second axiom ensures that self-information decreases monotonically with increasing probability. No Maximum bound: At the extreme where _p→_0, monotonicity leads to self-information growing without bound hₓ(_p→0) →_ ∞, a feature that requires careful consideration in some contexts. However, when averaging self-information – as we will later see in the calculation of entropy – probabilities act as weights, effectively limiting the contribution of highly improbable events to the overall average. This relationship will become clearer when we explore entropy in detail. It is useful to understand the close relationship to log-odds. To do so we define p(x) as the probability of event x to happen and p(¬x)=1-p(x) of it not to happen. log-odds(x) = log₂(p(x)/p(¬x))= h(¬x) – h(x). The main takeaways from this section are Axiom 1: An event with probability 100% is not surprising Axiom 2: Less probable events are more surprising and, when they occur, provide more information. Self information (1) monotonically decreases (2) with a minimum bound of zero and (3) no upper bound. In the next two sections we further discuss units of measure and choice of normalisation. Information Units of Measure Bits or Shannons? A bit, as mentioned, represents the amount of information associated with an event that has a 50% probability of occurring. The term is also sometimes referred to as a Shannon, a naming convention proposed by mathematician and physicist David MacKay to avoid confusion with the term ‘bit’ in the context of digital processing and storage. After some deliberation, I decided to use ‘bit’ throughout this series for several reasons: This series focuses on quantifying information, not on digital processing or storage, so ambiguity is minimal. Shannon himself, encouraged by mathematician and statistician John Tukey, used the term ‘bit’ in his landmark paper. ‘Bit’ is the standard term in much of the literature on information theory. For convenience – it’s more concise Normalisation: Log Base 2 vs. Natural Throughout this series we use base 2 for logarithms, reflecting the intuitive notion of a 50% chance of an event as a fundamental unit of information. An alternative commonly used in machine learning is the natural logarithm, which introduces a different unit of measure called nats (short for natural units of information). One nat corresponds to the information gained from an event occurring with a probability of 1/e where e is Euler’s number (≈2.71828). In other words, 1 nat = -ln(p=(1/e)). The relationship between bits (base 2) and nats (natural log) is as follows: 1 bit = ln(2) nats ≈ 0.693 nats. Think of it as similar to a monetary current exchange or converting centimeters to inches. In his seminal publication Shanon explained that the optimal choice of base depends on the specific system being analysed (paraphrased slightly from his original work): “A device with two stable positions […] can store one bit of information” (bit as in binary digit). “A digit wheel on a desk computing machine that has ten stable positions […] has a storage capacity of one decimal digit.”³ “In analytical work where integration and differentiation are involved the base e is sometimes useful. The resulting units of information will be called natural units.” Key aspects of machine learning, such as popular loss functions, often rely on integrals and derivatives. The natural logarithm is a practical choice in these contexts because it can be derived and integrated without introducing additional constants. This likely explains why the machine learning community frequently uses nats as the unit of information – it simplifies the mathematics by avoiding the need to account for factors like ln(2). As shown earlier, I personally find base 2 more intuitive for interpretation. In cases where normalisation to another base is more convenient, I will make an effort to explain the reasoning behind the choice. To summarise this section of units of measure: bit = amount of information to distinguish between two equally likely outcomes. Now that we are familiar with self-information and its unit of measure let’s examine a few use cases. Quantifying Event Information with Coins and Dice In this section, we’ll explore examples to help internalise the self-information axioms and key features demonstrated in the graph. Gaining a solid understanding of self-information is essential for grasping its derivatives, such as entropy, cross-entropy (or KL divergence), and mutual information – all of which are averages over self-information. The examples are designed to be simple, approachable, and lighthearted, accompanied by practical Python code to help you experiment and build intuition. Note: If you feel comfortable with self-information, feel free to skip these examples and go straight to the Quantifying Uncertainty article. Generated using Gemini. To further explore the self-information and bits, I find analogies like coin flips and dice rolls particularly effective, as they are often useful analogies for real-world phenomena. Formally, these can be described as multinomial trials with n=1 trial. Specifically: A coin flip is a Bernoulli trial, where there are c=2 possible outcomes (e.g., heads or tails). Rolling a die represents a categorical trial, where c≥3 outcomes are possible (e.g., rolling a six-sided or eight-sided die). As a use case we’ll use simplistic weather reports limited to featuring sun 🌞 , rain 🌧 , and snow ⛄️. Now, let’s flip some virtual coins 👍 and roll some funky-looking dice 🎲 … Fair Coins and Dice Generated using Gemini. We’ll start with the simplest case of a fair coin (i.e, 50% chance for success/Heads or failure/Tails). Imagine an area for which at any given day there is a 50:50 chance for sun or rain. We can write the probability of each event be: p(🌞 )=p(🌧 )=½. As seen above, according the the self-information formulation, when 🌞 or 🌧 is reported we are provided with h(🌞 __ )=h(🌧 )=-log₂(½)=1 bit of information. We will continue to build on this analogy later on, but for now let’s turn to a variable that has more than two outcomes (c≥3). Before we address the standard six sided die, to simplify the maths and intuition, let’s assume an 8 sided one (_c=_8) as in Dungeons Dragons and other tabletop games. In this case each event (i.e, landing on each side) has a probability of p(🔲 ) = ⅛. When a die lands on one side facing up, e.g, value 7️⃣, we are provided with h(🔲 =7️⃣)=-log₂(⅛)=3 bits of information. For a standard six sided fair die: p(🔲 ) = ⅙ → an event yields __ h(🔲 )=-log₂(⅙)=2.58 bits. Comparing the amount of information from the fair coin (1 bit), 6 sided die (2.58 bits) and 8 sided (3 bits) we identify the second axiom: The less probable an event is, the more surprising it is and the more information it yields. Self information becomes even more interesting when probabilities are skewed to prefer certain events. Loaded Coins and Dice Generated using Gemini. Let’s assume a region where p(🌞 ) = ¾ and p(🌧 )= ¼. When rain is reported the amount of information conveyed is not 1 bit but rather h(🌧 )=-log₂(¼)=2 bits. When sun is reported less information is conveyed: h(🌞 )=-log₂(¾)=0.41 bits. As per the second axiom— a rarer event, like p(🌧 )=¼, reveals more information than a more likely one, like p(🌞 )=¾ – and vice versa. To further drive this point let’s now assume a desert region where p(🌞 ) =99% and p(🌧 )= 1%. If sunshine is reported – that is kind of expected – so nothing much is learnt (“nothing new under the sun” 🥁) and this is quantified as h(🌞 )=0.01 bits. If rain is reported, however, you can imagine being quite surprised. This is quantified as h(🌧 )=6.64 bits. In the following python scripts you can examine all the above examples, and I encourage you to play with your own to get a feeling. First let’s define the calculation and printout function: import numpy as np def print_events_self_information(probs): for ps in probs: print(f”Given distribution {ps}”) for event in ps: if ps[event] != 0: self_information = -np.log2(ps[event]) #same as: -np.log(ps[event])/np.log(2) text_ = f’When `{event}` occurs {self_information:0.2f} bits of information is communicated’ print(text_) else: print(f’a `{event}` event cannot happen p=0 ‘) print(“=” * 20) Next we’ll set a few example distributions of weather frequencies # Setting multiple probability distributions (each sums to 100%) # Fun fact – 🐍 💚 Emojis! probs = [{‘🌞 ‘: 0.5, ‘🌧 ‘: 0.5}, # half-half {‘🌞 ‘: 0.75, ‘🌧 ‘: 0.25}, # more sun than rain {‘🌞 ‘: 0.99, ‘🌧 ‘: 0.01} , # mostly sunshine ] print_events_self_information(probs) This yields printout Given distribution {‘🌞 ‘: 0.5, ‘🌧 ‘: 0.5} When `🌞 ` occurs 1.00 bits of information is communicated When `🌧 ` occurs 1.00 bits of information is communicated ==================== Given distribution {‘🌞 ‘: 0.75, ‘🌧 ‘: 0.25} When `🌞 ` occurs 0.42 bits of information is communicated When `🌧 ` occurs 2.00 bits of information is communicated ==================== Given distribution {‘🌞 ‘: 0.99, ‘🌧 ‘: 0.01} When `🌞 ` occurs 0.01 bits of information is communicated When `🌧 ` occurs 6.64 bits of information is communicated Let’s examine a case of a loaded three sided die. E.g, information of a weather in an area that reports sun, rain and snow at uneven probabilities: p(🌞 ) = 0.2, p(🌧 )=0.7, p(⛄️)=0.1. Running the following print_events_self_information([{‘🌞 ‘: 0.2, ‘🌧 ‘: 0.7, ‘⛄️’: 0.1}]) yields Given distribution {‘🌞 ‘: 0.2, ‘🌧 ‘: 0.7, ‘⛄️’: 0.1} When `🌞 ` occurs 2.32 bits of information is communicated When `🌧 ` occurs 0.51 bits of information is communicated When `⛄️` occurs 3.32 bits of information is communicated What we saw for the binary case applies to higher dimensions. To summarise – we clearly see the implications of the second axiom: When a highly expected event occurs – we do not learn much, the bit count is low. When an unexpected event occurs – we learn a lot, the bit count is high. Event Information Summary In this article we embarked on a journey into the foundational concepts of information theory, defining how to measure the surprise of an event. Notions introduced serve as the bedrock of many tools in information theory, from assessing data distributions to unraveling the inner workings of machine learning algorithms. Through simple yet insightful examples like coin flips and dice rolls, we explored how self-information quantifies the unpredictability of specific outcomes. Expressed in bits, this measure encapsulates Shannon’s second axiom: rarer events convey more information. While we’ve focused on the information content of specific events, this naturally leads to a broader question: what is the average amount of information associated with all possible outcomes of a variable? In the next article, Quantifying Uncertainty, we build on the foundation of self-information and bits to explore entropy – the measure of average uncertainty. Far from being just a beautiful theoretical construct, it has practical applications in data analysis and machine learning, powering tasks like decision tree optimisation, estimating diversity and more. Claude Shannon. Credit: Wikipedia Loved this post? ❤️🍕 💌 Follow me here, join me on LinkedIn or 🍕 buy me a pizza slice! About This Series Even though I have twenty years of experience in data analysis and predictive modelling I always felt quite uneasy about using concepts in information theory without truly understanding them. The purpose of this series was to put me more at ease with concepts of information theory and hopefully provide for others the explanations I needed. 🤷 Quantifying Uncertainty – A Data Scientist’s Intro To Information Theory – Part 2/4: EntropyGa_in intuition into Entropy and master its applications in Machine Learning and Data Analysis. Python code included. 🐍 me_dium.com Check out my other articles which I wrote to better understand Causality and Bayesian Statistics: Footnotes ¹ A Mathematical Theory of Communication, Claude E. Shannon, Bell System Technical Journal 1948. It was later renamed to a book The Mathematical Theory of Communication in 1949. [Shannon’s “A Mathematical Theory of Communication”] the blueprint for the digital era – Historian James Gleick ² See Wikipedia page on Information Content (i.e, self-information) for a detailed derivation that only the log function meets all three axioms. ³ The decimal-digit was later renamed to a hartley (symbol Hart), a ban or a dit. See Hartley (unit) Wikipedia page. Credits Unless otherwise noted, all images were created by the author. Many thanks to Will Reynolds and Pascal Bugnion for their useful comments.
Surprise! Generated using Gemini.
Surprise! Generated using Gemini.

During the telecommunication boom, Claude Shannon, in his seminal 1948 paper¹, posed a question that would revolutionise technology:

How can we quantify communication?

Shannon’s findings remain fundamental to expressing information quantification, storage, and communication. These insights made major contributions to the creation of technologies ranging from signal processing, data compression (e.g., Zip files and compact discs) to the Internet and artificial intelligence. More broadly, his work has significantly impacted diverse fields such as neurobiology, statistical physics and computer science (e.g, cybersecurity, cloud computing, and machine learning).

[Shannon’s paper is the]

Magna Carta of the Information Age

  • Scientific American

This is the first article in a series that explores information quantification – an essential tool for data scientists. Its applications range from enhancing statistical analyses to serving as a go-to decision heuristic in cutting-edge machine learning algorithms.

Broadly speaking, quantifying information is assessing uncertainty, which may be phrased as: “how surprising is an outcome?”.

This article idea quickly grew into a series since I found this topic both fascinating and diverse. Most researchers, at one stage or another, come across commonly used metrics such as entropy, cross-entropy/KL-divergence and mutual-information. Diving into this topic I found that in order to fully appreciate these one needs to learn a bit about the basics which we cover in this first article.

By reading this series you will gain an intuition and tools to quantify:

  • Bits/Nats – Unit measures of information.
  • Self-Information – **** The amount of information in a specific event.
  • Pointwise Mutual Information – The amount of information shared between two specific events.
  • Entropy – The average amount of information of a variable’s outcome.
  • Cross-entropy – The misalignment between two probability distributions (also expressed by its derivative KL-Divergence – a distance measure).
  • Mutual Information – The co-dependency of two variables by their conditional probability distributions. It expresses the information gain of one variable given another.

No prior knowledge is required – just a basic understanding of probabilities.

I demonstrate using common statistics such as coin and dice 🎲 tosses as well as machine learning applications such as in supervised classification, feature selection, model monitoring and clustering assessment. As for real world applications I’ll discuss a case study of quantifying DNA diversity 🧬. Finally, for fun, I also apply to the popular brain twister commonly known as the Monty Hall problem 🚪🚪 🐐 .

Throughout I provide python code 🐍 , and try to keep formulas as intuitive as possible. If you have access to an integrated development environment (IDE) 🖥 you might want to plug 🔌 and play 🕹 around with the numbers to gain a better intuition.

This series is divided into four articles, each exploring a key aspect of Information Theory:

  1. 😲 Quantifying Surprise: 👈 👈 👈 YOU ARE HERE
    In this opening article, you’ll learn how to quantify the “surprise” of an event using _self-informatio_n and understand its units of measurement, such as _bit_s and _nat_s. Mastering self-information is essential for building intuition about the subsequent concepts, as all later heuristics are derived from it.

  2. 🤷 Quantifying Uncertainty: Building on self-information, this article shifts focus to the uncertainty – or “average surprise” – associated with a variable, known as entropy. We’ll dive into entropy’s wide-ranging applications, from Machine Learning and data analysis to solving fun puzzles, showcasing its adaptability.
  3. 📏 Quantifying Misalignment: Here, we’ll explore how to measure the distance between two probability distributions using entropy-based metrics like cross-entropy and KL-divergence. These measures are particularly valuable for tasks like comparing predicted versus true distributions, as in classification loss functions and other alignment-critical scenarios.
  4. 💸 Quantifying Gain: Expanding from single-variable measures, this article investigates the relationships between two. You’ll discover how to quantify the information gained about one variable (e.g, target Y) by knowing another (e.g., predictor X). Applications include assessing variable associations, feature selection, and evaluating clustering performance.

Each article is crafted to stand alone while offering cross-references for deeper exploration. Together, they provide a practical, data-driven introduction to information theory, tailored for data scientists, analysts and machine learning practitioners.

Disclaimer: Unless otherwise mentioned the formulas analysed are for categorical variables with c≥2 classes (2 meaning binary). Continuous variables will be addressed in a separate article.

🚧 Articles (3) and (4) are currently under construction. I will share links once available. Follow me to be notified 🚧


Quantifying Surprise with Self-Information

Self-information is considered the building block of information quantification.

It is a way of quantifying the amount of “surprise” of a specific outcome.

Formally self-information, or also referred to as Shannon Information or information content, quantifies the surprise of an event x occurring based on its probability, p(x). Here we denote it as hₓ:

Self-information _h_ₓ is the information of event x that occurs with probability p(x).
Self-information _h_ₓ is the information of event x that occurs with probability p(x).

The units of measure are called bits. One bit (binary digit) is the amount of information for an event x that has probability of p(x)=½. Let’s plug in to verify: hₓ=-log₂(½)= log₂(2)=1 bit.

This heuristic serves as an alternative to probabilities, odds and log-odds, with certain mathematical properties which are advantageous for information theory. We discuss these below when learning about Shannon’s axioms behind this choice.

It’s always informative to explore how an equation behaves with a graph:

Bernoulli trial self-information h(p). Key features: Monotonic, h(p=1)=0, h(p →)→∞.
Bernoulli trial self-information h(p). Key features: Monotonic, h(p=1)=0, h(p →)→∞.

To deepen our understanding of self-information, we’ll use this graph to explore the said axioms that justify its logarithmic formulation. Along the way, we’ll also build intuition about key features of this heuristic.

To emphasise the logarithmic nature of self-information, I’ve highlighted three points of interest on the graph:

  • At p=1 an event is guaranteed, yielding no surprise and hence zero bits of information (zero bits). A useful analogy is a trick coin (where both sides show HEAD).
  • Reducing the probability by a factor of two (p=½​) increases the information to _hₓ=_1 bit. This, of course, is the case of a fair coin.
  • Further reducing it by a factor of four results in hₓ(p=⅛)=3 bits.

If you are interested in coding the graph here is a python script:

To summarise this section:

Self-Information hₓ=-log₂(p(x)) quantifies the amount of “surprise” of a specific outcome x.

Three Axioms

Referencing prior work by Ralph Hartley, Shannon chose -log₂(p) as a manner to meet three axioms. We’ll use the equation and graph to examine how these are manifested:

  1. An event with probability 100% is not surprising and hence does not yield any information.
    In the trick coin case this is evident by p(x)=1 yielding hₓ=0.

  2. Less probable events are more surprising and provide more information.
    This is apparent by self-information decreasing monotonically with increasing probability.

  3. The property of Additivity – the total self-information of two independent events equals the sum of individual contributions. This will be explored further in the upcoming fourth article on Mutual Information.

There are mathematical proofs (which are beyond the scope of this series) that show that only the log function adheres to all three².

The application of these axioms reveals several intriguing and practical properties of self-information:

Important properties :

  • Minimum bound: The first axiom hₓ(p=1)=0 establishes that self-information is non-negative, with zero as its lower bound. This is highly practical for many applications.
  • Monotonically decreasing: The second axiom ensures that self-information decreases monotonically with increasing probability.
  • No Maximum bound: At the extreme where _p→_0, monotonicity leads to self-information growing without bound hₓ(_p→0) →_ ∞, a feature that requires careful consideration in some contexts. However, when averaging self-information – as we will later see in the calculation of entropy – probabilities act as weights, effectively limiting the contribution of highly improbable events to the overall average. This relationship will become clearer when we explore entropy in detail.

It is useful to understand the close relationship to log-odds. To do so we define p(x) as the probability of event x to happen and px)=1-p(x) of it not to happen. log-odds(x) = log₂(p(x)/px))= hx) – h(x).

The main takeaways from this section are

Axiom 1: An event with probability 100% is not surprising

Axiom 2: Less probable events are more surprising and, when they occur, provide more information.

Self information (1) monotonically decreases (2) with a minimum bound of zero and (3) no upper bound.

In the next two sections we further discuss units of measure and choice of normalisation.

Information Units of Measure

Bits or Shannons?

A bit, as mentioned, represents the amount of information associated with an event that has a 50% probability of occurring.

The term is also sometimes referred to as a Shannon, a naming convention proposed by mathematician and physicist David MacKay to avoid confusion with the term ‘bit’ in the context of digital processing and storage.

After some deliberation, I decided to use ‘bit’ throughout this series for several reasons:

  • This series focuses on quantifying information, not on digital processing or storage, so ambiguity is minimal.
  • Shannon himself, encouraged by mathematician and statistician John Tukey, used the term ‘bit’ in his landmark paper.
  • ‘Bit’ is the standard term in much of the literature on information theory.
  • For convenience – it’s more concise

Normalisation: Log Base 2 vs. Natural

Throughout this series we use base 2 for logarithms, reflecting the intuitive notion of a 50% chance of an event as a fundamental unit of information.

An alternative commonly used in machine learning is the natural logarithm, which introduces a different unit of measure called nats (short for natural units of information). One nat corresponds to the information gained from an event occurring with a probability of 1/e where e is Euler’s number (≈2.71828). In other words, 1 nat = -ln(p=(1/e)).

The relationship between bits (base 2) and nats (natural log) is as follows:

1 bit = ln(2) nats ≈ 0.693 nats.

Think of it as similar to a monetary current exchange or converting centimeters to inches.

In his seminal publication Shanon explained that the optimal choice of base depends on the specific system being analysed (paraphrased slightly from his original work):

  • “A device with two stable positions […] can store one bit of information” (bit as in binary digit).
  • “A digit wheel on a desk computing machine that has ten stable positions […] has a storage capacity of one decimal digit.”³
  • “In analytical work where integration and differentiation are involved the base e is sometimes useful. The resulting units of information will be called natural units.

Key aspects of machine learning, such as popular loss functions, often rely on integrals and derivatives. The natural logarithm is a practical choice in these contexts because it can be derived and integrated without introducing additional constants. This likely explains why the machine learning community frequently uses nats as the unit of information – it simplifies the mathematics by avoiding the need to account for factors like ln(2).

As shown earlier, I personally find base 2 more intuitive for interpretation. In cases where normalisation to another base is more convenient, I will make an effort to explain the reasoning behind the choice.

To summarise this section of units of measure:

bit = amount of information to distinguish between two equally likely outcomes.

Now that we are familiar with self-information and its unit of measure let’s examine a few use cases.

Quantifying Event Information with Coins and Dice

In this section, we’ll explore examples to help internalise the self-information axioms and key features demonstrated in the graph. Gaining a solid understanding of self-information is essential for grasping its derivatives, such as entropy, cross-entropy (or KL divergence), and mutual information – all of which are averages over self-information.

The examples are designed to be simple, approachable, and lighthearted, accompanied by practical Python code to help you experiment and build intuition.

Note: If you feel comfortable with self-information, feel free to skip these examples and go straight to the Quantifying Uncertainty article.

Generated using Gemini.
Generated using Gemini.

To further explore the self-information and bits, I find analogies like coin flips and dice rolls particularly effective, as they are often useful analogies for real-world phenomena. Formally, these can be described as multinomial trials with n=1 trial. Specifically:

  • A coin flip is a Bernoulli trial, where there are c=2 possible outcomes (e.g., heads or tails).
  • Rolling a die represents a categorical trial, where c≥3 outcomes are possible (e.g., rolling a six-sided or eight-sided die).

As a use case we’ll use simplistic weather reports limited to featuring sun 🌞 , rain 🌧 , and snow ⛄️.

Now, let’s flip some virtual coins 👍 and roll some funky-looking dice 🎲 …

Fair Coins and Dice

Generated using Gemini.
Generated using Gemini.

We’ll start with the simplest case of a fair coin (i.e, 50% chance for success/Heads or failure/Tails).

Imagine an area for which at any given day there is a 50:50 chance for sun or rain. We can write the probability of each event be: p(🌞 )=p(🌧 )=½.

As seen above, according the the self-information formulation, when 🌞 or 🌧 is reported we are provided with h(🌞 __ )=h(🌧 )=-log₂(½)=1 bit of information.

We will continue to build on this analogy later on, but for now let’s turn to a variable that has more than two outcomes (c≥3).

Before we address the standard six sided die, to simplify the maths and intuition, let’s assume an 8 sided one (_c=_8) as in Dungeons Dragons and other tabletop games. In this case each event (i.e, landing on each side) has a probability of p(🔲 ) = ⅛.

When a die lands on one side facing up, e.g, value 7️⃣, we are provided with h(🔲 =7️⃣)=-log₂(⅛)=3 bits of information.

For a standard six sided fair die: p(🔲 ) = ⅙ → an event yields __ h(🔲 )=-log₂(⅙)=2.58 bits.

Comparing the amount of information from the fair coin (1 bit), 6 sided die (2.58 bits) and 8 sided (3 bits) we identify the second axiom: The less probable an event is, the more surprising it is and the more information it yields.

Self information becomes even more interesting when probabilities are skewed to prefer certain events.

Loaded Coins and Dice

Generated using Gemini.
Generated using Gemini.

Let’s assume a region where p(🌞 ) = ¾ and p(🌧 )= ¼.

When rain is reported the amount of information conveyed is not 1 bit but rather h(🌧 )=-log₂(¼)=2 bits.

When sun is reported less information is conveyed: h(🌞 )=-log₂(¾)=0.41 bits.

As per the second axiom— a rarer event, like p(🌧 )=¼, reveals more information than a more likely one, like p(🌞 )=¾ – and vice versa.

To further drive this point let’s now assume a desert region where p(🌞 ) =99% and p(🌧 )= 1%.

If sunshine is reported – that is kind of expected – so nothing much is learnt (“nothing new under the sun” 🥁) and this is quantified as h(🌞 )=0.01 bits. If rain is reported, however, you can imagine being quite surprised. This is quantified as h(🌧 )=6.64 bits.

In the following python scripts you can examine all the above examples, and I encourage you to play with your own to get a feeling.

First let’s define the calculation and printout function:

import numpy as np

def print_events_self_information(probs):
    for ps in probs:
        print(f"Given distribution {ps}")
        for event in ps:
            if ps[event] != 0:
                self_information = -np.log2(ps[event]) #same as: -np.log(ps[event])/np.log(2) 
                text_ = f'When `{event}` occurs {self_information:0.2f} bits of information is communicated'
                print(text_)
            else:
                print(f'a `{event}` event cannot happen p=0 ')
        print("=" * 20)

Next we’ll set a few example distributions of weather frequencies

# Setting multiple probability distributions (each sums to 100%)
# Fun fact - 🐍  💚  Emojis!
probs = [{'🌞   ': 0.5, '🌧   ': 0.5},   # half-half
        {'🌞   ': 0.75, '🌧   ': 0.25},  # more sun than rain
        {'🌞   ': 0.99, '🌧   ': 0.01} , # mostly sunshine
]

print_events_self_information(probs)

This yields printout

Given distribution {'🌞      ': 0.5, '🌧      ': 0.5}
When `🌞      ` occurs 1.00 bits of information is communicated 
When `🌧      ` occurs 1.00 bits of information is communicated 
====================
Given distribution {'🌞      ': 0.75, '🌧      ': 0.25}
When `🌞      ` occurs 0.42 bits of information is communicated 
When `🌧      ` occurs 2.00 bits of information is communicated 
====================
Given distribution {'🌞      ': 0.99, '🌧      ': 0.01}
When `🌞      ` occurs 0.01 bits of information is communicated 
When `🌧      ` occurs 6.64 bits of information is communicated  

Let’s examine a case of a loaded three sided die. E.g, information of a weather in an area that reports sun, rain and snow at uneven probabilities: p(🌞 ) = 0.2, p(🌧 )=0.7, p(⛄️)=0.1.

Running the following

print_events_self_information([{'🌞 ': 0.2, '🌧 ': 0.7, '⛄️': 0.1}])

yields

Given distribution {'🌞  ': 0.2, '🌧  ': 0.7, '⛄️': 0.1}
When `🌞  ` occurs 2.32 bits of information is communicated 
When `🌧  ` occurs 0.51 bits of information is communicated 
When `⛄️` occurs 3.32 bits of information is communicated 

What we saw for the binary case applies to higher dimensions.

To summarise – we clearly see the implications of the second axiom:

  • When a highly expected event occurs – we do not learn much, the bit count is low.
  • When an unexpected event occurs – we learn a lot, the bit count is high.

Event Information Summary

In this article we embarked on a journey into the foundational concepts of information theory, defining how to measure the surprise of an event. Notions introduced serve as the bedrock of many tools in information theory, from assessing data distributions to unraveling the inner workings of machine learning algorithms.

Through simple yet insightful examples like coin flips and dice rolls, we explored how self-information quantifies the unpredictability of specific outcomes. Expressed in bits, this measure encapsulates Shannon’s second axiom: rarer events convey more information.

While we’ve focused on the information content of specific events, this naturally leads to a broader question: what is the average amount of information associated with all possible outcomes of a variable?

In the next article, Quantifying Uncertainty, we build on the foundation of self-information and bits to explore entropy – the measure of average uncertainty. Far from being just a beautiful theoretical construct, it has practical applications in data analysis and machine learning, powering tasks like decision tree optimisation, estimating diversity and more.

Claude Shannon. Credit: Wikipedia
Claude Shannon. Credit: Wikipedia

Loved this post? ❤️🍕

💌 Follow me here, join me on LinkedIn or 🍕 buy me a pizza slice!

About This Series

Even though I have twenty years of experience in data analysis and predictive modelling I always felt quite uneasy about using concepts in information theory without truly understanding them.

The purpose of this series was to put me more at ease with concepts of information theory and hopefully provide for others the explanations I needed.

🤷 Quantifying Uncertainty – A Data Scientist’s Intro To Information Theory – Part 2/4: EntropyGa_in intuition into Entropy and master its applications in Machine Learning and Data Analysis. Python code included. 🐍 me_dium.com

Check out my other articles which I wrote to better understand Causality and Bayesian Statistics:

Footnotes

¹ A Mathematical Theory of Communication, Claude E. Shannon, Bell System Technical Journal 1948.

It was later renamed to a book The Mathematical Theory of Communication in 1949.

[Shannon’s “A Mathematical Theory of Communication”] the blueprint for the digital era – Historian James Gleick

² See Wikipedia page on Information Content (i.e, self-information) for a detailed derivation that only the log function meets all three axioms.

³ The decimal-digit was later renamed to a hartley (symbol Hart), a ban or a dit. See Hartley (unit) Wikipedia page.

Credits

Unless otherwise noted, all images were created by the author.

Many thanks to Will Reynolds and Pascal Bugnion for their useful comments.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Nutanix expands beyond HCI

The Pure Storage integration will also be supported within Cisco’s FlashStack offering, creating a “FlashStack with Nutanix” solution with storage provided by Pure, networking capabilities as well as UCS servers from Cisco, and then the common Nutanix Cloud Platform. Cloud Native AOS: Breaking free from hypervisors Another sharp departure from

Read More »

IBM introduces new generation of LinuxOne AI mainframe

In addition to generative AI applications, new multiple model AI approaches are engineered to enhance prediction and accuracy in many industry use cases like advanced fraud detection, image processing and retail automation, according to IBM. LinuxONE Emperor 5 also comes with advanced security features specifically designed for the AI threat

Read More »

CIP to Invest $500 Million in BKV CCUS Projects

BKV Corp. and Copenhagen Infrastructure Partners (CIP) have agreed to form a joint venture (JV) on carbon capture, utilization and storage (CCUS) in the United States. Denver, Colorado-based BKV, a producer of natural gas and power, will contribute its stakes in existing and future CCUS projects to the JV. Meanwhile energy transition-focused Danish investor CIP will invest $500 million in the JV for a stake of 49 percent. “BKV has contributed to the JV its ownership of the Barnett Zero and Eagle Ford projects, and has committed to future contributions of CCUS projects, related assets and/or cash, in exchange for a 51 percent interest in the JV”, a joint statement said. The Barnett Zero Project in the Texan city of Bridgeport has sequestered over 200,000 metric tons of carbon dioxide (CO2) equivalent emissions since it began operation November 2023. Serving natural gas processing plants, Barnett Zero has a sequestration rate of about 185,000 metric tons a year, according to BKV. It co-owns the project with EnLink Midstream LLC. Meanwhile the proposed Eagle Ford Project, to be built at a natural gas processing plant in South Texas, is expected to reach full operation next year. BKV, which has partnered with a midstream company for the project, anticipates the sequestration rate to be around 90,000 metric tons per annum of CO2 equivalent. Approved by BKV December 2024, the project has received approval from the Texas Railroad Commission for its Class II injection well. A monitoring, reporting and verification plan has also been submitted to the United States Environmental Protection Agency for approval, according to BKV. “The JV will leverage BKV’s standing as an early leader in developing CCUS projects while benefiting from CIP’s significant experience in developing low-carbon infrastructure projects”, the statement said. “BKV and CIP expect to identify investment-ready projects for development

Read More »

USA Crude Oil Inventories Drop Week on Week

U.S. commercial crude oil inventories, excluding those in the Strategic Petroleum Reserve (SPR), decreased by two million barrels from the week ending April 25 to the week ending May 2, the U.S. Energy Information Administration (EIA) highlighted in its latest weekly petroleum status report. That EIA report was released on May 7 and included data for the week ending May 2. It showed that crude oil stocks, not including the SPR, stood at 438.4 million barrels on May 2, 440.4 million barrels on April 25, and 459.5 million barrels on May 3, 2024. Crude oil in the SPR stood at 399.1 million barrels on May 2, 398.5 million barrels on April 25, and 367.2 million barrels on May 3, 2024, the report outlined. Total petroleum stocks – including crude oil, total motor gasoline, fuel ethanol, kerosene type jet fuel, distillate fuel oil, residual fuel oil, propane/propylene, and other oils – stood at 1.612 billion barrels on May 2, the report showed. Total petroleum stocks were up 1.7 million barrels week on week and up 5.7 million barrels year on year, the report revealed. “At 438.4 million barrels, U.S. crude oil inventories are about seven percent below the five year average for this time of year,” the EIA said in its latest weekly petroleum status report. “Total motor gasoline inventories increased by 0.2 million barrels from last week and are about three percent below the five year average for this time of year. Finished gasoline inventories increased and blending components inventories decreased last week,” it added. “Distillate fuel inventories decreased by 1.1 million barrels last week and are about 13 percent below the five year average for this time of year. Propane/propylene inventories increased by one million barrels from last week and are 11 percent below the five year average for

Read More »

Oceaneering Secures Multi-Year GTA Job from BP

Oceaneering International Inc.’s Offshore Projects Group (OPG) has secured a multi-year deal from BP Mauritania Investments Ltd. Oceaneering said in a media release that the contract includes the provision of subsea inspection, maintenance, and repair (IMR) services and remotely operated vehicle (ROV) services in the Greater Tortue Ahmeyim (GTA) field. Oceaneering will provide support for this contract using a multi-purpose vessel equipped with two of its work-class ROVs. The project will also involve management, engineering, and integration services delivered by Oceaneering’s local and international teams. Engineering and pre-mobilization activities have started, and field operations are anticipated to begin in the second quarter of 2025. The contract is initially set for three years, with two additional one-year extension options available. “We believe that our expertise in delivering high-quality subsea solutions in harsh environments, utilizing our advanced products and services, was a key element to winning this contract. We look forward to supporting bp’s operations in this field”, Ben Laura, Oceaneering’s Chief Operating Officer, said. In mid-April, BP loaded the first cargo of liquefied natural gas (LNG) for export from the Greater Tortue Ahmeyim project. The initial shipment of LNG at GTA marks BP’s third major upstream project launch this year, the company said. These projects are among the first of 10 anticipated by the conclusion of 2027, aligning with BP’s strategy to expand its upstream oil and gas operations, it said in a media release announcing the first LNG shipment. GTA stands out as one of Africa’s most significant offshore ventures, hosting gas reserves at depths reaching 2,850 meters (9,350 feet), according to BP. The governments of Mauritania and Senegal have recognized it as “a project of strategic national importance”. Upon full commissioning, GTA Phase 1 is projected to generate approximately 2.4 million tonnes of LNG annually, catering to global energy

Read More »

China Teapots Make Rare Murban Oil Purchases

At least two independent Chinese refiners have made a rare foray into the broader international crude market, snapping up cargoes of Middle Eastern oil for delivery next month. Fuhai Group Co. and Shaanxi Yanchang Petroleum Group each purchased around 1 million barrels of Abu Dhabi’s Murban crude, according to people familiar with the matter who asked not to be identified because the information is private. The trades were handled by international and Chinese firms, they added. The current trading cycle is for crude loaded in July, and any cargoes bought now for June is considered prompt. Traders were mixed on the reason behind the purchase, with some pointing to a supply overhang in the Middle Eastern market – meaning cheaper barrels – and others flagging costlier fuel oil. The two refiners didn’t respond to a request for comment. China’s smaller processors, known as teapots, typically opt for discounted crude from Iran and Russia, and often use fuel oil as a feedstock. However, the dirty fuel is trading at an unusual premium to international benchmarks, while a tax crackdown by Beijing has added to costs. “Straight-run fuel oil is simply not an economic feedstock currently,” said June Goh, a senior oil market analyst at Sparta Commodities in Singapore. “With healthy simple margins, independent refineries in China are taking this opportunity to buy incremental crude to increase run rates.” Around 12 million barrels of heavy fuel oil and residual fuels flowed into China in April, the lowest since September 2023, according to Kpler. Processing rates by teapots in Shandong, meanwhile, have edged higher since the end of February ahead of peak summer demand, OilChem data shows. Fuhai and Yanchang purchased the Murban cargoes at a premium of around $5 a barrel to August ICE Brent futures, traders said. What do you think? We’d love

Read More »

All about All-Energy 2025

The All-Energy conference is set to return to Glasgow this month as it aims to top last year’s record-breaking show. The event, hosted by RX, aims to bring people from across the low-carbon energy sector together for one of the biggest dates in the industry’s calendar this year. All-Energy was initially set to be kicked off by first minister John Swinney. However, due to “an urgent matter”, he will no longer be in attendance. In his place, deputy first minister, Kate Forbes, will join the opening session alongside UK energy minister Michael Shanks, GB Energy chairman Juergen Maier and more as they discuss ‘Britain’s Clean Power Mission’ on 14 May. However, Shanks is also not set to appear in Glasgow due to Parliamentary commitments, instead he will dial in live via the internet. © Erikka Askeland/DCT MediaEnergy Minister Michael Shanks in a recorded message for day two of Floating Offshore Wind conference in Aberdeen. Unlike its contemporaries, All-Energy does not set itself a theme for each outing, instead, it continuously focuses on “Clean Power 2030 and after 2030,” an event spokesperson explained. All-Energy is a two-day event, running Wednesday 14 May and Thursday 15 May, taking place at Glasgow’s SEC. The organisers have also arranged an evening networking get-together at Glasgow Science Centre on the first night. The spokesperson told Energy Voice that it is important that the event touches on “topics for everyone and all the sectors we serve”, these include the move towards net zero, a just energy transition, and grid upgrades, among others. Last year’s conference saw All-Energy’s previous attendance record topped by 21% and although the event’s organisers don’t make predictions on head count, it said that signups for the year were “running 16% above this time last year”. The group behind the UK’s largest renewable

Read More »

Consultations look to energy market future

Paula Kidd and Philip Reid, Partners CMS discuss two major consultations that are poised to affect the energy industry in the UK.    About partnership content Some Energy Voice online content is funded by outside parties. The revenue from this helps to sustain our independent news gathering. You will always know if you are reading paid-for material as it will be clearly labelled as “Partnership” on the site and on social media channels, This can take two different forms. “Presented by”This means the content has been paid for and produced by the named advertiser. “In partnership with”This means the content has been paid for and approved by the named advertiser but written and edited by our own commercial content team. On March 5, two consultations in relation to the future of the energy market in the UK were launched by the UK Government – Oil and Gas Price Mechanism (the “Fiscal Consultation”) and Building the North Sea’s Energy Future (the “DESNZ Consultation”). These consultations have been seeking input from various stakeholders to develop robust frameworks that support economic growth, job security and environmental sustainability. DESNZ consultation The DESNZ Consultation set out the UK Government’s vision for transforming the North Sea into a leading offshore clean energy industry while continuing to manage the increasingly maturing offshore oil and gas industry. The overarching objective of the consultation was stated to be to ensure long-term jobs, growth and investment in North Sea communities. The consultation initially set out key policy considerations and outlined its plans to invest in various clean energy industries including offshore wind, carbon capture, usage and storage (CCUS), and hydrogen. Key initiatives include establishing Great British Energy (headquartered in Aberdeen) to drive clean energy jobs and investment, and supporting the development of floating offshore wind, CCUS and hydrogen projects. The

Read More »

Tech CEOs warn Senate: Outdated US power grid threatens AI ambitions

The implications are clear: without dramatic improvements to the US energy infrastructure, the nation’s AI ambitions could be significantly constrained by simple physical limitations – the inability to power the massive computing clusters necessary for advanced AI development and deployment. Streamlining permitting processes The tech executives have offered specific recommendations to address these challenges, with several focusing on the need to dramatically accelerate permitting processes for both energy generation and the transmission infrastructure needed to deliver that power to AI facilities, the report added. Intrator specifically called for efforts “to streamline the permitting process to enable the addition of new sources of generation and the transmission infrastructure to deliver it,” noting that current regulatory frameworks were not designed with the urgent timelines of the AI race in mind. This acceleration would help technology companies build and power the massive data centers needed for AI training and inference, which require enormous amounts of electricity delivered reliably and consistently. Beyond the cloud: bringing AI to everyday devices While much of the testimony focused on large-scale infrastructure needs, AMD CEO Lisa Su emphasized that true AI leadership requires “rapidly building data centers at scale and powering them with reliable, affordable, and clean energy sources.” Su also highlighted the importance of democratizing access to AI technologies: “Moving faster also means moving AI beyond the cloud. To ensure every American benefits, AI must be built into the devices we use every day and made as accessible and dependable as electricity.”

Read More »

Networking errors pose threat to data center reliability

Still, IT and networking issues increased in 2024, according to Uptime Institute. The analysis attributed the rise in outages due to increased IT and network complexity, specifically, change management and misconfigurations. “Particularly with distributed services, cloud services, we find that cascading failures often occur when networking equipment is replicated across an entire network,” Lawrence explained. “Sometimes the failure of one forces traffic to move in one direction, overloading capacity at another data center.” The most common causes of major network-related outages were cited as: Configuration/change management failure: 50% Third-party network provider failure: 34% Hardware failure: 31% Firmware/software error: 26% Line breakages: 17% Malicious cyberattack: 17% Network overload/congestion failure: 13% Corrupted firewall/routing tables issues: 8% Weather-related incident: 7% Configuration/change management issues also attributed for 62% of the most common causes of major IT system-/software-related outages. Change-related disruptions consistently are responsible for software-related outages. Human error continues to be one of the “most persistent challenges in data center operations,” according to Uptime’s analysis. The report found that the biggest cause of these failures is data center staff failing to follow established procedures, which has increased by about 10 percentage points compared to 2023. “These are things that were 100% under our control. I mean, we can’t control when the UPS module fails because it was either poorly manufactured, it had a flaw, or something else. This is 100% under our control,” Brown said. The most common causes of major human error-related outages were reported as:

Read More »

Liquid cooling technologies: reducing data center environmental impact

“Highly optimized cold-plate or one-phase immersion cooling technologies can perform on par with two-phase immersion, making all three liquid-cooling technologies desirable options,” the researchers wrote. Factors to consider There are numerous factors to consider when adopting liquid cooling technologies, according to Microsoft’s researchers. First, they advise performing a full environmental, health, and safety analysis, and end-to-end life cycle impact analysis. “Analyzing the full data center ecosystem to include systems interactions across software, chip, server, rack, tank, and cooling fluids allows decision makers to understand where savings in environmental impacts can be made,” they wrote. It is also important to engage with fluid vendors and regulators early, to understand chemical composition, disposal methods, and compliance risks. And associated socioeconomic, community, and business impacts are equally critical to assess. More specific environmental considerations include ozone depletion and global warming potential; the researchers emphasized that operators should only use fluids with low to zero ozone depletion potential (ODP) values, and not hydrofluorocarbons or carbon dioxide. It is also critical to analyze a fluid’s viscosity (thickness or stickiness), flammability, and overall volatility. And operators should only use fluids with minimal bioaccumulation (the buildup of chemicals in lifeforms, typically in fish) and terrestrial and aquatic toxicity. Finally, once up and running, data center operators should monitor server lifespan and failure rates, tracking performance uptime and adjusting IT refresh rates accordingly.

Read More »

Cisco unveils prototype quantum networking chip

Clock synchronization allows for coordinated time-dependent communications between end points that might be cloud databases or in large global databases that could be sitting across the country or across the world, he said. “We saw recently when we were visiting Lawrence Berkeley Labs where they have all of these data sources such as radio telescopes, optical telescopes, satellites, the James Webb platform. All of these end points are taking snapshots of a piece of space, and they need to synchronize those snapshots to the picosecond level, because you want to detect things like meteorites, something that is moving faster than the rotational speed of planet Earth. So the only way you can detect that quickly is if you synchronize these snapshots at the picosecond level,” Pandey said. For security use cases, the chip can ensure that if an eavesdropper tries to intercept the quantum signals carrying the key, they will likely disturb the state of the qubits, and this disturbance can be detected by the legitimate communicating parties and the link will be dropped, protecting the sender’s data. This feature is typically implemented in a Quantum Key Distribution system. Location information can serve as a critical credential for systems to authenticate control access, Pandey said. The prototype quantum entanglement chip is just part of the research Cisco is doing to accelerate practical quantum computing and the development of future quantum data centers.  The quantum data center that Cisco envisions would have the capability to execute numerous quantum circuits, feature dynamic network interconnection, and utilize various entanglement generation protocols. The idea is to build a network connecting a large number of smaller processors in a controlled environment, the data center warehouse, and provide them as a service to a larger user base, according to Cisco.  The challenges for quantum data center network fabric

Read More »

Zyxel launches 100GbE switch for enterprise networks

Port specifications include: 48 SFP28 ports supporting dual-rate 10GbE/25GbE connectivity 8 QSFP28 ports supporting 100GbE connections Console port for direct management access Layer 3 routing capabilities include static routing with support for access control lists (ACLs) and VLAN segmentation. The switch implements IEEE 802.1Q VLAN tagging, port isolation, and port mirroring for traffic analysis. For link aggregation, the switch supports IEEE 802.3ad for increased throughput and redundancy between switches or servers. Target applications and use cases The CX4800-56F targets multiple deployment scenarios where high-capacity backbone connectivity and flexible port configurations are required. “This will be for service providers initially or large deployments where they need a high capacity backbone to deliver a primarily 10G access layer to the end point,” explains Nguyen. “Now with Wi-Fi 7, more 10G/25G capable POE switches are being powered up and need interconnectivity without the bottleneck. We see this for data centers, campus, MDU (Multi-Dwelling Unit) buildings or community deployments.” Management is handled through Zyxel’s NebulaFlex Pro technology, which supports both standalone configuration and cloud management via the Nebula Control Center (NCC). The switch includes a one-year professional pack license providing IGMP technology and network analytics features. The SFP28 ports maintain backward compatibility between 10G and 25G standards, enabling phased migration paths for organizations transitioning between these speeds.

Read More »

Engineers rush to master new skills for AI-driven data centers

According to the Uptime Institute survey, 57% of data centers are increasing salary spending. Data center job roles that saw the highest increases were in operations management – 49% of data center operators said they saw highest increases in this category – followed by junior and mid-level operations staff at 45%, and senior management and strategy at 35%. Other job categories that saw salary growth were electrical, at 32% and mechanical, at 23%. Organizations are also paying premiums on top of salaries for particular skills and certifications. Foote Partners tracks pay premiums for more than 1,300 certified and non-certified skills for IT jobs in general. The company doesn’t segment the data based on whether the jobs themselves are data center jobs, but it does track 60 skills and certifications related to data center management, including skills such as storage area networking, LAN, and AIOps, and 24 data center-related certificates from Cisco, Juniper, VMware and other organizations. “Five of the eight data center-related skills recording market value gains in cash pay premiums in the last twelve months are all AI-related skills,” says David Foote, chief analyst at Foote Partners. “In fact, they are all among the highest-paying skills for all 723 non-certified skills we report.” These skills bring in 16% to 22% of base salary, he says. AIOps, for example, saw an 11% increase in market value over the past year, now bringing in a premium of 20% over base salary, according to Foote data. MLOps now brings in a 22% premium. “Again, these AI skills have many uses of which the data center is only one,” Foote adds. The percentage increase in the specific subset of these skills in data centers jobs may vary. The Uptime Institute survey suggests that the higher pay is motivating workers to stay in the

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »