Stay Ahead, Stay ONMINE

How LLMs Work: Pre-Training to Post-Training, Neural Networks, Hallucinations, and Inference

With the recent explosion of interest in large language models (LLMs), they often seem almost magical. But let’s demystify them. I wanted to step back and unpack the fundamentals — breaking down how LLMs are built, trained, and fine-tuned to become the AI systems we interact with today. This two-part deep dive is something I’ve been meaning […]

With the recent explosion of interest in large language models (LLMs), they often seem almost magical. But let’s demystify them.

I wanted to step back and unpack the fundamentals — breaking down how LLMs are built, trained, and fine-tuned to become the AI systems we interact with today.

This two-part deep dive is something I’ve been meaning to do for a while and was also inspired by Andrej Karpathy’s widely popular 3.5-hour YouTube video, which has racked up 800,000+ views in just 10 days. Andrej is a founding member of OpenAI, his insights are gold— you get the idea.

If you have the time, his video is definitely worth watching. But let’s be real — 3.5 hours is a long watch. So, for all the busy folks who don’t want to miss out, I’ve distilled the key concepts from the first 1.5 hours into this 10-minute read, adding my own breakdowns to help you build a solid intuition.

What you’ll get

Part 1 (this article): Covers the fundamentals of LLMs, including pre-training to post-training, neural networks, Hallucinations, and inference.

Part 2: Reinforcement learning with human/AI feedback, investigating o1 models, DeepSeek R1, AlphaGo

Let’s go! I’ll start with looking at how LLMs are being built.

At a high level, there are 2 key phases: pre-training and post-training.

1. Pre-training

Before an LLM can generate text, it must first learn how language works. This happens through pre-training, a highly computationally intensive task.

Step 1: Data collection and preprocessing

The first step in training an LLM is gathering as much high-quality text as possible. The goal is to create a massive and diverse dataset containing a wide range of human knowledge.

One source is Common Crawl, which is a free, open repository of web crawl data containing 250 billion web pages over 18 years. However, raw web data is noisy — containing spam, duplicates and low quality content — so preprocessing is essential.If you’re interested in preprocessed datasets, FineWeb offers a curated version of Common Crawl, and is made available on Hugging Face.

Once cleaned, the text corpus is ready for tokenization.

Step 2: Tokenization

Before a neural network can process text, it must be converted into numerical form. This is done through tokenization, where words, subwords, or characters are mapped to unique numerical tokens.

Think of tokens as the building blocks — the fundamental building blocks of all language models. In GPT4, there are 100,277 possible tokens.A popular tokenizer, Tiktokenizer, allows you to experiment with tokenization and see how text is broken down into tokens. Try entering a sentence, and you’ll see each word or subword assigned a series of numerical IDs.

Step 3: Neural network training

Once the text is tokenized, the neural network learns to predict the next token based on its context. As shown above, the model takes an input sequence of tokens (e.g., “we are cook ing”) and processes it through a giant mathematical expression — which represents the model’s architecture — to predict the next token.

A neural network consists of 2 key parts:

  1. Parameters (weights) — the learned numerical values from training.
  2. Architecture (mathematical expression) — the structure defining how the input tokens are processed to produce outputs.

Initially, the model’s predictions are random, but as training progresses, it learns to assign probabilities to possible next tokens.

When the correct token (e.g. “food”) is identified, the model adjusts its billions of parameters (weights) through backpropagation — an optimization process that reinforces correct predictions by increasing their probabilities while reducing the likelihood of incorrect ones.

This process is repeated billions of times across massive datasets.

Base model — the output of pre-training

At this stage, the base model has learned:

  • How words, phrases and sentences relate to each other
  • Statistical patterns in your training data

However, base models are not yet optimised for real-world tasks. You can think of them as an advanced autocomplete system — they predict the next token based on probability, but with limited instruction-following ability.

A base model can sometimes recite training data verbatim and can be used for certain applications through in-context learning, where you guide its responses by providing examples in your prompt. However, to make the model truly useful and reliable, it requires further training.

2. Post training — Making the model useful

Base models are raw and unrefined. To make them helpful, reliable, and safe, they go through post-training, where they are fine-tuned on smaller, specialised datasets.

Because the model is a neural network, it cannot be explicitly programmed like traditional software. Instead, we “program” it implicitly by training it on structured labeled datasets that represent examples of desired interactions.

How post training works

Specialised datasets are created, consisting of structured examples on how the model should respond in different situations. 

Some types of post training include:

  1. Instruction/conversation fine tuning
    Goal: To teach the model to follow instructions, be task oriented, engage in multi-turn conversations, follow safety guidelines and refuse malicious requests, etc.
    Eg: InstructGPT (2022): OpenAI hired some 40 contractors to create these labelled datasets. These human annotators wrote prompts and provided ideal responses based on safety guidelines. Today, many datasets are generated automatically, with humans reviewing and editing them for quality.
  2. Domain specific fine tuning
    Goal: Adapt the model for specialised fields like medicine, law and programming.

Post training also introduces special tokens — symbols that were not used during pre-training — to help the model understand the structure of interactions. These tokens signal where a user’s input starts and ends and where the AI’s response begins, ensuring that the model correctly distinguishes between prompts and replies.

Now, we’ll move on to some other key concepts.

Inference — how the model generates new text

Inference can be performed at any stage, even midway through pre-training, to evaluate how well the model has learned.

When given an input sequence of tokens, the model assigns probabilities to all possible next tokens based on patterns it has learned during training.

Instead of always choosing the most likely token, it samples from this probability distribution — similar to flipping a biased coin, where higher-probability tokens are more likely to be selected.

This process repeats iteratively, with each newly generated token becoming part of the input for the next prediction. 

Token selection is stochastic and the same input can produce different outputs. Over time, the model generates text that wasn’t explicitly in its training data but follows the same statistical patterns.

Hallucinations — when LLMs generate false info

Why do hallucinations occur?

Hallucinations happen because LLMs do not “know” facts — they simply predict the most statistically likely sequence of words based on their training data.

Early models struggled significantly with hallucinations.

For instance, in the example below, if the training data contains many “Who is…” questions with definitive answers, the model learns that such queries should always have confident responses, even when it lacks the necessary knowledge.

When asked about an unknown person, the model does not default to “I don’t know” because this pattern was not reinforced during training. Instead, it generates its best guess, often leading to fabricated information.

How do you reduce hallucinations?

Method 1: Saying “I don’t know”

Improving factual accuracy requires explicitly training the model to recognise what it does not know — a task that is more complex than it seems.

This is done via self interrogation, a process that helps define the model’s knowledge boundaries.

Self interrogation can be automated using another AI model, which generates questions to probe knowledge gaps. If it produces a false answer, new training examples are added, where the correct response is: “I’m not sure. Could you provide more context?”

If a model has seen a question many times in training, it will assign a high probability to the correct answer.

If the model has not encountered the question before, it distributes probability more evenly across multiple possible tokens, making the output more randomised. No single token stands out as the most likely choice.

Fine tuning explicitly trains the model to handle low-confidence outputs with predefined responses. 

For example, when I asked ChatGPT-4o, “Who is asdja rkjgklfj?”, it correctly responded: “I’m not sure who that is. Could you provide more context?”

Method 2: Doing a web search

A more advanced method is to extend the model’s knowledge beyond its training data by giving it access to external search tools.

At a high level, when a model detects uncertainty, it can trigger a web search. The search results are then inserted into a model’s context window — essentially allowing this new data to be part of it’s working memory. The model references this new information while generating a response.

Vague recollections vs working memory

Generally speaking, LLMs have two types of knowledge access.

  1. Vague recollections — the knowledge stored in the model’s parameters from pre-training. This is based on patterns it learned from vast amounts of internet data but is not precise nor searchable.
  2. Working memory — the information that is available in the model’s context window, which is directly accessible during inference. Any text provided in the prompt acts as a short term memory, allowing the model to recall details while generating responses.

Adding relevant facts within the context window significantly improves response quality.

Knowledge of self 

When asked questions like “Who are you?” or “What built you?”, an LLM will generate a statistical best guess based on its training data, unless explicitly programmed to respond accurately. 

LLMs do not have true self-awareness, their responses depend on patterns seen during training.

One way to provide the model with a consistent identity is by using a system prompt, which sets predefined instructions about how it should describe itself, its capabilities, and its limitations.

To end off

That’s a wrap for Part 1! I hope this has helped you build intuition on how LLMs work. In Part 2, we’ll dive deeper into reinforcement learning and some of the latest models.

Got questions or ideas for what I should cover next? Drop them in the comments — I’d love to hear your thoughts. See you in Part 2! 🙂

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Nutanix expands beyond HCI

The Pure Storage integration will also be supported within Cisco’s FlashStack offering, creating a “FlashStack with Nutanix” solution with storage provided by Pure, networking capabilities as well as UCS servers from Cisco, and then the common Nutanix Cloud Platform. Cloud Native AOS: Breaking free from hypervisors Another sharp departure from

Read More »

IBM introduces new generation of LinuxOne AI mainframe

In addition to generative AI applications, new multiple model AI approaches are engineered to enhance prediction and accuracy in many industry use cases like advanced fraud detection, image processing and retail automation, according to IBM. LinuxONE Emperor 5 also comes with advanced security features specifically designed for the AI threat

Read More »

Hornsea 4 cancellation puts pressure on AR7

The UK government has proposed changes to the way it procures offshore wind as it now needs to claw back capacity after the massive Hornsea 4 project ground to a halt. The Department for Energy Security and Net Zero (DESNZ) confirmed changes to the way it will run its contracts for difference (CfD) auctions, starting with the upcoming Allocation Round 7 (AR7), expected this year. Under the reforms, the government would no longer set a monetary budget for the various technologies across the auction, such as the £1.5 billion allocated for offshore wind in AR6, at the start of the auction. Instead, the government would publish a “capacity ambition,” stating instead the amount of power it aims to procure. However, it would still publish a budget for the auction after the process has run. In addition, the reforms envision allowing the secretary of state to see the anonymous bids, including price and capacity. They would use this information to determine how much capacity to procure and to set the final budget. AR7 The amendments will also end flexible bidding for fixed-bottom offshore wind applications. According to the proposals, flexible bids are no longer useful if the auction sets the budget after seeing the bids in advance. Finally, the proposed reforms also considered accelerating the offshore wind part of the auction if developers get their bids in on time and there are no appeals. However, the government said that legislation needed to make change could not be delivered before AR7 – though it did not rule it out for subsequent auctions. © Supplied by OrstedOrsted’s Hornsea One wind farm. It added that the government is exploring non-legislative routes to accelerate a fixed-bottom offshore wind auction in time for AR7. In comments to Energy Voice, Aegir Insights market analyst Signe Tellier Christensen

Read More »

Grid queue: Lay of the land for renewables developers is still unclear

Renewable energy developments can only export the electricity they produce to the grid if they have a grid connection. This has created a large queue of developers waiting for a connection date for their projects, which can extend to over a decade in the future. This backlog is causing significant uncertainty for developers and strain on some renewable projects preventing their construction from being progressed. Once they are in it, developers rarely leave the queue even if they ultimately decide that their project isn’t viable. As the queue currently operates on a “first come, first served” basis, it means that viable and ready-to-build projects can be delayed longer than necessary. To help address these lengthy delays and enable new clean energy projects to secure grid connections, a new grid queue management system is being developed by the National Energy System Operator (NESO). Expected to be introduced this summer, this new system aims to ease the current bottleneck by allocating “confirmed connection dates, connection points and queue positions” to projects which are deemed viable and ready to progress over those which don’t meet its criteria. One of the biggest changes for developers will be demonstrating they have secured land rights to keep their place in the queue when satisfying the milestones known as “gate 2”. While this new initiative will be welcomed across the renewables sector, it raises several issues for project developers to consider including how they negotiate new land agreements. NESO has been clear that nothing short of a signed option agreement will be required for projects to qualify for a grid position under gate 2 – an exclusivity agreement or heads of terms will no longer suffice. Although NESO is clear that only projects that are demonstrably viable will keep their place in the grid connection queue, how

Read More »

Business leaders and SNP call on Starmer to visit Aberdeen amid North Sea job losses

Aberdeen business leaders and the SNP are calling on the Prime Minister to visit the north-east of Scotland as they blamed Labour policies for yet more job losses in the oil and gas sector. On Wednesday, Harbour Energy announced that it would cut 250 jobs from its onshore operations, accounting for a 25% reduction in headcount. The UK’s largest producer of oil and gas has claimed that the hostile fiscal policy facing oil and gas businesses prompted the decision as it slows investment in the country, opting to allocate funds overseas. On the day of this announcement, Aberdeen South MP and SNP Westminster leader Stephen Flynn brought the news to the attention of prime minister Sir Keir Starmer. © BloombergEmissions from chimneys at the British Steel Ltd. plant in Scunthorpe, UK. He asked Starmer to “explain to my constituents why he is willing to move heaven and earth to save jobs in Scunthorpe while destroying jobs in Scotland.” The SNP leader was referring to the government’s recent move to nationalise British Steel. The UK government took control of the British steel company from its Chinese owner, Jingye Group, after losses from its steelmaking operations forced it to the brink. Now the SNP MP, alongside his colleagues in Westminster and Holyrood, has written to the Labour Party leader, inviting him to see the impacts his government’s energy policy is having on Aberdeen and its people. “We are writing to you as the local MPs and MSPs for Aberdeen, to invite you to urgently visit Aberdeen to meet with local representatives, businesses, trade unions and workers to hear about the damaging impact that Labour government policies are having on Scottish energy jobs – and to discuss the urgent investment needed to protect jobs and deliver prosperity,” the letter reads. ‘Haemorrhaging investment in

Read More »

Oil Gains 3% as Trade Hopes Rise

Oil rose as President Donald Trump announced a trade framework with the UK, spurring some optimism about deals to come. West Texas Intermediate climbed 3.2% to approach $60 a barrel. Trump said the UK would fast-track US items through its customs process and reduce barriers on billions of dollars of agricultural, chemical, energy and industrial exports, including ethanol. Notably, the terms are limited in scope and a 10% baseline tariff remains. The British deal is raising investors’ confidence that agreements can be reached in the more complicated trade talks that lie ahead, specifically negotiations between US and Chinese officials kicking off this weekend. Trump said that the 145% levy against China, the world’s largest crude-importer, could be lowered if talks go well. “The real driver of risk assets today appears to be renewed optimism around progress in the US–China trade talks,” said Rebecca Babin, a senior energy trader at CIBC Private Wealth Group. “It’s also worth noting that sentiment toward crude remains overwhelmingly bearish.” Crude has slid since Trump took office on concerns that his global trade war will dent economic growth and slow energy demand. Adding to the bearishness, OPEC+ has decided to revive idled output faster than expected. Already, the drop in oil prices is spurring American shale producers to cut spending in the Permian Basin. Still, small pockets of bullishness are visible in the options market. There was active trading of Brent $95 September call options, which profit when futures rise. The US on Thursday sanctioned a third Chinese “teapot” oil refinery and various other entities associated with Iran, days ahead of a fourth round of nuclear talks between Washington and Tehran. The failure of the negotiations could push Brent up toward $70 a barrel, Citigroup analysts including Eric Lee said in a note. In the US,

Read More »

Indian LNG Buyers Embrace USA Benchmark to Balance Volatility

Indian liquefied natural gas importers have signed a flurry of long-term purchase agreements linked to the US price benchmark, the latest effort by the nation’s buyers to protect themselves from volatile markets. State-owned companies have signed at least four contracts since December, totaling nearly 11 million tons per year, priced to the Henry Hub index, according to the executives familiar with the deals. Until now, most of India’s long-term contracts have been linked to crude oil, the traditional way to price LNG deals. Pricing the fuel to the Henry Hub index doesn’t necessarily mean that the fuel will come from the US, rather it is a move to hedge risk.  India’s consumers — from power plants to petrochemical facilities — are highly price-sensitive as gas competes head-to-head with cheaper and dirtier alternatives. Companies that relied on the spot market or oil-linked contracts have periodically been forced to cut back purchases due to price spikes. US gas futures have also been relatively less volatile and more liquid than the Asian spot benchmark, the Japan-Korea Marker. “The last ten year average shows that there have been periods during winter months JKM benchmark surged beyond imagination, while Henry Hub prices saw proportionally smaller growth,” Bharat Petroelum Corp Ltd’s Director Finance V.R.K. Gupta said. BPCL in February signed a deal with ADNOC Trading for 2.5 million tons of LNG for five years. The Mumbai-based refiner will evaluate the performance of the deal and may sign more such contracts, Gupta said.  Indian Oil Corp. last week signed a deal with Trafigura for 2.5 million tons, or 27 cargoes, spread over five years, with supplies starting the middle of this year. The recent deals have been signed at a 115% link to Henry Hub plus $5 to $6 per million British thermal units. The supply is

Read More »

PJM, utilities urge FERC to dismiss call for colocation settlement talks

The Federal Energy Regulatory Commission should reject a call for a 90-day pause in its deliberations over the PJM Interconnection’s rules for colocating data centers at power plants, according to PJM, major utilities and other organizations. “The national interest will be best served by a quick dismissal of this proceeding, and a ruling that the existing PJM Tariff remains just and reasonable,” PJM transmission owners said in a Wednesday filing urging FERC to dismiss a call for stakeholder settlement talks. “Rather than fighting about a wish list of new rules, the parties will then instead begin to focus on obtaining service under the rules in place today.” The transmission owners include utility companies such as American Electric Power, Dominion Energy, Duke Energy, Exelon, FirstEnergy and PPL Electric. “The record is clear — no matter how connected to the PJM transmission system, large loads pose both a safety and a reliability concern,” the utilities said. “It is unrealistic to ask the [transmission owners] to accede to these demands in the context of settlement procedures while those questions remain unresolved.” PJM also wants FERC to ignore the call for settlement discussions that was made in late April by the Electric Power Supply Association, the PJM Power Providers Group, Calpine, Cogentrix Energy Power Management, Constellation Energy Generation and LS Power Development. “The Commission should not pause its work on offering the industry guidance on a path forward for co-location arrangements,” PJM said in a Monday filing. The call for settlement talks lacks broad stakeholder support, PJM said, noting it is holding a workshop on “large load” issues on Friday. American Municipal Power, a wholesale power provider for public power utilities, and Northern Virginia Electric Cooperative and Northeastern Rural Electric Membership Corp. also oppose holding settlement talks. Beside the power generators and trade organizations,

Read More »

Tech CEOs warn Senate: Outdated US power grid threatens AI ambitions

The implications are clear: without dramatic improvements to the US energy infrastructure, the nation’s AI ambitions could be significantly constrained by simple physical limitations – the inability to power the massive computing clusters necessary for advanced AI development and deployment. Streamlining permitting processes The tech executives have offered specific recommendations to address these challenges, with several focusing on the need to dramatically accelerate permitting processes for both energy generation and the transmission infrastructure needed to deliver that power to AI facilities, the report added. Intrator specifically called for efforts “to streamline the permitting process to enable the addition of new sources of generation and the transmission infrastructure to deliver it,” noting that current regulatory frameworks were not designed with the urgent timelines of the AI race in mind. This acceleration would help technology companies build and power the massive data centers needed for AI training and inference, which require enormous amounts of electricity delivered reliably and consistently. Beyond the cloud: bringing AI to everyday devices While much of the testimony focused on large-scale infrastructure needs, AMD CEO Lisa Su emphasized that true AI leadership requires “rapidly building data centers at scale and powering them with reliable, affordable, and clean energy sources.” Su also highlighted the importance of democratizing access to AI technologies: “Moving faster also means moving AI beyond the cloud. To ensure every American benefits, AI must be built into the devices we use every day and made as accessible and dependable as electricity.”

Read More »

Networking errors pose threat to data center reliability

Still, IT and networking issues increased in 2024, according to Uptime Institute. The analysis attributed the rise in outages due to increased IT and network complexity, specifically, change management and misconfigurations. “Particularly with distributed services, cloud services, we find that cascading failures often occur when networking equipment is replicated across an entire network,” Lawrence explained. “Sometimes the failure of one forces traffic to move in one direction, overloading capacity at another data center.” The most common causes of major network-related outages were cited as: Configuration/change management failure: 50% Third-party network provider failure: 34% Hardware failure: 31% Firmware/software error: 26% Line breakages: 17% Malicious cyberattack: 17% Network overload/congestion failure: 13% Corrupted firewall/routing tables issues: 8% Weather-related incident: 7% Configuration/change management issues also attributed for 62% of the most common causes of major IT system-/software-related outages. Change-related disruptions consistently are responsible for software-related outages. Human error continues to be one of the “most persistent challenges in data center operations,” according to Uptime’s analysis. The report found that the biggest cause of these failures is data center staff failing to follow established procedures, which has increased by about 10 percentage points compared to 2023. “These are things that were 100% under our control. I mean, we can’t control when the UPS module fails because it was either poorly manufactured, it had a flaw, or something else. This is 100% under our control,” Brown said. The most common causes of major human error-related outages were reported as:

Read More »

Liquid cooling technologies: reducing data center environmental impact

“Highly optimized cold-plate or one-phase immersion cooling technologies can perform on par with two-phase immersion, making all three liquid-cooling technologies desirable options,” the researchers wrote. Factors to consider There are numerous factors to consider when adopting liquid cooling technologies, according to Microsoft’s researchers. First, they advise performing a full environmental, health, and safety analysis, and end-to-end life cycle impact analysis. “Analyzing the full data center ecosystem to include systems interactions across software, chip, server, rack, tank, and cooling fluids allows decision makers to understand where savings in environmental impacts can be made,” they wrote. It is also important to engage with fluid vendors and regulators early, to understand chemical composition, disposal methods, and compliance risks. And associated socioeconomic, community, and business impacts are equally critical to assess. More specific environmental considerations include ozone depletion and global warming potential; the researchers emphasized that operators should only use fluids with low to zero ozone depletion potential (ODP) values, and not hydrofluorocarbons or carbon dioxide. It is also critical to analyze a fluid’s viscosity (thickness or stickiness), flammability, and overall volatility. And operators should only use fluids with minimal bioaccumulation (the buildup of chemicals in lifeforms, typically in fish) and terrestrial and aquatic toxicity. Finally, once up and running, data center operators should monitor server lifespan and failure rates, tracking performance uptime and adjusting IT refresh rates accordingly.

Read More »

Cisco unveils prototype quantum networking chip

Clock synchronization allows for coordinated time-dependent communications between end points that might be cloud databases or in large global databases that could be sitting across the country or across the world, he said. “We saw recently when we were visiting Lawrence Berkeley Labs where they have all of these data sources such as radio telescopes, optical telescopes, satellites, the James Webb platform. All of these end points are taking snapshots of a piece of space, and they need to synchronize those snapshots to the picosecond level, because you want to detect things like meteorites, something that is moving faster than the rotational speed of planet Earth. So the only way you can detect that quickly is if you synchronize these snapshots at the picosecond level,” Pandey said. For security use cases, the chip can ensure that if an eavesdropper tries to intercept the quantum signals carrying the key, they will likely disturb the state of the qubits, and this disturbance can be detected by the legitimate communicating parties and the link will be dropped, protecting the sender’s data. This feature is typically implemented in a Quantum Key Distribution system. Location information can serve as a critical credential for systems to authenticate control access, Pandey said. The prototype quantum entanglement chip is just part of the research Cisco is doing to accelerate practical quantum computing and the development of future quantum data centers.  The quantum data center that Cisco envisions would have the capability to execute numerous quantum circuits, feature dynamic network interconnection, and utilize various entanglement generation protocols. The idea is to build a network connecting a large number of smaller processors in a controlled environment, the data center warehouse, and provide them as a service to a larger user base, according to Cisco.  The challenges for quantum data center network fabric

Read More »

Zyxel launches 100GbE switch for enterprise networks

Port specifications include: 48 SFP28 ports supporting dual-rate 10GbE/25GbE connectivity 8 QSFP28 ports supporting 100GbE connections Console port for direct management access Layer 3 routing capabilities include static routing with support for access control lists (ACLs) and VLAN segmentation. The switch implements IEEE 802.1Q VLAN tagging, port isolation, and port mirroring for traffic analysis. For link aggregation, the switch supports IEEE 802.3ad for increased throughput and redundancy between switches or servers. Target applications and use cases The CX4800-56F targets multiple deployment scenarios where high-capacity backbone connectivity and flexible port configurations are required. “This will be for service providers initially or large deployments where they need a high capacity backbone to deliver a primarily 10G access layer to the end point,” explains Nguyen. “Now with Wi-Fi 7, more 10G/25G capable POE switches are being powered up and need interconnectivity without the bottleneck. We see this for data centers, campus, MDU (Multi-Dwelling Unit) buildings or community deployments.” Management is handled through Zyxel’s NebulaFlex Pro technology, which supports both standalone configuration and cloud management via the Nebula Control Center (NCC). The switch includes a one-year professional pack license providing IGMP technology and network analytics features. The SFP28 ports maintain backward compatibility between 10G and 25G standards, enabling phased migration paths for organizations transitioning between these speeds.

Read More »

Engineers rush to master new skills for AI-driven data centers

According to the Uptime Institute survey, 57% of data centers are increasing salary spending. Data center job roles that saw the highest increases were in operations management – 49% of data center operators said they saw highest increases in this category – followed by junior and mid-level operations staff at 45%, and senior management and strategy at 35%. Other job categories that saw salary growth were electrical, at 32% and mechanical, at 23%. Organizations are also paying premiums on top of salaries for particular skills and certifications. Foote Partners tracks pay premiums for more than 1,300 certified and non-certified skills for IT jobs in general. The company doesn’t segment the data based on whether the jobs themselves are data center jobs, but it does track 60 skills and certifications related to data center management, including skills such as storage area networking, LAN, and AIOps, and 24 data center-related certificates from Cisco, Juniper, VMware and other organizations. “Five of the eight data center-related skills recording market value gains in cash pay premiums in the last twelve months are all AI-related skills,” says David Foote, chief analyst at Foote Partners. “In fact, they are all among the highest-paying skills for all 723 non-certified skills we report.” These skills bring in 16% to 22% of base salary, he says. AIOps, for example, saw an 11% increase in market value over the past year, now bringing in a premium of 20% over base salary, according to Foote data. MLOps now brings in a 22% premium. “Again, these AI skills have many uses of which the data center is only one,” Foote adds. The percentage increase in the specific subset of these skills in data centers jobs may vary. The Uptime Institute survey suggests that the higher pay is motivating workers to stay in the

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »