Stay Ahead, Stay ONMINE

➡️ Start Asking Your Data ‘Why?’ — A Gentle Intro To Causality

Correlation does not imply causation. It turns out, however, that with some simple ingenious tricks one can, potentially, unveil causal relationships within standard observational data, without having to resort to expensive randomised control trials. This post is targeted towards anyone making data driven decisions. The main takeaway message is that causality may be possible by […]

Correlation does not imply causation. It turns out, however, that with some simple ingenious tricks one can, potentially, unveil causal relationships within standard observational data, without having to resort to expensive randomised control trials.

This post is targeted towards anyone making data driven decisions. The main takeaway message is that causality may be possible by understanding that the story behind the data is as important as the data itself.

By introducing Simpson’s and Berkson’s Paradoxes, situations where the outcome of a population is in conflict with that of its cohorts, I shine a light on the importance of using causal reasoning to identify these paradoxes in data and avoid misinterpretation. Specifically I introduce causal graphs as a method to visualise the story behind the data point out that by adding this to your arsenal you are likely to conduct better analyses and experiments.

My ultimate objective is to whet your appetite to explore more on causality, as I believe that by asking data “Why?” you will be able to go beyond correlation calculations and extract more insights, as well as avoid common misjudgement pitfalls.

Note that throughout this gentle intro I do not use equations but demonstrate using accessible intuitive visuals. That said I provide resources for you to take your next step in adding Causal Inference to your statistical toolbox so that you may get more value from your data.

The Era of Data Driven Decision Making

In [Deity] We Trust, All Others Bring Data! — William E. Deming

In this digital age it is common to put a lot of faith in data. But this raises an overlooked question: Should we trust data on its own?

Judea Pearl, who is considered the godfather of Causality, articulated best:

“The collection of information is as important as the information itself “ — Judea Pearl

In other words the story behind the data is as important as the data itself.

Judea Pearl is considered the Godfather of Causality. Credit: Aleksander Molak

This manifests in a growing awareness of the importance of identifying bias in datasets. By the end of this post I hope that you will appreciate that causality pertains the fundamental tools to best express, quantify and attempt to correct for these biases.

In causality introductions it is customary to demonstrate why “correlation does not imply causation” by highlighting limitations of association analysis due to spurious correlations (e.g, shark attacks 🦈 and ice-cream sales 🍦). In an attempt to reduce the length of this post I defer this aspect to an older one of mine. Here I focus on two mind boggling paradoxes 🤯 and their resolution via causal graphs to make a similar point.

Paradoxes in Analysis

To understand the importance of the story behind the data we will examine two counter-intuitive (but nonetheless true) paradoxes which are classical situations of data misinterpretation.

In the first we imagine a clinical trial in which patients are given a treatment and that results in a health score. Our objective is to assess the average impact of increased treatment to the health outcome. For pedagogical purposes in these examples we assume that samples are representative (i.e, the sample size is not an issue) and that variances in measurements are minimal.

Population outcome of imaginary clinical trial. Each dot is one patient and the red line indicates the naïve population trend.

In the figure above we learn that on average increasing the treatment appears to be beneficial since it results in a better outcome.

Now we’ll color code by age and gender groupings and examine how the treatment increases impacts each cohort.

Same data as before where each symbol represents an age-gender cohort.

Track any cohort (e.g, “Girls” representing young females) and you immediately realise that increase in treatment appears adverse.

What is the conclusion of the study? On the one hand increasing the treatment appears to be better for the population at large, but when examining gender-age cohorts it seems disadvantageous. This is Simpson’s Paradox which may be stated:

“Trends can exist in subgroups but reverse for the whole”

Below we will resolve this paradox using causality tools, but beforehand let’s explore another interesting one, which also examines made up data.

Imagine that we quantify for the general population their attractiveness and how talented they are as in this figure:

General population. Source: Wikipedia, created by Cmglee

We find no apparent correlation.

Now we’ll focus on an unusual subset — famous people:

A subset of celebrities. Source: Wikipedia created by Cmglee

Here we clearly see an anti-correlation that doesn’t exist in the general population.

Should we conclude that Talent and Attractiveness are independent variables as per the first plot of the general population or that they are correlated as per that of celebrities?

This is Berkson’s Paradox where one population has a trait trend that another lacks.

Whereas an algorithm would identify these correlations, resolving these paradoxes requires a full understanding of the context which normally is not fed to a computer. In other words without knowing the story behind the data results may be misinterpreted and wrong conclusions may be inferred.

Mastering identification and resolution these paradoxes is an important first step to elevating one’s analyses from correlations to causal inference.

Whereas these simple examples may be explained away logically, for the purposes of learning causal tools in the next section I’ll introduce Causal Graphs.

Causal Graphs— Visualising The Story Behind The Data

“[From the Simpson’s and Berkson’s Paradoxes we learn that] certain decisions cannot be made based on the basis of data alone, but instead depend on the story behind the data. … Graph Theory enables these stories to be conveyed” — Judea Pearl

Causal graph models are probabilistic graphical models used to visualise the story behind the data. They are perhaps one of the most powerful tools for analysts that is not taught in most statistics curricula. They are both elegant and highly informative. Hopefully by the end of this post you will appreciate it when Judea Pearl says that this is the missing vocabulary to communicate causality.

To understand causal graph models (or causal graphs for short) we start with the following illustration of an example undirected graph with four nodes/vertices and three edges.

An undirected graph with four nodes/vertices and three edges

Each node is a variable and the edges communicate “who is related to whom?” (i.e, correlations, joint probabilities).A directed graph is one in which we add arrows as in this figure.

A directed graph with four nodes/vertices and five directed edges

A directed edge communicates “who listens to whom?” which is the essence of causation.

In this specific example you can notice a cyclical relationship between the C and D nodes.A useful subset of directed graphs are the directed acyclic graphs (DAG), which have no cycles as in the next figure.

A directed acyclic graph with four nodes/vertices and four directed edges

Here we see that when starting from any node (e.g, A) there isn’t a path that gets back to it.

DAGs are the go-to choice in causality for simplicity as the fact that parameters do not have feedback highly simplifies the flow of information. (For mechanisms that have feedback, e.g temporal systems, one may consider rolling out nodes as a function of time, but that is beyond the scope of this intro.)

Causal graphs are powerful at conveying the cause/effect relationships between the parameter and hence how data was generated (the story behind the data).

From a practical point of view, graphs enable us to understand which parameters are confounders that need to be controlled for, and, as important, which not to control for, because doing so causes spurious correlations. This will be demonstrated below.

The practice of attempting to build a causal graph enables:

  • Design of better experiments.
  • Draw causal conclusions (go beyond correlations by means of representing interventions, counterfactuals and encoding conditional independence relationships; all beyond the scope of this post).

To further motivate the usage of causal graph models we will use them to resolve the Simpson’s and Berkson’s paradoxes introduced above.

💊 Causal Graph Resolution of Simpson’s Paradox

For simplicity we’ll examine Simpson’s paradox focusing on two cohorts, male and female adults.

Outcome of the imaginary therapeutic trial, similar to the previous but focusing on the adults. Each symbol is one patient from the respective age-gender cohort and the red line indicates the naïve population trend.

Examining this data we can make three statements about three variables of interest:

  • Gender is an independent variable (it does not “listen to” the other two)
  • Treatment depends on Gender (as we can see, in this setting the level given depends on Gender — women have been given, for some reason, a higher dosage.)
  • Outcome depends on both Gender and Treatment

According to these we can draw the causal graph as the following:

Simpson’s paradox Graphic Model where Gender is a confounding variable between Treatment and Outcome

Notice how each arrow contributes to communicate the statements above. As important, the lack of an arrow pointing into Gender conveys that it is an independent variable.

We also notice that by having arrows pointing from Gender to Treatment and Outcome it is considered a common cause between them.

The essence of the Simpson’s paradox is that although the Outcome is effected by changes in Treatment, as expected, there is also a backdoor path flow of information via Gender.

As you may have guessed by this stage, the solution to this paradox is that the common cause Gender is a confounding variable that needs to be controlled.

Controlling for a variable, in terms of a causal graph, means eliminating the relationship between Gender and Treatment.

This may be done in two manners:

  • Pre data collection: Setting up a Randomised Control Trial (RCT) in which participants will be given dosage regardless of their Gender.
  • Post data collection: E.g, in this made up scenario the data has already been collected and hence we need to deal with what is referred to as Observational Data.

In both pre- and post- data collection the elimination of the Treatment dependency of Gender (i.e, controlling for the Gender) may be done by modifying the graph such that the arrow between them is removed as in the following:

A modified version of the Simpson’s paradox Graphic Model. The dark node means we control for Gender.

Applying this “graphical surgery” means that the last two statements need to be modified (for convenience I’ll write all three):

  • Gender is an independent variable
  • Treatment is an independent variable
  • Outcome depends on Gender and Treatment (but with no backdoor path).

This enables obtaining the causal relationship of interest : we can assess the direct impact of modification Treatment on the Outcome.

The process of controlling for a confounder, i.e manipulation of the data generation process, is formally referred to as applying an intervention. That is to say we are no longer passive observers of the data, but we are taking an active role in modification it to assess the causal impact.

How is this manifested in practice?

In the case of RCTs the researcher needs to control for important confounding variables. Here we limit the discussion to Gender (but in real world settings you can imagine other variables such as Age, Social Status and anything else that might be relevant to one’s health).

RCTs are considered the golden standard for causal analysis in many experimental settings thanks to its practice of confounding variables. That said, it has many setbacks:

  • It may be expensive to recruit individuals and may be complicated logistically
  • The intervention under investigation may not be physically possible or ethical to conduct (e.g, one can’t ask randomly selected people to smoke or not for ten years)
  • Artificial setting of a laboratory — not a true natural habitat of the population.

Observational data on the other hand is much more readily available in the industry and academia and hence much cheaper and could be more representative of actual habits of the individuals. But as illustrated in the Simpson’s diagram it may have confounding variables that need to be controlled.

This is where ingenious solutions developed in the causal community in the past few decades are making headway. Detailing them are beyond the scope of this post, but I briefly mention how to learn more at the end.

To resolve for this Simpson’s paradox with the given observational data one

  1. Calculates for each cohort the impact of the change of the treatment on the outcome
  2. Calculates a weighted average contribution of each cohort on the population.

Here we will focus on intuition, but in a future post we will describe the maths behind this solution.

I am sure that many analysts, just like myself, have noticed Simpson’s at some stage in their data and hopefully have corrected for it. Now you know the name of this effect and hopefully start to appreciate how causal tools are useful.

That said … being confused at this stage is OK 😕

I’ll be the first to admit that I struggled to understand this concept and it took me three weekends of deep diving into examples to internalised it. This was the gateway drug to causality for me. Part of my process to understanding statistics is playing with data. For this purpose I created an interactive web application hosted in Streamlit which I call Simpson’s Calculator 🧮. I’ll write a separate post for this in the future.

Even if you are confused the main takeaways of Simpson’s paradox is that:

  • It is a situation where trends can exist in subgroups but reverse for the whole.
  • It may be resolved by identifying confounding variables between the treatment and the outcome variables and controlling for them.

This raises the question — should we just control for all variables except for the treatment and outcome? Let’s keep this in mind when resolving for the Berkson’s paradox.

🦚 Causal Graph Resolution of Berkson’s Paradox

As in the previous section we are going to make clear statements about how we believe the data was generated and then draw these in a causal graph.

Let’s examine the case of the general population, for convenience I’m copying the image from above:

General population. Source: Wikipedia, created by Cmglee

Here we understand that:

  • Talent is an independent variable
  • Attractiveness is an independent variable

A causal graph for this is quite simple, two nodes without an edge.

In the general population ones Talent and Attractiveness are independent

Let’s examine the plot of the celebrity subset.

A subset of celebrities. Source: Wikipedia created by Cmglee

The cheeky insight from this mock data is that the more likely one is attractive the less they need to be talented to be a celebrity. Hence we can deduce that:

  • Talent is an independent variable
  • Attractiveness is an independent variable
  • Celebrity variable depends on both Talent and Attractiveness variables. (Imagine this variable is boolean as in: true for celebrities or false for not).

Hence we can draw the causal graph as:

Being a celebrity depends on Talent and Attractiveness

By having arrows pointing into it Celebrity is a collider node between Talent and Attractiveness.

Berkson’s paradox is the fact that when controlling for celebrities we see an interesting trend (anti correlation between Attractiveness and Talent) not seen in the general population.

This can be visualised in the causal graph that by confounding for the Celebrity parameter we are creating a spurious correlation between the otherwise independent variables Talent and Attractiveness. We can draw this as the following:

Berkson’s paradox Graphic Model. The dark node means we control for Celebrity. Controlling this collider variable generates a spurious correlation (dashed line) between Talent and Attractiveness.

The solution of this Berkson’s paradox should be apparent here: Talent and Attractiveness are independent variables in general, but by controlling for the collider Celebrity node causes a spurious correlation in the data.

Let’s compare the resolution of both paradoxes:

  • Resolving Simpson’s Paradox is by controlling for common cause (Gender)
  • Resolving Berkson’s Paradox is by not controlling for the collider (Celebrity)

The next figure combines both insights in the form of their causal graphs:

Graph models show how to resolve the paradoxes. Dark nodes are controlled for. Left: Modified graph to resolve Simpson’s paradox by controlling for Gender. Right: To resolve for Berkson’s paradox the collider should not be controlled.

The main takeaway from the resolution of these paradoxes is that controlling for parameters requires a justification. Common causes should be controlled for but colliders should not.

Even though this is common knowledge for those who study causality (e.g, Economics majors), it is unfortunate that most analysts and machine learning practitioners are not aware of this (including myself in 2020 after over 15 years of analysis and predictive modelling experience).

Oddly, statisticians both over- and underrate the importance of confounders — Judea Pearl

Summary

The main takeaway from this post is that the story behind the data is as important as the data itself.

Appreciating this will help you avoid result misinterpretation as spurious correlations and, as demonstrated here, in Simpson’s and Berskon’s paradoxes.

Causal Graphs are an essential tool to visualise the story behind the data. By using them to solve for the paradoxes we learnt that controlling for variables requires justification (common causes ✅, colliders ⛔️).

For those interested in taking the next step in their causal journey I highly suggest mastering Simpson’s paradox. One great way is by playing with data. Feel free to do so with my interactive “Simpson-calculator” 🧮.

Loved this post? 💌 Join me on LinkedIn or ☕ Buy me a coffee!

Credits

Unless otherwise noted, all images were created by the author.

Many thanks to Jim Parr, Will Reynolds, Hedva Kazin and Betty Kazin for their useful comments.

Wondering what your next step should be in your causal journey? Check out my new article on mastering Simpson’s Paradox — you will never look at data the same way. 🔎

Useful Resources

Here I provide resources that I find useful as well as a shopping list of topics for beginners to learn.

📚 Books

Credit: Gaelle Marcel
  • The Book of Why — popular science reading (NY Times level)
  • Causal Inference in Statistics A Primer — excellent short technical book (site)
  • Causal Inference and Discovery in Python by Aleksander Molak (Packt, github) — clearly explained with python applications 🐍.
  • What If? — a cohesive presentation of concepts of, and methods for, causal inference (site, github)
  • Causal Inference The Mixtape — Social Science focused using Python, R and Strata (site, resources, mooc)
  • Counterfactuals and Causal Inference — Methods and Principles (Social Science focused)

This list is far from comprehensive, but I’m glad to add to it if anyone has suggestions (please mention why the book stands out from the pack).

🔏 Courses

Credit: Austrian National Library

There are probably a few courses online. I love the 🆓 one of Brady Neil bradyneal.com/causal-inference-course.

  • Clearly explained
  • Covers many aspects
  • Thorough
  • Provides memorable examples
  • F.R.E.E

One paid course 💰 that is targeted to practitioners is Altdeep.

💾 Software

Credit: Artturi Jalli

This list is far from comprehensive because the space is rapidly growing:

Causal Wizard app also have an article about Causal Diagram tools.

🐾 Suggested Next Steps In The Causal Journey

Here I highlight a list of topics which I would have found useful when I started my learnings in the field. If I’m missing anything I’d be more than glad to get feedback and adding. I bold face the ones which were briefly discussed here.

Pearl’s Causal Hierarchy of seeing, doing, imagining and their applications. This is an approved modification of the original illustration by Maayan Harel from MaayanVisuals.com in The Book of Why.
  • Pearl’s Causal Hierarchy of seeing, doing and imagining (figure above)
  • Observational data vs. Randomised Control Trials
  • d-separation, common causes, colliders, mediators, instrumental variables
  • Causal Graphs
  • Structural Causal Models
  • Assumptions: Ignorability, SUTVA, Consistency, Positivity
  • “Do” Algebra — assessing impact on cohorts by intervention
  • Counterfactuals — assessing impact on individuals by comparing real outcomes to potential ones
  • The fundamental problem of causality
  • Estimand, Estimator, Estimate, Identifiability — relating causal definitions to observable statistics (e.g, conditional probabilities)
  • Causal Discovery — finding causal graphs with data (e.g, Markov Equivalence)
  • Causal Machine Learning (e.g, Double Machine Learning)

For completeness it is useful to know that there are different streams of causality. Although there is a lot of overlap you may find that methods differ in naming convention due to development in different fields of research: Computer Science, Social Sciences, Health, Economics

Here I used definitions mostly from the Pearlian perspective (as developed in the field of computer science).

The Story Behind This Post

This narrative is a result of two study groups that I have conducted in a previous role to get myself and colleagues to learn about causality, which I felt missing in my skill set. If there is any interest I’m glad to write a post about the study group experience.

This intro was created as the one I felt that I needed when I started my journey in causality.

In the first iteration of this post I wrote and presented the limitations of spurious correlations and Simpson’s paradox. The main reason for this revision to focus on two paradoxes is that, whereas most causality intros focus on the limitations of correlations, I feel that understanding the concept of justification of confounders is important for all analysts and machine learning practitioners to be aware of.

On September 5th 2024 I have presented this content in a contributed talk at the Royal Statistical Society Annual Conference in Brighton, England (abstract link).

Unfortunately there is no recording but there are of previous talks of mine:

The slides are available at bit.ly/start-ask-why. Presenting this material for the first time at PyData Global 2021

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Oil Rises on Shutdown Hopes

Oil rose as a push to end the US government shutdown buoyed wider markets, with crude traders also looking toward a data-heavy week that will yield insights into whether a long-awaited global surplus is forming. West Texas Intermediate rose around 0.6% to settle above $60 a barrel after two weekly declines, while Brent closed around $64. In the US, the White House expressed support for a bipartisan deal to reopen the US government after its longest-ever shutdown. Markets took the progress as a breakthrough, with tech shares driving the equities rally. Crude has dropped in five of the past six weeks as jitters over surplus supply gained greater traction. The Organization of the Petroleum Exporting Countries and its allies have been loosening output curbs in an apparent effort to gain market share, while drillers from outside the alliance, including the US, have also been adding barrels. OPEC is due to release its monthly analysis on Wednesday, with the International Energy Agency issuing an annual energy outlook the same day, followed by its regular monthly snapshot on Thursday. US sanctions also remain in focus after the Trump administration last month targeted Russia’s Rosneft PJSC and Lukoil PJSC in a bid to raise pressure on the Kremlin to end its war in Ukraine. Governments across Europe and the Middle East are rushing to ensure Lukoil’s sprawling oil operations can keep running after the US sanctions and a quashed bid by energy merchant Gunvor Group for its assets last week. Iraq is said to have transferred operations at Lukoil’s West Qurna 2 field to two state firms in an effort to ensure production continues. Earlier in the day Lukoil declared force majeure, allowing it to exercise the right to skip contractual obligations on the field, according to a person familiar with the matter.

Read More »

After rate case, Con Edison Q3 electric revenues up 10.6% on flat sales

By the numbers: Consolidated Edison Q3 2025 -1.5% Consolidated Edison Co. of New York sold 15,692 million kWh in the third quarter of 2025, down slightly from 15,923 million kWh in the same period of 2024. After adjusting for weather and other variations, the utility said delivery volumes increased 0.3%. +10.6% CECONY’s sales of electricity reached $3.73 billion in the third quarter of 2025, up from $3.38 billion in the same period last year. $688 million Utility holding company Consolidated Edison saw its third quarter net income reach $688 million compared with $588 million in the same period of 2024. Rate case drives revenues Consolidated Edison Co. of New York, the electric utility serving New York City, warned customers heading into the summer that their bills would be going up. Now those sales are showing up on the utility parent company’s bottom line. Parent company Consolidated Edison also owns Orange and Rockland Utilities and Rockland Electric Co., as well as transmission and clean energy development businesses. “Third quarter 2025 results reflect [an] increase in electric rate base at CECONY,” the full name of the New York City distribution utility, the company said in its third quarter earnings presentation. Residential sales were flat but third quarter electric sale revenues at CECONY rose more than 5%, year over year. Commercial sales rose 3% and revenues jumped 13.9%. Retrieved from Consolidated Edison. And the utility has proposed spending almost $17 billion in New York City and Westchester County to build out its gas and electric systems from 2026 to 2028. Electric system spending is about $12 billion of the total.  If regulators approve, the spending plan “will fund critical infrastructure investments while keeping affordability and reliability front and center,” Chairman and CEO Tim Cawley said in a statement. “At the same time, the settlement

Read More »

USA Natural Gas Price Pulls Back Before Skyrocketing

In an EBW Analytics Group report sent to Rigzone by the EBW team on Monday, Eli Rubin, an energy analyst at the company, noted that the December natural gas contract “pulled back to $4.268 [per million British thermal units (MMBtu)] intraday Friday before skyrocketing to test $4.509 [per MMBtu] this morning”. Rubin highlighted in the report that “a cold spell lifted weekend Henry Hub prices to a seven-month high of $3.76 [per MMBtu], LNG exports pushed a step-change higher to a record 18.1 Bcf/d [billion cubic feet per day], and weekend weather forecasts added eight HDDs [heating degree days] since Friday”. The EBW energy analyst went on to note in the report, however, that gas production set a record high on Sunday as Marcellus producers raised output into the first cold spell of the season. “Further, current cold weather may end mid-week, with daily weather-driven demand to slide 12.7 Bcf/d by Thursday,” Rubin added. “U.S. natural gas storage may reach Thanksgiving only slightly below 3,900 Bcf [billion cubic feet],” Rubin continued. Rubin went on to warn in the report that technical momentum may fizzle after having achieved the $4.50 per MMBtu target. “Chances for a cold December lie beyond the 1-15 day forecast window,” Rubin pointed out. “While another test of support is probable within the next 7-10 days, the bullish long-term structural outlook has limited both the duration and magnitude of any pullbacks – and may continue to offer support,” he added. In an exclusive interview with Rigzone on Monday morning, Art Hogan, Chief Market Strategist at B. Riley Wealth, said the fundamental backdrop continues to move natural gas prices higher. “Futures rose nearly three percent to around $4.45 per MMBtu, the highest since March and close to levels last seen in December 2022, lifted by strong export demand

Read More »

EOG Completes $5.7B Purchase of Encino Acquisition Partners

EOG Resources Inc has consummated its takeover of Encino Acquisition Partners (EAP) from the Canada Pension Plan (CPP) Investment Board and Encino Energy for $5.7 billion subject to post-closing adjustments. “In the Utica, the integration of the Encino assets is proceeding exceptionally well, with continued incremental efficiency gains”, EOG chair and chief executive Ezra Yacob said in the company’s quarterly report. The transaction involved the purchase of CPP’s 98 percent stake and Encino Energy’s two percent stake in EAP, which the two formed 2017, CPP said May 30 announcing the deal. The acquisition grows EOG’s Utica shale position by 675,000 net acres to 1.1 million net acres with over two billion net barrels of oil equivalent undeveloped resources, Houston, Texas-based EOG said in a separate statement May 30. “Pro forma production totals 275,000 barrels of oil equivalent per day creating a leading producer in the Utica shale play”, EOG said then. “The acquisition expands EOG’s core acreage in the volatile oil window, which averages 65 percent liquids production, by 235,000 net acres for a combined contiguous position of 485,000 net acres”, EOG said at the time. “In the natural gas window, the acquisition adds 330,000 net acres along with existing natural gas production with firm transportation exposed to premium end markets. “In the northern acreage, where the company has delivered outstanding well results, EOG increases its existing average working interest by more than 20 percent”. EOG raised its regular dividend by five percent to $1.02 per share in light of the transaction. “EOG expects to generate more than $150 million of synergies in the first year driven by lower capital, operating and debt financing costs”, the May statement said. Yacob said then, “This acquisition combines large, premier acreage positions in the Utica, creating a third foundational play for EOG alongside our Delaware Basin and Eagle Ford assets”. The acquisition

Read More »

JP Morgan Analysts Examine Global Oil Demand Growth

Year to date through November 4, global oil demand growth is tracking an expansion of 0.85 million barrels per day. That’s what J.P. Morgan analysts said in a report sent to Rigzone by the JPM Commodities research team recently, adding that the expansion figure is 50,000 barrels per day below the company’s estimate of 0.90 million barrels per day. Global oil demand averaged 105.8 million barrels per day in October, the analysts noted in the report, pointing out that demand “consistently trail[ed]…” their estimates by 50,000 barrels per day throughout the month. The analysts said in the report that, for the first four days of November, they estimate global demand averaged 105 million barrels per day. They noted that this was an increase of 450,000 barrels per day compared with the same period last year but 30,000 barrels per day below their forecast monthly growth of 480,000 barrels per day. “High-frequency indicators suggest that U.S. oil consumption remains subdued, with travel activity declining as daily flights dropped seven percent week over week for the period ending November 3, largely due to the ongoing shutdown,” the analysts said in the report. “Additionally, U.S. container arrivals for November point to an eight percent decrease relative to last year, marking the third consecutive month of annual decline,” they added. “In East Asia, petrochemical feedstock demand continues to be softer than usual, while industrial activity in Germany has extended its downturn into a third consecutive month,” they continued. The analysts also stated in the report, which was sent to Rigzone on November 5, that global total liquids stocks “rose by 29 million barrels last week, bringing the year to date increase to 385 million barrels”. “Regionally, OECD liquid stocks have grown by 83 million barrels, while stocks in China have increased by 88 million

Read More »

How network diversity protects utility operations in an evolving landscape

From redundancy to resilience: The next level of network diversity Despite billions invested in grid modernization and widespread adoption of dual-carrier approaches, many utilities still find their communications infrastructure vulnerable to disruption. It’s a paradox: utilities have engineered redundancy across power generation and distribution, yet communications—the digital backbone of the modern grid—often lacks the comprehensive diversity needed to truly eliminate single points of failure.  True grid resilience now depends on comprehensive network diversity that enables consistent quality of service, operational flexibility and long-term adaptability. The cost of connectivity blind spots As utilities expand advanced metering infrastructure (AMI), SCADA systems, distributed energy resource (DER) management and connected field operations, the strain on communications networks continues to grow. Relying on a single technology exposes utilities to significant risk—from natural disasters and carrier outages to rural coverage gaps and network congestion. The result: delayed outage restoration, compromised grid visibility and operational inefficiencies that undermine reliability and customer trust. The versatility imperative: Why utilities can’t just “upgrade” Utility communications can’t follow the consumer tech cycle. Equipment often remains in service for 20 to 30 years, even as wireless standards evolve from private radio networks to LTE, 4G, 5G and emerging spectrum such as Anterix Band 106. Each shift brings new performance expectations—but utilities can’t afford to rip and replace infrastructure every few years. Instead, they need adaptable, field-proven solutions that bridge technologies and spectrum generations, ensuring consistent, secure connectivity today while accommodating tomorrow’s innovations without interrupting critical operations. Three pillars of network diversity While many utilities have already adopted dual-carrier strategies, the expanding complexity of modern grid operations demands a renewed look at comprehensive network diversity. True resilience comes from a multi-path approach—one that enables seamless communication under any condition. Three key strategies define this new standard of reliability. A. Public-to-public redundancy Dual-radio routers

Read More »

Microsoft’s In-Chip Microfluidics Technology Resets the Limits of AI Cooling

Raising the Thermal Ceiling for AI Hardware As Microsoft positions it, the significance of in-chip microfluidics goes well beyond a novel way to cool silicon. By removing heat at its point of generation, the technology raises the thermal ceiling that constrains today’s most power-dense compute devices. That shift could redefine how next-generation accelerators are designed, packaged, and deployed across hyperscale environments. Impact of this cooling change: Higher-TDP accelerators and tighter packing. Where thermal density has been the limiting factor, in-chip microfluidics could enable denser server sleds—such as NVL- or NVL-like trays—or allow higher per-GPU power budgets without throttling. 3D-stacked and HBM-heavy silicon. Microsoft’s documentation explicitly ties microfluidic cooling to future 3D-stacked and high-bandwidth-memory (HBM) architectures, which would otherwise be heat-limited. By extracting heat inside the package, the approach could unlock new levels of performance and packaging density for advanced AI accelerators. Implications for the AI Data Center If microfluidics can be scaled from prototype to production, its influence will ripple through every layer of the data center, from the silicon package to the white space and plant. The technology touches not only chip design but also rack architecture, thermal planning, and long-term cost models for AI infrastructure. Rack densities, white space topology, and facility thermals Raising thermal efficiency at the chip level has a cascading effect on system design: GPU TDP trajectory. Press materials and analysis around Microsoft’s collaboration with Corintis suggest the feasibility of far higher thermal design power (TDP) envelopes than today’s roughly 1–2 kW per device. Corintis executives have publicly referenced dissipation targets in the 4 kW to 10 kW range, highlighting how in-chip cooling could sustain next-generation GPU power levels without throttling. Rack, ring, and row design. By removing much of the heat directly within the package, microfluidics could reduce secondary heat spread into boards and

Read More »

Designing the AI Century: 7×24 Exchange Fall ’25 Charts the New Data Center Industrial Stack

SMRs and the AI Power Gap: Steve Fairfax Separates Promise from Physics If NVIDIA’s Sean Young made the case for AI factories, Steve Fairfax offered a sobering counterweight: even the smartest factories can’t run without power—and not just any power, but constant, high-availability, clean generation at a scale utilities are increasingly struggling to deliver. In his keynote “Small Modular Reactors for Data Centers,” Fairfax, president of Oresme and one of the data center industry’s most seasoned voices on reliability, walked through the long arc from nuclear fusion research to today’s resurgent interest in fission at modular scale. His presentation blended nuclear engineering history with pragmatic counsel for AI-era infrastructure leaders: SMRs are promising, but their road to reality is paved with physics, fuel, and policy—not PowerPoint. From Fusion Research to Data Center Reliability Fairfax began with his own story—a career that bridges nuclear reliability and data center engineering. As a young physicist and electrical engineer at MIT, he helped build the Alcator C-MOD fusion reactor, a 400-megawatt research facility that heated plasma to 100 million degrees with 3 million amps of current. The magnet system alone drew 265,000 amps at 1,400 volts, producing forces measured in millions of pounds. It was an extreme experiment in controlled power, and one that shaped his later philosophy: design for failure, test for truth, and assume nothing lasts forever. When the U.S. cooled on fusion power in the 1990s, Fairfax applied nuclear reliability methods to data center systems—quantifying uptime and redundancy with the same math used for reactor safety. By 1994, he was consulting for hyperscale pioneers still calling 10 MW “monstrous.” Today’s 400 MW campuses, he noted, are beginning to look a lot more like reactors in their energy intensity—and increasingly, in their regulatory scrutiny. Defining the Small Modular Reactor Fairfax defined SMRs

Read More »

Top network and data center events 2025 & 2026

Denise Dubie is a senior editor at Network World with nearly 30 years of experience writing about the tech industry. Her coverage areas include AIOps, cybersecurity, networking careers, network management, observability, SASE, SD-WAN, and how AI transforms enterprise IT. A seasoned journalist and content creator, Denise writes breaking news and in-depth features, and she delivers practical advice for IT professionals while making complex technology accessible to all. Before returning to journalism, she held senior content marketing roles at CA Technologies, Berkshire Grey, and Cisco. Denise is a trusted voice in the world of enterprise IT and networking.

Read More »

Google’s cheaper, faster TPUs are here, while users of other AI processors face a supply crunch

Opportunities for the AI industry LLM vendors such as OpenAI and Anthropic, which still have relatively young code bases and are continuously evolving them, also have much to gain from the arrival of Ironwood for training their models, said Forrester vice president and principal analyst Charlie Dai. In fact, Anthropic has already agreed to procure 1 million TPUs for training and its models and using them for inferencing. Other, smaller vendors using Google’s TPUs for training models include Lightricks and Essential AI. Google has seen a steady increase in demand for its TPUs (which it also uses to run interna services), and is expected to buy $9.8 billion worth of TPUs from Broadcom this year, compared to $6.2 billion and $2.04 billion in 2024 and 2023 respectively, according to Harrowell. “This makes them the second-biggest AI chip program for cloud and enterprise data centers, just tailing Nvidia, with approximately 5% of the market. Nvidia owns about 78% of the market,” Harrowell said. The legacy problem While some analysts were optimistic about the prospects for TPUs in the enterprise, IDC research director Brandon Hoff said enterprises will most likely to stay away from Ironwood or TPUs in general because of their existing code base written for other platforms. “For enterprise customers who are writing their own inferencing, they will be tied into Nvidia’s software platform,” Hoff said, referring to CUDA, the software platform that runs on Nvidia GPUs. CUDA was released to the public in 2007, while the first version of TensorFlow has only been around since 2015.

Read More »

Cisco launches AI infrastructure, AI practitioner certifications

“This new certification focuses on artificial intelligence and machine learning workloads, helping technical professionals become AI-ready and successfully embed AI into their workflows,” said Pat Merat, vice president at Learn with Cisco, in a blog detailing the new AI Infrastructure Specialist certification. “The certification validates a candidate’s comprehensive knowledge in designing, implementing, operating, and troubleshooting AI solutions across Cisco infrastructure.” Separately, the AITECH certification is part of the Cisco AI Infrastructure track, which complements its existing networking, data center, and security certifications. Cisco says the AITECH cert training is intended for network engineers, system administrators, solution architects, and other IT professionals who want to learn how AI impacts enterprise infrastructure. The training curriculum covers topics such as: Utilizing AI for code generation, refactoring, and using modern AI-assisted coding workflows. Using generative AI for exploratory data analysis, data cleaning, transformation, and generating actionable insights. Designing and implementing multi-step AI-assisted workflows and understanding complex agentic systems for automation. Learning AI-powered requirements, evaluating customization approaches, considering deployment strategies, and designing robust AI workflows. Evaluating, fine-tuning, and deploying pre-trained AI models, and implementing Retrieval Augmented Generation (RAG) systems. Monitoring, maintaining, and optimizing AI-powered workflows, ensuring data integrity and security. AITECH certification candidates will learn how to use AI to enhance productivity, automate routine tasks, and support the development of new applications. The training program includes hands-on labs and simulations to demonstrate practical use cases for AI within Cisco and multi-vendor environments.

Read More »

Chip-to-Grid Gets Bought: Eaton, Vertiv, and Daikin Deals Imply a New Thermal Capital Cycle

This week delivered three telling acquisitions that mark a turning point for the global data center supply chain; and more specifically, for the high-density liquid cooling mega-play now unfolding across the power-thermal continuum. Eaton is acquiring Boyd Thermal for $9.5 billion from Goldman Sachs Asset Management. Vertiv is buying PurgeRite for about $1 billion from Milton Street Capital. And Daikin Applied has moved to acquire Chilldyne, one of the most proven negative-pressure direct-to-chip pioneers. On paper, they’re three distinct transactions. In reality, they’re chapters in the same story: the acceleration of strategic vertical integration around thermal infrastructure for AI-class compute. The Equity Layer: Private Capital Builds, Strategics Buy From an equity standpoint, these are classic handoff moments between private-equity construction and corporate consolidation. Goldman Sachs built Boyd Thermal into a global platform spanning cold plates, CDUs, and high-density liquid loop design, now sold to Eaton at an enterprise multiple north of 5× 2026E revenue. Milton Street Capital took PurgeRite from a specialist contractor in fluid flushing and commissioning into a nationwide services platform. And Daikin, long synonymous with chillers and air-side thermal, is crossing the liquid Rubicon by buying its way into the D2C ecosystem. Each deal crystallizes a simple fact: liquid cooling is no longer an adjunct; it’s core infrastructure. Private equity did its job scaling the parts. Strategic players are now paying up for the system. Eaton’s Bid: The Chip-to-Grid Thesis For Eaton, Boyd Thermal is the final missing piece in its “chip-to-grid” thesis. The company already owns the electrical side of the data center: UPS, busway, switchgear, and monitoring. Boyd plugs the thermal gap, allowing Eaton to market full rack-to-substation solutions for AI loads in the 50–100 kW+ range. It’s a statement acquisition that places Eaton squarely against Schneider Electric, Vertiv and ABB in the race to

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »