Stay Ahead, Stay ONMINE

Introduction to Minimum Cost Flow Optimization in Python

Minimum cost flow optimization minimizes the cost of moving flow through a network of nodes and edges. Nodes include sources (supply) and sinks (demand), with different costs and capacity limits. The aim is to find the least costly way to move volume from sources to sinks while adhering to all capacity limitations. Applications Applications of […]

Minimum cost flow optimization minimizes the cost of moving flow through a network of nodes and edges. Nodes include sources (supply) and sinks (demand), with different costs and capacity limits. The aim is to find the least costly way to move volume from sources to sinks while adhering to all capacity limitations.

Applications

Applications of minimum cost flow optimization are vast and varied, spanning multiple industries and sectors. This approach is crucial in logistics and supply chain management, where it is used to minimize transportation costs while ensuring timely delivery of goods. In telecommunications, it helps in optimizing the routing of data through networks to reduce latency and improve bandwidth utilization. The energy sector leverages minimum cost flow optimization to efficiently distribute electricity through power grids, reducing losses and operational costs. Urban planning and infrastructure development also benefit from this optimization technique, as it assists in designing efficient public transportation systems and water distribution networks.

Example

Below is a simple flow optimization example:

The image above illustrates a minimum cost flow optimization problem with six nodes and eight edges. Nodes A and B serve as sources, each with a supply of 50 units, while nodes E and F act as sinks, each with a demand of 40 units. Every edge has a maximum capacity of 25 units, with variable costs indicated in the image. The objective of the optimization is to allocate flow on each edge to move the required units from nodes A and B to nodes E and F, respecting the edge capacities at the lowest possible cost.

Node F can only receive supply from node B. There are two paths: directly or through node D. The direct path has a cost of 2, while the indirect path via D has a combined cost of 3. Thus, 25 units (the maximum edge capacity) are moved directly from B to F. The remaining 15 units are routed via B -D-F to meet the demand.

Currently, 40 out of 50 units have been transferred from node B, leaving a remaining supply of 10 units that can be moved to node E. The available pathways for supplying node E include: A-E and B-E with a cost of 3, A-C-E with a cost of 4, and B-C-E with a cost of 5. Consequently, 25 units are transported from A-E (limited by the edge capacity) and 10 units from B-E (limited by the remaining supply at node B). To meet the demand of 40 units at node E, an additional 5 units are moved via A-C-E, resulting in no flow being allocated to the B-C pathway.

Mathematical formulation

I introduce two mathematical formulations of minimum cost flow optimization:

1. LP (linear program) with continuous variables only

2. MILP (mixed integer linear program) with continuous and discrete variables

I am using following definitions:

Definitions

LP formulation

This formulation only contains decision variables that are continuous, meaning they can have any value as long as all constraints are fulfilled. Decision variables are in this case the flow variables x(u, v) of all edges.

The objective function describes how the costs that are supposed to be minimized are calculated. In this case it is defined as the flow multiplied with the variable cost summed up over all edges:

Constraints are conditions that must be satisfied for the solution to be valid, ensuring that the flow does not exceed capacity limitations.

First, all flows must be non-negative and not exceed to edge capacities:

Flow conservation constraints ensure that the same amount of flow that goes into a node has to come out of the node. These constraints are applied to all nodes that are neither sources nor sinks:

For source and sink nodes the difference of out flow and in flow is smaller or equal the supply of the node:

If v is a source the difference of outflow minus inflow must not exceed the supply s(v). In case v is a sink node we do not allow that more than -s(v) can flow into the node than out of the node (for sinks s(v) is negative).

MILP

Additionally, to the continuous variables of the LP formulation, the MILP formulation also contains discreate variables that can only have specific values. Discrete variables allow to restrict the number of used nodes or edges to certain values. It can also be used to introduce fixed costs for using nodes or edges. In this article I show how to add fixed costs. It is important to note that adding discrete decision variables makes it much more difficult to find an optimal solution, hence this formulation should only be used if a LP formulation is not possible.

The objective function is defined as:

With three terms: variable cost of all edges, fixed cost of all edges, and fixed cost of all nodes.

The maximum flow that can be allocated to an edge depends on the edge’s capacity, the edge selection variable, and the origin node selection variable:

This equation ensures that flow can only be assigned to edges if the edge selection variable and the origin node selection variable are 1.

The flow conservation constraints are equivalent to the LP problem.

Implementation

In this section I explain how to implement a MILP optimization in Python. You can find the code in this repo.

Libraries

To build the flow network, I used NetworkX which is an excellent library (https://networkx.org/) for working with graphs. There are many interesting articles that demonstrate how powerful and easy to use NetworkX is to work with graphs, i.a. customizing NetworkX GraphsNetworkX: Code Demo for Manipulating SubgraphsSocial Network Analysis with NetworkX: A Gentle Introduction.

One important aspect when building an optimization is to make sure that the input is correctly defined. Even one small error can make the problem infeasible or can lead to an unexpected solution. To avoid this, I used Pydantic to validate the user input and raise any issues at the earliest possible stage. This article gives an easy to understand introduction to Pydantic.

To transform the defined network into a mathematical optimization problem I used PuLP. Which allows to define all variables and constraint in an intuitive way. This library also has the advantage that it can use many different solvers in a simple pug-and-play fashion. This article provides good introduction to this library.

Defining nodes and edges

The code below shows how nodes are defined:

from pydantic import BaseModel, model_validator
from typing import Optional

# node and edge definitions
class Node(BaseModel, frozen=True):
    """
    class of network node with attributes:
    name: str - name of node
    demand: float - demand of node (if node is sink)
    supply: float - supply of node (if node is source)
    capacity: float - maximum flow out of node
    type: str - type of node
    x: float - x-coordinate of node
    y: float - y-coordinate of node
    fixed_cost: float - cost of selecting node
    """
    name: str
    demand: Optional[float] = 0.0
    supply: Optional[float] = 0.0
    capacity: Optional[float] = float('inf')
    type: Optional[str] = None
    x: Optional[float] = 0.0
    y: Optional[float] = 0.0
    fixed_cost: Optional[float] = 0.0

    @model_validator(mode='after')
    def validate(self):
        """
        validate if node definition are correct
        """
        # check that demand is non-negative
        if self.demand < 0 or self.demand == float('inf'): raise ValueError('demand must be non-negative and finite')
        # check that supply is non-negative
        if self.supply < 0: raise ValueError('supply must be non-negative')
        # check that capacity is non-negative
        if self.capacity < 0: raise ValueError('capacity must be non-negative')
        # check that fixed_cost is non-negative
        if self.fixed_cost < 0: raise ValueError('fixed_cost must be non-negative')
        return self

Nodes are defined through the Node class which is inherited from Pydantic’s BaseModel. This enables an automatic validation that ensures that all properties are defined with the correct datatype whenever a new object is created. In this case only the name is a required input, all other properties are optional, if they are not provided the specified default value is assigned to them. By setting the “frozen” parameter to True I made all properties immutable, meaning they cannot be changed after the object has been initialized.

The validate method is executed after the object has been initialized and applies more checks to ensure the provided values are as expected. Specifically it checks that demand, supply, capacity, variable cost and fixed cost are not negative. Furthermore, it also does not allow infinite demand as this would lead to an infeasible optimization problem.

These checks look trivial, however their main benefit is that they will trigger an error at the earliest possible stage when an input is incorrect. Thus, they prevent creating a optimization model that is incorrect. Exploring why a model cannot be solved would be much more time consuming as there are many factors that would need to be analyzed, while such “trivial” input error may not be the first aspect to investigate.

Edges are implemented as follows:

class Edge(BaseModel, frozen=True):
"""
class of edge between two nodes with attributes:
origin: 'Node' - origin node of edge
destination: 'Node' - destination node of edge
capacity: float - maximum flow through edge
variable_cost: float - cost per unit flow through edge
fixed_cost: float - cost of selecting edge
"""
origin: Node
destination: Node
capacity: Optional[float] = float('inf')
variable_cost: Optional[float] = 0.0
fixed_cost: Optional[float] = 0.0

@model_validator(mode='after')
def validate(self):
"""
validate of edge definition is correct
"""
# check that node names are different
if self.origin.name == self.destination.name: raise ValueError('origin and destination names must be different')
# check that capacity is non-negative
if self.capacity < 0: raise ValueError('capacity must be non-negative')
# check that variable_cost is non-negative
if self.variable_cost < 0: raise ValueError('variable_cost must be non-negative')
# check that fixed_cost is non-negative
if self.fixed_cost < 0: raise ValueError('fixed_cost must be non-negative')
return self

The required inputs are an origin node and a destination node object. Additionally, capacity, variable cost and fixed cost can be provided. The default value for capacity is infinity which means if no capacity value is provided it is assumed the edge does not have a capacity limitation. The validation ensures that the provided values are non-negative and that origin node name and the destination node name are different.

Initialization of flowgraph object

To define the flowgraph and optimize the flow I created a new class called FlowGraph that is inherited from NetworkX’s DiGraph class. By doing this I can add my own methods that are specific to the flow optimization and at the same time use all methods DiGraph provides:

from networkx import DiGraph
from pulp import LpProblem, LpVariable, LpMinimize, LpStatus

class FlowGraph(DiGraph):
    """
    class to define and solve minimum cost flow problems
    """
    def __init__(self, nodes=[], edges=[]):
        """
        initialize FlowGraph object
        :param nodes: list of nodes
        :param edges: list of edges
        """
        # initialialize digraph
        super().__init__(None)

        # add nodes and edges
        for node in nodes: self.add_node(node)
        for edge in edges: self.add_edge(edge)


    def add_node(self, node):
        """
        add node to graph
        :param node: Node object
        """
        # check if node is a Node object
        if not isinstance(node, Node): raise ValueError('node must be a Node object')
        # add node to graph
        super().add_node(node.name, demand=node.demand, supply=node.supply, capacity=node.capacity, type=node.type, 
                         fixed_cost=node.fixed_cost, x=node.x, y=node.y)
        
    
    def add_edge(self, edge):    
        """
        add edge to graph
        @param edge: Edge object
        """   
        # check if edge is an Edge object
        if not isinstance(edge, Edge): raise ValueError('edge must be an Edge object')
        # check if nodes exist
        if not edge.origin.name in super().nodes: self.add_node(edge.origin)
        if not edge.destination.name in super().nodes: self.add_node(edge.destination)

        # add edge to graph
        super().add_edge(edge.origin.name, edge.destination.name, capacity=edge.capacity, 
                         variable_cost=edge.variable_cost, fixed_cost=edge.fixed_cost)

FlowGraph is initialized by providing a list of nodes and edges. The first step is to initialize the parent class as an empty graph. Next, nodes and edges are added via the methods add_node and add_edge. These methods first check if the provided element is a Node or Edge object. If this is not the case an error will be raised. This ensures that all elements added to the graph have passed the validation of the previous section. Next, the values of these objects are added to the Digraph object. Note that the Digraph class also uses add_node and add_edge methods to do so. By using the same method name I am overwriting these methods to ensure that whenever a new element is added to the graph it must be added through the FlowGraph methods which validate the object type. Thus, it is not possible to build a graph with any element that has not passed the validation tests.

Initializing the optimization problem

The method below converts the network into an optimization model, solves it, and retrieves the optimized values.

  def min_cost_flow(self, verbose=True):
        """
        run minimum cost flow optimization
        @param verbose: bool - print optimization status (default: True)
        @return: status of optimization
        """
        self.verbose = verbose

        # get maximum flow
        self.max_flow = sum(node['demand'] for _, node in super().nodes.data() if node['demand'] > 0)

        start_time = time.time()
        # create LP problem
        self.prob = LpProblem("FlowGraph.min_cost_flow", LpMinimize)
        # assign decision variables
        self._assign_decision_variables()
        # assign objective function
        self._assign_objective_function()
        # assign constraints
        self._assign_constraints()
        if self.verbose: print(f"Model creation time: {time.time() - start_time:.2f} s")

        start_time = time.time()
        # solve LP problem
        self.prob.solve()
        solve_time = time.time() - start_time

        # get status
        status = LpStatus[self.prob.status]

        if verbose:
            # print optimization status
            if status == 'Optimal':
                # get objective value
                objective = self.prob.objective.value()
                print(f"Optimal solution found: {objective:.2f} in {solve_time:.2f} s")
            else:
                print(f"Optimization status: {status} in {solve_time:.2f} s")
        
        # assign variable values
        self._assign_variable_values(status=='Optimal')

        return status

Pulp’s LpProblem is initialized, the constant LpMinimize defines it as a minimization problem — meaning it is supposed to minimize the value of the objective function. In the following lines all decision variables are initialized, the objective function as well as all constraints are defined. These methods will be explained in the following sections.

Next, the problem is solved, in this step the optimal value of all decision variables is determined. Following the status of the optimization is retrieved. When the status is “Optimal” an optimal solution could be found other statuses are “Infeasible” (it is not possible to fulfill all constraints), “Unbounded” (the objective function can have an arbitrary low values), and “Undefined” meaning the problem definition is not complete. In case no optimal solution was found the problem definition needs to be reviewed.

Finally, the optimized values of all variables are retrieved and assigned to the respective nodes and edges.

Defining decision variables

All decision variables are initialized in the method below:

   def _assign_variable_values(self, opt_found):
        """
        assign decision variable values if optimal solution found, otherwise set to None
        @param opt_found: bool - if optimal solution was found
        """
        # assign edge values        
        for _, _, edge in super().edges.data():
            # initialize values
            edge['flow'] = None
            edge['selected'] = None
            # check if optimal solution found
            if opt_found and edge['flow_var'] is not None:                    
                edge['flow'] = edge['flow_var'].varValue                    

                if edge['selection_var'] is not None: 
                    edge['selected'] = edge['selection_var'].varValue

        # assign node values
        for _, node in super().nodes.data():
            # initialize values
            node['selected'] = None
            if opt_found:                
                # check if node has selection variable
                if node['selection_var'] is not None: 
                    node['selected'] = node['selection_var'].varValue

First it iterates through all edges and assigns continuous decision variables if the edge capacity is greater than 0. Furthermore, if fixed costs of the edge are greater than 0 a binary decision variable is defined as well. Next, it iterates through all nodes and assigns binary decision variables to nodes with fixed costs. The total number of continuous and binary decision variables is counted and printed at the end of the method.

Defining objective

After all decision variables have been initialized the objective function can be defined:

    def _assign_objective_function(self):
        """
        define objective function
        """
        objective = 0
 
        # add edge costs
        for _, _, edge in super().edges.data():
            if edge['selection_var'] is not None: objective += edge['selection_var'] * edge['fixed_cost']
            if edge['flow_var'] is not None: objective += edge['flow_var'] * edge['variable_cost']
        
        # add node costs
        for _, node in super().nodes.data():
            # add node selection costs
            if node['selection_var'] is not None: objective += node['selection_var'] * node['fixed_cost']

        self.prob += objective, 'Objective',

The objective is initialized as 0. Then for each edge fixed costs are added if the edge has a selection variable, and variable costs are added if the edge has a flow variable. For all nodes with selection variables fixed costs are added to the objective as well. At the end of the method the objective is added to the LP object.

Defining constraints

All constraints are defined in the method below:

  def _assign_constraints(self):
        """
        define constraints
        """
        # count of contraints
        constr_count = 0
        # add capacity constraints for edges with fixed costs
        for origin_name, destination_name, edge in super().edges.data():
            # get capacity
            capacity = edge['capacity'] if edge['capacity'] < float('inf') else self.max_flow
            rhs = capacity
            if edge['selection_var'] is not None: rhs *= edge['selection_var']
            self.prob += edge['flow_var'] <= rhs, f"capacity_{origin_name}-{destination_name}",
            constr_count += 1
            
            # get origin node
            origin_node = super().nodes[origin_name]
            # check if origin node has a selection variable
            if origin_node['selection_var'] is not None:
                rhs = capacity * origin_node['selection_var'] 
                self.prob += (edge['flow_var'] <= rhs, f"node_selection_{origin_name}-{destination_name}",)
                constr_count += 1

        total_demand = total_supply = 0
        # add flow conservation constraints
        for node_name, node in super().nodes.data():
            # aggregate in and out flows
            in_flow = 0
            for _, _, edge in super().in_edges(node_name, data=True):
                if edge['flow_var'] is not None: in_flow += edge['flow_var']
            
            out_flow = 0
            for _, _, edge in super().out_edges(node_name, data=True):
                if edge['flow_var'] is not None: out_flow += edge['flow_var']

            # add node capacity contraint
            if node['capacity'] < float('inf'):
                self.prob += out_flow = demand - supply
                rhs = node['demand'] - node['supply']
                self.prob += in_flow - out_flow >= rhs, f"flow_balance_{node_name}",
            constr_count += 1

            # update total demand and supply
            total_demand += node['demand']
            total_supply += node['supply']

        if self.verbose:
            print(f"Constraints: {constr_count}")
            print(f"Total supply: {total_supply}, Total demand: {total_demand}")

First, capacity constraints are defined for each edge. If the edge has a selection variable the capacity is multiplied with this variable. In case there is no capacity limitation (capacity is set to infinity) but there is a selection variable, the selection variable is multiplied with the maximum flow that has been calculated by aggregating the demand of all nodes. An additional constraint is added in case the edge’s origin node has a selection variable. This constraint means that flow can only come out of this node if the selection variable is set to 1.

Following, the flow conservation constraints for all nodes are defined. To do so the total in and outflow of the node is calculated. Getting all in and outgoing edges can easily be done by using the in_edges and out_edges methods of the DiGraph class. If the node has a capacity limitation the maximum outflow will be constraint by that value. For the flow conservation it is necessary to check if the node is either a source or sink node or a transshipment node (demand equals supply). In the first case the difference between inflow and outflow must be greater or equal the difference between demand and supply while in the latter case in and outflow must be equal.

The total number of constraints is counted and printed at the end of the method.

Retrieving optimized values

After running the optimization, the optimized variable values can be retrieved with the following method:

    def _assign_variable_values(self, opt_found):
        """
        assign decision variable values if optimal solution found, otherwise set to None
        @param opt_found: bool - if optimal solution was found
        """
        # assign edge values        
        for _, _, edge in super().edges.data():
            # initialize values
            edge['flow'] = None
            edge['selected'] = None
            # check if optimal solution found
            if opt_found and edge['flow_var'] is not None:                    
                edge['flow'] = edge['flow_var'].varValue                    

                if edge['selection_var'] is not None: 
                    edge['selected'] = edge['selection_var'].varValue

        # assign node values
        for _, node in super().nodes.data():
            # initialize values
            node['selected'] = None
            if opt_found:                
                # check if node has selection variable
                if node['selection_var'] is not None: 
                    node['selected'] = node['selection_var'].varValue 

This method iterates through all edges and nodes, checks if decision variables have been assigned and adds the decision variable value via varValue to the respective edge or node.

Demo

To demonstrate how to apply the flow optimization I created a supply chain network consisting of 2 factories, 4 distribution centers (DC), and 15 markets. All goods produced by the factories have to flow through one distribution center until they can be delivered to the markets.

Supply chain problem

Node properties were defined:

Node definitions

Ranges mean that uniformly distributed random numbers were generated to assign these properties. Since Factories and DCs have fixed costs the optimization also needs to decide which of these entities should be selected.

Edges are generated between all Factories and DCs, as well as all DCs and Markets. The variable cost of edges is calculated as the Euclidian distance between origin and destination node. Capacities of edges from Factories to DCs are set to 350 while from DCs to Markets are set to 100.

The code below shows how the network is defined and how the optimization is run:

# Define nodes
factories = [Node(name=f'Factory {i}', supply=700, type='Factory', fixed_cost=100, x=random.uniform(0, 2),
                  y=random.uniform(0, 1)) for i in range(2)]
dcs = [Node(name=f'DC {i}', fixed_cost=25, capacity=500, type='DC', x=random.uniform(0, 2), 
            y=random.uniform(0, 1)) for i in range(4)]
markets = [Node(name=f'Market {i}', demand=random.randint(1, 100), type='Market', x=random.uniform(0, 2), 
                y=random.uniform(0, 1)) for i in range(15)]

# Define edges
edges = []
# Factories to DCs
for factory in factories:
    for dc in dcs:
        distance = ((factory.x - dc.x)**2 + (factory.y - dc.y)**2)**0.5
        edges.append(Edge(origin=factory, destination=dc, capacity=350, variable_cost=distance))

# DCs to Markets
for dc in dcs:
    for market in markets:
        distance = ((dc.x - market.x)**2 + (dc.y - market.y)**2)**0.5
        edges.append(Edge(origin=dc, destination=market, capacity=100, variable_cost=distance))

# Create FlowGraph
G = FlowGraph(edges=edges)

G.min_cost_flow()

The output of flow optimization is as follows:

Variable types: 68 continuous, 6 binary
Constraints: 161
Total supply: 1400.0, Total demand: 909.0
Model creation time: 0.00 s
Optimal solution found: 1334.88 in 0.23 s

The problem consists of 68 continuous variables which are the edges’ flow variables and 6 binary decision variables which are the selection variables of the Factories and DCs. There are 161 constraints in total which consist of edge and node capacity constraints, node selection constraints (edges can only have flow if the origin node is selected), and flow conservation constraints. The next line shows that the total supply is 1400 which is higher than the total demand of 909 (if the demand was higher than the supply the problem would be infeasible). Since this is a small optimization problem, the time to define the optimization model was less than 0.01 seconds. The last line shows that an optimal solution with an objective value of 1335 could be found in 0.23 seconds.

Additionally, to the code I described in this post I also added two methods that visualize the optimized solution. The code of these methods can also be found in the repo.

Flow graph

All nodes are located by their respective x and y coordinates. The node and edge size is relative to the total volume that is flowing through. The edge color refers to its utilization (flow over capacity). Dashed lines show edges without flow allocation.

In the optimal solution both Factories were selected which is inevitable as the maximum supply of one Factory is 700 and the total demand is 909. However, only 3 of the 4 DCs are used (DC 0 has not been selected).

In general the plot shows the Factories are supplying the nearest DCs and DCs the nearest Markets. However, there are a few exceptions to this observation: Factory 0 also supplies DC 3 although Factory 1 is nearer. This is due to the capacity constraints of the edges which only allow to move at most 350 units per edge. However, the closest Markets to DC 3 have a slightly higher demand, hence Factory 0 is moving additional units to DC 3 to meet that demand. Although Market 9 is closest to DC 3 it is supplied by DC 2. This is because DC 3 would require an additional supply from Factory 0 to supply this market and since the total distance from Factory 0 over DC 3 is longer than the distance from Factory 0 through DC 2, Market 9 is supplied via the latter route.

Another way to visualize the results is via a Sankey diagram which focuses on visualizing the flows of the edges:

Sankey flow diagram

The colors represent the edges’ utilizations with lowest utilizations in green changing to yellow and red for the highest utilizations. This diagram shows very well how much flow goes through each node and edge. It highlights the flow from Factory 0 to DC 3 and also that Market 13 is supplied by DC 2 and DC 1.

Summary

Minimum cost flow optimizations can be a very helpful tool in many domains like logistics, transportation, telecommunication, energy sector and many more. To apply this optimization it is important to translate a physical system into a mathematical graph consisting of nodes and edges. This should be done in a way to have as few discrete (e.g. binary) decision variables as necessary as those make it significantly more difficult to find an optimal solution. By combining Python’s NetworkX, Pulp and Pydantic libraries I built an flow optimization class that is intuitive to initialize and at the same time follows a generalized formulation which allows to apply it in many different use cases. Graph and flow diagrams are very helpful to understand the solution found by the optimizer.

If not otherwise stated all images were created by the author.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Noble Quarterly Revenue Falls

Noble Corp on Monday reported $798 million in revenue for the third quarter, down from $849 million for the prior three-month period as lower rig utilization offset lower contract drilling services costs. “Utilization of the 35 marketed rigs was 65 percent in the third quarter of 2025 compared to 73

Read More »

Google Cloud targets enterprise AI builders with upgraded Vertex AI Training

Enterprises can quickly set up managed Slurm environments with automated resiliency and cost optimization through the Dynamic Workload Scheduler. The platform also includes hyperparameter tuning, data optimization, and built-in recipes with frameworks like NVIDIA NeMo to streamline model development. Enterprises weigh AI training gains Building and scaling generative AI models

Read More »

Are sodium-ion batteries finally ready to compete with lithium?

Last month, on the high prairie east of its hometown, Denver-based Peak Energy powered up what it says is the United States’ first grid-scale sodium-ion battery installation and “the first ever fully passive megawatt-hour scale battery storage system” anywhere in the world. Peak’s 3.5-MWh project marks a big step forward for the electrochemical battery chemistry that many experts believe is the most viable challenger to lithium-ion, which today dominates the energy storage market for discharge durations shorter than four hours.  “What’s nice about our technology is the way it looks and feels to a customer is like a new variant of a [lithium-ion battery] system,” said Landon Mossburg, CEO and cofounder of Peak Energy.  Sodium-ion batteries’ allure is growing amid volatile commodity pricing and an on-again, off-again trade war between the United States and China affecting lithium-ion batteries. Sodium-ion storage has a simpler supply chain that eschews traditional battery metals, said Evelina Stoikou, an energy storage analyst with BloombergNEF. The U.S. has the world’s largest known reserves of soda ash, a sodium precursor that is more abundant globally than lithium, nickel and cobalt. “Lithium-ion costs remain highly sensitive to raw material prices, meaning that spikes in lithium, nickel, or cobalt prices could improve sodium-ion’s relative competitiveness,” she said. But Stoikou cautioned that swingy raw materials pricing can cut in the other direction. At the moment, rapidly-falling LFP costs are driving a boom in global lithium battery deployments.  “Expectations among [sodium-ion battery] manufacturers have cooled as LFP prices continue to trend downward, leading to a reduction in our expectations for sodium-ion to scale,” she said. Sodium-ion proponents like Peak Energy believe sodium-ion chemistry, though less energy-dense than lithium, has inherent advantages that will allow it to compete on cost before the decade is done. Those include lower fire risk, higher discharge rates,

Read More »

XRG in Talks to Invest in Argentina LNG Project

The overseas unit of Abu Dhabi’s biggest oil company is in talks to invest in a liquefied natural gas project Argentina’s YPF SA is developing as it pushes to start exporting the fuel, according to people familiar with the matter.  XRG is eyeing a stake in the project as it considers expanding its LNG portfolio in Latin America, the US and Asia, according to one of the people, who asked not to be identified because the matter isn’t public.  State-run YPF is developing the floating terminal as Argentina tries to tap global LNG demand and accelerate output of vast natural gas reserves in the Vaca Muerta shale basin. The project, which requires construction of several liquefaction vessels, is designed to eventually produce 28 million tons of LNG annually. Shell Plc and Eni SpA are working with YPF on the project, but final investment decisions haven’t been made. XRG’s talks with YPF are preliminary, and the company may ultimately decide not to pursue an investment, according to the people. XRG declined to comment. On Monday, YPF’s depositary receipts traded in New York jumped as much as 38% after libertarian President Javier Milei’s party prevailed in legislative elections. The midterms were seen as a pivotal moment for foreign investors looking for opportunities in Argentina, providing a clear sign voters would continue backing Milei’s push to deregulate the economy. XRG is the international arm of Abu Dhabi National Oil Co., backed by Abu Dhabi’s oil wealth. It has already acquired a stake in NextDecade Corp.’s Rio Grande LNG project being built in South Texas, and is in the process of taking over Germany’s Covestro AG as it bets on lasting demand for gas and chemicals in the energy transition. It’s also bought gas assets in Africa and Central Asia.  But the company also had a setback last month when it

Read More »

Venezuela Revokes Trinidad Gas Deals Over USA Alliance

Venezuela revoked energy deals with neighboring Trinidad and Tobago for its support of a US military offensive in the Caribbean, potentially raising the economic cost of the twin-island nation’s alliance with the Trump administration. Speaking on state television Monday evening, President Nicolás Maduro revoked an energy framework agreement with Trinidad that allowed the two countries to forge gas deals. Venezuelan Vice President and Oil Minister Delcy Rodríguez had made the proposal earlier on Monday.  “Faced with the Prime Minister’s threat to turn Trinidad into the aircraft carrier of the US empire against Venezuela, against South America, there is only one alternative,” Maduro said in his weekly program on state TV. “It is completely suspended.” Maduro said he would deliver the proposal to the Supreme Court, National Assembly and State Council to receive their recommendations before taking “a structural measure” very soon. Trinidad needs Venezuelan gas to replenish supply to the industrial backbone of its fragile economy. However, when Rodríguez first made the threat on Monday, Trinidad’s Prime Minister Kamla Persad-Bissessar told AFP that the country’s future “does not depend on Venezuela and never has.”  Trinidad’s government has developed a “hostile attitude” and a “warlike plan” against Venezuela, Rodríguez said during the afternoon, by “siding” with the US’s “military agenda.” Persad-Bissessar has previously said she welcomed the US offensive on drug traffickers, calling for them to be killed “violently.”  Her posture has alienated Trinidad from other English-language countries in the Caribbean that have insisted on maintaining the region as a “zone of peace.” Venezuelan rhetoric is escalating as the US advances a military campaign, blowing up purported drug boats and pointing a finger at Maduro and, increasingly, Colombian President Gustavo Petro for allegedly flooding the US with fentanyl and cocaine.  The US is ramping up its deployment in the southern Caribbean, with a

Read More »

Energy CEOs ‘Optimistic About Growth’

In a statement sent to Rigzone on Monday, KPMG noted that, according to its 2025 Global Energy, Natural Resources, and Chemicals CEO Outlook, “CEOs in the energy, natural resources, and chemicals (ENRC) sector are optimistic about growth”. “Despite inflation and regulatory headwinds, confidence among CEOs is rising, with 84 percent optimistic about mid-term industry growth – up from 72 percent in 2024,” the statement said. “This outlook is driven by strong demand for both fossil fuels and renewables, alongside innovation in energy storage, smart grids, and carbon capture,” it added. “While 78 percent remain positive about their own company’s growth, a slight dip from last year reflects concerns over shifting regulations, trade volatility, and inflationary pressures – particularly in the chemicals sector,” it continued. The statement went on to note that M&A strategies “are also evolving with just a few CEOs (36 percent) expecting to pursue ‘high impact’ deals in 2025, down from 58 percent in 2024, while 55 percent anticipate ‘moderate’ deal activity, a rise from 38 percent last year, suggesting a shift toward more cautious growth strategies”. The KPMG statement highlighted that artificial intelligence has “rapidly evolved into a core strategy in the energy sector”. It pointed out that 65 percent of CEOs now rank generative AI as a top investment, which it noted is up 12 points from 2024, and that 72 percent are planning to allocate 10-20 percent of their budgets to AI over the next year. “ROI expectations are climbing, with 66 percent anticipating returns within one to three years, up significantly in comparison to just 15 percent last year,” KPMG said in the statement. Momentum is also building around agentic AI, according to the statement, which highlighted that 51 percent of CEOs expect it to transform operations and workforce efficiency. “Yet despite growing confidence,

Read More »

Google-NextEra, Santee Cooper announcements signal new life for defunct nuclear projects

Dive Brief: Google and NextEra Energy will collaborate to restart the 600-MW Duane Arnold Energy Center in Iowa as part of a larger partnership aimed at accelerating nuclear deployment across the U.S., the two companies said Monday. On Friday, Santee Cooper revealed it has signed a letter of intent regarding the potential sale of two unfinished reactors at the abandoned V.C. Summer project in South Carolina to Brookfield Asset Management. The 2.2-GW project was mothballed in 2017 following delays and cost overruns. The reexamination of retired or canceled nuclear projects comes as the U.S. is desperate for power resources to support artificial intelligence and other demand centers. New resources may have some market advantages over existing generators, and the recent deals are a “positive” for the sector, according to equity analysts at Jefferies. Dive Insight: The U.S. Department of Energy last week directed the Federal Energy Regulatory Commission to initiate rulemaking to accelerate large loads interconnecting to the nation’s electric grid. While the DOE’s action is broadly seen as designed to speed the interconnection of AI and data center loads, Jefferies analyst Julien Dumoulin-Smith said the market may have overlooked the proposed rule’s recommendation that existing generators co-locating with new loads 20 MW or higher be required to undertake a reliability review. “The generator could not serve new load until necessary transmission upgrades are completed, at the generators expense,” Dumoulin-Smith wrote in a Monday note about the DOE letter and new nuclear deals. “We see the letter as all but ensuring the market will prefer front-of-the meter deployments, with preferential treatment clearly emphasized for those bringing new supply.” In South Carolina, Jefferies sees Brookfield going “all-in on new nuclear.” It said “Brookfield’s participation in nuclear is bullish for new nuclear companies broadly.” Proposed in 2008, the V.C. Summer expansion was supposed

Read More »

US partners with Westinghouse, Cameco and Brookfield on $80B nuclear deployment

Westinghouse Electric, Cameco and Brookfield Asset Management have entered into a strategic partnership with the U.S. government to deploy $80 billion in new nuclear reactors, the companies announced Tuesday. “Our administration is focused on ensuring the rapid development, deployment, and use of advanced nuclear technologies. This historic partnership supports our national security objectives and enhances our critical infrastructure,” Secretary of Commerce Howard Lutnick said in a statement. The deal calls for Westinghouse AP1000 reactors to be utilized in a deployment that will create more than 100,000 construction jobs, the companies said. “The program will cement the United States as one of the world’s nuclear energy powerhouses and increase exports of Westinghouse’s nuclear power generation technology globally.” According to the announcement, the partnership contains “profit sharing mechanisms” that allow all parties,  “including the American people,” to participate in the “long-term financial and strategic value that will be created within Westinghouse by the growth of nuclear energy and advancement of investment into AI capabilities in the United States.” Brookfield has more than half a trillion dollars invested in the critical infrastructure that underpins the U.S. economy, “and we expect to double that investment in the next decade as we deliver on building the infrastructure backbone of artificial intelligence,” Brookfield President Connor Teskey said in a statement. The U.S. is trying to rapidly bring power resources online to meet rising demand from data centers, and interest in nuclear is growing. Following a decade of stagnant growth, U.S. electricity demand will increase at a 2.5% compound annual growth rate through 2035, according to Bank of America Institute research published in July. “For all of the energy policy disagreements in Washington, one thing is clear: nuclear energy is the baseload electrical power source of the future,” said Thomas Ryan, the managing partner of K&L Gates’

Read More »

IT shortcuts curb AI returns

Organizations must ensure the infrastructure is AI ready Infrastructure is another area where Cisco found a major difference. Pacesetters are designing their networks for future demands. Seventy-one percent say their networks can scale instantly for new AI projects. Roughly three-quarters of pacesetters are investing in new data center capacity over the next year. Currently, about two-thirds say their infrastructure can accommodate AI workloads. Most pacesetters (93%) also have data systems that are fully prepared for AI, compared with 34% of other companies. About 76% have fully centralized their in-house data, while only 19% of other companies have done the same. Eighty-four percent report strong governance readiness, while 95% have mature processes to measure the impact of AI. If ever there was a technological shift that requires the right infrastructure, it’s AI. AI generates a significant amount of data, needs large amounts of processes and low latency, high-capacity networks. Historically, businesses could operate with networks that operated on the premise of “best effort,” but that’s no longer the case. From the data center to campus to branch offices, in most companies, the network will require a refresh. Scaling AI requires the right processes When it comes to being disciplined, 62% of pacesetters have an established process for generating, piloting, and scaling AI use cases. Only 13% of other organizations (non-pacesetters) have reached this level of maturity. Most pacesetters say their AI models achieve at least 75% accuracy. Almost half also expect a 50% to 100% return on investment (ROI) within a year, far above the average. Cisco notes that over the past six months, pressure has been building for companies to show tangible ROI. Executives and IT leaders are pushing for results, and so are competitors. By contrast, most other companies are in early stages of readiness. Although 83% plan to

Read More »

Qualcomm goes all-in on inferencing with purpose-built cards and racks

From a strategy perspective, there is a longer term enterprise play here, noted Moor’s Kimball; Humain is Qualcomm’s first customer, and a cloud service provider (CSP) or hyperscaler will likely be customer number two. However, at some point, these rack-scale systems will find their way into the enterprise. “If I were the AI200 product marketing lead, I would be thinking about how I demonstrate this as a viable platform for those enterprise workloads that will be getting ‘agentified’ over the next several years,” said Kimball. It seems a natural step, as Qualcomm saw success with its AI100 accelerator, a strong inference chip, he noted. Right now, Nvidia and AMD dominate the training market, with CUDA and ROCm enjoying a “stickiness” with customers. “If I am a semiconductor giant like Qualcomm that is so good at understanding the performance-power balance, this inference market makes perfect sense to really lean in on,” said Kimball. He also pointed to the company’s plans to re-enter the datacenter CPU space with its Oryon CPU, which is featured in Snapdragon and loosely based on technology it acquired with its $1.4 billion Nuvia acquisition. Ultimately, Qualcomm’s move demonstrates how wide open the inference market is, said Kimball. The company, he noted, has been very good at choosing target markets and has seen success when entering those markets. “That the company would decide to go more ‘in’ on the inference market makes sense,” said Kimball. He added that, from an ROI perspective, inferencing will “dwarf” training in terms of volume and dollars.

Read More »

AI data center building boom risks fueling future debt bust, bank warns

However, that’s only one part of the problem. Meeting the power demands of AI data centers will require the energy sector to make large investments. Then there’s data center demand for microprocessors, rare earth elements, and other valuable metals such as copper, which could, in a bust, make data centers the most expensively-assembled unwanted assets in history. “Financial stability consequences of an AI-related asset price fall could arise through multiple channels. If forecasted debt-financed AI infrastructure growth materializes, the potential financial stability consequences of such an event are likely to grow,” warned the BoE blog post. “For companies who depend on the continued demand for massive computational capacity to train and run inference on AI models, an algorithmic breakthrough or other event which challenges that paradigm could cause a significant re-evaluation of asset prices,” it continued. According to Matt Hasan, CEO of AI consultancy aiRESULTS, the underlying problem is the speed with which AI has emerged. “What we’re witnessing isn’t just an incremental expansion, it’s a rush to construct power-hungry, mega-scale data centers,” he told Network World. The dot.com reversal might be the wrong comparison; it dented the NASDAQ and hurt tech investment, but the damage to organizations investing in e-commerce was relatively limited. AI, by contrast, might have wider effects for large enterprises because so many have pinned their business prospects on its potential. “Your reliance on these large providers means you are indirectly exposed to the stability of their debt. If a correction occurs, the fallout can impact the services you rely on,” said Hasan.

Read More »

Intel sees supply shortage, will prioritize data center technology

“Capacity constraints, especially on Intel 10 and Intel 7 [Intel’s semiconductor manufacturing process], limited our ability to fully meet demand in Q3 for both data center and client products,” said Zinsner, adding that Intel isn’t about to add capacity to Intel 10 and 7 when it has moved beyond those nodes. “Given the current tight capacity environment, which we expect to persist into 2026, we are working closely with customers to maximize our available output, including adjusting pricing and mix to shift demand towards products where we have supply and they have demand,” said Zinsner. For that reason, Zinzner projects that the fourth quarter will be roughly flat versus the third quarter in terms of revenue. “We expect Intel products up modestly sequentially but below customer demand as we continue to navigate supply environment,” said Zinsner. “We expect CCG to be down modestly and PC AI to be up strongly sequentially as we prioritize wafer capacity for server shipments over entry-level client parts.”

Read More »

How to set up an AI data center in 90 days

“Personally, I think that a brownfield is very creative way to deal with what I think is the biggest problem that we’ve got right now, which is time and speed to market,” he said. “On a brownfield, I can go into a building that’s already got power coming into the building. Sometimes they’ve already got chiller plants, like what we’ve got with the building I’m in right now.” Patmos certainly made the most of the liquid facilities in the old printing press building. The facility is built to handle anywhere from 50 to over 140 kilowatts per cabinet, a leap far beyond the 1–2 kW densities typical of legacy data centers. The chips used in the servers are Nvidia’s Grace Blackwell processors, which run extraordinarily hot. To manage this heat load, Patmos employs a multi-loop liquid cooling system. The design separates water sources into distinct, closed loops, each serving a specific function and ensuring that municipal water never directly contacts sensitive IT equipment. “We have five different, completely separated water loops in this building,” said Morgan. “The cooling tower uses city water for evaporation, but that water never mixes with the closed loops serving the data hall. Everything is designed to maximize efficiency and protect the hardware.” The building taps into Kansas City’s district chilled water supply, which is sourced from a nearby utility plant. This provides the primary cooling resource for the facility. Inside the data center, a dedicated loop circulates a specialized glycol-based fluid, filtered to extremely low micron levels and formulated to be electronically safe. Heat exchangers transfer heat from the data hall fluid to the district chilled water, keeping the two fluids separate and preventing corrosion or contamination. Liquid-to-chip and rear-door heat exchangers are used for immediate heat removal.

Read More »

INNIO and VoltaGrid: Landmark 2.3 GW Modular Power Deal Signals New Phase for AI Data Centers

Why This Project Marks a Landmark Shift The deployment of 2.3 GW of modular generation represents utility-scale capacity, but what makes it distinct is the delivery model. Instead of a centralized plant, the project uses modular gas-reciprocating “power packs” that can be phased in step with data-hall readiness. This approach allows staged energization and limits the bottlenecks that often stall AI campuses as they outgrow grid timelines or wait in interconnection queues. AI training loads fluctuate sharply, placing exceptional stress on grid stability and voltage quality. The INNIO/VoltaGrid platform was engineered specifically for these GPU-driven dynamics, emphasizing high transient performance (rapid load acceptance) and grid-grade power quality, all without dependence on batteries. Each power pack is also designed for maximum permitting efficiency and sustainability. Compared with diesel generation, modern gas-reciprocating systems materially reduce both criteria pollutants and CO₂ emissions. VoltaGrid markets the configuration as near-zero criteria air emissions and hydrogen-ready, extending allowable runtimes under air permits and making “prime-as-a-service” viable even in constrained or non-attainment markets. 2025: Momentum for Modular Prime Power INNIO has spent 2025 positioning its Jenbacher platform as a next-generation power solution for data centers: combining fast start, high transient performance, and lower emissions compared with diesel. While the 3 MW J620 fast-start lineage dates back to 2019, this year the company sharpened its data center narrative and booked grid stability and peaking projects in markets where rapid data center growth is stressing local grids. This momentum was exemplified by an 80 MW deployment in Indonesia announced earlier in October. The same year saw surging AI-driven demand and INNIO’s growing push into North American data-center markets. Specifications for the 2.3 GW VoltaGrid package highlight the platform’s heat tolerance, efficiency, and transient response, all key attributes for powering modern AI campuses. VoltaGrid’s 2025 Milestones VoltaGrid’s announcements across 2025 reflect

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »