Stay Ahead, Stay ONMINE

Your boss is watching

A full day’s work for Dora Manriquez, who drives for Uber and Lyft in the San Francisco Bay Area, includes waiting in her car for a two-digit number to appear. The apps keep sending her rides that are too cheap to pay for her time—$4 or $7 for a trip across San Francisco, $16 for a trip from the airport for which the customer is charged $100. But Manriquez can’t wait too long to accept a ride, because her acceptance rate contributes to her driving score for both companies, which can then affect the benefits and discounts she has access to.  The systems are black boxes, and Manriquez can’t know for sure which data points affect the offers she receives or how. But what she does know is that she’s driven for ride-share companies for the last nine years, and this year, having found herself unable to score enough better-­paying rides, she has to file for bankruptcy.  Every action Manriquez takes—or doesn’t take—is logged by the apps she must use to work for these companies. (An Uber spokesperson told MIT Technology Review that acceptance rates don’t affect drivers’ fares. Lyft did not return a request for comment on the record.) But app-based employers aren’t the only ones keeping a very close eye on workers today. A study conducted in 2021, when the covid-19 pandemic had greatly increased the number of people working from home, revealed that almost 80% of companies surveyed were monitoring their remote or hybrid workers. A New York Times investigation in 2022 found that eight of the 10 largest private companies in the US track individual worker productivity metrics, many in real time. Specialized software can now measure and log workers’ online activities, physical location, and even behaviors like which keys they tap and what tone they use in their written communications—and many workers aren’t even aware that this is happening. What’s more, required work apps on personal devices may have access to more than just work—and as we may know from our private lives, most technology can become surveillance technology if the wrong people have access to the data. While there are some laws in this area, those that protect privacy for workers are fewer and patchier than those applying to consumers. Meanwhile, it’s predicted that the global market for employee monitoring software will reach $4.5 billion by 2026, with North America claiming the dominant share. Working today—whether in an office, a warehouse, or your car—can mean constant electronic surveillance with little transparency, and potentially with livelihood-­ending consequences if your productivity flags. What matters even more than the effects of this ubiquitous monitoring on privacy may be how all that data is shifting the relationships between workers and managers, companies and their workforce. Managers and management consultants are using worker data, individually and in the aggregate, to create black-box algorithms that determine hiring and firing, promotion and “deactivation.” And this is laying the groundwork for the automation of tasks and even whole categories of labor on an endless escalator to optimized productivity. Some human workers are already struggling to keep up with robotic ideals. We are in the midst of a shift in work and workplace relationships as significant as the Second Industrial Revolution of the late 19th and early 20th centuries. And new policies and protections may be necessary to correct the balance of power. Data as power Data has been part of the story of paid work and power since the late 19th century, when manufacturing was booming in the US and a rise in immigration meant cheap and plentiful labor. The mechanical engineer Frederick Winslow Taylor, who would become one of the first management consultants, created a strategy called “scientific management” to optimize production by tracking and setting standards for worker performance. Soon after, Henry Ford broke down the auto manufacturing process into mechanized steps to minimize the role of individual skill and maximize the number of cars that could be produced each day. But the transformation of workers into numbers has a longer history. Some researchers see a direct line between Taylor’s and Ford’s unrelenting focus on efficiency and the dehumanizing labor optimization practices carried out on slave-owning plantations.  As manufacturers adopted Taylorism and its successors, time was replaced by productivity as the measure of work, and the power divide between owners and workers in the United States widened. But other developments soon helped rebalance the scales. In 1914, Section 6 of the Clayton Act established the federal legal right for workers to unionize and stated that “the labor of a human being is not a commodity.” In the years that followed, union membership grew, and the 40-hour work week and the minimum wage were written into US law. Though the nature of work had changed with revolutions in technology and management strategy, new frameworks and guardrails stood up to meet that change. More than a hundred years after Taylor published his seminal book, The Principles of Scientific Management, “efficiency” is still a business buzzword, and technological developments, including new uses of data, have brought work to another turning point. But the federal minimum wage and other worker protections haven’t kept up, leaving the power divide even starker. In 2023, CEO pay was 290 times average worker pay, a disparity that’s increased more than 1,000% since 1978. Data may play the same kind of intermediary role in the boss-worker relationship that it has since the turn of the 20th century, but the scale has exploded. And the stakes can be a matter of physical health. In 2024, a report from a Senate committee led by Bernie Sanders, based on an 18-month investigation of Amazon’s warehouse practices, found that the company had been setting the pace of work in those facilities with black-box algorithms, presumably calibrated with data collected by monitoring employees. (In California, because of a 2021 bill, Amazon is required to at least reveal the quotas and standards workers are expected to comply with; elsewhere the bar can remain a mystery to the very people struggling to meet it.) The report also found that in each of the previous seven years, Amazon workers had been almost twice as likely to be injured as other warehouse workers, with injuries ranging from concussions to torn rotator cuffs to long-term back pain. An internal team tasked with evaluating Amazon warehouse safety found that letting robots set the pace for human labor was correlated with subsequent injuries. The Sanders report found that between 2020 and 2022, two internal Amazon teams tasked with evaluating warehouse safety recommended reducing the required pace of work and giving workers more time off. Another found that letting robots set the pace for human labor was correlated with subsequent injuries. The company rejected all the recommendations for technical or productivity reasons. But the report goes on to reveal that in 2022, another team at Amazon, called Core AI, also evaluated warehouse safety and concluded that unrealistic pacing wasn’t the reason all those workers were getting hurt on the job. Core AI said that the cause, instead, was workers’ “frailty” and “intrinsic likelihood of injury.” The issue was the limitations of the human bodies the company was measuring, not the pressures it was subjecting those bodies to. Amazon stood by this reasoning during the congressional investigation. Amazon spokesperson Maureen Lynch Vogel told MIT Technology Review that the Sanders report is “wrong on the facts” and that the company continues to reduce incident rates for accidents. “The facts are,” she said, “our expectations for our employees are safe and ­reasonable—and that was validated both by a judge in Washington after a thorough hearing and by the state’s Board of Industrial Insurance Appeals.” A study conducted in 2021 revealed that almost 80% of companies surveyed were monitoring their remote or hybrid workers. Yet this line of thinking is hardly unique to Amazon, although the company could be seen as a pioneer in the datafication of work. (An investigation found that over one year between 2017 and 2018, the company fired hundreds of workers at a single facility—by means of automatically generated letters—for not meeting productivity quotas.) An AI startup recently placed a series of billboards and bus signs in the Bay Area touting the benefits of its automated sales agents, which it calls “Artisans,” over human workers. “Artisans won’t complain about work-life balance,” one said. “Artisans won’t come into work ­hungover,” claimed another. “Stop hiring humans,” one hammered home. The startup’s leadership took to the company blog to say that the marketing campaign was intentionally provocative and that Artisan believes in the potential of human labor. But the company also asserted that using one of its AI agents costs 96% less than hiring a human to do the same job. The campaign hit a nerve: When data is king, humans—whether warehouse laborers or knowledge workers—may not be able to outperform machines. AI management and managing AI Companies that use electronic employee monitoring report that they are most often looking to the technologies not only to increase productivity but also to manage risk. And software like Teramind offers tools and analysis to help with both priorities. While Teramind, a globally distributed company, keeps its list of over 10,000 client companies private, it provides resources for the financial, health-care, and customer service industries, among others—some of which have strict compliance requirements that can be tricky to keep on top of. The platform allows clients to set data-driven standards for productivity, establish thresholds for alerts about toxic communication tone or language, create tracking systems for sensitive file sharing, and more. 

A full day’s work for Dora Manriquez, who drives for Uber and Lyft in the San Francisco Bay Area, includes waiting in her car for a two-digit number to appear. The apps keep sending her rides that are too cheap to pay for her time—$4 or $7 for a trip across San Francisco, $16 for a trip from the airport for which the customer is charged $100. But Manriquez can’t wait too long to accept a ride, because her acceptance rate contributes to her driving score for both companies, which can then affect the benefits and discounts she has access to. 

The systems are black boxes, and Manriquez can’t know for sure which data points affect the offers she receives or how. But what she does know is that she’s driven for ride-share companies for the last nine years, and this year, having found herself unable to score enough better-­paying rides, she has to file for bankruptcy. 

Every action Manriquez takes—or doesn’t take—is logged by the apps she must use to work for these companies. (An Uber spokesperson told MIT Technology Review that acceptance rates don’t affect drivers’ fares. Lyft did not return a request for comment on the record.) But app-based employers aren’t the only ones keeping a very close eye on workers today.

A study conducted in 2021, when the covid-19 pandemic had greatly increased the number of people working from home, revealed that almost 80% of companies surveyed were monitoring their remote or hybrid workers. A New York Times investigation in 2022 found that eight of the 10 largest private companies in the US track individual worker productivity metrics, many in real time. Specialized software can now measure and log workers’ online activities, physical location, and even behaviors like which keys they tap and what tone they use in their written communications—and many workers aren’t even aware that this is happening.

What’s more, required work apps on personal devices may have access to more than just work—and as we may know from our private lives, most technology can become surveillance technology if the wrong people have access to the data. While there are some laws in this area, those that protect privacy for workers are fewer and patchier than those applying to consumers. Meanwhile, it’s predicted that the global market for employee monitoring software will reach $4.5 billion by 2026, with North America claiming the dominant share.

Working today—whether in an office, a warehouse, or your car—can mean constant electronic surveillance with little transparency, and potentially with livelihood-­ending consequences if your productivity flags. What matters even more than the effects of this ubiquitous monitoring on privacy may be how all that data is shifting the relationships between workers and managers, companies and their workforce. Managers and management consultants are using worker data, individually and in the aggregate, to create black-box algorithms that determine hiring and firing, promotion and “deactivation.” And this is laying the groundwork for the automation of tasks and even whole categories of labor on an endless escalator to optimized productivity. Some human workers are already struggling to keep up with robotic ideals.

We are in the midst of a shift in work and workplace relationships as significant as the Second Industrial Revolution of the late 19th and early 20th centuries. And new policies and protections may be necessary to correct the balance of power.

Data as power

Data has been part of the story of paid work and power since the late 19th century, when manufacturing was booming in the US and a rise in immigration meant cheap and plentiful labor. The mechanical engineer Frederick Winslow Taylor, who would become one of the first management consultants, created a strategy called “scientific management” to optimize production by tracking and setting standards for worker performance.

Soon after, Henry Ford broke down the auto manufacturing process into mechanized steps to minimize the role of individual skill and maximize the number of cars that could be produced each day. But the transformation of workers into numbers has a longer history. Some researchers see a direct line between Taylor’s and Ford’s unrelenting focus on efficiency and the dehumanizing labor optimization practices carried out on slave-owning plantations. 

As manufacturers adopted Taylorism and its successors, time was replaced by productivity as the measure of work, and the power divide between owners and workers in the United States widened. But other developments soon helped rebalance the scales. In 1914, Section 6 of the Clayton Act established the federal legal right for workers to unionize and stated that “the labor of a human being is not a commodity.” In the years that followed, union membership grew, and the 40-hour work week and the minimum wage were written into US law. Though the nature of work had changed with revolutions in technology and management strategy, new frameworks and guardrails stood up to meet that change.

More than a hundred years after Taylor published his seminal book, The Principles of Scientific Management, “efficiency” is still a business buzzword, and technological developments, including new uses of data, have brought work to another turning point. But the federal minimum wage and other worker protections haven’t kept up, leaving the power divide even starker. In 2023, CEO pay was 290 times average worker pay, a disparity that’s increased more than 1,000% since 1978. Data may play the same kind of intermediary role in the boss-worker relationship that it has since the turn of the 20th century, but the scale has exploded. And the stakes can be a matter of physical health.

A humanoid robot with folded arms looms over human workers at an Amazon Warehouse

In 2024, a report from a Senate committee led by Bernie Sanders, based on an 18-month investigation of Amazon’s warehouse practices, found that the company had been setting the pace of work in those facilities with black-box algorithms, presumably calibrated with data collected by monitoring employees. (In California, because of a 2021 bill, Amazon is required to at least reveal the quotas and standards workers are expected to comply with; elsewhere the bar can remain a mystery to the very people struggling to meet it.) The report also found that in each of the previous seven years, Amazon workers had been almost twice as likely to be injured as other warehouse workers, with injuries ranging from concussions to torn rotator cuffs to long-term back pain.

An internal team tasked with evaluating Amazon warehouse safety found that letting robots set the pace for human labor was correlated with subsequent injuries.

The Sanders report found that between 2020 and 2022, two internal Amazon teams tasked with evaluating warehouse safety recommended reducing the required pace of work and giving workers more time off. Another found that letting robots set the pace for human labor was correlated with subsequent injuries. The company rejected all the recommendations for technical or productivity reasons. But the report goes on to reveal that in 2022, another team at Amazon, called Core AI, also evaluated warehouse safety and concluded that unrealistic pacing wasn’t the reason all those workers were getting hurt on the job. Core AI said that the cause, instead, was workers’ “frailty” and “intrinsic likelihood of injury.” The issue was the limitations of the human bodies the company was measuring, not the pressures it was subjecting those bodies to. Amazon stood by this reasoning during the congressional investigation.

Amazon spokesperson Maureen Lynch Vogel told MIT Technology Review that the Sanders report is “wrong on the facts” and that the company continues to reduce incident rates for accidents. “The facts are,” she said, “our expectations for our employees are safe and ­reasonable—and that was validated both by a judge in Washington after a thorough hearing and by the state’s Board of Industrial Insurance Appeals.”

A study conducted in 2021 revealed that almost 80% of companies surveyed were monitoring their remote or hybrid workers.

Yet this line of thinking is hardly unique to Amazon, although the company could be seen as a pioneer in the datafication of work. (An investigation found that over one year between 2017 and 2018, the company fired hundreds of workers at a single facility—by means of automatically generated letters—for not meeting productivity quotas.) An AI startup recently placed a series of billboards and bus signs in the Bay Area touting the benefits of its automated sales agents, which it calls “Artisans,” over human workers. “Artisans won’t complain about work-life balance,” one said. “Artisans won’t come into work ­hungover,” claimed another. “Stop hiring humans,” one hammered home.

The startup’s leadership took to the company blog to say that the marketing campaign was intentionally provocative and that Artisan believes in the potential of human labor. But the company also asserted that using one of its AI agents costs 96% less than hiring a human to do the same job. The campaign hit a nerve: When data is king, humans—whether warehouse laborers or knowledge workers—may not be able to outperform machines.

AI management and managing AI

Companies that use electronic employee monitoring report that they are most often looking to the technologies not only to increase productivity but also to manage risk. And software like Teramind offers tools and analysis to help with both priorities. While Teramind, a globally distributed company, keeps its list of over 10,000 client companies private, it provides resources for the financial, health-care, and customer service industries, among others—some of which have strict compliance requirements that can be tricky to keep on top of. The platform allows clients to set data-driven standards for productivity, establish thresholds for alerts about toxic communication tone or language, create tracking systems for sensitive file sharing, and more. 

a person laying in the sidewalk next to a bus sign reading,

MICHAEL BYERS

Electronic monitoring and management are also changing existing job functions in real time. Teramind’s clients must figure out who at their company will handle and make decisions around employee data. Depending on the type of company and its needs, Osipova says, that could be HR, IT, the executive team, or another group entirely—and the definitions of those roles will change with these new responsibilities. 

Workers’ tasks, too, can shift with updated technology, sometimes without warning. In 2020, when a major hospital network piloted using robots to clean rooms and deliver food to patients, Criscitiello heard from SEIU-UHW members that they were confused about how to work alongside them. Workers certainly hadn’t received any training for that. “It’s not ‘We’re being replaced by robots,’” says Criscitiello. “It’s ‘Am I going to be responsible if somebody has a medical event because the wrong tray was delivered? I’m supervising the robot—it’s on my floor.’” 

A New York Times investigation in 2022 found that eight of the 10 largest US private companies track individual worker productivity metrics, often in real time.

Nurses are also seeing their jobs expand to include technology management. Carmen Comsti of National Nurses United, the largest nurses’ union in the country, says that while management isn’t explicitly saying nurses will be disciplined for errors that occur as algorithmic tools like AI transcription systems or patient triaging mechanisms are integrated into their workflows, that’s functionally how it works. “If a monitor goes off and the nurse follows the algorithm and it’s incorrect, the nurse is going to get blamed for it,” Comsti says. Nurses and their unions don’t have access to the inner workings of the algorithms, so it’s impossible to say what data these or other tools have been trained on, or whether the data on how nurses work today will be used to train future algorithmic tools. What it means to be a worker, manager, or even colleague is on shifting ground, and frontline workers don’t have insight into which way it’ll move next.

The state of the law and the path to protection

Today, there isn’t much regulation on how companies can gather and use workers’ data. While the General Data Protection Regulation (GDPR) offers some worker protections in Europe, no US federal laws consistently shield workers’ privacy from electronic monitoring or establish firm guardrails for the implementation of algorithm-driven management strategies that draw on the resulting data. (The Electronic Communications Privacy Act allows employers to monitor employees if there are legitimate business reasons and if the employee has already given consent through a contract; tracking productivity can qualify as a legitimate business reason.)

But in late 2024, the Consumer Financial Protection Bureau did issue guidance warning companies using algorithmic scores or surveillance-based reports that they must follow the Fair Credit Reporting Act—which previously applied only to consumers—by getting workers’ consent and offering transparency into what data was being collected and how it would be used. And the Biden administration’s Blueprint for an AI Bill of Rights had suggested that the enumerated rights should apply in employment contexts. But none of these are laws.

So far, binding regulation is being introduced state by state. In 2023, the California Consumer Privacy Act (CCPA) was officially extended to include workers and not just consumers in its protections, even though workers had been specifically excluded when the act was first passed. That means California workers now have the right to know what data is being collected about them and for what purpose, and they can ask to correct or delete that data. Other states are working on their own measures. But with any law or guidance, whether at the federal or state level, the reality comes down to enforcement. Criscitiello says SEIU is testing out the new CCPA protections. 

“It’s too early to tell, but my conclusion so far is that the onus is on the workers,” she says. “Unions are trying to fill this function, but there’s no organic way for a frontline worker to know how to opt out [of data collection], or how to request data about what’s being collected by their employer. There’s an education gap about that.” And while CCPA covers the privacy aspect of electronic monitoring, it says nothing about how employers can use any collected data for management purposes.

The push for new protections and guardrails is coming in large part from organized labor. Unions like National Nurses United and SEIU are working with legislators to create policies on workers’ rights in the face of algorithmic management. And app-based ­advocacy groups have been pushing for new minimum pay rates and against wage theft—and winning. There are other successes to be counted already, too. One has to do with electronic visit verification (EVV), a system that records information about in-home visits by health-care providers. The 21st Century Cures Act, signed into law in 2016, required all states to set up such systems for Medicaid-funded home health care. The intent was to create accountability and transparency to better serve patients, but some health-care workers in California were concerned that the monitoring would be invasive and disruptive for them and the people in their care.

Brandi Wolf, the statewide policy and research director for SEIU’s long-term-care workers, says that in collaboration with disability rights and patient advocacy groups, the union was able to get language into legislation passed in the 2017–2018 term that would take effect the next fiscal year. It indicated to the federal government that California would be complying with the requirement, but that EVV would serve mainly a timekeeping function, not a management or disciplinary one.

Today advocates say that individual efforts to push back against or evade electronic monitoring are not enough; the technology is too widespread and the stakes too high. The power imbalances and lack of transparency affect workers across industries and sectors—from contract drivers to unionized hospital staff to well-compensated knowledge workers. What’s at issue, says Minsu Longiaru, a senior staff attorney at PowerSwitch Action, a network of grassroots labor organizations, is our country’s “moral economy of work”—that is, an economy based on human values and not just capital. Longiaru believes there’s an urgent need for a wave of socially protective policies on the scale of those that emerged out of the labor movement in the early 20th century. “We’re at a crucial moment right now where as a society, we need to draw red lines in the sand where we can clearly say just because we can do something technological doesn’t mean that we should do it,” she says. 

Like so many technological advances that have come before, electronic monitoring and the algorithmic uses of the resulting data are not changing the way we work on their own. The people in power are flipping those switches. And shifting the balance back toward workers may be the key to protecting their dignity and agency as the technology speeds ahead. “When we talk about these data issues, we’re not just talking about technology,” says Longiaru. “We spend most of our lives in the workplace. This is about our human rights.” 

Rebecca Ackermann is a writer, designer, and artist based in San Francisco.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Dell bolsters PowerStore array with capacity, security features

Dell Technology has updated its PowerStore unified file and block storage array with increased capacity; stronger digital resilience; and simpler file management. The company claims that through these enhancements, organizations can increase storage density per rack unit and reduce total cost of ownership by 15%. Dell stated that its 30TB

Read More »

ADNOC CEO Made Honorary Fellow of EI

The Energy Institute (EI) announced, in a release sent to Rigzone on Thursday, that Sultan Ahmed Al Jaber has been made an honorary fellow of the EI “for leadership in energy, AI, and economic growth”. Al Jaber is the United Arab Emirates (UAE) Minister of Industry and Advanced Technology, Managing Director and Group CEO of ADNOC, Chairman of Masdar, and Executive Chairman of XRG. He was also president of COP28. “The EI has awarded an honorary fellowship to His Excellency Dr. Sultan Ahmed Al Jaber, recognizing his leadership in the energy-AI nexus, while driving international collaboration to strengthen global energy systems that underpin sustainable economic growth,” the EI said in the release. The EI noted in its release that the award is its highest honor and added that it “acknowledges both Dr. Al Jaber’s transformational deal-making and his role in delivering among the world’s lowest cost and lowest carbon-intensive hydrocarbons, while also scaling renewables and applying advanced technology as global energy demand keeps surging to 2040 and beyond”. Honorary fellowship is awarded by the EI, led by President Andy Brown OBE FEI, to “individuals who have made a significant and lasting contribution to advancing the Institute’s mission – creating a better energy future through a just, secure, and low-carbon energy transition”, the EI highlighted in its release. “The honorary fellowship highlights Dr. Al Jaber’s unique experience across government, industry, and energy in building dialogue between producers, consumers, and across the public and private sectors as global energy demand rises,” it added. Al Jaber was presented with his honorary fellowship by Nick Wayth FEI, Chief Executive of the EI, during Abu Dhabi Sustainability Week 2026, the release highlighted. As Chairman of Masdar, Al Jaber has overseen a 150 percent increase in energy capacity to 51GW since 2022, the release noted, “positioning the

Read More »

Port of Singapore Seeks More LNG Fuel Suppliers

Singapore has opened applications for new licenses to supply liquefied natural gas (LNG) as a marine fuel at the Port of Singapore. “This call follows the recent updates to the Singapore LNG bunkering licensing framework and standards, which now include the provision of sea-based LNG reloading and the supply of liquefied bio-methane and e-methane in the Port of Singapore”, the Southeast Asian city-state’s Maritime and Port Authority (MPA) said in an online statement. Both existing license holders and prospective debutants can apply. Applications must be submitted online by March 27, MPA said. “Licensees are required to implement end-to-end LNG bunkering supply arrangements, which include securing LNG supply, demand planning, cargo transfers operations, storage and safe handling of LNG, as well as the sale, supply and delivery of LNG fuel to vessels in Singapore”, it said. Licensees must own at least one refueling vessel registered with Singapore and compliant to the MPA’s port limit throughout the license period, MPA said. Applicants must detail technical readiness to supply LNG with lower lifecycle planet-warming emissions, such as liquefied bio-methane and e-methane. “The proposal should also cover intended supply pathways and sourcing arrangements”, MPA added. Applicants must also outline measures to mitigate and monitor methane emissions from their bunkering vessels. Such measures must include vessel design features, operational practices and monitoring and reporting methods, MPA said. “To further enhance Singapore’s LNG bunkering ecosystem, MPA and Enterprise Singapore, through the Singapore Standards Council, will upgrade the existing Technical Reference for LNG Bunkering (TR56) to a Singapore Standard (SS) in Q2 2026”, it added. “The new SS will update and strengthen the requirements under TR56, aligning them with Singapore’s broader bunkering standards and serving as a key reference for LNG bunkering license applicants”. Last year MPA received over a dozen proposals under an invitation for expressions

Read More »

Energy Department Convenes First National Coal Council Meeting Under Renewed Charter, Reaffirming Coal’s Role in Unleashing American Energy

WASHINGTON—The U.S. Department of Energy (DOE) today convened the first meeting of the National Coal Council (NCC) following U.S. Secretary of Energy Chris Wright’s formal renewal of its charter—reversing the Biden Administration’s 2021 termination of the Council and reaffirming coal’s essential role in America’s national and economic security. Today’s convening of the NCC under renewed charter marks the formal implementation of that decision, restoring the National Coal Council as a key advisory body to inform coal policy, technology, and market considerations, advancing President Trump’s Executive Order, Reinvigorating America’s Beautiful Clean Coal Industry.   “For years, the Biden Administration waged war on American coal, shutting down coal plants prematurely, decimating American communities and workers, while also driving up energy prices,” said Secretary Wright. “Thanks to President Trump, the war on coal is over. The Trump Administration has already saved more than 15 GW of reliable coal power from shutting down and is working alongside American workers and the entire coal industry to ensure coal continues to be mined in the United States and continues to help provide reliable power to the American people. I look forward to working with the National Coal Council as it helps guide the Department’s efforts to strengthen America’s energy security and grid reliability.” “Coal remains a fundamental component of America’s energy strategy, providing essential energy for America’s infrastructure and industries,” said Assistant Secretary for the Office of Hydrocarbons and Geothermal Energy, Kyle Haustveit. “The National Coal Council’s expert recommendations will be instrumental toward our efforts to modernize and extend the life of our existing coal assets while also supporting the growth of new coal power generation, exports, and product manufacturing.” In the coming months, four regional coal workshops will be held to gather industry input that will inform Department programs and ensure they reflect market realities, workforce needs, and technological progress. During today’s meeting, which included workers and industry experts, council leadership was formally

Read More »

Hamm Says Oil Producers Need Guarantees to Work in VEN

Shale billionaire Harold Hamm said oil companies need guarantees that their assets won’t someday be seized by Venezuela if they help revive the nation’s crude production. “There is a lot of geopolitical risk in Venezuela. Exxon had been there twice and been nationalized, ” Hamm said in an interview Thursday with Bloomberg Television. “There have got to be guarantees against that. We have seen other companies burned real bad there.” Hamm, one of the oil industry’s most outspoken supporters of US President Donald Trump, said Venezuela is a much safer place as a result of the US removing former President Nicolás Maduro from power. The wildcatter was part of a group of oil executives who met with Trump at the White House last week to talk about boosting output in the South American nation, home to some of the world’s largest crude reserves. Trump has called on US oil companies to invest at least $100 billion in order to revive production in Venezuela after years of corruption, underinvestment and neglect ravaged output. Crude producers, however, are moving cautiously. Exxon Mobil Corp. Chief Executive Officer Darren Woods told Trump at the meeting that the country is currently “uninvestable.” Guarantees against Venezuela nationalizing US oil assets should come in the form of physical security but shouldn’t need to include financial assurances, Hamm said in a separate phone interview Thursday. As for companies that have had their assets in the country nationalized, “I’m sure they’re pretty dang cautious,” he added.  Asked if his Oklahoma City-based company, Continental Resources Inc., planned to enter Venezuela, Hamm told Bloomberg Television that he was monitoring the geopolitical situation and looking at the geology.  “That is what I have related to the president, and I think a lot of other executives did the same thing,” he said, adding in the

Read More »

Oil Falls Sharply as US Pauses Iran Action

Oil fell the most since June after the US held off on attacking Iran for now as the country pledged not to execute protesters. West Texas Intermediate slumped 4.6% to settle near $59 a barrel on Thursday after a 10% jump over the past week. The New York Times reported that Israel’s Prime Minister Benjamin Netanyahu asked US President Donald Trump to postpone plans for a military attack on Iran. The news reduced the likelihood of an immediate US response to a crackdown on a domestic uprising against the regime and of disruptions to Iranian production or key shipping lanes. That comes after Trump told reporters Wednesday that he had been informed the “killing in Iran is stopping,” adding he would be “very upset” if the country continued to execute protesters. White House Press Secretary Karoline Leavitt reiterated on Thursday that there would be “grave consequences” if the violence continued, keeping investors on their toes. The US Treasury Department, meantime, announced sanctions on Iran’s Secretary of the Supreme National Security Council and 18 individuals and entities part of what it says is a shadow bank network, reinforcing expectations conflict is not immediate. “Developments in Iran, so very much part of the driving force behind the recent rally, have taken a much less anxious turn overnight,” said John Evans, an analyst at brokerage PVM. “The ladder of risk premium has been lost.” Oil has pushed higher in the new year as turmoil in OPEC’s fourth-largest producer, along with upheaval in Venezuela, added geopolitical risk to prices. There’s also been material disruption to Kazakh exports in the Black Sea due to a combination of drone attacks, maintenance and bad weather, which has also bolstered prices. Crude’s major swings in recent days have also been driven by financial flows. Bullish options volumes are

Read More »

MidOcean Energy in Talks to Join Argentina LNG

MidOcean Energy LLC, a liquefied natural gas company founded by EIG, is in talks to join Argentina’s signature LNG venture, according to people familiar with the matter. The $20 billion project led by state-run YPF SA and Italy’s Eni SpA envisages construction of at least two floating liquefaction vessels with annual capacity for 12 million tons off Argentina’s Atlantic coast. YPF executives have ambitions to incorporate a third vessel. Talks are at an early stage and MidOcean may yet walk away from the project known as Argentina LNG, said the people, who asked not to be named because the information is private. Saudi Aramco is an investor in MidOcean. President Javier Milei met MidOcean executives in Buenos Aires this week, according to a statement from his office that didn’t provide details of the meeting. “We were pleased to meet with President Milei to discuss opportunities in Argentina’s energy sector as part of our regular assessment of business development opportunities globally, and we look forward to continued engagement,” EIG said in an email, without providing further comment on the talks.  YPF declined to comment. Eni didn’t immediately reply to a request for comment. MidOcean holds stakes in gas-export plants in Australia, Peru and Canada, and has been looking to expand its portfolio. Abu Dhabi National Oil Co.’s overseas investment arm, XRG, agreed in November to join as an equity partner in Argentina LNG but hasn’t yet inked a binding deal. Argentina LNG is a key part of efforts to turn Argentina’s booming Vaca Muerta shale patch into a significant global provider of oil and gas. The exports could, in turn, drive a generational shift to stabilize the country’s crisis-prone economy. What do you think? We’d love to hear from you, join the conversation on the Rigzone Energy Network. The Rigzone Energy Network

Read More »

Power shortages, carbon capture, and AI automation: What’s ahead for data centers in 2026

“Despite a broader use of AI tools in enterprises and by consumers, that does not mean that AI compute, AI infrastructure in general, will be more evenly spread out,” said Daniel Bizo, research director at Uptime Institute, during the webinar. “The concentration of AI compute infrastructure is only increasing in the coming years.” For enterprises, the infrastructure investment remains relatively modest, Uptime Institute found. Enterprises will limit investment to inference and only some training, and inference workloads don’t require dramatic capacity increases. “Our prediction, our observation, was that the concentration of AI compute infrastructure is only increasing in the coming years by a couple of points. By the end of this year, 2026, we are projecting that around 10 gigawatts of new IT load will have been added to the global data center world, specifically to run generative AI workloads and adjacent workloads, but definitely centered on generative AI,” Bizo said. “This means these 10 gigawatts or so load, we are talking about anywhere between 13 to 15 million GPUs and accelerators deployed globally. We are anticipating that a majority of these are and will be deployed in supercomputing style.” 2. Developers will not outrun the power shortage The most pressing challenge facing the industry, according to Uptime, is that data centers can be built in less than three years, but power generation takes much longer. “It takes three to six years to deploy a solar or wind farm, around six years for a combined-cycle gas turbine plant, and even optimistically, it probably takes more than 10 years to deploy a conventional nuclear power plant,” said Max Smolaks, research analyst at Uptime Institute. This mismatch was manageable when data centers were smaller and growth was predictable, the report notes. But with projects now measured in tens and sometimes hundreds of

Read More »

Google warns transmission delays are now the biggest threat to data center expansion

The delays stem from aging transmission infrastructure unable to handle concentrated power demands. Building regional transmission lines currently takes seven to eleven years just for permitting, Hanna told the gathering. Southwest Power Pool has projected 115 days of potential loss of load if transmission infrastructure isn’t built to match demand growth, he added. These systemic delays are forcing enterprises to reconsider fundamental assumptions about cloud capacity. Regions including Northern Virginia and Santa Clara that were prime locations for hyperscale builds are running out of power capacity. The infrastructure constraints are also reshaping cloud competition around power access rather than technical capabilities. “This is no longer about who gets to market with the most GPU instances,” Gogia said. “It’s about who gets to the grid first.” Co-location emerges as a faster alternative to grid delays Unable to wait years for traditional grid connections, hyperscalers are pursuing co-location arrangements that place data centers directly adjacent to power plants, bypassing the transmission system entirely. Pricing for these arrangements has jumped 20% in power-constrained markets as demand outstrips availability, with costs flowing through to cloud customers via regional pricing differences, Gogia said. Google is exploring such arrangements, though Hanna said the company’s “strong preference is grid-connected load.” “This is a speed to power play for us,” he said, noting Google wants facilities to remain “front of the meter” to serve the broader grid rather than operating as isolated power sources. Other hyperscalers are negotiating directly with utilities, acquiring land near power plants, and exploring ownership stakes in power infrastructure from batteries to small modular nuclear reactors, Hanna said.

Read More »

OpenAI turns to Cerebras in a mega deal to scale AI inference infrastructure

Analysts expect AI workloads to grow more varied and more demanding in the coming years, driving the need for architectures tuned for inference performance and putting added pressure on data center networks. “This is prompting hyperscalers to diversify their computing systems, using Nvidia GPUs for general-purpose AI workloads, in-house AI accelerators for highly optimized tasks, and systems such as Cerebras for specialized low-latency workloads,” said Neil Shah, vice president for research at Counterpoint Research. As a result, AI platforms operating at hyperscale are pushing infrastructure providers away from monolithic, general-purpose clusters toward more tiered and heterogeneous infrastructure strategies. “OpenAI’s move toward Cerebras inference capacity reflects a broader shift in how AI data centers are being designed,” said Prabhu Ram, VP of the industry research group at Cybermedia Research. “This move is less about replacing Nvidia and more about diversification as inference scales.” At this level, infrastructure begins to resemble an AI factory, where city-scale power delivery, dense east–west networking, and low-latency interconnects matter more than peak FLOPS, Ram added. “At this magnitude, conventional rack density, cooling models, and hierarchical networks become impractical,” said Manish Rawat, semiconductor analyst at TechInsights. “Inference workloads generate continuous, latency-sensitive traffic rather than episodic training bursts, pushing architectures toward flatter network topologies, higher-radix switching, and tighter integration of compute, memory, and interconnect.”

Read More »

Cisco’s 2026 agenda prioritizes AI-ready infrastructure, connectivity

While most of the demand for AI data center capacity today comes from hyperscalers and neocloud providers, that will change as enterprise customers delve more into the AI networking world. “The other ecosystem members and enterprises themselves are becoming responsible for an increasing proportion of the AI infrastructure buildout as inferencing and agentic AI, sovereign cloud, and edge AI become more mainstream,” Katz wrote. More enterprises will move to host AI on premises via the introduction of AI agents that are designed to inject intelligent insight into applications and help improve operations. That’s where the AI impact on enterprise network traffic will appear, suggests Nolle. “Enterprises need to host AI to create AI network impact. Just accessing it doesn’t do much to traffic. Having cloud agents access local data center resources (RAG etc.) creates a governance issue for most corporate data, so that won’t go too far either,” Nolle said.  “Enterprises are looking at AI agents, not the way hyperscalers tout agentic AI, but agents running on small models, often open-source, and are locally hosted. This is where real AI traffic will develop, and Cisco could be vulnerable if they don’t understand this point and at least raise it in dialogs where AI hosting comes up,” Nolle said. “I don’t expect they’d go too far, because the real market for enterprise AI networking is probably a couple years out.” Meanwhile, observers expect Cisco to continue bolstering AI networking capabilities for enterprise branch, campus and data centers as well as hyperscalers, including through optical support and other gear.

Read More »

Microsoft tells communities it will ‘pay its way’ as AI data center resource usage sparks backlash

It will work with utilities and public commissions to set the rates it pays high enough to cover data center electricity costs (including build-outs, additions, and active use). “Our goal is straightforward: To ensure that the electricity cost of serving our data centers is not passed on to residential customers,” Smith emphasized. For example, the company is supporting a new rate structure Wisconsin that would charge a class of “very large customers,” including data centers, the true cost of the electricity required to serve them. It will collaborate “early, closely, and transparently” with local utilities to add electricity and supporting infrastructure to existing grids when needed. For instance, Microsoft has contracted with the Midcontinent Independent System Operator (MISO) to add 7.9GW of new electricity generation to the grid, “more than double our current consumption,” Smith noted. It will pursue ways to make data centers more efficient. For example, it is already experimenting with AI to improve planning, extract more electricity from existing infrastructure, improve system resilience, and speed development of new infrastructure and technologies (like nuclear energy). It will advocate for state and national public policies that ensure electricity access that is affordable, reliable, and sustainable in neighboring communities. Microsoft previously established priorities for electricity policy advocacy, Smith noted, but “progress has been uneven. This needs to change.” Microsoft is similarly committed when it comes to data center water use, promising four actions: Reducing the overall amount of water its data centers use, initially improving it by 40% by 2030. The company is exploring innovations in cooling, including closed-loop systems that recirculate cooling liquids. It will collaborate with local utilities to map out water, wastewater, and pressure needs, and will “fully fund” infrastructure required for growth. For instance, in Quincy, Washington, Microsoft helped construct a water reuse utility that recirculates

Read More »

Can retired naval power plants solve the data center power crunch?

HGP’s plan includes a revenue share with the government, and the company would create a decommissioning fund, according to Bloomberg. The alternative? After a lengthy decommissioning process, the reactors are shipped to a remote storage facility in Washington state together dust along with dozens of other retired nuclear reactors. So the carrier itself isn’t going to be turned into a data center, but its power plants are being proposed for a data center on land. And even with the lengthening decommissioning process, that’s still faster than building a nuclear power plant from scratch. Don’t hold your breath, says Kristen Vosmaer, managing director, JLL Work Dynamics Data Center team. The idea of converting USS Nimitz’s nuclear reactors to power AI data centers sounds compelling but faces insurmountable obstacles, he argues. “Naval reactors use weapons-grade uranium that civilian entities cannot legally possess, and the Nuclear Regulatory Commission has no pathway to license such facilities. Even setting aside the fuel issue, these military-designed systems would require complete reconstruction to meet civilian safety standards, eliminating any cost advantages over purpose-built nuclear plants,” Vosmaer said. The maritime concept itself, however, does have some merit, said Vosmaer. “Ocean cooling can reduce energy consumption compared to land-based data centers, and floating platforms offer positioning flexibility that fixed facilities cannot match,” Vosmaer said.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »