Stay Ahead, Stay ONMINE

A Visual Guide to How Diffusion Models Work

This article is aimed at those who want to understand exactly how Diffusion Models work, with no prior knowledge expected. I’ve tried to use illustrations wherever possible to provide visual intuitions on each part of these models. I’ve kept mathematical notation and equations to a minimum, and where they are necessary I’ve tried to define […]

This article is aimed at those who want to understand exactly how Diffusion Models work, with no prior knowledge expected. I’ve tried to use illustrations wherever possible to provide visual intuitions on each part of these models. I’ve kept mathematical notation and equations to a minimum, and where they are necessary I’ve tried to define and explain them as they occur.

Intro

I’ve framed this article around three main questions:

  • What exactly is it that diffusion models learn?
  • How and why do diffusion models work?
  • Once you’ve trained a model, how do you get useful stuff out of it?

The examples will be based on the glyffuser, a minimal text-to-image diffusion model that I previously implemented and wrote about. The architecture of this model is a standard text-to-image denoising diffusion model without any bells or whistles. It was trained to generate pictures of new “Chinese” glyphs from English definitions. Have a look at the picture below — even if you’re not familiar with Chinese writing, I hope you’ll agree that the generated glyphs look pretty similar to the real ones!

Random examples of glyffuser training data (left) and generated data (right).

What exactly is it that diffusion models learn?

Generative Ai models are often said to take a big pile of data and “learn” it. For text-to-image diffusion models, the data takes the form of pairs of images and descriptive text. But what exactly is it that we want the model to learn? First, let’s forget about the text for a moment and concentrate on what we are trying to generate: the images.

Probability distributions

Broadly, we can say that we want a generative AI model to learn the underlying probability distribution of the data. What does this mean? Consider the one-dimensional normal (Gaussian) distribution below, commonly written 𝒩(μ,σ²) and parameterized with mean μ = 0 and variance σ² = 1. The black curve below shows the probability density function. We can sample from it: drawing values such that over a large number of samples, the set of values reflects the underlying distribution. These days, we can simply write something like x = random.gauss(0, 1) in Python to sample from the standard normal distribution, although the computational sampling process itself is non-trivial!

Values sampled from an underlying distribution (here, the standard normal 𝒩(0,1)) can then be used to estimate the parameters of that distribution.

We could think of a set of numbers sampled from the above normal distribution as a simple dataset, like that shown as the orange histogram above. In this particular case, we can calculate the parameters of the underlying distribution using maximum likelihood estimation, i.e. by working out the mean and variance. The normal distribution estimated from the samples is shown by the dotted line above. To take some liberties with terminology, you might consider this as a simple example of “learning” an underlying probability distribution. We can also say that here we explicitly learnt the distribution, in contrast with the implicit methods that diffusion models use.

Conceptually, this is all that generative AI is doing — learning a distribution, then sampling from that distribution!

Data representations

What, then, does the underlying probability distribution of a more complex dataset look like, such as that of the image dataset we want to use to train our diffusion model?

First, we need to know what the representation of the data is. Generally, a machine learning (ML) model requires data inputs with a consistent representation, i.e. format. For the example above, it was simply numbers (scalars). For images, this representation is commonly a fixed-length vector.

The image dataset used for the glyffuser model is ~21,000 pictures of Chinese glyphs. The images are all the same size, 128 × 128 = 16384 pixels, and greyscale (single-channel color). Thus an obvious choice for the representation is a vector x of length 16384, where each element corresponds to the color of one pixel: x = (x,x₂,…,x₁₆₃₈₄). We can call the domain of all possible images for our dataset “pixel space”.

An example glyph with pixel values labelled (downsampled to 32 × 32 pixels for readability).

Dataset visualization

We make the assumption that our individual data samples, x, are actually sampled from an underlying probability distribution, q(x), in pixel space, much as the samples from our first example were sampled from an underlying normal distribution in 1-dimensional space. Note: the notation x q(x) is commonly used to mean: “the random variable x sampled from the probability distribution q(x).”

This distribution is clearly much more complex than a Gaussian and cannot be easily parameterized — we need to learn it with a ML model, which we’ll discuss later. First, let’s try to visualize the distribution to gain a better intution.

As humans find it difficult to see in more than 3 dimensions, we need to reduce the dimensionality of our data. A small digression on why this works: the manifold hypothesis posits that natural datasets lie on lower dimensional manifolds embedded in a higher dimensional space — think of a line embedded in a 2-D plane, or a plane embedded in 3-D space. We can use a dimensionality reduction technique such as UMAP to project our dataset from 16384 to 2 dimensions. The 2-D projection retains a lot of structure, consistent with the idea that our data lie on a lower dimensional manifold embedded in pixel space. In our UMAP, we see two large clusters corresponding to characters in which the components are arranged either horizontally (e.g. 明) or vertically (e.g. 草). An interactive version of the plot below with popups on each datapoint is linked here.

 Click here for an interactive version of this plot.

Let’s now use this low-dimensional UMAP dataset as a visual shorthand for our high-dimensional dataset. Remember, we assume that these individual points have been sampled from a continuous underlying probability distribution q(x). To get a sense of what this distribution might look like, we can apply a KDE (kernel density estimation) over the UMAP dataset. (Note: this is just an approximation for visualization purposes.)

This gives a sense of what q(x) should look like: clusters of glyphs correspond to high-probability regions of the distribution. The true q(x) lies in 16384 dimensions — this is the distribution we want to learn with our diffusion model.

We showed that for a simple distribution such as the 1-D Gaussian, we could calculate the parameters (mean and variance) from our data. However, for complex distributions such as images, we need to call on ML methods. Moreover, what we will find is that for diffusion models in practice, rather than parameterizing the distribution directly, they learn it implicitly through the process of learning how to transform noise into data over many steps.

Takeaway

The aim of generative AI such as diffusion models is to learn the complex probability distributions underlying their training data and then sample from these distributions.

How and why do diffusion models work?

Diffusion models have recently come into the spotlight as a particularly effective method for learning these probability distributions. They generate convincing images by starting from pure noise and gradually refining it. To whet your interest, have a look at the animation below that shows the denoising process generating 16 samples.

In this section we’ll only talk about the mechanics of how these models work but if you’re interested in how they arose from the broader context of generative models, have a look at the further reading section below.

What is “noise”?

Let’s first precisely define noise, since the term is thrown around a lot in the context of diffusion. In particular, we are talking about Gaussian noise: consider the samples we talked about in the section about probability distributions. You could think of each sample as an image of a single pixel of noise. An image that is “pure Gaussian noise”, then, is one in which each pixel value is sampled from an independent standard Gaussian distribution, 𝒩(0,1). For a pure noise image in the domain of our glyph dataset, this would be noise drawn from 16384 separate Gaussian distributions. You can see this in the previous animation. One thing to keep in mind is that we can choose the means of these noise distributions, i.e. center them, on specific values — the pixel values of an image, for instance.

For convenience, you’ll often find the noise distributions for image datasets written as a single multivariate distribution 𝒩(0,I) where I is the identity matrix, a covariance matrix with all diagonal entries equal to 1 and zeroes elsewhere. This is simply a compact notation for a set of multiple independent Gaussians — i.e. there are no correlations between the noise on different pixels. In the basic implementations of diffusion models, only uncorrelated (a.k.a. “isotropic”) noise is used. This article contains an excellent interactive introduction on multivariate Gaussians.

Diffusion process overview

Below is an adaptation of the somewhat-famous diagram from Ho et al.’s seminal paper “Denoising Diffusion Probabilistic Models” which gives an overview of the whole diffusion process:

Diagram of the diffusion process adapted from Ho et al. 2020. The glyph 锂, meaning “lithium”, is used as a representative sample from the dataset.

I found that there was a lot to unpack in this diagram and simply understanding what each component meant was very helpful, so let’s go through it and define everything step by step.

We previously used x q(x) to refer to our data. Here, we’ve added a subscript, xₜ, to denote timestep t indicating how many steps of “noising” have taken place. We refer to the samples noised a given timestep as x q(xₜ). x₀​ is clean data and xₜ (t = T) ∼ 𝒩(0,1) is pure noise.

We define a forward diffusion process whereby we corrupt samples with noise. This process is described by the distribution q(xₜ|xₜ₋₁). If we could access the hypothetical reverse process q(xₜ₋₁|xₜ), we could generate samples from noise. As we cannot access it directly because we would need to know x₀​, we use ML to learn the parameters, θ, of a model of this process, 𝑝θ(𝑥ₜ₋₁∣𝑥ₜ). (That should be p subscript θ but medium cannot render it.)

In the following sections we go into detail on how the forward and reverse diffusion processes work.

Forward diffusion, or “noising”

Used as a verb, “noising” an image refers to applying a transformation that moves it towards pure noise by scaling down its pixel values toward 0 while adding proportional Gaussian noise. Mathematically, this transformation is a multivariate Gaussian distribution centered on the pixel values of the preceding image.

In the forward diffusion process, this noising distribution is written as q(xₜ|xₜ₋₁) where the vertical bar symbol “|” is read as “given” or “conditional on”, to indicate the pixel means are passed forward from q(xₜ₋₁) At t = T where T is a large number (commonly 1000) we aim to end up with images of pure noise (which, somewhat confusingly, is also a Gaussian distribution, as discussed previously).

The marginal distributions q(xₜ) represent the distributions that have accumulated the effects of all the previous noising steps (marginalization refers to integration over all possible conditions, which recovers the unconditioned distribution).

Since the conditional distributions are Gaussian, what about their variances? They are determined by a variance schedule that maps timesteps to variance values. Initially, an empirically determined schedule of linearly increasing values from 0.0001 to 0.02 over 1000 steps was presented in Ho et al. Later research by Nichol & Dhariwal suggested an improved cosine schedule. They state that a schedule is most effective when the rate of information destruction through noising is relatively even per step throughout the whole noising process.

Forward diffusion intuition

As we encounter Gaussian distributions both as pure noise q(xₜ, t = T) and as the noising distribution q(xₜ|xₜ₋₁), I’ll try to draw the distinction by giving a visual intuition of the distribution for a single noising step, q(x₁∣x₀), for some arbitrary, structured 2-dimensional data:

Each noising step q(xₜ|xₜ₋₁) is a Gaussian distribution conditioned on the previous step.

The distribution q(x₁∣x₀) is Gaussian, centered around each point in x₀, shown in blue. Several example points x₀⁽ⁱ⁾ are picked to illustrate this, with q(x₁∣x₀ = x₀⁽ⁱ⁾) shown in orange.

In practice, the main usage of these distributions is to generate specific instances of noised samples for training (discussed further below). We can calculate the parameters of the noising distributions at any timestep t directly from the variance schedule, as the chain of Gaussians is itself also Gaussian. This is very convenient, as we don’t need to perform noising sequentially—for any given starting data x₀⁽ⁱ⁾, we can calculate the noised sample xₜ⁽ⁱ⁾ by sampling from q(xₜ∣x₀ = x₀⁽ⁱ⁾) directly.

Forward diffusion visualization

Let’s now return to our glyph dataset (once again using the UMAP visualization as a visual shorthand). The top row of the figure below shows our dataset sampled from distributions noised to various timesteps: xₜ ∼ q(xₜ). As we increase the number of noising steps, you can see that the dataset begins to resemble pure Gaussian noise. The bottom row visualizes the underlying probability distribution q(xₜ).

The dataset xₜ (above) sampled from its probability distribution q(xₜ) (below) at different noising timesteps.

Reverse diffusion overview

It follows that if we knew the reverse distributions q(xₜ₋₁∣xₜ), we could repeatedly subtract a small amount of noise, starting from a pure noise sample xₜ at t = T to arrive at a data sample x₀ ∼ q(x₀). In practice, however, we cannot access these distributions without knowing x₀ beforehand. Intuitively, it’s easy to make a known image much noisier, but given a very noisy image, it’s much harder to guess what the original image was.

So what are we to do? Since we have a large amount of data, we can train an ML model to accurately guess the original image that any given noisy image came from. Specifically, we learn the parameters θ of an ML model that approximates the reverse noising distributions, (xₜ₋₁ ∣ xₜ) for t = 0, …, T. In practice, this is embodied in a single noise prediction model trained over many different samples and timesteps. This allows it to denoise any given input, as shown in the figure below.

The ML model predicts added noise at any given timestep t.

Next, let’s go over how this noise prediction model is implemented and trained in practice.

How the model is implemented

First, we define the ML model — generally a deep neural network of some sort — that will act as our noise prediction model. This is what does the heavy lifting! In practice, any ML model that inputs and outputs data of the correct size can be used; the U-net, an architecture particularly suited to learning images, is what we use here and frequently chosen in practice. More recent models also use vision transformers.

We use the U-net architecture (Ronneberger et al. 2015) for our ML noise prediction model. We train the model by minimizing the difference between predicted and actual noise.

Then we run the training loop depicted in the figure above:

  • We take a random image from our dataset and noise it to a random timestep tt. (In practice, we speed things up by doing many examples in parallel!)
  • We feed the noised image into the ML model and train it to predict the (known to us) noise in the image. We also perform timestep conditioning by feeding the model a timestep embedding, a high-dimensional unique representation of the timestep, so that the model can distinguish between timesteps. This can be a vector the same size as our image directly added to the input (see here for a discussion of how this is implemented).
  • The model “learns” by minimizing the value of a loss function, some measure of the difference between the predicted and actual noise. The mean square error (the mean of the squares of the pixel-wise difference between the predicted and actual noise) is used in our case.
  • Repeat until the model is well trained.

Note: A neural network is essentially a function with a huge number of parameters (on the order of 10for the glyffuser). Neural network ML models are trained by iteratively updating their parameters using backpropagation to minimize a given loss function over many training data examples. This is an excellent introduction. These parameters effectively store the network’s “knowledge”.

A noise prediction model trained in this way eventually sees many different combinations of timesteps and data examples. The glyffuser, for example, was trained over 100 epochs (runs through the whole data set), so it saw around 2 million data samples. Through this process, the model implicity learns the reverse diffusion distributions over the entire dataset at all different timesteps. This allows the model to sample the underlying distribution q(x₀) by stepwise denoising starting from pure noise. Put another way, given an image noised to any given level, the model can predict how to reduce the noise based on its guess of what the original image. By doing this repeatedly, updating its guess of the original image each time, the model can transform any noise to a sample that lies in a high-probability region of the underlying data distribution.

Reverse diffusion in practice

We can now revisit this video of the glyffuser denoising process. Recall a large number of steps from sample to noise e.g. T = 1000 is used during training to make the noise-to-sample trajectory very easy for the model to learn, as changes between steps will be small. Does that mean we need to run 1000 denoising steps every time we want to generate a sample?

Luckily, this is not the case. Essentially, we can run the single-step noise prediction but then rescale it to any given step, although it might not be very good if the gap is too large! This allows us to approximate the full sampling trajectory with fewer steps. The video above uses 120 steps, for instance (most implementations will allow the user to set the number of sampling steps).

Recall that predicting the noise at a given step is equivalent to predicting the original image x₀, and that we can access the equation for any noised image deterministically using only the variance schedule and x₀. Thus, we can calculate xₜ₋ₖ based on any denoising step. The closer the steps are, the better the approximation will be.

Too few steps, however, and the results become worse as the steps become too large for the model to effectively approximate the denoising trajectory. If we only use 5 sampling steps, for example, the sampled characters don’t look very convincing at all:

There is then a whole literature on more advanced sampling methods beyond what we’ve discussed so far, allowing effective sampling with much fewer steps. These often reframe the sampling as a differential equation to be solved deterministically, giving an eerie quality to the sampling videos — I’ve included one at the end if you’re interested. In production-level models, these are usually preferred over the simple method discussed here, but the basic principle of deducing the noise-to-sample trajectory is the same. A full discussion is beyond the scope of this article but see e.g. this paper and its corresponding implementation in the Hugging Face diffusers library for more information.

Alternative intuition from score function

To me, it was still not 100% clear why training the model on noise prediction generalises so well. I found that an alternative interpretation of diffusion models known as “score-based modeling” filled some of the gaps in intuition (for more information, refer to Yang Song’s definitive article on the topic.)

The dataset xₜ sampled from its probability distribution q(xₜ) at different noising timesteps; below, we add the score function ∇ₓ log q(xₜ).

I try to give a visual intuition in the bottom row of the figure above: essentially, learning the noise in our diffusion model is equivalent (to a constant factor) to learning the score function, which is the gradient of the log of the probability distribution: ∇ₓ log q(x). As a gradient, the score function represents a vector field with vectors pointing towards the regions of highest probability density. Subtracting the noise at each step is then equivalent to moving following the directions in this vector field towards regions of high probability density.

As long as there is some signal, the score function effectively guides sampling, but in regions of low probability it tends towards zero as there is little to no gradient to follow. Using many steps to cover different noise levels allows us to avoid this, as we smear out the gradient field at high noise levels, allowing sampling to converge even if we start from low probability density regions of the distribution. The figure shows that as the noise level is increased, more of the domain is covered by the score function vector field.

Summary

  • The aim of diffusion models is learn the underlying probability distribution of a dataset and then be able to sample from it. This requires forward and reverse diffusion (noising) processes.
  • The forward noising process takes samples from our dataset and gradually adds Gaussian noise (pushes them off the data manifold). This forward process is computationally efficient because any level of noise can be added in closed form a single step.
  • The reverse noising process is challenging because we need to predict how to remove the noise at each step without knowing the original data point in advance. We train a ML model to do this by giving it many examples of data noised at different timesteps.
  • Using very small steps in the forward noising process makes it easier for the model to learn to reverse these steps, as the changes are small.
  • By applying the reverse noising process iteratively, the model refines noisy samples step by step, eventually producing a realistic data point (one that lies on the data manifold).

Takeaway

Diffusion models are a powerful framework for learning complex data distributions. The distributions are learnt implicitly by modelling a sequential denoising process. This process can then be used to generate samples similar to those in the training distribution.

Once you’ve trained a model, how do you get useful stuff out of it?

Earlier uses of generative AI such as “This Person Does Not Exist” (ca. 2019) made waves simply because it was the first time most people had seen AI-generated photorealistic human faces. A generative adversarial network or “GAN” was used in that case, but the principle remains the same: the model implicitly learnt a underlying data distribution — in that case, human faces — then sampled from it. So far, our glyffuser model does a similar thing: it samples randomly from the distribution of Chinese glyphs.

The question then arises: can we do something more useful than just sample randomly? You’ve likely already encountered text-to-image models such as Dall-E. They are able to incorporate extra meaning from text prompts into the diffusion process — this in known as conditioning. Likewise, diffusion models for scientific scientific applications like protein (e.g. Chroma, RFdiffusion, AlphaFold3) or inorganic crystal structure generation (e.g. MatterGen) become much more useful if can be conditioned to generate samples with desirable properties such as a specific symmetry, bulk modulus, or band gap.

Conditional distributions

We can consider conditioning as a way to guide the diffusion sampling process towards particular regions of our probability distribution. We mentioned conditional distributions in the context of forward diffusion. Below we show how conditioning can be thought of as reshaping a base distribution.

A simple example of a joint probability distribution p(x, y), shown as a contour map, along with its two marginal 1-D probability distributions, p(x) and p(y). The highest points of p(x, y) are at (x₁, y₁) and (x₂, y₂). The conditional distributions p(xy = y₁) and p(xy = y₂) are shown overlaid on the main plot.

Consider the figure above. Think of p(x) as a distribution we want to sample from (i.e., the images) and p(y) as conditioning information (i.e., the text dataset). These are the marginal distributions of a joint distribution p(x, y). Integrating p(x, y) over y recovers p(x), and vice versa.

Sampling from p(x), we are equally likely to get x₁ or x₂. However, we can condition on p(y = y₁) to obtain p(xy = y₁). You can think of this as taking a slice through p(x, y) at a given value of y. In this conditioned distribution, we are much more likely to sample at x₁ than x₂.

In practice, in order to condition on a text dataset, we need to convert the text into a numerical form. We can do this using large language model (LLM) embeddings that can be injected into the noise prediction model during training.

Embedding text with an LLM

In the glyffuser, our conditioning information is in the form of English text definitions. We have two requirements: 1) ML models prefer fixed-length vectors as input. 2) The numerical representation of our text must understand context — if we have the words “lithium” and “element” nearby, the meaning of “element” should be understood as “chemical element” rather than “heating element”. Both of these requirements can be met by using a pre-trained LLM.

The diagram below shows how an LLM converts text into fixed-length vectors. The text is first tokenized (LLMs break text into tokens, small chunks of characters, as their basic unit of interaction). Each token is converted into a base embedding, which is a fixed-length vector of the size of the LLM input. These vectors are then passed through the pre-trained LLM (here we use the encoder portion of Google’s T5 model), where they are imbued with additional contextual meaning. We end up with a array of n vectors of the same length d, i.e. a (n, d) sized tensor.

We can convert text to a numerical embedding imbued with contextual meaning using a pre-trained LLM.

Note: in some models, notably Dall-E, additional image-text alignment is performed using contrastive pretraining. Imagen seems to show that we can get away without doing this.

Training the diffusion model with text conditioning

The exact method that this embedding vector is injected into the model can vary. In Google’s Imagen model, for example, the embedding tensor is pooled (combined into a single vector in the embedding dimension) and added into the data as it passes through the noise prediction model; it is also included in a different way using cross-attention (a method of learning contextual information between sequences of tokens, most famously used in the transformer models that form the basis of LLMs like ChatGPT).

Conditioning information can be added via multiple different methods but the training loss remains the same.

In the glyffuser, we only use cross-attention to introduce this conditioning information. While a significant architectural change is required to introduce this additional information into the model, the loss function for our noise prediction model remains exactly the same.

Testing the conditioned diffusion model

Let’s do a simple test of the fully trained conditioned diffusion model. In the figure below, we try to denoise in a single step with the text prompt “Gold”. As touched upon in our interactive UMAP, Chinese characters often contain components known as radicals which can convey sound (phonetic radicals) or meaning (semantic radicals). A common semantic radical is derived from the character meaning “gold”, “金”, and is used in characters that are in some broad sense associated with gold or metals.

Even with a single sampling step, conditioning guides denoising towards the relevant regions of the probability distribution.

The figure shows that even though a single step is insufficient to approximate the denoising trajectory very well, we have moved into a region of our probability distribution with the “金” radical. This indicates that the text prompt is effectively guiding our sampling towards a region of the glyph probability distribution related to the meaning of the prompt. The animation below shows a 120 step denoising sequence for the same prompt, “Gold”. You can see that every generated glyph has either the 釒 or 钅 radical (the same radical in traditional and simplified Chinese, respectively).

Takeaway

Conditioning enables us to sample meaningful outputs from diffusion models.

Further remarks

I found that with the help of tutorials and existing libraries, it was possible to implement a working diffusion model despite not having a full understanding of what was going on under the hood. I think this is a good way to start learning and highly recommend Hugging Face’s tutorial on training a simple diffusion model using their diffusers Python library (which now includes my small bugfix!).

I’ve omitted some topics that are crucial to how production-grade diffusion models function, but are unnecessary for core understanding. One is the question of how to generate high resolution images. In our example, we did everything in pixel space, but this becomes very computationally expensive for large images. The general approach is to perform diffusion in a smaller space, then upscale it in a separate step. Methods include latent diffusion (used in Stable Diffusion) and cascaded super-resolution models (used in Imagen). Another topic is classifier-free guidance, a very elegant method for boosting the conditioning effect to give much better prompt adherence. I show the implementation in my previous post on the glyffuser and highly recommend this article if you want to learn more.

Further reading

A non-exhaustive list of materials I found very helpful:

Fun extras

Diffusion sampling using the DPMSolverSDEScheduler developed by Katherine Crowson and implemented in Hugging Face diffusers—note the smooth transition from noise to data.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Nvidia looks to power AI factory networks

Nvidia also introduced BlueField 4, a next-generation processor that acts as the operating system for AI factories. It delivers 800Gbit/sec of throughput, double the throughput of its predecessor BlueField 3, and six times more compute than BlueField 3. BlueField 4 combines Arm-based CPUs with the ConnectX-9 SuperNIC to accelerate storage,

Read More »

Noble Quarterly Revenue Falls

Noble Corp on Monday reported $798 million in revenue for the third quarter, down from $849 million for the prior three-month period as lower rig utilization offset lower contract drilling services costs. “Utilization of the 35 marketed rigs was 65 percent in the third quarter of 2025 compared to 73

Read More »

Google Cloud targets enterprise AI builders with upgraded Vertex AI Training

Enterprises can quickly set up managed Slurm environments with automated resiliency and cost optimization through the Dynamic Workload Scheduler. The platform also includes hyperparameter tuning, data optimization, and built-in recipes with frameworks like NVIDIA NeMo to streamline model development. Enterprises weigh AI training gains Building and scaling generative AI models

Read More »

Oil Rally Fades on Oversupply Fears

Oil declined as mounting signs of oversupply quelled a bumper rally triggered by US sanctions on key Russian producers last week. West Texas Intermediate fell 1.9% to again settle close to $60 a barrel, the steepest daily drop in more than two weeks. Investors are better positioned to renew bets now that a looming surplus will push prices down after a massive liquidation of speculative wagers. The amount of oil being shipped across the world’s oceans hit a record high, indicating that excess supplies continue to rise. In addition, OPEC+ may agree to add more production at a meeting this weekend. Last week, US President Donald Trump’s administration imposed sanctions on Russia’s two biggest oil producers — Lukoil and state-controlled Rosneft PJSC — to pressure the Kremlin to end the war in Ukraine. The move spurred the biggest unwinding of crude futures positions on record, with bearish wagers held by hedge funds at an all-time high before the sanctions were announced. The ensuing price spike left cleaner positioning for those looking to bet on a drop. Price swings are also set to be exacerbated by the expiry of tens of thousands of Brent options contracts still held near $65 a barrel. The impact of the sanctions is still unclear, with traders closely following actions taken by Chinese and Indian energy companies, top buyers of Russian crude. “The market is now questioning the actual effectiveness of the sanctions,” said Ole Hvalbye, an analyst at SEB AB. “While a full blacklisting sounds dramatic, the mechanisms for enforcement remain unclear, and so far, there are no signs of disrupted Russian flows.” One Indian refiner plans to seek non-Russian barrels, while others are considering whether they can continue to take some discounted Russian oil cargoes by leaning on small suppliers, instead of Lukoil and

Read More »

Eni, Egypt Sign Agreement for Potential Biogas Projects

Eni SpA and Egypt’s Bioenergy Association for Sustainable Development, affiliated with the Environment Ministry, signed Monday an agreement for a feasibility study on biogas production in the North African country using animal and agricultural waste. “The joint study will assess the feasibility of building a biodigestion plant capable of treating agricultural and animal waste, particularly from livestock farming”, Italy’s state-controlled energy major Eni said in a press release. “The biogas produced by biodigestion can generate renewable electricity and heat, while also producing higher-value organic fertilizers for use in agriculture, further contributing to the circular economy. The initiative would also reduce greenhouse gas emissions from agricultural waste and byproducts, while generating high-quality carbon credits.  “The agreement is in line with the Ministry of Environment’s objective to promote the dissemination of biogas technology across Egyptian governorates and to develop innovative and sustainable energy solutions that contribute to emission reduction and sustainable development. “It also fits in Eni’s long-term strategy to achieve carbon neutrality by 2050 through a multi-faceted approach that includes developing integrated solutions to reduce emissions and enhance resource efficiency”. Elsewhere in Africa Eni earlier this year inaugurated its first vegetable oil extraction plant in the Republic of the Congo, unlocking new feedstock capacity for its biorefineries. The facility in Loudima, in the southern part of the Central African country, can produce up to 30,000 million metric tons per annum (MMtpa) of vegetable oil. The plant will use crops grown on “degraded and underutilized land or through intercropping systems, as part of an innovative regenerative agriculture project developed in collaboration with local stakeholders”, Eni said in a statement June 28. On May 28 Eni said it had signed an agreement with Cote d’Ivoire’s Agriculture Ministry to explore the potential of cultivating biofuel crops in the West African country. The memorandum of understanding “aims to enhance the rubber

Read More »

Energy Department Announces New Partnership with NVIDIA and Oracle to Build Largest DOE AI Supercomputer

WASHINGTON—The U.S. Department of Energy (DOE), Argonne National Laboratory, NVIDIA and Oracle today announced a landmark public-private partnership to deliver the DOE’s largest AI supercomputer and accelerate scientific discovery. The partnership will also immediately deliver world-class AI computing resources to DOE researchers while simultaneously building two next-generation AI supercomputing systems at Argonne National Laboratory. Today’s announcement is in accordance with President Trump’s Executive Orders, Accelerating Federal Permitting of Data Center Infrastructure and Removing Barriers to American Leadership in Artificial Intelligence. The Solstice system, which will feature 100,000 NVIDIA Blackwell GPUs, will be the largest AI supercomputer in the DOE’s lab complex. Another system, called Equinox, will feature 10,000 NVIDIA Blackwell GPUs. Construction at the Argonne Leadership Computing Facility will immediately begin for the Equinox system. It is expected to be delivered in 2026. These AI systems will be seamlessly connected with DOE’s vast network of scientific instruments and data assets to address some of the nation’s most pressing challenges in energy, security, and discovery science. As part of the partnership, Oracle will also immediately provide DOE with access to AI computing resources that use a combination of NVIDIA Hopper and Blackwell architectures. Scientists from Argonne and across the country will have access to new AI capabilities to drive technological leadership for science and energy applications. “Winning the AI race requires new and creative partnerships that will bring together the brightest minds and industries American technology and science has to offer,” said U.S. Secretary of Energy Chris Wright. “The two Argonne systems and the collaboration between the Department of Energy, NVIDIA, and Oracle represent a new commonsense approach to computing partnerships. These systems will be a powerhouse for scientific and technological innovation. Thanks to President Trump, we’re bringing new computing capacity online faster than ever before and turning shared innovation into national strength.”

Read More »

Are sodium-ion batteries finally ready to compete with lithium?

Last month, on the high prairie east of its hometown, Denver-based Peak Energy powered up what it says is the United States’ first grid-scale sodium-ion battery installation and “the first ever fully passive megawatt-hour scale battery storage system” anywhere in the world. Peak’s 3.5-MWh project marks a big step forward for the electrochemical battery chemistry that many experts believe is the most viable challenger to lithium-ion, which today dominates the energy storage market for discharge durations shorter than four hours.  “What’s nice about our technology is the way it looks and feels to a customer is like a new variant of a [lithium-ion battery] system,” said Landon Mossburg, CEO and cofounder of Peak Energy.  Sodium-ion batteries’ allure is growing amid volatile commodity pricing and an on-again, off-again trade war between the United States and China affecting lithium-ion batteries. Sodium-ion storage has a simpler supply chain that eschews traditional battery metals, said Evelina Stoikou, an energy storage analyst with BloombergNEF. The U.S. has the world’s largest known reserves of soda ash, a sodium precursor that is more abundant globally than lithium, nickel and cobalt. “Lithium-ion costs remain highly sensitive to raw material prices, meaning that spikes in lithium, nickel, or cobalt prices could improve sodium-ion’s relative competitiveness,” she said. But Stoikou cautioned that swingy raw materials pricing can cut in the other direction. At the moment, rapidly-falling LFP costs are driving a boom in global lithium battery deployments.  “Expectations among [sodium-ion battery] manufacturers have cooled as LFP prices continue to trend downward, leading to a reduction in our expectations for sodium-ion to scale,” she said. Sodium-ion proponents like Peak Energy believe sodium-ion chemistry, though less energy-dense than lithium, has inherent advantages that will allow it to compete on cost before the decade is done. Those include lower fire risk, higher discharge rates,

Read More »

XRG in Talks to Invest in Argentina LNG Project

The overseas unit of Abu Dhabi’s biggest oil company is in talks to invest in a liquefied natural gas project Argentina’s YPF SA is developing as it pushes to start exporting the fuel, according to people familiar with the matter.  XRG is eyeing a stake in the project as it considers expanding its LNG portfolio in Latin America, the US and Asia, according to one of the people, who asked not to be identified because the matter isn’t public.  State-run YPF is developing the floating terminal as Argentina tries to tap global LNG demand and accelerate output of vast natural gas reserves in the Vaca Muerta shale basin. The project, which requires construction of several liquefaction vessels, is designed to eventually produce 28 million tons of LNG annually. Shell Plc and Eni SpA are working with YPF on the project, but final investment decisions haven’t been made. XRG’s talks with YPF are preliminary, and the company may ultimately decide not to pursue an investment, according to the people. XRG declined to comment. On Monday, YPF’s depositary receipts traded in New York jumped as much as 38% after libertarian President Javier Milei’s party prevailed in legislative elections. The midterms were seen as a pivotal moment for foreign investors looking for opportunities in Argentina, providing a clear sign voters would continue backing Milei’s push to deregulate the economy. XRG is the international arm of Abu Dhabi National Oil Co., backed by Abu Dhabi’s oil wealth. It has already acquired a stake in NextDecade Corp.’s Rio Grande LNG project being built in South Texas, and is in the process of taking over Germany’s Covestro AG as it bets on lasting demand for gas and chemicals in the energy transition. It’s also bought gas assets in Africa and Central Asia.  But the company also had a setback last month when it

Read More »

Venezuela Revokes Trinidad Gas Deals Over USA Alliance

Venezuela revoked energy deals with neighboring Trinidad and Tobago for its support of a US military offensive in the Caribbean, potentially raising the economic cost of the twin-island nation’s alliance with the Trump administration. Speaking on state television Monday evening, President Nicolás Maduro revoked an energy framework agreement with Trinidad that allowed the two countries to forge gas deals. Venezuelan Vice President and Oil Minister Delcy Rodríguez had made the proposal earlier on Monday.  “Faced with the Prime Minister’s threat to turn Trinidad into the aircraft carrier of the US empire against Venezuela, against South America, there is only one alternative,” Maduro said in his weekly program on state TV. “It is completely suspended.” Maduro said he would deliver the proposal to the Supreme Court, National Assembly and State Council to receive their recommendations before taking “a structural measure” very soon. Trinidad needs Venezuelan gas to replenish supply to the industrial backbone of its fragile economy. However, when Rodríguez first made the threat on Monday, Trinidad’s Prime Minister Kamla Persad-Bissessar told AFP that the country’s future “does not depend on Venezuela and never has.”  Trinidad’s government has developed a “hostile attitude” and a “warlike plan” against Venezuela, Rodríguez said during the afternoon, by “siding” with the US’s “military agenda.” Persad-Bissessar has previously said she welcomed the US offensive on drug traffickers, calling for them to be killed “violently.”  Her posture has alienated Trinidad from other English-language countries in the Caribbean that have insisted on maintaining the region as a “zone of peace.” Venezuelan rhetoric is escalating as the US advances a military campaign, blowing up purported drug boats and pointing a finger at Maduro and, increasingly, Colombian President Gustavo Petro for allegedly flooding the US with fentanyl and cocaine.  The US is ramping up its deployment in the southern Caribbean, with a

Read More »

IT shortcuts curb AI returns

Organizations must ensure the infrastructure is AI ready Infrastructure is another area where Cisco found a major difference. Pacesetters are designing their networks for future demands. Seventy-one percent say their networks can scale instantly for new AI projects. Roughly three-quarters of pacesetters are investing in new data center capacity over the next year. Currently, about two-thirds say their infrastructure can accommodate AI workloads. Most pacesetters (93%) also have data systems that are fully prepared for AI, compared with 34% of other companies. About 76% have fully centralized their in-house data, while only 19% of other companies have done the same. Eighty-four percent report strong governance readiness, while 95% have mature processes to measure the impact of AI. If ever there was a technological shift that requires the right infrastructure, it’s AI. AI generates a significant amount of data, needs large amounts of processes and low latency, high-capacity networks. Historically, businesses could operate with networks that operated on the premise of “best effort,” but that’s no longer the case. From the data center to campus to branch offices, in most companies, the network will require a refresh. Scaling AI requires the right processes When it comes to being disciplined, 62% of pacesetters have an established process for generating, piloting, and scaling AI use cases. Only 13% of other organizations (non-pacesetters) have reached this level of maturity. Most pacesetters say their AI models achieve at least 75% accuracy. Almost half also expect a 50% to 100% return on investment (ROI) within a year, far above the average. Cisco notes that over the past six months, pressure has been building for companies to show tangible ROI. Executives and IT leaders are pushing for results, and so are competitors. By contrast, most other companies are in early stages of readiness. Although 83% plan to

Read More »

Qualcomm goes all-in on inferencing with purpose-built cards and racks

From a strategy perspective, there is a longer term enterprise play here, noted Moor’s Kimball; Humain is Qualcomm’s first customer, and a cloud service provider (CSP) or hyperscaler will likely be customer number two. However, at some point, these rack-scale systems will find their way into the enterprise. “If I were the AI200 product marketing lead, I would be thinking about how I demonstrate this as a viable platform for those enterprise workloads that will be getting ‘agentified’ over the next several years,” said Kimball. It seems a natural step, as Qualcomm saw success with its AI100 accelerator, a strong inference chip, he noted. Right now, Nvidia and AMD dominate the training market, with CUDA and ROCm enjoying a “stickiness” with customers. “If I am a semiconductor giant like Qualcomm that is so good at understanding the performance-power balance, this inference market makes perfect sense to really lean in on,” said Kimball. He also pointed to the company’s plans to re-enter the datacenter CPU space with its Oryon CPU, which is featured in Snapdragon and loosely based on technology it acquired with its $1.4 billion Nuvia acquisition. Ultimately, Qualcomm’s move demonstrates how wide open the inference market is, said Kimball. The company, he noted, has been very good at choosing target markets and has seen success when entering those markets. “That the company would decide to go more ‘in’ on the inference market makes sense,” said Kimball. He added that, from an ROI perspective, inferencing will “dwarf” training in terms of volume and dollars.

Read More »

AI data center building boom risks fueling future debt bust, bank warns

However, that’s only one part of the problem. Meeting the power demands of AI data centers will require the energy sector to make large investments. Then there’s data center demand for microprocessors, rare earth elements, and other valuable metals such as copper, which could, in a bust, make data centers the most expensively-assembled unwanted assets in history. “Financial stability consequences of an AI-related asset price fall could arise through multiple channels. If forecasted debt-financed AI infrastructure growth materializes, the potential financial stability consequences of such an event are likely to grow,” warned the BoE blog post. “For companies who depend on the continued demand for massive computational capacity to train and run inference on AI models, an algorithmic breakthrough or other event which challenges that paradigm could cause a significant re-evaluation of asset prices,” it continued. According to Matt Hasan, CEO of AI consultancy aiRESULTS, the underlying problem is the speed with which AI has emerged. “What we’re witnessing isn’t just an incremental expansion, it’s a rush to construct power-hungry, mega-scale data centers,” he told Network World. The dot.com reversal might be the wrong comparison; it dented the NASDAQ and hurt tech investment, but the damage to organizations investing in e-commerce was relatively limited. AI, by contrast, might have wider effects for large enterprises because so many have pinned their business prospects on its potential. “Your reliance on these large providers means you are indirectly exposed to the stability of their debt. If a correction occurs, the fallout can impact the services you rely on,” said Hasan.

Read More »

Intel sees supply shortage, will prioritize data center technology

“Capacity constraints, especially on Intel 10 and Intel 7 [Intel’s semiconductor manufacturing process], limited our ability to fully meet demand in Q3 for both data center and client products,” said Zinsner, adding that Intel isn’t about to add capacity to Intel 10 and 7 when it has moved beyond those nodes. “Given the current tight capacity environment, which we expect to persist into 2026, we are working closely with customers to maximize our available output, including adjusting pricing and mix to shift demand towards products where we have supply and they have demand,” said Zinsner. For that reason, Zinzner projects that the fourth quarter will be roughly flat versus the third quarter in terms of revenue. “We expect Intel products up modestly sequentially but below customer demand as we continue to navigate supply environment,” said Zinsner. “We expect CCG to be down modestly and PC AI to be up strongly sequentially as we prioritize wafer capacity for server shipments over entry-level client parts.”

Read More »

How to set up an AI data center in 90 days

“Personally, I think that a brownfield is very creative way to deal with what I think is the biggest problem that we’ve got right now, which is time and speed to market,” he said. “On a brownfield, I can go into a building that’s already got power coming into the building. Sometimes they’ve already got chiller plants, like what we’ve got with the building I’m in right now.” Patmos certainly made the most of the liquid facilities in the old printing press building. The facility is built to handle anywhere from 50 to over 140 kilowatts per cabinet, a leap far beyond the 1–2 kW densities typical of legacy data centers. The chips used in the servers are Nvidia’s Grace Blackwell processors, which run extraordinarily hot. To manage this heat load, Patmos employs a multi-loop liquid cooling system. The design separates water sources into distinct, closed loops, each serving a specific function and ensuring that municipal water never directly contacts sensitive IT equipment. “We have five different, completely separated water loops in this building,” said Morgan. “The cooling tower uses city water for evaporation, but that water never mixes with the closed loops serving the data hall. Everything is designed to maximize efficiency and protect the hardware.” The building taps into Kansas City’s district chilled water supply, which is sourced from a nearby utility plant. This provides the primary cooling resource for the facility. Inside the data center, a dedicated loop circulates a specialized glycol-based fluid, filtered to extremely low micron levels and formulated to be electronically safe. Heat exchangers transfer heat from the data hall fluid to the district chilled water, keeping the two fluids separate and preventing corrosion or contamination. Liquid-to-chip and rear-door heat exchangers are used for immediate heat removal.

Read More »

INNIO and VoltaGrid: Landmark 2.3 GW Modular Power Deal Signals New Phase for AI Data Centers

Why This Project Marks a Landmark Shift The deployment of 2.3 GW of modular generation represents utility-scale capacity, but what makes it distinct is the delivery model. Instead of a centralized plant, the project uses modular gas-reciprocating “power packs” that can be phased in step with data-hall readiness. This approach allows staged energization and limits the bottlenecks that often stall AI campuses as they outgrow grid timelines or wait in interconnection queues. AI training loads fluctuate sharply, placing exceptional stress on grid stability and voltage quality. The INNIO/VoltaGrid platform was engineered specifically for these GPU-driven dynamics, emphasizing high transient performance (rapid load acceptance) and grid-grade power quality, all without dependence on batteries. Each power pack is also designed for maximum permitting efficiency and sustainability. Compared with diesel generation, modern gas-reciprocating systems materially reduce both criteria pollutants and CO₂ emissions. VoltaGrid markets the configuration as near-zero criteria air emissions and hydrogen-ready, extending allowable runtimes under air permits and making “prime-as-a-service” viable even in constrained or non-attainment markets. 2025: Momentum for Modular Prime Power INNIO has spent 2025 positioning its Jenbacher platform as a next-generation power solution for data centers: combining fast start, high transient performance, and lower emissions compared with diesel. While the 3 MW J620 fast-start lineage dates back to 2019, this year the company sharpened its data center narrative and booked grid stability and peaking projects in markets where rapid data center growth is stressing local grids. This momentum was exemplified by an 80 MW deployment in Indonesia announced earlier in October. The same year saw surging AI-driven demand and INNIO’s growing push into North American data-center markets. Specifications for the 2.3 GW VoltaGrid package highlight the platform’s heat tolerance, efficiency, and transient response, all key attributes for powering modern AI campuses. VoltaGrid’s 2025 Milestones VoltaGrid’s announcements across 2025 reflect

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »