Stay Ahead, Stay ONMINE

A Visual Guide to How Diffusion Models Work

This article is aimed at those who want to understand exactly how Diffusion Models work, with no prior knowledge expected. I’ve tried to use illustrations wherever possible to provide visual intuitions on each part of these models. I’ve kept mathematical notation and equations to a minimum, and where they are necessary I’ve tried to define […]

This article is aimed at those who want to understand exactly how Diffusion Models work, with no prior knowledge expected. I’ve tried to use illustrations wherever possible to provide visual intuitions on each part of these models. I’ve kept mathematical notation and equations to a minimum, and where they are necessary I’ve tried to define and explain them as they occur.

Intro

I’ve framed this article around three main questions:

  • What exactly is it that diffusion models learn?
  • How and why do diffusion models work?
  • Once you’ve trained a model, how do you get useful stuff out of it?

The examples will be based on the glyffuser, a minimal text-to-image diffusion model that I previously implemented and wrote about. The architecture of this model is a standard text-to-image denoising diffusion model without any bells or whistles. It was trained to generate pictures of new “Chinese” glyphs from English definitions. Have a look at the picture below — even if you’re not familiar with Chinese writing, I hope you’ll agree that the generated glyphs look pretty similar to the real ones!

Random examples of glyffuser training data (left) and generated data (right).

What exactly is it that diffusion models learn?

Generative Ai models are often said to take a big pile of data and “learn” it. For text-to-image diffusion models, the data takes the form of pairs of images and descriptive text. But what exactly is it that we want the model to learn? First, let’s forget about the text for a moment and concentrate on what we are trying to generate: the images.

Probability distributions

Broadly, we can say that we want a generative AI model to learn the underlying probability distribution of the data. What does this mean? Consider the one-dimensional normal (Gaussian) distribution below, commonly written 𝒩(μ,σ²) and parameterized with mean μ = 0 and variance σ² = 1. The black curve below shows the probability density function. We can sample from it: drawing values such that over a large number of samples, the set of values reflects the underlying distribution. These days, we can simply write something like x = random.gauss(0, 1) in Python to sample from the standard normal distribution, although the computational sampling process itself is non-trivial!

Values sampled from an underlying distribution (here, the standard normal 𝒩(0,1)) can then be used to estimate the parameters of that distribution.

We could think of a set of numbers sampled from the above normal distribution as a simple dataset, like that shown as the orange histogram above. In this particular case, we can calculate the parameters of the underlying distribution using maximum likelihood estimation, i.e. by working out the mean and variance. The normal distribution estimated from the samples is shown by the dotted line above. To take some liberties with terminology, you might consider this as a simple example of “learning” an underlying probability distribution. We can also say that here we explicitly learnt the distribution, in contrast with the implicit methods that diffusion models use.

Conceptually, this is all that generative AI is doing — learning a distribution, then sampling from that distribution!

Data representations

What, then, does the underlying probability distribution of a more complex dataset look like, such as that of the image dataset we want to use to train our diffusion model?

First, we need to know what the representation of the data is. Generally, a machine learning (ML) model requires data inputs with a consistent representation, i.e. format. For the example above, it was simply numbers (scalars). For images, this representation is commonly a fixed-length vector.

The image dataset used for the glyffuser model is ~21,000 pictures of Chinese glyphs. The images are all the same size, 128 × 128 = 16384 pixels, and greyscale (single-channel color). Thus an obvious choice for the representation is a vector x of length 16384, where each element corresponds to the color of one pixel: x = (x,x₂,…,x₁₆₃₈₄). We can call the domain of all possible images for our dataset “pixel space”.

An example glyph with pixel values labelled (downsampled to 32 × 32 pixels for readability).

Dataset visualization

We make the assumption that our individual data samples, x, are actually sampled from an underlying probability distribution, q(x), in pixel space, much as the samples from our first example were sampled from an underlying normal distribution in 1-dimensional space. Note: the notation x q(x) is commonly used to mean: “the random variable x sampled from the probability distribution q(x).”

This distribution is clearly much more complex than a Gaussian and cannot be easily parameterized — we need to learn it with a ML model, which we’ll discuss later. First, let’s try to visualize the distribution to gain a better intution.

As humans find it difficult to see in more than 3 dimensions, we need to reduce the dimensionality of our data. A small digression on why this works: the manifold hypothesis posits that natural datasets lie on lower dimensional manifolds embedded in a higher dimensional space — think of a line embedded in a 2-D plane, or a plane embedded in 3-D space. We can use a dimensionality reduction technique such as UMAP to project our dataset from 16384 to 2 dimensions. The 2-D projection retains a lot of structure, consistent with the idea that our data lie on a lower dimensional manifold embedded in pixel space. In our UMAP, we see two large clusters corresponding to characters in which the components are arranged either horizontally (e.g. 明) or vertically (e.g. 草). An interactive version of the plot below with popups on each datapoint is linked here.

 Click here for an interactive version of this plot.

Let’s now use this low-dimensional UMAP dataset as a visual shorthand for our high-dimensional dataset. Remember, we assume that these individual points have been sampled from a continuous underlying probability distribution q(x). To get a sense of what this distribution might look like, we can apply a KDE (kernel density estimation) over the UMAP dataset. (Note: this is just an approximation for visualization purposes.)

This gives a sense of what q(x) should look like: clusters of glyphs correspond to high-probability regions of the distribution. The true q(x) lies in 16384 dimensions — this is the distribution we want to learn with our diffusion model.

We showed that for a simple distribution such as the 1-D Gaussian, we could calculate the parameters (mean and variance) from our data. However, for complex distributions such as images, we need to call on ML methods. Moreover, what we will find is that for diffusion models in practice, rather than parameterizing the distribution directly, they learn it implicitly through the process of learning how to transform noise into data over many steps.

Takeaway

The aim of generative AI such as diffusion models is to learn the complex probability distributions underlying their training data and then sample from these distributions.

How and why do diffusion models work?

Diffusion models have recently come into the spotlight as a particularly effective method for learning these probability distributions. They generate convincing images by starting from pure noise and gradually refining it. To whet your interest, have a look at the animation below that shows the denoising process generating 16 samples.

In this section we’ll only talk about the mechanics of how these models work but if you’re interested in how they arose from the broader context of generative models, have a look at the further reading section below.

What is “noise”?

Let’s first precisely define noise, since the term is thrown around a lot in the context of diffusion. In particular, we are talking about Gaussian noise: consider the samples we talked about in the section about probability distributions. You could think of each sample as an image of a single pixel of noise. An image that is “pure Gaussian noise”, then, is one in which each pixel value is sampled from an independent standard Gaussian distribution, 𝒩(0,1). For a pure noise image in the domain of our glyph dataset, this would be noise drawn from 16384 separate Gaussian distributions. You can see this in the previous animation. One thing to keep in mind is that we can choose the means of these noise distributions, i.e. center them, on specific values — the pixel values of an image, for instance.

For convenience, you’ll often find the noise distributions for image datasets written as a single multivariate distribution 𝒩(0,I) where I is the identity matrix, a covariance matrix with all diagonal entries equal to 1 and zeroes elsewhere. This is simply a compact notation for a set of multiple independent Gaussians — i.e. there are no correlations between the noise on different pixels. In the basic implementations of diffusion models, only uncorrelated (a.k.a. “isotropic”) noise is used. This article contains an excellent interactive introduction on multivariate Gaussians.

Diffusion process overview

Below is an adaptation of the somewhat-famous diagram from Ho et al.’s seminal paper “Denoising Diffusion Probabilistic Models” which gives an overview of the whole diffusion process:

Diagram of the diffusion process adapted from Ho et al. 2020. The glyph 锂, meaning “lithium”, is used as a representative sample from the dataset.

I found that there was a lot to unpack in this diagram and simply understanding what each component meant was very helpful, so let’s go through it and define everything step by step.

We previously used x q(x) to refer to our data. Here, we’ve added a subscript, xₜ, to denote timestep t indicating how many steps of “noising” have taken place. We refer to the samples noised a given timestep as x q(xₜ). x₀​ is clean data and xₜ (t = T) ∼ 𝒩(0,1) is pure noise.

We define a forward diffusion process whereby we corrupt samples with noise. This process is described by the distribution q(xₜ|xₜ₋₁). If we could access the hypothetical reverse process q(xₜ₋₁|xₜ), we could generate samples from noise. As we cannot access it directly because we would need to know x₀​, we use ML to learn the parameters, θ, of a model of this process, 𝑝θ(𝑥ₜ₋₁∣𝑥ₜ). (That should be p subscript θ but medium cannot render it.)

In the following sections we go into detail on how the forward and reverse diffusion processes work.

Forward diffusion, or “noising”

Used as a verb, “noising” an image refers to applying a transformation that moves it towards pure noise by scaling down its pixel values toward 0 while adding proportional Gaussian noise. Mathematically, this transformation is a multivariate Gaussian distribution centered on the pixel values of the preceding image.

In the forward diffusion process, this noising distribution is written as q(xₜ|xₜ₋₁) where the vertical bar symbol “|” is read as “given” or “conditional on”, to indicate the pixel means are passed forward from q(xₜ₋₁) At t = T where T is a large number (commonly 1000) we aim to end up with images of pure noise (which, somewhat confusingly, is also a Gaussian distribution, as discussed previously).

The marginal distributions q(xₜ) represent the distributions that have accumulated the effects of all the previous noising steps (marginalization refers to integration over all possible conditions, which recovers the unconditioned distribution).

Since the conditional distributions are Gaussian, what about their variances? They are determined by a variance schedule that maps timesteps to variance values. Initially, an empirically determined schedule of linearly increasing values from 0.0001 to 0.02 over 1000 steps was presented in Ho et al. Later research by Nichol & Dhariwal suggested an improved cosine schedule. They state that a schedule is most effective when the rate of information destruction through noising is relatively even per step throughout the whole noising process.

Forward diffusion intuition

As we encounter Gaussian distributions both as pure noise q(xₜ, t = T) and as the noising distribution q(xₜ|xₜ₋₁), I’ll try to draw the distinction by giving a visual intuition of the distribution for a single noising step, q(x₁∣x₀), for some arbitrary, structured 2-dimensional data:

Each noising step q(xₜ|xₜ₋₁) is a Gaussian distribution conditioned on the previous step.

The distribution q(x₁∣x₀) is Gaussian, centered around each point in x₀, shown in blue. Several example points x₀⁽ⁱ⁾ are picked to illustrate this, with q(x₁∣x₀ = x₀⁽ⁱ⁾) shown in orange.

In practice, the main usage of these distributions is to generate specific instances of noised samples for training (discussed further below). We can calculate the parameters of the noising distributions at any timestep t directly from the variance schedule, as the chain of Gaussians is itself also Gaussian. This is very convenient, as we don’t need to perform noising sequentially—for any given starting data x₀⁽ⁱ⁾, we can calculate the noised sample xₜ⁽ⁱ⁾ by sampling from q(xₜ∣x₀ = x₀⁽ⁱ⁾) directly.

Forward diffusion visualization

Let’s now return to our glyph dataset (once again using the UMAP visualization as a visual shorthand). The top row of the figure below shows our dataset sampled from distributions noised to various timesteps: xₜ ∼ q(xₜ). As we increase the number of noising steps, you can see that the dataset begins to resemble pure Gaussian noise. The bottom row visualizes the underlying probability distribution q(xₜ).

The dataset xₜ (above) sampled from its probability distribution q(xₜ) (below) at different noising timesteps.

Reverse diffusion overview

It follows that if we knew the reverse distributions q(xₜ₋₁∣xₜ), we could repeatedly subtract a small amount of noise, starting from a pure noise sample xₜ at t = T to arrive at a data sample x₀ ∼ q(x₀). In practice, however, we cannot access these distributions without knowing x₀ beforehand. Intuitively, it’s easy to make a known image much noisier, but given a very noisy image, it’s much harder to guess what the original image was.

So what are we to do? Since we have a large amount of data, we can train an ML model to accurately guess the original image that any given noisy image came from. Specifically, we learn the parameters θ of an ML model that approximates the reverse noising distributions, (xₜ₋₁ ∣ xₜ) for t = 0, …, T. In practice, this is embodied in a single noise prediction model trained over many different samples and timesteps. This allows it to denoise any given input, as shown in the figure below.

The ML model predicts added noise at any given timestep t.

Next, let’s go over how this noise prediction model is implemented and trained in practice.

How the model is implemented

First, we define the ML model — generally a deep neural network of some sort — that will act as our noise prediction model. This is what does the heavy lifting! In practice, any ML model that inputs and outputs data of the correct size can be used; the U-net, an architecture particularly suited to learning images, is what we use here and frequently chosen in practice. More recent models also use vision transformers.

We use the U-net architecture (Ronneberger et al. 2015) for our ML noise prediction model. We train the model by minimizing the difference between predicted and actual noise.

Then we run the training loop depicted in the figure above:

  • We take a random image from our dataset and noise it to a random timestep tt. (In practice, we speed things up by doing many examples in parallel!)
  • We feed the noised image into the ML model and train it to predict the (known to us) noise in the image. We also perform timestep conditioning by feeding the model a timestep embedding, a high-dimensional unique representation of the timestep, so that the model can distinguish between timesteps. This can be a vector the same size as our image directly added to the input (see here for a discussion of how this is implemented).
  • The model “learns” by minimizing the value of a loss function, some measure of the difference between the predicted and actual noise. The mean square error (the mean of the squares of the pixel-wise difference between the predicted and actual noise) is used in our case.
  • Repeat until the model is well trained.

Note: A neural network is essentially a function with a huge number of parameters (on the order of 10for the glyffuser). Neural network ML models are trained by iteratively updating their parameters using backpropagation to minimize a given loss function over many training data examples. This is an excellent introduction. These parameters effectively store the network’s “knowledge”.

A noise prediction model trained in this way eventually sees many different combinations of timesteps and data examples. The glyffuser, for example, was trained over 100 epochs (runs through the whole data set), so it saw around 2 million data samples. Through this process, the model implicity learns the reverse diffusion distributions over the entire dataset at all different timesteps. This allows the model to sample the underlying distribution q(x₀) by stepwise denoising starting from pure noise. Put another way, given an image noised to any given level, the model can predict how to reduce the noise based on its guess of what the original image. By doing this repeatedly, updating its guess of the original image each time, the model can transform any noise to a sample that lies in a high-probability region of the underlying data distribution.

Reverse diffusion in practice

We can now revisit this video of the glyffuser denoising process. Recall a large number of steps from sample to noise e.g. T = 1000 is used during training to make the noise-to-sample trajectory very easy for the model to learn, as changes between steps will be small. Does that mean we need to run 1000 denoising steps every time we want to generate a sample?

Luckily, this is not the case. Essentially, we can run the single-step noise prediction but then rescale it to any given step, although it might not be very good if the gap is too large! This allows us to approximate the full sampling trajectory with fewer steps. The video above uses 120 steps, for instance (most implementations will allow the user to set the number of sampling steps).

Recall that predicting the noise at a given step is equivalent to predicting the original image x₀, and that we can access the equation for any noised image deterministically using only the variance schedule and x₀. Thus, we can calculate xₜ₋ₖ based on any denoising step. The closer the steps are, the better the approximation will be.

Too few steps, however, and the results become worse as the steps become too large for the model to effectively approximate the denoising trajectory. If we only use 5 sampling steps, for example, the sampled characters don’t look very convincing at all:

There is then a whole literature on more advanced sampling methods beyond what we’ve discussed so far, allowing effective sampling with much fewer steps. These often reframe the sampling as a differential equation to be solved deterministically, giving an eerie quality to the sampling videos — I’ve included one at the end if you’re interested. In production-level models, these are usually preferred over the simple method discussed here, but the basic principle of deducing the noise-to-sample trajectory is the same. A full discussion is beyond the scope of this article but see e.g. this paper and its corresponding implementation in the Hugging Face diffusers library for more information.

Alternative intuition from score function

To me, it was still not 100% clear why training the model on noise prediction generalises so well. I found that an alternative interpretation of diffusion models known as “score-based modeling” filled some of the gaps in intuition (for more information, refer to Yang Song’s definitive article on the topic.)

The dataset xₜ sampled from its probability distribution q(xₜ) at different noising timesteps; below, we add the score function ∇ₓ log q(xₜ).

I try to give a visual intuition in the bottom row of the figure above: essentially, learning the noise in our diffusion model is equivalent (to a constant factor) to learning the score function, which is the gradient of the log of the probability distribution: ∇ₓ log q(x). As a gradient, the score function represents a vector field with vectors pointing towards the regions of highest probability density. Subtracting the noise at each step is then equivalent to moving following the directions in this vector field towards regions of high probability density.

As long as there is some signal, the score function effectively guides sampling, but in regions of low probability it tends towards zero as there is little to no gradient to follow. Using many steps to cover different noise levels allows us to avoid this, as we smear out the gradient field at high noise levels, allowing sampling to converge even if we start from low probability density regions of the distribution. The figure shows that as the noise level is increased, more of the domain is covered by the score function vector field.

Summary

  • The aim of diffusion models is learn the underlying probability distribution of a dataset and then be able to sample from it. This requires forward and reverse diffusion (noising) processes.
  • The forward noising process takes samples from our dataset and gradually adds Gaussian noise (pushes them off the data manifold). This forward process is computationally efficient because any level of noise can be added in closed form a single step.
  • The reverse noising process is challenging because we need to predict how to remove the noise at each step without knowing the original data point in advance. We train a ML model to do this by giving it many examples of data noised at different timesteps.
  • Using very small steps in the forward noising process makes it easier for the model to learn to reverse these steps, as the changes are small.
  • By applying the reverse noising process iteratively, the model refines noisy samples step by step, eventually producing a realistic data point (one that lies on the data manifold).

Takeaway

Diffusion models are a powerful framework for learning complex data distributions. The distributions are learnt implicitly by modelling a sequential denoising process. This process can then be used to generate samples similar to those in the training distribution.

Once you’ve trained a model, how do you get useful stuff out of it?

Earlier uses of generative AI such as “This Person Does Not Exist” (ca. 2019) made waves simply because it was the first time most people had seen AI-generated photorealistic human faces. A generative adversarial network or “GAN” was used in that case, but the principle remains the same: the model implicitly learnt a underlying data distribution — in that case, human faces — then sampled from it. So far, our glyffuser model does a similar thing: it samples randomly from the distribution of Chinese glyphs.

The question then arises: can we do something more useful than just sample randomly? You’ve likely already encountered text-to-image models such as Dall-E. They are able to incorporate extra meaning from text prompts into the diffusion process — this in known as conditioning. Likewise, diffusion models for scientific scientific applications like protein (e.g. Chroma, RFdiffusion, AlphaFold3) or inorganic crystal structure generation (e.g. MatterGen) become much more useful if can be conditioned to generate samples with desirable properties such as a specific symmetry, bulk modulus, or band gap.

Conditional distributions

We can consider conditioning as a way to guide the diffusion sampling process towards particular regions of our probability distribution. We mentioned conditional distributions in the context of forward diffusion. Below we show how conditioning can be thought of as reshaping a base distribution.

A simple example of a joint probability distribution p(x, y), shown as a contour map, along with its two marginal 1-D probability distributions, p(x) and p(y). The highest points of p(x, y) are at (x₁, y₁) and (x₂, y₂). The conditional distributions p(xy = y₁) and p(xy = y₂) are shown overlaid on the main plot.

Consider the figure above. Think of p(x) as a distribution we want to sample from (i.e., the images) and p(y) as conditioning information (i.e., the text dataset). These are the marginal distributions of a joint distribution p(x, y). Integrating p(x, y) over y recovers p(x), and vice versa.

Sampling from p(x), we are equally likely to get x₁ or x₂. However, we can condition on p(y = y₁) to obtain p(xy = y₁). You can think of this as taking a slice through p(x, y) at a given value of y. In this conditioned distribution, we are much more likely to sample at x₁ than x₂.

In practice, in order to condition on a text dataset, we need to convert the text into a numerical form. We can do this using large language model (LLM) embeddings that can be injected into the noise prediction model during training.

Embedding text with an LLM

In the glyffuser, our conditioning information is in the form of English text definitions. We have two requirements: 1) ML models prefer fixed-length vectors as input. 2) The numerical representation of our text must understand context — if we have the words “lithium” and “element” nearby, the meaning of “element” should be understood as “chemical element” rather than “heating element”. Both of these requirements can be met by using a pre-trained LLM.

The diagram below shows how an LLM converts text into fixed-length vectors. The text is first tokenized (LLMs break text into tokens, small chunks of characters, as their basic unit of interaction). Each token is converted into a base embedding, which is a fixed-length vector of the size of the LLM input. These vectors are then passed through the pre-trained LLM (here we use the encoder portion of Google’s T5 model), where they are imbued with additional contextual meaning. We end up with a array of n vectors of the same length d, i.e. a (n, d) sized tensor.

We can convert text to a numerical embedding imbued with contextual meaning using a pre-trained LLM.

Note: in some models, notably Dall-E, additional image-text alignment is performed using contrastive pretraining. Imagen seems to show that we can get away without doing this.

Training the diffusion model with text conditioning

The exact method that this embedding vector is injected into the model can vary. In Google’s Imagen model, for example, the embedding tensor is pooled (combined into a single vector in the embedding dimension) and added into the data as it passes through the noise prediction model; it is also included in a different way using cross-attention (a method of learning contextual information between sequences of tokens, most famously used in the transformer models that form the basis of LLMs like ChatGPT).

Conditioning information can be added via multiple different methods but the training loss remains the same.

In the glyffuser, we only use cross-attention to introduce this conditioning information. While a significant architectural change is required to introduce this additional information into the model, the loss function for our noise prediction model remains exactly the same.

Testing the conditioned diffusion model

Let’s do a simple test of the fully trained conditioned diffusion model. In the figure below, we try to denoise in a single step with the text prompt “Gold”. As touched upon in our interactive UMAP, Chinese characters often contain components known as radicals which can convey sound (phonetic radicals) or meaning (semantic radicals). A common semantic radical is derived from the character meaning “gold”, “金”, and is used in characters that are in some broad sense associated with gold or metals.

Even with a single sampling step, conditioning guides denoising towards the relevant regions of the probability distribution.

The figure shows that even though a single step is insufficient to approximate the denoising trajectory very well, we have moved into a region of our probability distribution with the “金” radical. This indicates that the text prompt is effectively guiding our sampling towards a region of the glyph probability distribution related to the meaning of the prompt. The animation below shows a 120 step denoising sequence for the same prompt, “Gold”. You can see that every generated glyph has either the 釒 or 钅 radical (the same radical in traditional and simplified Chinese, respectively).

Takeaway

Conditioning enables us to sample meaningful outputs from diffusion models.

Further remarks

I found that with the help of tutorials and existing libraries, it was possible to implement a working diffusion model despite not having a full understanding of what was going on under the hood. I think this is a good way to start learning and highly recommend Hugging Face’s tutorial on training a simple diffusion model using their diffusers Python library (which now includes my small bugfix!).

I’ve omitted some topics that are crucial to how production-grade diffusion models function, but are unnecessary for core understanding. One is the question of how to generate high resolution images. In our example, we did everything in pixel space, but this becomes very computationally expensive for large images. The general approach is to perform diffusion in a smaller space, then upscale it in a separate step. Methods include latent diffusion (used in Stable Diffusion) and cascaded super-resolution models (used in Imagen). Another topic is classifier-free guidance, a very elegant method for boosting the conditioning effect to give much better prompt adherence. I show the implementation in my previous post on the glyffuser and highly recommend this article if you want to learn more.

Further reading

A non-exhaustive list of materials I found very helpful:

Fun extras

Diffusion sampling using the DPMSolverSDEScheduler developed by Katherine Crowson and implemented in Hugging Face diffusers—note the smooth transition from noise to data.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

US lets China buy semiconductor design software again

The reversal marks a dramatic shift from the aggressive stance the Trump administration took in May, when it imposed sweeping restrictions on electronic design automation (EDA) software — the critical tools needed to design advanced semiconductors.  A short-lived stoppage  The restrictions had targeted what analysts called the “upstream” of chip

Read More »

Hardcoded root credentials in Cisco Unified CM trigger max-severity alert

The affected products-Cisco Unified CM and Unified CM SME–are core components of enterprise telephony infrastructure, widely deployed across government agencies, financial institutions, and large corporations to manage voice, video, and messaging at scale. A flaw in these systems could allow attackers to compromise an organization’s communications, letting them log in

Read More »

Angola Raises Diesel Price by 33 Pct, Third Increase This Year

Angola raised the diesel price by 33%, the third increase this year as authorities press ahead with fuel-subsidy cuts that have been encouraged by the International Monetary Fund. The price will rise to 400 kwanzas ($0.43) per liter on Friday from 300 kwanza previously, the Petroleum Derivatives Regulatory Institute said in a statement late Thursday. The increase is part of a “gradual adjustment of fuel prices,” it said. Previous hikes were announced in March and April. The IRDP said prices of other fuels, including gasoline and liquefied-petroleum gas, will remain unchanged in Angola, Africa’s third-largest oil producer. The IMF said in February that Angola should do more to eliminate subsidies that cost about $3 billion last year — similar to the amount the government spent on health and education last year. The latest hike follows an IMF-World Bank review of Angola’s financial system that ended last month. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

OPEC+ Moves Meeting to Saturday as Group Weighs Another Hike

Key OPEC+ members brought forward to Saturday an online meeting where they’re set to consider a fourth bumper oil production increase, delegates said.  Saudi Arabia and its partners have been discussing another output hike of 411,000 barrels a day for August as their base-case scenario as they seek to recoup lost market share. The video-conference was moved one day earlier because of scheduling issues, said the officials, who asked not to be identified since the change isn’t yet public.   The Organization of the Petroleum Exporting Countries has roiled markets in recent months by speeding up the return of halted output, despite faltering demand and an impending surplus. Their strategy shift is dragging crude prices lower, offering relief to consumers and playing into calls from US President Donald Trump for cheaper fuel. Eight major OPEC+ members have already agreed to restart 411,000 barrels a day in May, June and July, triple the rate they initially scheduled. Officials have said that Riyadh is eager to revive more idle production as quickly as possible to regain market share ceded to US shale drillers and other rivals. The kingdom’s pivot away from years of supply restraint aimed at shoring up crude prices has upended traders’ assumptions about what role the OPEC+ alliance will continue to play in world oil markets. Brent crude futures traded near $68 a barrel in London on Friday. The international benchmark plunged 12% last week as a tentative truce between Israel and Iran allayed fears over the threat to Middle East energy exports.    Further OPEC+ increases threaten to create a glut. Global oil inventories have been building at a brisk clip of around 1 million barrels a day in recent months as demand cools in China and supplies continue to swell across the Americas.  Markets are headed for a substantial surplus later this year,

Read More »

Methane Emission Tracking Satellite Lost in Space, EDF Says

Methane emissions tracking satellite MethaneSAT lost contact with mission operations, and it is “likely not recoverable,” the Environmental Defense Fund (EDF) said in a statement. “After pursuing all options to restore communications, we learned this morning that the satellite has lost power,” the EDF said. “The engineering team is conducting a thorough investigation into the loss of communication. This is expected to take time. We will share what we learn,” the nonprofit organization added. Launched in March 2024, MethaneSAT had been collecting methane emissions data over the past year. It was one of the most advanced methane tracking satellites in space, measuring methane emissions in oil and gas producing regions across the world, according to the statement. “The mission has been a remarkable success in terms of scientific and technological accomplishment, and for its lasting influence on both industry and regulators worldwide,” the EDF said. “Thanks to MethaneSAT, we have gained critical insight about the distribution and volume of methane being released from oil and gas production areas. We have also developed an unprecedented capability to interpret the measurements from space and translate them into volumes of methane released. This capacity will be valuable to other missions,” the organization continued. MethaneSAT had the ability to monitor both high-emitting methane sources and small sources spread over a wide area, according to the release. It is designed to measure regions at intervals under seven days, regularly monitoring roughly 50 major regions accounting for more than 80 percent of global oil and gas production, according to an earlier statement. “The advanced spectrometers developed specifically for MethaneSAT met or exceeded all expectations throughout the mission. In combination with the mission algorithms and software, we showed that the highly sensitive instrument could see total methane emissions, even at low levels, over wide areas, including both

Read More »

How Has USA Energy Use Changed Since 1776?

A new analysis piece published on the U.S. Energy Information Administration (EIA) website recently, which was penned by Mickey Francis, Program Manager and Lead Economist for the EIA’s State Energy Data System, has outlined how U.S. energy use has changed since the Declaration of Independence was signed in 1776. The piece highlighted that, according to the EIA’s monthly energy review, in 2024, the U.S. consumed about 94 quadrillion British thermal units (quads) of energy. Fossil fuels – namely petroleum, natural gas, and coal – made up 82 percent of total U.S. energy consumption last year, the piece pointed out, adding that non-fossil fuel energy accounted for the other 18 percent. Petroleum remained the most-consumed fuel in the United States, the piece stated, outlining that this has been the case for the past 75 years. It also highlighted that, last year, nuclear energy consumption exceeded coal consumption for the first time ever. The analysis piece went on to note that, when the Declaration of Independence was signed in 1776, wood was the largest source of energy in the United States. “Used for heating, cooking, and lighting, wood remained the largest U.S. energy source until the late 1800s, when coal consumption became more common,” it added. “Wood energy is still consumed, mainly by industrial lumber and paper plants that burn excess wood waste to generate electricity,” it continued. The piece went on to highlight that coal was the largest source of U.S. energy for about 65 years, from 1885 until 1950. “Early uses of coal included many purposes that are no longer common, such as in stoves for home heating and in engines for trains and ships. Since the 1960s, nearly all coal consumed in the United States has been for electricity generation,” the piece said. The analysis piece went on to state that petroleum has

Read More »

Ocean Installer Awarded EPCI Contract for Var Energi’s Balder Project

Subsea services firm Ocean Installer has been awarded a fast-track engineering, procurement, construction and installation (EPCI) contract by Var Energi for further development of the Balder Phase VI project for the further development of the Balder area in the North Sea. This project is part of Var Energi’s hub development strategy in the Balder area, which is centered around the newly installed Jotun floating production storage and offloading vessel (FPSO), Ocean Installer said in a news release. Ocean Installer said it will execute subsea umbilicals, risers, and flowlines (SURF) activities including the fabrication and installation of flexible flowlines and umbilicals. Financial details of the contract were not disclosed. The project is scheduled to deliver first oil by the end of 2026, reinforcing both companies’ shared commitment to efficient development of subsea tie-backs on the Norwegian Continental Shelf (NCS), according to the release. “Var Energi is a key customer for Ocean Installer and the wider Moreld group. It’s exciting to see that Ocean Installer signs a new contract within the same week that the Jotun FPSO starts producing first oil as part of the Balder Future project, in which Ocean Installer has played a key role,” Moreld CEO Geir Austigard said. The contract is called off under the strategic partnership contract entered into with Vår Energi in June 2022. It is also a continuation of a multi-year collaboration between Vår Energi and Ocean Installer in the Balder area, where Ocean Installer has been engaged since 2019, the release said. “We are happy that Vår Energi continues to place their trust in us. Subsea tiebacks have been the core of our business for 14 years, and as the NCS transitions to more marginal fields, our expertise is valuable in enabling faster and more cost-efficient developments. Working together with Vår Energi to utilize

Read More »

ADNOC Drilling Wins $800MM Contract for Fracking Services

ADNOC Drilling Company said it was awarded a contract valued at up to $800 million by ADNOC Onshore for the provision of integrated hydraulic fracturing services for conventional and tight reservoirs. The five-year agreement is set to begin in the third quarter, ADNOC Drilling said in a news release. The contract’s scope of work supports ADNOC’s strategic goal to accelerate the development of conventional and tight reservoirs across the United Arab Emirates (UAE) and includes the design, execution, and evaluation of multistage hydraulic fracturing treatments, which will be deployed across a wide range of assets in Abu Dhabi, according to the release. Fracturing services for conventional and tight reservoirs are used to enhance the flow of oil or gas through existing natural pathways and optimize production by improving flow rates, the company said. ADNOC Drilling said it plans to “deploy advanced technologies throughout the project to maximize efficiency and performance”. Proprietary fracturing simulation software will be used to optimize every stage of the operation, increasing flow rates and overall hydrocarbon recovery. Intelligent fluid systems will adapt dynamically in real-time to reservoir conditions, improving fracture efficiency and reducing environmental impact, while automated pumping units and blending systems will enhance safety, streamline operations and reduce the need for on-site manpower, the company stated. ADNOC Drilling’s new CEO, Abdulla Ateya Al Messabi, said, “This significant contract is a powerful endorsement of ADNOC Drilling’s expanding capabilities and our trusted partnership with ADNOC Onshore. It reflects our ability to deliver high-impact, technologically advanced fracturing services that will help unlock the UAE’s energy potential. As we continue our transformation, we are proud to support the nation’s strategic energy goals and reinforce our position as a leader in integrated drilling and completion solutions”. The award “further reinforces ADNOC Drilling’s leadership in high-tech oilfield services, combining next-generation equipment,

Read More »

CoreWeave achieves a first with Nvidia GB300 NVL72 deployment

The deployment, Kimball said, “brings Dell quality to the commodity space. Wins like this really validate what Dell has been doing in reshaping its portfolio to accommodate the needs of the market — both in the cloud and the enterprise.” Although concerns were voiced last year that Nvidia’s next-generation Blackwell data center processors had significant overheating problems when they were installed in high-capacity server racks, he said that a repeat performance is unlikely. Nvidia, said Kimball “has been very disciplined in its approach with its GPUs and not shipping silicon until it is ready. And Dell almost doubles down on this maniacal quality focus. I don’t mean to sound like I have blind faith, but I’ve watched both companies over the last several years be intentional in delivering product in volume. Especially as the competitive market starts to shape up more strongly, I expect there is an extremely high degree of confidence in quality.” CoreWeave ‘has one purpose’ He said, “like Lambda Labs, Crusoe and others, [CoreWeave] seemingly has one purpose (for now): deliver GPU capacity to the market. While I expect these cloud providers will expand in services, I think for now the type of customer employing services is on the early adopter side of AI. From an enterprise perspective, I have to think that organizations well into their AI journey are the consumers of CoreWeave.”  “CoreWeave is also being utilized by a lot of the model providers and tech vendors playing in the AI space,” Kimball pointed out. “For instance, it’s public knowledge that Microsoft, OpenAI, Meta, IBM and others use CoreWeave GPUs for model training and more. It makes sense. These are the customers that truly benefit from the performance lift that we see from generation to generation.”

Read More »

Oracle to power OpenAI’s AGI ambitions with 4.5GW expansion

“For CIOs, this shift means more competition for AI infrastructure. Over the next 12–24 months, securing capacity for AI workloads will likely get harder, not easier. Though cost is coming down but demand is increasing as well, due to which CIOs must plan earlier and build stronger partnerships to ensure availability,” said Pareekh Jain, CEO at EIIRTrend & Pareekh Consulting. He added that CIOs should expect longer wait times for AI infrastructure. To mitigate this, they should lock in capacity through reserved instances, diversify across regions and cloud providers, and work with vendors to align on long-term demand forecasts.  “Enterprises stand to benefit from more efficient and cost-effective AI infrastructure tailored to specialized AI workloads, significantly lower their overall future AI-related investments and expenses. Consequently, CIOs face a critical task: to analyze and predict the diverse AI workloads that will prevail across their organizations, business units, functions, and employee personas in the future. This foresight will be crucial in prioritizing and optimizing AI workloads for either in-house deployment or outsourced infrastructure, ensuring strategic and efficient resource allocation,” said Neil Shah, vice president at Counterpoint Research. Strategic pivot toward AI data centers The OpenAI-Oracle deal comes in stark contrast to developments earlier this year. In April, AWS was reported to be scaling back its plans for leasing new colocation capacity — a move that AWS Vice President for global data centers Kevin Miller described as routine capacity management, not a shift in long-term expansion plans. Still, these announcements raised questions around whether the hyperscale data center boom was beginning to plateau. “This isn’t a slowdown, it’s a strategic pivot. The era of building generic data center capacity is over. The new global imperative is a race for specialized, high-density, AI-ready compute. Hyperscalers are not slowing down; they are reallocating their capital to

Read More »

Arista Buys VeloCloud to reboot SD-WANs amid AI infrastructure shift

What this doesn’t answer is how Arista Networks plans to add newer, security-oriented Secure Access Service Edge (SASE) capabilities to VeloCloud’s older SD-WAN technology. Post-acquisition, it still has only some of the building blocks necessary to achieve this. Mapping AI However, in 2025 there is always more going on with networking acquisitions than simply adding another brick to the wall, and in this case it’s the way AI is changing data flows across networks. “In the new AI era, the concepts of what comprises a user and a site in a WAN have changed fundamentally. The introduction of agentic AI even changes what might be considered a user,” wrote Arista Networks CEO, Jayshree Ullal, in a blog highlighting AI’s effect on WAN architectures. “In addition to people accessing data on demand, new AI agents will be deployed to access data independently, adapting over time to solve problems and enhance user productivity,” she said. Specifically, WANs needed modernization to cope with the effect AI traffic flows are having on data center traffic. Sanjay Uppal, now VP and general manager of the new VeloCloud Division at Arista Networks, elaborated. “The next step in SD-WAN is to identify, secure and optimize agentic AI traffic across that distributed enterprise, this time from all end points across to branches, campus sites, and the different data center locations, both public and private,” he wrote. “The best way to grab this opportunity was in partnership with a networking systems leader, as customers were increasingly looking for a comprehensive solution from LAN/Campus across the WAN to the data center.”

Read More »

Data center capacity continues to shift to hyperscalers

However, even though colocation and on-premises data centers will continue to lose share, they will still continue to grow. They just won’t be growing as fast as hyperscalers. So, it creates the illusion of shrinkage when it’s actually just slower growth. In fact, after a sustained period of essentially no growth, on-premises data center capacity is receiving a boost thanks to genAI applications and GPU infrastructure. “While most enterprise workloads are gravitating towards cloud providers or to off-premise colo facilities, a substantial subset are staying on-premise, driving a substantial increase in enterprise GPU servers,” said John Dinsdale, a chief analyst at Synergy Research Group.

Read More »

Oracle inks $30 billion cloud deal, continuing its strong push into AI infrastructure.

He pointed out that, in addition to its continued growth, OCI has a remaining performance obligation (RPO) — total future revenue expected from contracts not yet reported as revenue — of $138 billion, a 41% increase, year over year. The company is benefiting from the immense demand for cloud computing largely driven by AI models. While traditionally an enterprise resource planning (ERP) company, Oracle launched OCI in 2016 and has been strategically investing in AI and data center infrastructure that can support gigawatts of capacity. Notably, it is a partner in the $500 billion SoftBank-backed Stargate project, along with OpenAI, Arm, Microsoft, and Nvidia, that will build out data center infrastructure in the US. Along with that, the company is reportedly spending about $40 billion on Nvidia chips for a massive new data center in Abilene, Texas, that will serve as Stargate’s first location in the country. Further, the company has signaled its plans to significantly increase its investment in Abu Dhabi to grow out its cloud and AI offerings in the UAE; has partnered with IBM to advance agentic AI; has launched more than 50 genAI use cases with Cohere; and is a key provider for ByteDance, which has said it plans to invest $20 billion in global cloud infrastructure this year, notably in Johor, Malaysia. Ellison’s plan: dominate the cloud world CTO and co-founder Larry Ellison announced in a recent earnings call Oracle’s intent to become No. 1 in cloud databases, cloud applications, and the construction and operation of cloud data centers. He said Oracle is uniquely positioned because it has so much enterprise data stored in its databases. He also highlighted the company’s flexible multi-cloud strategy and said that the latest version of its database, Oracle 23ai, is specifically tailored to the needs of AI workloads. Oracle

Read More »

Datacenter industry calls for investment after EU issues water consumption warning

CISPE’s response to the European Commission’s report warns that the resulting regulatory uncertainty could hurt the region’s economy. “Imposing new, standalone water regulations could increase costs, create regulatory fragmentation, and deter investment. This risks shifting infrastructure outside the EU, undermining both sustainability and sovereignty goals,” CISPE said in its latest policy recommendation, Advancing water resilience through digital innovation and responsible stewardship. “Such regulatory uncertainty could also reduce Europe’s attractiveness for climate-neutral infrastructure investment at a time when other regions offer clear and stable frameworks for green data growth,” it added. CISPE’s recommendations are a mix of regulatory harmonization, increased investment, and technological improvement. Currently, water reuse regulation is directed towards agriculture. Updated regulation across the bloc would encourage more efficient use of water in industrial settings such as datacenters, the asosciation said. At the same time, countries struggling with limited public sector budgets are not investing enough in water infrastructure. This could only be addressed by tapping new investment by encouraging formal public-private partnerships (PPPs), it suggested: “Such a framework would enable the development of sustainable financing models that harness private sector innovation and capital, while ensuring robust public oversight and accountability.” Nevertheless, better water management would also require real-time data gathered through networks of IoT sensors coupled to AI analytics and prediction systems. To that end, cloud datacenters were less a drain on water resources than part of the answer: “A cloud-based approach would allow water utilities and industrial users to centralize data collection, automate operational processes, and leverage machine learning algorithms for improved decision-making,” argued CISPE.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »