Stay Ahead, Stay ONMINE

Studying the uninvited guests

Microbes that gobble up or break down environmental toxins can clean up oil spills, waste sites, and contaminated watersheds. But until his faculty mentor asked him for help with a project he was working on with doctors at Boston Children’s Hospital in 2009, Eric Alm had not thought much about their role in a very different environment: the human digestive system. David Schauer, a professor of biological engineering, was examining how microorganisms in the gut might be linked to inflammatory bowel disease (IBD), and he hoped advanced statistical analysis of the data he was collecting could make those connections clearer. Alm, who’d joined the civil and environmental engineering faculty in 2006 as a computational biologist studying environmental uses of microbes, had the statistical experience needed and could apply machine-learning tools to help. But for him, the project was supposed to be a brief detour.   In June of 2009, however, Schauer—just 48—died unexpectedly, only two weeks after falling ill. Alm, heartbroken, worked to help push his mentor’s project over the finish line. As that effort was underway, Neil Rasmussen ’76, SM ’80, a longtime member of the MIT Corporation and the philanthropist funding the project, asked for a tour of his lab. That encounter would change the course of Alm’s career. At the end of the lab tour, Rasmussen, who has a family member with IBD, had a surprise: He asked Alm if he’d be willing to pivot to researching inflammatory bowel disease—and offered to fund his lab if he did so. Alm was game. He began shifting the main focus of his research away from harnessing microbes for the environment and turned most of his attention to exploring how they could be applied to human health. Then Rasmussen decided he wanted to “do something really big,” as Alm puts it, and make Boston a hub for microbiome research. So in 2014, with a $25 million grant from the Neil and Anna Rasmussen Foundation, the Center for Microbiome Informatics and Therapeutics (CMIT) was launched with Alm and Ramnik Xavier, chief of gastroenterology at Massachusetts General Hospital, as its co-directors.  CMIT co-director Eric Alm is a professor of biological engineering and civil and environmental engineering and an Institute Member of the Broad Institute. His research uses data science, quantitative analysis, and novel molecular techniques to engineer the human microbiome.COURTESY OF ERIC ALM By teaming up with Alm and others, Rasmussen hoped to create a research hub where scientists, engineers, doctors, and next-generation trainees would collaborate across scientific disciplines. They would build the tools needed to support a new research field and translate cutting-­edge research into clinic-ready interventions for patients suffering from a wide range of inflammatory and autoimmune conditions influenced by the gut, including not only IBD but diabetes and Alzheimer’s—and potentially autism, Parkinson’s disease, and depression as well.   In its first 10 years, CMIT has made remarkable progress.  When the center started, Alm says, it was still a relatively novel idea that the human microbiome—particularly the community of trillions of symbiotic microbes that reside in the gut—might play a key role in human health. Few serious research programs existed to study this idea.   “It was really this undiscovered territory,” he recalls. “[In] a lot of diseases where there seemed to be things that we couldn’t explain, a lot of people thought maybe the microbiome plays a role either directly or indirectly.”   It has since become increasingly clear that the microbiome has a far greater impact on human health and development than previously thought. We now know that the human gut—often defined as the series of food-processing organs that make up the gastrointestinal tract—is home to untold trillions of microorganisms, each one a living laboratory capable of ingesting nutrients, sugars, and organic materials, digesting them, and releasing various kinds of organic outputs. And the metabolic outputs of these gut-dwelling microbes are similar to those of the liver, Alm says. In fact, the gut microbiome can essentially mirror some of the liver’s functions, helping the body metabolize carbohydrates, proteins, and fats by breaking down complex compounds into simpler molecules it can process more easily. But the gut’s outputs can change in either helpful or harmful ways if different microbes establish themselves within it.  “I would love to have bacteria that live on my face and release sunscreen in response to light. Why can’t I have that?” Tami Lieberman “Our exquisite immune defenses evolved in response to the microbiome and continue to adapt during our lifetime,” Rasmussen says. “I believe that advancing the basic science of human interactions with the microbiome is central to understanding and curing chronic immune-­related diseases.” By now, researchers affiliated with the center have published some 200 scientific papers, and it has found ways to advance microbiome research far beyond its walls. It funds a team at the Broad Institute (where Alm is now an Institute Member) that does assays and gene sequencing for scientists doing such research. Meanwhile, it has established one of the world’s most comprehensive microbiome “strain libraries,” facilitating studies around the globe. To create this library—which includes strains in both the Broad Institute–OpenBiome Microbiome Library and the Global Microbiome Conservancy’s Biobank­—researchers have isolated more than 15,000 distinct strains of microbes that are found in the human gut. The library can serve as a reference for those hoping to gain information on microbes they have isolated on their own, but researchers can also use it if they need samples of specific strains to study. To supplement the strain library, CMIT-affiliated researchers have traveled to many corners of the globe to collect stool samples from far-flung indigenous populations, an effort that continues to this day through the Global Microbiome Conservancy.   “We’re trying to build a critical mass and give folks working in different labs a central place where they can communicate and collaborate,” says Alm. “We also want to help them have access to doctors who might have samples they can use, or doctors who might have problems that need an engineering solution.”   The clinical applications produced by CMIT have already affected the lives of tens of thousands of patients. One of the most significant began making an impact even before the center’s official launch.  For decades, hospitals had been grappling with the deadly toll of bacterial infections caused by Clostridioides difficile (C. diff), a hardy, opportunistic bacterium that can colonize the gut of vulnerable patients, often after heavy doses of antibiotics wipe out beneficial microbes that usually keep C. diff at bay. The condition, which causes watery diarrhea, abdominal pain, fever, and nausea, can be resistant to conventional treatments. It kills roughly 30,000 Americans every year.  By 2003, researchers had discovered that transplanting stool from a healthy donor into the colon of a sick patient could restore the healthy microbes and solve the problem. But even a decade later, there was no standardized treatment or protocol—relatives were often asked to bring in their own stool in ice cream containers. In 2013, Mark Smith, PhD ’14, then a graduate student in Alm’s lab, cofounded the nonprofit OpenBiome, the nation’s first human stool bank. OpenBiome developed rigorous methods to screen donors (people joke that it’s harder to get approved than to get into MIT or Harvard) and standardized the procedures for sample processing and storage. Over the years, the nonprofit has worked with some 1,300 health-care facilities and research institutions and facilitated the treatment of more than 70,000 patients—work that OpenBiome says helped set the stage for the US Food and Drug Administration to approve the first microbiome-based therapeutic for recurrent C. diff infections.   Today, CMIT’s flagship effort is a 100-patient clinical trial that it launched to study IBD, using a wide array of technologies to monitor two cohorts of patients—one in the US and the other in the Netherlands—over the course of a year. People with Crohn’s disease and ulcerative colitis typically experience periods of full or partial remission, but they currently have no way to predict when they will relapse. So researchers are tracking weekly changes in each patient’s microbiome and other biological indicators while amassing continuous physiological data from Fitbits and recording self-reported symptom scores along with other clinical data. The goal is to identify biomarkers and other indicators that might be used to predict flare-ups so that already approved therapies can be used more effectively.  Although data is still being collected, early analysis suggests that a patient’s gut microbiome begins to change six to eight weeks before flare symptoms appear, and a few weeks later, genetic analysis of epithelial cells in their stool samples starts to show signs of increased inflammation. The team is planning to host a hackathon this summer to help speed analysis of the mountain of disparate types of data being collected.   Meanwhile, the community of clinicians, engineers, and scientists CMIT has nurtured is undertaking projects that Alm could hardly have imagined when he first delved into research on the human microbiome. Survivor: Microbe edition  Right below the photograph on the bio page of her Twitter/X account, Alyssa Haynes Mitchell has three emojis: a tiny laptop, a red and blue strand of DNA, and a smiling pile of poo. The digital hieroglyphics neatly sum up her area of focus as she pursues a doctorate in microbiology. A 2024 Neil and Anna Rasmussen fellow, Mitchell is attempting to understand precisely what it is that allows microbes to survive and thrive in the human gut. Mitchell fell in love with the study of microbes as an undergrad at Boston University. First, her mind was blown after she read a paper by researchers who could create a facsimile of a patient’s intestinal cell population—a “gut on a chip”—and planned to culture a microbiome on it. She was fascinated by the idea that this might lead to personalized treatments for conditions like IBD. Then she cultured her first colony of a strain of the microbe Bacillus subtilis that had been genetically engineered to fluoresce.  “They form these really complex ridges, and the more you look at microscopy images, the more you realize that there’s patterns of collective behavior of bacterial biofilms that we just don’t understand,” she says. “They’re super beautiful, and it’s really quite amazing to look at.”  In 2023, Mitchell joined the lab of Tami Lieberman, an associate professor of civil and environmental engineering and a member of both CMIT and MIT’s Institute for Medical Engineering and Science.  Mitchell and others who study the microbiome think that “probiotics,” beneficial microbes that are applied to the skin or ingested in supplements or foods such as yogurt or kombucha, could have broad potential to help treat disease. But for reasons that still aren’t well understood, once probiotics are introduced into the gut, only a small percentage of them are able to survive and proliferate, a process known as engraftment. A probiotic with an engraftment rate of 30% (meaning it’s still detectable in 30% of subjects) six months after administration is considered good, says Mitchell. She and Lieberman, who also holds the title of Hermann L.F. von Helmholtz Professor, are studying the way individual strains of microbes evolve to survive in the microbiome—a key mystery that needs to be solved to engineer more effective, longer-lasting therapies.    COURTESY OF ALYSSA HAYNES MITCHELL COURTESY OF TAMI LIEBERMAN Alyssa Haynes Mitchell, a PhD student pursuing a doctorate in microbiology, is working with Tami Lieberman, an assistant professor of civil and environmental engineering, to study how strains of microbes evolve to survive in the gut. Lieberman also studies how microbes survive and proliferate on the skin. “Hopefully if we learn a little bit more about what drives evolution of the ones that stick around, we might be able to learn why some don’t,” she says. Mitchell has been working with samples collected by a local biotech company developing biotherapeutics for the gut. Its probiotic products, which are used to treat recurrent C. diff infections, contain eight closely related microbial strains belonging to the order known as Clostridiales. The company gave one of its products to 56 human subjects and collected stool samples over time. Mitchell is using genetic sequencing techniques to track how three of the microbial species evolved in 21 of the subjects. Identifying person-specific differences and similarities might reveal insights about the host environment and could help explain why some types of mutations allow some microbes to survive and thrive. The project is still in its early phases, but Mitchell has a working hypothesis. “The model that I have in my mind is that people have different [gut] environments, and microbes are either compatible with them or not,” she says. “And there’s a window in which, if you’re a microbe, you might be able to stick around but maybe not thrive. And then evolution kind of gets you there. You might not be very fit when you land there, but you’re close enough to hang around and get there. Whereas in other people, you’re totally incompatible with what’s already there, and the resident microbes beat you out.” Her work is just one of many projects using new approaches developed by Lieberman, who worked as a postdoc in Alm’s lab before starting her own in 2018. As a graduate student at Harvard, Lieberman gained access to more than 100 frozen samples collected from the airways, blood, and chest tissue of 14 patients with cystic fibrosis, a genetic disease that causes mucus to build up in the lungs and creates conditions ripe for infections. The patients were among those who had developed bacterial infections during an outbreak in the 1990s.   Lieberman and her colleagues recognized a perfect opportunity to use genetic sequencing technologies to study the way the genome of the Burkholderia dolosa bacterium evolved when she cultured those samples. What was it that allowed B. dolosa to adapt and survive? Many of the surviving microbes, she discovered, had developed similar mutations independently in different patients, suggesting that at least some of these mutations helped them to thrive. The research indicated which genes were worthy of further study—and suggested that this approach holds promise for understanding what it takes for microbes to grow well in the human body. Lieberman joined Alm’s lab in 2015, aiming to apply the same experimental paradigm and the statistical techniques she had developed to the emerging field of microbiome research. In her own lab, she has developed an approach to figuring out how the pressures of natural selection result in mutations that may help certain microbes to engraft. It involves studying colonies of bacteria that form on the human skin. “The idea is to create a genetically engineered metabolite factory in the gut.” Daniel Pascal In the gut, Lieberman explains, hundreds of different species of microbes coexist and coevolve, forming a heterogeneous community whose members interact with one another in ways that are not fully understood. This creates a wide array of confounding variables that make it more difficult to identify why some engraft and others don’t. But on the skin, the metabolic environment is less complex, so fewer species of bacteria coexist. The smaller number of species makes it far easier to track the way the genomes of specific microbes change over time to facilitate survival, and the accessibility of the skin makes it easier to figure out how spatial structure and the presence of other microbes affect this process.  One discovery from Lieberman’s lab is that each pore is dominated by just one random strain of a single species. Her group hypothesizes that survival may depend on the geometry of the pore and the location of the microbes. For example, as these anaerobic microbes typically thrive at the hard-to-access bottom of the pore, where there is less oxygen, the first to manage to get there can crowd out new migrants. “My vision, and really a vision for the microbiome field in general,” Lieberman says, is that one day therapeutic microbes could be added to the body to treat medical conditions. “These could be microbes that are naturally occurring, or they could be genetically engineered microbes that have some property we want,” she adds. “But how to actually do that is really challenging because we don’t understand the ecology of the system.” Most bacteria introduced into a person’s system, even those taken from another healthy human, will not persist in the new person’s body, she notes, unless you “first bomb it with antibiotics” to get rid of most of the microbes that are already there. “Why that is,” she adds, “is something we really don’t understand.” If Lieberman can solve the puzzle, the possible applications are tantalizing.   “I would love to have bacteria that live on my face and release sunscreen in response to light,” she says. “Why can’t I have that? In the future, there’s no reason we can’t figure out how to do that in a safe and controlled manner. And it would be much more convenient than applying sunscreen every day.”  Harnessing light-sensitive, sunblock-­producing microbes may sound like a distant fantasy. But it’s not beyond the realm of possibility. Other microbial products that sound straight out of a science fiction novel have already been invented in the lab.  Molecular assassin When Daniel Pascal first landed in the lab of MIT synthetic biologist Christopher Voigt, he had no idea he’d be staying on to make bacteria with superpowers. He was a first-year PhD student rotating through various labs, with little inkling of the potential contained in the microbes that live inside us. Pascal, a 2024 Neil and Anna Rasmussen fellow who is pursuing a doctorate in biological engineering, was originally paired with a graduate student doing a more materials-­related synthetic biology project. But he came from a family of physicians and soon found himself speaking with other graduate students in the lab whose projects had to do with health.  He then learned that two of the lab’s postdocs, Arash Farhadi and Brandon Fields, were receiving funding under a program sponsored by the Defense Advanced Research Projects Agency (DARPA), the Pentagon’s R&D organization, to develop solutions for common traveler’s ailments that result from problems like disrupted sleep cycles and limited access to safe food and water. When they explained that they hoped to harness microbes in the human body, they had his attention.  Daniel Pascal, a graduate student pursuing a doctorate in biological engineering, is using synthetic biology to get microbes to carry out functions that they would not perform in the natural world.COURTESY OF DANIEL PASCAL “It’s amazing how these tiny little organisms have so much control and can wreak so much havoc,” he says.   Intrigued, Pascal wound up officially joining Voigt’s lab, where he is working to create microbes that can carry out a wide array of functions they would not perform in the natural world.   To do so, he is using a custom “landing pad” system developed in the lab. The system relies on synthetic biology to create a new region in the genome of a microbe that, using specific enzymes, can be filled with pieces of DNA designed to imbue the microbe with special new abilities.   After engineering the landing pad into samples of an existing probiotic, Pascal and his collaborators on a project funded by the US Air Force and DARPA were able to deliver DNA that allows the probiotic to essentially set up a specialized drug production facility within the gut. First it absorbs two common amino acids, arginine and glycine. Then it converts them into a precursor compound that the body transforms into creatine, which can facilitate the production of muscle tissue from exercise and may help with memory.   Pascal explains that creatine is often taken as an over-the-counter supplement by people doing weight training and other athletes who want to improve their fitness. “But creatine has been shown to improve performance in fatigued humans,” he says. “So the motivation for this project was the idea that Air Force pilots that are traveling all over the world are jet-lagged, are working crazy hours and shifts.” What if, the researchers wondered, those pilots “could take a supplement that would improve some of their responsiveness, athletic accuracy, intelligence, and reasoning?” A typical oral supplement delivers a spike of creatine in the bloodstream that largely dissipates relatively quickly. More useful to the pilots would be a probiotic engineered to produce a consistent amount of the creatine precursor that could be turned into creatine as needed. CMIT is also funding Pascal’s project using the landing pad system to get microbes to produce substances that target specific pathogens without disrupting the entire microbiome. Although Pascal cannot yet reveal any details about these molecular-­level assassins, he notes that other researchers in the Voigt lab have recently used the landing pad system to redesign the Escherichia coli Nissle (EcN) microbe, which had previously been engineered to produce such things as antibiotics, enzymes that break down toxins, and chemotherapy drugs to fight cancer. The lab’s work made it possible to improve the efficacy of a treatment for phenylketonuria and perhaps of other EcN therapeutics as well.   The lab has, in short, been able to get microbe strains (one of which he says is a commercially available probiotic that in some countries you can buy over the counter) to do some very useful things. “They’ve figured out a way to take this mundane thing and give it these extraordinary capabilities,” he says. “The idea is to create a genetically engineered metabolite factory in the gut.” Tackling childhood obesity   Understanding the microbiome may also lead to new therapies for one of the greatest public health challenges currently facing the US: rising rates of obesity. Jason Zhang, a pediatric gastroenterologist at Boston Children’s Hospital, has received a CMIT clinical fellowship to study how gut bacteria may be linked to childhood obesity and diabetes. As a visiting scientist in Alm’s lab, he is using AI to predict people’s loss of control over what or how much they eat. His working hypothesis is that microbial metabolites are interacting with endocrine cells in the lining of the gut. Those endocrine cells in turn secrete hormones that travel to the brain and stimulate or suppress hunger.  “We believe that the microbiome plays a role in how we make choices around food,” he says. “The microbiome can send metabolites into the bloodstream that will maybe cross the blood-brain barrier. And there may be a direct connection. There is some evidence of that. But more likely they’re going to be interacting with cells in the epithelial layer in the gut.” Jason Zhang, a pediatric gastroenterologist at Boston Children’s Hospital, studies the link between gut bacteria and childhood obesity and diabetes. As a visiting scientist in the lab of Eric Alm, he uses AI to model what’s known as “loss-of-control eating.”COURTESY OF JASON ZHANG Zhang has sequenced the microbes found in the stool of subjects who have exhibited “loss-of-control eating” and developed a machine-learning algorithm that can predict it in other patients on the basis of their stool samples. He and his colleagues have begun to home in on a specific microbe that appears to be deficient in kids who experience this eating pattern.  The researchers have discovered that this particular microbe appears to respond to food in the gut by creating compounds that stimulate enteroendocrine cells to release a series of hormones signaling satiety to the brain—among them GLP-1, the hormone whose signal is turned up by weight-loss drugs like Ozempic. Zhang has already begun experimenting with therapies that artificially introduce the microbe into mice to treat obesity, diabetes, and food addiction.   “As with any single mechanism that treats a really complex disease, I would say it’s likely to make a difference,” he says. “But is it the silver bullet? Probably not.” Still, Zhang isn’t ruling it out: “We don’t know yet. That’s the ongoing work.”  All these projects provide a taste of what’s to come. For more than a decade, CMIT has played a key role in building the fundamental infrastructure needed to develop the new field.But with as many as 100 trillion bacterial cells in the human microbiome, the efforts to explore it have only just begun.

Microbes that gobble up or break down environmental toxins can clean up oil spills, waste sites, and contaminated watersheds. But until his faculty mentor asked him for help with a project he was working on with doctors at Boston Children’s Hospital in 2009, Eric Alm had not thought much about their role in a very different environment: the human digestive system.

David Schauer, a professor of biological engineering, was examining how microorganisms in the gut might be linked to inflammatory bowel disease (IBD), and he hoped advanced statistical analysis of the data he was collecting could make those connections clearer. Alm, who’d joined the civil and environmental engineering faculty in 2006 as a computational biologist studying environmental uses of microbes, had the statistical experience needed and could apply machine-learning tools to help. But for him, the project was supposed to be a brief detour.  

In June of 2009, however, Schauer—just 48—died unexpectedly, only two weeks after falling ill. Alm, heartbroken, worked to help push his mentor’s project over the finish line. As that effort was underway, Neil Rasmussen ’76, SM ’80, a longtime member of the MIT Corporation and the philanthropist funding the project, asked for a tour of his lab. That encounter would change the course of Alm’s career.

At the end of the lab tour, Rasmussen, who has a family member with IBD, had a surprise: He asked Alm if he’d be willing to pivot to researching inflammatory bowel disease—and offered to fund his lab if he did so.

Alm was game. He began shifting the main focus of his research away from harnessing microbes for the environment and turned most of his attention to exploring how they could be applied to human health. Then Rasmussen decided he wanted to “do something really big,” as Alm puts it, and make Boston a hub for microbiome research. So in 2014, with a $25 million grant from the Neil and Anna Rasmussen Foundation, the Center for Microbiome Informatics and Therapeutics (CMIT) was launched with Alm and Ramnik Xavier, chief of gastroenterology at Massachusetts General Hospital, as its co-directors. 

Eric Alm
CMIT co-director Eric Alm is a professor of biological engineering and civil and environmental engineering and an Institute Member of the Broad Institute. His research uses data science, quantitative analysis, and novel molecular techniques to engineer the human microbiome.
COURTESY OF ERIC ALM

By teaming up with Alm and others, Rasmussen hoped to create a research hub where scientists, engineers, doctors, and next-generation trainees would collaborate across scientific disciplines. They would build the tools needed to support a new research field and translate cutting-­edge research into clinic-ready interventions for patients suffering from a wide range of inflammatory and autoimmune conditions influenced by the gut, including not only IBD but diabetes and Alzheimer’s—and potentially autism, Parkinson’s disease, and depression as well.  

In its first 10 years, CMIT has made remarkable progress. 

When the center started, Alm says, it was still a relatively novel idea that the human microbiome—particularly the community of trillions of symbiotic microbes that reside in the gut—might play a key role in human health. Few serious research programs existed to study this idea.  

“It was really this undiscovered territory,” he recalls. “[In] a lot of diseases where there seemed to be things that we couldn’t explain, a lot of people thought maybe the microbiome plays a role either directly or indirectly.”  

It has since become increasingly clear that the microbiome has a far greater impact on human health and development than previously thought. We now know that the human gut—often defined as the series of food-processing organs that make up the gastrointestinal tract—is home to untold trillions of microorganisms, each one a living laboratory capable of ingesting nutrients, sugars, and organic materials, digesting them, and releasing various kinds of organic outputs. And the metabolic outputs of these gut-dwelling microbes are similar to those of the liver, Alm says. In fact, the gut microbiome can essentially mirror some of the liver’s functions, helping the body metabolize carbohydrates, proteins, and fats by breaking down complex compounds into simpler molecules it can process more easily. But the gut’s outputs can change in either helpful or harmful ways if different microbes establish themselves within it. 

“I would love to have bacteria that live on my face and release sunscreen in response to light. Why can’t I have that?”

Tami Lieberman

“Our exquisite immune defenses evolved in response to the microbiome and continue to adapt during our lifetime,” Rasmussen says. “I believe that advancing the basic science of human interactions with the microbiome is central to understanding and curing chronic immune-­related diseases.”

By now, researchers affiliated with the center have published some 200 scientific papers, and it has found ways to advance microbiome research far beyond its walls. It funds a team at the Broad Institute (where Alm is now an Institute Member) that does assays and gene sequencing for scientists doing such research. Meanwhile, it has established one of the world’s most comprehensive microbiome “strain libraries,” facilitating studies around the globe.

To create this library—which includes strains in both the Broad Institute–OpenBiome Microbiome Library and the Global Microbiome Conservancy’s Biobank­—researchers have isolated more than 15,000 distinct strains of microbes that are found in the human gut. The library can serve as a reference for those hoping to gain information on microbes they have isolated on their own, but researchers can also use it if they need samples of specific strains to study. To supplement the strain library, CMIT-affiliated researchers have traveled to many corners of the globe to collect stool samples from far-flung indigenous populations, an effort that continues to this day through the Global Microbiome Conservancy.  

“We’re trying to build a critical mass and give folks working in different labs a central place where they can communicate and collaborate,” says Alm. “We also want to help them have access to doctors who might have samples they can use, or doctors who might have problems that need an engineering solution.”  

The clinical applications produced by CMIT have already affected the lives of tens of thousands of patients. One of the most significant began making an impact even before the center’s official launch. 

For decades, hospitals had been grappling with the deadly toll of bacterial infections caused by Clostridioides difficile (C. diff), a hardy, opportunistic bacterium that can colonize the gut of vulnerable patients, often after heavy doses of antibiotics wipe out beneficial microbes that usually keep C. diff at bay. The condition, which causes watery diarrhea, abdominal pain, fever, and nausea, can be resistant to conventional treatments. It kills roughly 30,000 Americans every year. 

By 2003, researchers had discovered that transplanting stool from a healthy donor into the colon of a sick patient could restore the healthy microbes and solve the problem. But even a decade later, there was no standardized treatment or protocol—relatives were often asked to bring in their own stool in ice cream containers. In 2013, Mark Smith, PhD ’14, then a graduate student in Alm’s lab, cofounded the nonprofit OpenBiome, the nation’s first human stool bank. OpenBiome developed rigorous methods to screen donors (people joke that it’s harder to get approved than to get into MIT or Harvard) and standardized the procedures for sample processing and storage. Over the years, the nonprofit has worked with some 1,300 health-care facilities and research institutions and facilitated the treatment of more than 70,000 patients—work that OpenBiome says helped set the stage for the US Food and Drug Administration to approve the first microbiome-based therapeutic for recurrent C. diff infections.  

Today, CMIT’s flagship effort is a 100-patient clinical trial that it launched to study IBD, using a wide array of technologies to monitor two cohorts of patients—one in the US and the other in the Netherlands—over the course of a year. People with Crohn’s disease and ulcerative colitis typically experience periods of full or partial remission, but they currently have no way to predict when they will relapse. So researchers are tracking weekly changes in each patient’s microbiome and other biological indicators while amassing continuous physiological data from Fitbits and recording self-reported symptom scores along with other clinical data. The goal is to identify biomarkers and other indicators that might be used to predict flare-ups so that already approved therapies can be used more effectively.

 Although data is still being collected, early analysis suggests that a patient’s gut microbiome begins to change six to eight weeks before flare symptoms appear, and a few weeks later, genetic analysis of epithelial cells in their stool samples starts to show signs of increased inflammation. The team is planning to host a hackathon this summer to help speed analysis of the mountain of disparate types of data being collected.  

Meanwhile, the community of clinicians, engineers, and scientists CMIT has nurtured is undertaking projects that Alm could hardly have imagined when he first delved into research on the human microbiome.

Survivor: Microbe edition 

Right below the photograph on the bio page of her Twitter/X account, Alyssa Haynes Mitchell has three emojis: a tiny laptop, a red and blue strand of DNA, and a smiling pile of poo. The digital hieroglyphics neatly sum up her area of focus as she pursues a doctorate in microbiology. A 2024 Neil and Anna Rasmussen fellow, Mitchell is attempting to understand precisely what it is that allows microbes to survive and thrive in the human gut.

Mitchell fell in love with the study of microbes as an undergrad at Boston University. First, her mind was blown after she read a paper by researchers who could create a facsimile of a patient’s intestinal cell population—a “gut on a chip”—and planned to culture a microbiome on it. She was fascinated by the idea that this might lead to personalized treatments for conditions like IBD. Then she cultured her first colony of a strain of the microbe Bacillus subtilis that had been genetically engineered to fluoresce. 

“They form these really complex ridges, and the more you look at microscopy images, the more you realize that there’s patterns of collective behavior of bacterial biofilms that we just don’t understand,” she says. “They’re super beautiful, and it’s really quite amazing to look at.” 

In 2023, Mitchell joined the lab of Tami Lieberman, an associate professor of civil and environmental engineering and a member of both CMIT and MIT’s Institute for Medical Engineering and Science. 

Mitchell and others who study the microbiome think that “probiotics,” beneficial microbes that are applied to the skin or ingested in supplements or foods such as yogurt or kombucha, could have broad potential to help treat disease. But for reasons that still aren’t well understood, once probiotics are introduced into the gut, only a small percentage of them are able to survive and proliferate, a process known as engraftment. A probiotic with an engraftment rate of 30% (meaning it’s still detectable in 30% of subjects) six months after administration is considered good, says Mitchell. She and Lieberman, who also holds the title of Hermann L.F. von Helmholtz Professor, are studying the way individual strains of microbes evolve to survive in the microbiome—a key mystery that needs to be solved to engineer more effective, longer-lasting therapies.   

ALYSSA HAYNES MITCHELL

COURTESY OF ALYSSA HAYNES MITCHELL

COURTESY OF TAMI LIEBERMAN

Alyssa Haynes Mitchell, a PhD student pursuing a doctorate in microbiology, is working with Tami Lieberman, an assistant professor of civil and environmental engineering, to study how strains of microbes evolve to survive in the gut. Lieberman also studies how microbes survive and proliferate on the skin.

“Hopefully if we learn a little bit more about what drives evolution of the ones that stick around, we might be able to learn why some don’t,” she says.

Mitchell has been working with samples collected by a local biotech company developing biotherapeutics for the gut. Its probiotic products, which are used to treat recurrent C. diff infections, contain eight closely related microbial strains belonging to the order known as Clostridiales. The company gave one of its products to 56 human subjects and collected stool samples over time. Mitchell is using genetic sequencing techniques to track how three of the microbial species evolved in 21 of the subjects. Identifying person-specific differences and similarities might reveal insights about the host environment and could help explain why some types of mutations allow some microbes to survive and thrive. The project is still in its early phases, but Mitchell has a working hypothesis.

“The model that I have in my mind is that people have different [gut] environments, and microbes are either compatible with them or not,” she says. “And there’s a window in which, if you’re a microbe, you might be able to stick around but maybe not thrive. And then evolution kind of gets you there. You might not be very fit when you land there, but you’re close enough to hang around and get there. Whereas in other people, you’re totally incompatible with what’s already there, and the resident microbes beat you out.”

Her work is just one of many projects using new approaches developed by Lieberman, who worked as a postdoc in Alm’s lab before starting her own in 2018. As a graduate student at Harvard, Lieberman gained access to more than 100 frozen samples collected from the airways, blood, and chest tissue of 14 patients with cystic fibrosis, a genetic disease that causes mucus to build up in the lungs and creates conditions ripe for infections. The patients were among those who had developed bacterial infections during an outbreak in the 1990s.  

Lieberman and her colleagues recognized a perfect opportunity to use genetic sequencing technologies to study the way the genome of the Burkholderia dolosa bacterium evolved when she cultured those samples. What was it that allowed B. dolosa to adapt and survive? Many of the surviving microbes, she discovered, had developed similar mutations independently in different patients, suggesting that at least some of these mutations helped them to thrive. The research indicated which genes were worthy of further study—and suggested that this approach holds promise for understanding what it takes for microbes to grow well in the human body.

Lieberman joined Alm’s lab in 2015, aiming to apply the same experimental paradigm and the statistical techniques she had developed to the emerging field of microbiome research. In her own lab, she has developed an approach to figuring out how the pressures of natural selection result in mutations that may help certain microbes to engraft. It involves studying colonies of bacteria that form on the human skin.

“The idea is to create a genetically engineered metabolite factory in the gut.”

Daniel Pascal

In the gut, Lieberman explains, hundreds of different species of microbes coexist and coevolve, forming a heterogeneous community whose members interact with one another in ways that are not fully understood. This creates a wide array of confounding variables that make it more difficult to identify why some engraft and others don’t. But on the skin, the metabolic environment is less complex, so fewer species of bacteria coexist. The smaller number of species makes it far easier to track the way the genomes of specific microbes change over time to facilitate survival, and the accessibility of the skin makes it easier to figure out how spatial structure and the presence of other microbes affect this process. 

One discovery from Lieberman’s lab is that each pore is dominated by just one random strain of a single species. Her group hypothesizes that survival may depend on the geometry of the pore and the location of the microbes. For example, as these anaerobic microbes typically thrive at the hard-to-access bottom of the pore, where there is less oxygen, the first to manage to get there can crowd out new migrants.

“My vision, and really a vision for the microbiome field in general,” Lieberman says, is that one day therapeutic microbes could be added to the body to treat medical conditions. “These could be microbes that are naturally occurring, or they could be genetically engineered microbes that have some property we want,” she adds. “But how to actually do that is really challenging because we don’t understand the ecology of the system.” Most bacteria introduced into a person’s system, even those taken from another healthy human, will not persist in the new person’s body, she notes, unless you “first bomb it with antibiotics” to get rid of most of the microbes that are already there. “Why that is,” she adds, “is something we really don’t understand.”

If Lieberman can solve the puzzle, the possible applications are tantalizing.  

“I would love to have bacteria that live on my face and release sunscreen in response to light,” she says. “Why can’t I have that? In the future, there’s no reason we can’t figure out how to do that in a safe and controlled manner. And it would be much more convenient than applying sunscreen every day.” 

Harnessing light-sensitive, sunblock-­producing microbes may sound like a distant fantasy. But it’s not beyond the realm of possibility. Other microbial products that sound straight out of a science fiction novel have already been invented in the lab. 

Molecular assassin

When Daniel Pascal first landed in the lab of MIT synthetic biologist Christopher Voigt, he had no idea he’d be staying on to make bacteria with superpowers. He was a first-year PhD student rotating through various labs, with little inkling of the potential contained in the microbes that live inside us.

Pascal, a 2024 Neil and Anna Rasmussen fellow who is pursuing a doctorate in biological engineering, was originally paired with a graduate student doing a more materials-­related synthetic biology project. But he came from a family of physicians and soon found himself speaking with other graduate students in the lab whose projects had to do with health. 

He then learned that two of the lab’s postdocs, Arash Farhadi and Brandon Fields, were receiving funding under a program sponsored by the Defense Advanced Research Projects Agency (DARPA), the Pentagon’s R&D organization, to develop solutions for common traveler’s ailments that result from problems like disrupted sleep cycles and limited access to safe food and water. When they explained that they hoped to harness microbes in the human body, they had his attention. 

Daniel Pascal, a graduate student pursuing a doctorate in biological engineering, is using synthetic biology to get microbes to carry out functions that they would not perform in the natural world.
COURTESY OF DANIEL PASCAL

“It’s amazing how these tiny little organisms have so much control and can wreak so much havoc,” he says.  

Intrigued, Pascal wound up officially joining Voigt’s lab, where he is working to create microbes that can carry out a wide array of functions they would not perform in the natural world.  

To do so, he is using a custom “landing pad” system developed in the lab. The system relies on synthetic biology to create a new region in the genome of a microbe that, using specific enzymes, can be filled with pieces of DNA designed to imbue the microbe with special new abilities.  

After engineering the landing pad into samples of an existing probiotic, Pascal and his collaborators on a project funded by the US Air Force and DARPA were able to deliver DNA that allows the probiotic to essentially set up a specialized drug production facility within the gut. First it absorbs two common amino acids, arginine and glycine. Then it converts them into a precursor compound that the body transforms into creatine, which can facilitate the production of muscle tissue from exercise and may help with memory.  

Pascal explains that creatine is often taken as an over-the-counter supplement by people doing weight training and other athletes who want to improve their fitness. “But creatine has been shown to improve performance in fatigued humans,” he says. “So the motivation for this project was the idea that Air Force pilots that are traveling all over the world are jet-lagged, are working crazy hours and shifts.” What if, the researchers wondered, those pilots “could take a supplement that would improve some of their responsiveness, athletic accuracy, intelligence, and reasoning?”

A typical oral supplement delivers a spike of creatine in the bloodstream that largely dissipates relatively quickly. More useful to the pilots would be a probiotic engineered to produce a consistent amount of the creatine precursor that could be turned into creatine as needed.

CMIT is also funding Pascal’s project using the landing pad system to get microbes to produce substances that target specific pathogens without disrupting the entire microbiome. Although Pascal cannot yet reveal any details about these molecular-­level assassins, he notes that other researchers in the Voigt lab have recently used the landing pad system to redesign the Escherichia coli Nissle (EcN) microbe, which had previously been engineered to produce such things as antibiotics, enzymes that break down toxins, and chemotherapy drugs to fight cancer. The lab’s work made it possible to improve the efficacy of a treatment for phenylketonuria and perhaps of other EcN therapeutics as well.  

The lab has, in short, been able to get microbe strains (one of which he says is a commercially available probiotic that in some countries you can buy over the counter) to do some very useful things. “They’ve figured out a way to take this mundane thing and give it these extraordinary capabilities,” he says. “The idea is to create a genetically engineered metabolite factory in the gut.”

Tackling childhood obesity  

Understanding the microbiome may also lead to new therapies for one of the greatest public health challenges currently facing the US: rising rates of obesity.

Jason Zhang, a pediatric gastroenterologist at Boston Children’s Hospital, has received a CMIT clinical fellowship to study how gut bacteria may be linked to childhood obesity and diabetes. As a visiting scientist in Alm’s lab, he is using AI to predict people’s loss of control over what or how much they eat. His working hypothesis is that microbial metabolites are interacting with endocrine cells in the lining of the gut. Those endocrine cells in turn secrete hormones that travel to the brain and stimulate or suppress hunger. 

“We believe that the microbiome plays a role in how we make choices around food,” he says. “The microbiome can send metabolites into the bloodstream that will maybe cross the blood-brain barrier. And there may be a direct connection. There is some evidence of that. But more likely they’re going to be interacting with cells in the epithelial layer in the gut.”

JASON ZHANG
Jason Zhang, a pediatric gastroenterologist at Boston Children’s Hospital, studies the link between gut bacteria and childhood obesity and diabetes. As a visiting scientist in the lab of Eric Alm, he uses AI to model what’s known as “loss-of-control eating.”
COURTESY OF JASON ZHANG

Zhang has sequenced the microbes found in the stool of subjects who have exhibited “loss-of-control eating” and developed a machine-learning algorithm that can predict it in other patients on the basis of their stool samples. He and his colleagues have begun to home in on a specific microbe that appears to be deficient in kids who experience this eating pattern. 

The researchers have discovered that this particular microbe appears to respond to food in the gut by creating compounds that stimulate enteroendocrine cells to release a series of hormones signaling satiety to the brain—among them GLP-1, the hormone whose signal is turned up by weight-loss drugs like Ozempic. Zhang has already begun experimenting with therapies that artificially introduce the microbe into mice to treat obesity, diabetes, and food addiction.  

“As with any single mechanism that treats a really complex disease, I would say it’s likely to make a difference,” he says. “But is it the silver bullet? Probably not.” Still, Zhang isn’t ruling it out: “We don’t know yet. That’s the ongoing work.” 

All these projects provide a taste of what’s to come. For more than a decade, CMIT has played a key role in building the fundamental infrastructure needed to develop the new field.But with as many as 100 trillion bacterial cells in the human microbiome, the efforts to explore it have only just begun.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Cisco strengthens integrated IT/OT network and security controls

Another significant move that will help IT/OT integration is the planned integration of the management console for Cisco’s Catalyst and Meraki networks. That combination will allow IT and OT teams to see the same dashboard for industrial OT and IT enterprise/campus networks. Cyber Vision will feeds into the dashboard along

Read More »

MOL’s Tiszaújváros steam cracker processes first circular feedstock

MOL Group has completed its first certified production trial using circular feedstock at subsidiary MOL Petrochemicals Co. Ltd. complex in Tiszaújváros, Hungary, advancing the company’s strategic push toward circular economy integration in petrochemical production. Confirmed completed as of Sept. 15, the pilot marked MOL Group’s first use of post-consumer plastic

Read More »

Network jobs watch: Hiring, skills and certification trends

Desire for higher compensation Improve career prospects Want more interesting work “A robust and engaged tech workforce is essential to keeping enterprises operating at the highest level,” said Julia Kanouse, Chief Membership Officer at ISACA, in a statement. “In better understanding IT professionals’ motivations and pain points, including how these

Read More »

Perenco Begins Work to Restart Flows at Campos Fields

Perenco has launched a two-year reactivation program for Bagre and Cherne in the shallow waters of Brazil’s Campos basin, expecting a “mid-term” production of up to 15,000 barrels of oil per day (bopd) from the recently acquired fields. The fields stopped production March 2020 and their two platforms, PCH1 and PCH2, have since been mothballed, previous owner Petroleo Brasileiro SA (Petrobras) said in a statement April 26, 2024 announcing the sale to Perenco. Petrobras had planned to decommission the fields. “The first step, which is already underway, entails the full integrity revitalization of the PCH1 and PCH2 platforms, systems and associated equipment”, Anglo-French explorer and producer Perenco said in a press release this week. “This integrity revitalization effort will take place throughout the two-year program, with workstreams ranging from the replacement or renovation of turbines and the water treatment systems to the modernization of the metering systems and maintenance or replacement of the upper deck flowlines”. “The second phase will consist of installing a new 10-inch pipeline connecting the 27-kilometer distance from PCH1 to the Pargo platform, and from there to the FSO Pargo through the existing export line”, Perenco said. “As part of the plan to upgrade the water injection system, Perenco will also install a water injection line between the PCH1 and PCH2 units. “The third stage will focus on well interventions and re-entries to enable the resumption of production with 36 wells set to come back onstream. This will include 21 workover campaigns and a further evaluation effort for the best application of gas lift or ESP methods”. Perenco expects $250 million in capital expenses for the reactivation. It announced the completion of the transaction to acquire the concessions August 5, 2025. Petrobras was to receive $10 million for the sale, according to last year’s announcement of

Read More »

WTI Falls on Stockpile, Fed Moves

Oil eased after a three-session advance as traders assessed fresh US stockpile data and a Federal Reserve interest-rate cut. West Texas Intermediate fell 0.7% to settle above $64 a barrel after the Federal Reserve lowered its benchmark interest rate by a quarter percentage point and penciled in two more reductions this year. Although lower rates typically boost energy demand, investors focused on policymakers’ warnings of mounting labor market weakness. Traders had also mostly priced in a 25 basis-point cut ahead of the decision, leading some to unwind hedges against a bigger-than-expected reduction. The dollar strengthened, making commodities priced in the currency less attractive. “There is a somewhat counterintuitive reaction to the Fed’s cut, but the dovish pivot cements their shift to protect the labor side of their mandate,” said Frank Monkam, head of macro trading at Buffalo Bayou Commodities. The shift suggests “an admission that growth risks to the economy are becoming more apparent and concerning.” The Fed move compounded an earlier slide as traders discounted the most recent US stockpile data, which showed crude inventories fell 9.29 million barrels amid a sizable increase in exports. However, the adjustment factor ballooned and distillate inventories rose to the highest since January, adding a bearish tilt to the report. “Traders like to see domestic demand pulling the inventories,” as opposed to exports, said Dennis Kissler, senior vice president for trading at BOK Financial Securities. The distillate buildup also stunted a rally following Ukraine’s attack on the Saratov refinery in its latest strike on Russian energy facilities — which have helped cut the OPEC+ member’s production to its lowest post-pandemic level, according to Goldman Sachs Group Inc. Still, the strikes haven’t been enough to push oil out of the $5 band it has been in for most of the past month-and-a-half, buffeted between

Read More »

XRG Walks Away From $19B Santos Takeover

Abu Dhabi National Oil Co. dropped its planned $19 billion takeover of Australian natural gas producer Santos Ltd., walking away from an ambitious effort to expand overseas after failing to agree on key terms. A “combination of factors” discouraged the company’s XRG unit from making a final bid, it said Wednesday. The decision was strictly commercial and reflected disagreement over issues including valuation and tax, people familiar with the matter said, asking not to be identified discussing private information. It’s a notable retreat for XRG, the Adnoc spinoff launched to great fanfare last year and tasked with deploying Abu Dhabi’s billions into international dealmaking. The firm has been looking to build a global portfolio, particularly in chemicals and liquefied natural gas, and nixing the Santos transaction may slow an M&A drive aimed at diversifying the Middle Eastern emirate away from crude. The company made its indicative offer in June with a consortium that included Abu Dhabi Development Holding Co. and Carlyle Group Inc. The board of Santos, Australia’s second-largest fossil-fuel producer, recommended the $5.76-a-share proposal, which represented a 28% premium to the stock price at the time. But although the shares surged that day, they have remained well below the offer price, potentially indicating investors were skeptical the consortium could land the deal. Santos extended an exclusivity period for a second time last month, saying the group had sought more time to complete due diligence and obtain approvals. “The market will ask questions about Santos’ valuation after this,” Saul Kavonic, an energy analyst at MST Marquee, said by email. Investors may be wary about “any skeletons that may be lurking there, all the more so because XRG was a less price-sensitive buyer than most, yet still couldn’t make it work.” Santos’ American depositary receipts slumped as much as 9.5% to $4.69 on Wednesday. Covestro Hurdles Following agreements for

Read More »

Slovakia and Hungary Resist Trump Bid to Halt Russian Energy

Slovakia and Hungary signaled they would resist pressure from US President Donald Trump to cut Russian oil and gas imports until the European Union member states find sufficient alternative supplies.  “Before we can fully commit, we need to have the right conditions in place — otherwise we risk seriously damaging our industry and economy,” Slovak Economy Minister Denisa Sakova told reporters in Bratislava on Wednesday.  The minister said sufficient infrastructure must first be in place to support alternative routes. The comments amount to a pushback against fresh pressure from Trump for all EU states to end Russian energy imports, a move that would hit Slovakia and Hungary.  Hungarian Cabinet Minister Gergely Gulyas reiterated that his country would rebuff EU initiatives that threatened the security of its energy supplies. Sakova said she made clear Slovakia’s position during talks with US Energy Secretary Chris Wright in Vienna this week. She said the Trump official expressed understanding, while acknowledging that the US must boost energy projects in Europe.  Trump said over the weekend that he’s prepared to move ahead with “major” sanctions on Russian oil if European nations do the same. The government in Bratislava is prepared to shut its Russian energy links if it has sufficient infrastructure to transport volumes, Sakova said.  “As long as we have an alternative route, and the transmission capacity is sufficient, Slovakia has no problem diversifying,” the minister said. A complete cutoff of Russian supplies would pose a risk, she said, because Slovakia is located at the very end of alternative supply routes coming from the West.  Slovakia and Hungary, landlocked nations bordering Ukraine, have historically depended on Russian oil and gas. After Russia’s full-scale invasion of Ukraine in 2022, both launched several diversification initiatives. Slovakia imports around third of its oil from non-Russian sources via the Adria pipeline

Read More »

Slovakia Resists Pressure to Quickly Halt Russian Energy

Slovakia and Hungary signaled they would resist pressure from US President Donald Trump to cut Russian oil and gas imports until the European Union member states find sufficient alternative supplies.  “Before we can fully commit, we need to have the right conditions in place — otherwise we risk seriously damaging our industry and economy,” Slovak Economy Minister Denisa Sakova told reporters in Bratislava on Wednesday.  The minister said sufficient infrastructure must first be in place to support alternative routes. The comments amount to a pushback against fresh pressure from Trump for all EU states to end Russian energy imports, a move that would hit Slovakia and Hungary.  Hungarian Cabinet Minister Gergely Gulyas reiterated that his country would rebuff EU initiatives that threatened the security of its energy supplies. Sakova said she made clear Slovakia’s position during talks with US Energy Secretary Chris Wright in Vienna this week. She said the Trump official expressed understanding, while acknowledging that the US must boost energy projects in Europe.  Trump said over the weekend that he’s prepared to move ahead with “major” sanctions on Russian oil if European nations do the same. The government in Bratislava is prepared to shut its Russian energy links if it has sufficient infrastructure to transport volumes, Sakova said.  “As long as we have an alternative route, and the transmission capacity is sufficient, Slovakia has no problem diversifying,” the minister said. A complete cutoff of Russian supplies would pose a risk, she said, because Slovakia is located at the very end of alternative supply routes coming from the West.  Slovakia and Hungary, landlocked nations bordering Ukraine, have historically depended on Russian oil and gas. After Russia’s full-scale invasion of Ukraine in 2022, both launched several diversification initiatives. Slovakia imports around third of its oil from non-Russian sources via the Adria pipeline

Read More »

Energy-related US CO2 emissions down 20% since 2005: EIA

Listen to the article 2 min This audio is auto-generated. Please let us know if you have feedback. Per capita carbon dioxide emissions from energy consumption fell in every state from 2005 to 2023, primarily due to less coal being burned, the U.S. Energy Information Administration said in a Monday report.  In total, CO2 emissions fell by 20% in those years. The U.S. population increased by 14% during that period, so per capita, emissions fell by 30%, according to EIA. “Increased electricity generation from natural gas, which releases about half as many CO2 emissions per unit of energy when combusted as coal, and from non-CO2-emitting wind and solar generation offset the decrease in coal generation,” EIA said. Emissions decreased in every state, falling the most in Maryland and the District of Columbia, which saw per capita drops of 49% and 48%, respectively. Emissions fell the least in Idaho, where they dropped by 3%, and Mississippi, where they dropped by 1%. Optional Caption Courtesy of Energy Information Administration “In 2023, Maryland had the lowest per capita CO2 emissions of any state, at 7.8 metric tons of CO2 (mtCO2), which is the second lowest in recorded data beginning in 1960,” EIA said. “The District of Columbia has lower per capita CO2 emissions than any state and tied its record low of 3.6 mtCO2 in 2023.” EIA forecasts a 1% increase in total U.S. emissions from energy consumption this year, “in part because of more recent increased fossil fuel consumption for crude oil production and electricity generation growth.” In 2023, the transportation sector was responsible for the largest share of emissions from energy consumption across 28 states, EIA said. In 2005, the electric power sector had “accounted for the largest share of emissions in 31 states, while the transportation sector made up the

Read More »

Ethernet, InfiniBand, and Omni-Path battle for the AI-optimized data center

IEEE 802.3df-2024. The IEEE 802.3df-2024 standard, completed in February 2024 marked a watershed moment for AI data center networking. The 800 Gigabit Ethernet specification provides the foundation for next-generation AI clusters. It uan 8-lane parallel structure that enables flexible port configurations from a single 800GbE port: 2×400GbE, 4×200GbE or 8×100GbE depending on workload requirements. The standard maintains backward compatibility with existing 100Gb/s electrical and optical signaling. This protects existing infrastructure investments while enabling seamless migration paths. UEC 1.0. The Ultra Ethernet Consortium represents the industry’s most ambitious attempt to optimize Ethernet for AI workloads. The consortium released its UEC 1.0 specification in 2025, marking a critical milestone for AI networking. The specification introduces modern RDMA implementations, enhanced transport protocols and advanced congestion control mechanisms that eliminate the need for traditional lossless networks. UEC 1.0 enables packet spraying at the switch level with reordering at the NIC, delivering capabilities previously available only in proprietary systems The UEC specification also includes Link Level Retry (LLR) for lossless transmission without traditional Priority Flow Control, addressing one of Ethernet’s historical weaknesses versus InfiniBand.LLR operates at the link layer to detect and retransmit lost packets locally, avoiding expensive recovery mechanisms at higher layers. Packet Rate Improvement (PRI) with header compression reduces protocol overhead, while network probes provide real-time congestion visibility. InfiniBand extends architectural advantages to 800Gb/s InfiniBand emerged in the late 1990s as a high-performance interconnect designed specifically for server-to-server communication in data centers. Unlike Ethernet, which evolved from local area networking,InfiniBand was purpose-built for the demanding requirements of clustered computing. The technology provides lossless, ultra-low latency communication through hardware-based flow control and specialized network adapters. The technology’s key advantage lies in its credit-based flow control. Unlike Ethernet’s packet-based approach, InfiniBand prevents packet loss by ensuring receiving buffers have space before transmission begins. This eliminates

Read More »

Land and Expand: CleanArc Data Centers, Google, Duke Energy, Aligned’s ODATA, Fermi America

Land and Expand is a monthly feature at Data Center Frontier highlighting the latest data center development news, including new sites, land acquisitions and campus expansions. Here are some of the new and notable developments from hyperscale and colocation data center operators about which we’ve been reading lately. Caroline County, VA, Approves 650-Acre Data Center Campus from CleanArc Caroline County, Virginia, has approved redevelopment of the former Virginia Bazaar property in Ruther Glen into a 650-acre data center campus in partnership with CleanArc Data Centers Operating, LLC. On September 9, 2025, the Caroline County Board of Supervisors unanimously approved an economic development performance agreement with CleanArc to transform the long-vacant flea market site just off I-95. The agreement allows for the phased construction of three initial data center buildings, each measuring roughly 500,000 square feet, which CleanArc plans to lease to major operators. The project represents one of the county’s largest-ever private investments. While CleanArc has not released a final capital cost, county filings suggest the development could reach into the multi-billion-dollar range over its full buildout. Key provisions include: Local hiring: At least 50 permanent jobs at no less than 150% of the prevailing county wage. Revenue sharing: Caroline County will provide annual incentive grants equal to 25% of incremental tax revenue generated by the campus. Water stewardship: CleanArc is prohibited from using potable county water for data center cooling, requiring the developer to pursue alternative technologies such as non-potable sources, recycled water, or advanced liquid cooling systems. Local officials have emphasized the deal’s importance for diversifying the county’s tax base, while community observers will be watching closely to see which cooling strategies CleanArc adopts in order to comply with the water-use restrictions. Google to Build $10 Billion Data Center Campus in Arkansas Moses Tucker Partners, one of Arkansas’

Read More »

Hyperion and Alice & Bob Call on HPC Centers to Prepare Now for Early Fault-Tolerant Quantum Computing

As the data center industry continues to chase greater performance for AI and scientific workloads, a new joint report from Hyperion Research and Alice & Bob is urging high performance computing (HPC) centers to take immediate steps toward integrating early fault-tolerant quantum computing (eFTQC) into their infrastructure. The report, “Seizing Quantum’s Edge: Why and How HPC Should Prepare for eFTQC,” paints a clear picture: the next five years will demand hybrid HPC-quantum workflows if institutions want to stay at the forefront of computational science. According to the analysis, up to half of current HPC workloads at U.S. government research labs—Los Alamos National Laboratory, the National Energy Research Scientific Computing Center, and Department of Energy leadership computing facilities among them—could benefit from the speedups and efficiency gains of eFTQC. “Quantum technologies are a pivotal opportunity for the HPC community, offering the potential to significantly accelerate a wide range of critical science and engineering applications in the near-term,” said Bob Sorensen, Senior VP and Chief Analyst for Quantum Computing at Hyperion Research. “However, these machines won’t be plug-and-play, so HPC centers should begin preparing for integration now, ensuring they can influence system design and gain early operational expertise.” The HPC Bottleneck: Why Quantum is Urgent The report underscores a familiar challenge for the HPC community: classical performance gains have slowed as transistor sizes approach physical limits and energy efficiency becomes increasingly difficult to scale. Meanwhile, the threshold for useful quantum applications is drawing nearer. Advances in qubit stability and error correction, particularly Alice & Bob’s cat qubit technology, have compressed the resource requirements for algorithms like Shor’s by an estimated factor of 1,000. Within the next five years, the report projects that quantum computers with 100–1,000 logical qubits and logical error rates between 10⁻⁶ and 10⁻¹⁰ will accelerate applications across materials science, quantum

Read More »

Google Partners With Utilities to Ease AI Data Center Grid Strain

Transmission and Power Strategy These agreements build on Google’s growing set of strategies to manage electricity needs. In June of 2025, Google announced a deal with CTC Global to upgrade transmission lines with high-capacity composite conductors that increase throughput without requiring new towers. In July 2025, Google and Brookfield Asset Management unveiled a hydropower framework agreement worth up to $3 billion, designed to secure firm clean energy for data centers in PJM and Eastern markets. Alongside renewable deals, Google has signed nuclear supply agreements as well, most notably a landmark contract with Kairos Power for small modular reactor capacity. Each of these moves reflects Google’s effort to create more headroom on the grid while securing firm, carbon-free power. Workload Flexibility and Grid Innovation The demand-response strategy is uniquely suited to AI data centers because of workload diversity. Machine learning training runs can sometimes be paused or rescheduled, unlike latency-sensitive workloads. This flexibility allows Google to throttle certain compute-heavy processes in coordination with utilities. In practice, Google can preemptively pause or shift workloads when notified of peak events, ensuring critical services remain uninterrupted while still creating significant grid relief. Local Utility Impact For utilities like I&M and TVA, partnering with hyperscale customers has a dual benefit: stabilizing the grid while keeping large customers satisfied and growing within their service territories. It also signals to regulators and ratepayers that data centers, often criticized for their heavy energy footprint, can actively contribute to reliability. These agreements may help avoid contentious rate cases or delays in permitting new power plants. Policy, Interconnection Queues, and the Economics of Speed One of the biggest hurdles for data center development today is the long wait in interconnection queues. In regions like PJM Interconnection, developers often face waits of three to five years before new projects can connect

Read More »

Generators, Gas, and Grid Strategy: Inside Generac’s Data Center Play

A Strategic Leap Generac’s entry represents a strategic leap. Long established as a leader in residential, commercial, and industrial generation—particularly in the sub-2 megawatt range—the company has now expanded into mission-critical applications with new products spanning 2.2 to 3.5 megawatts. Navarro said the timing was deliberate, citing market constraints that have slowed hyperscale and colocation growth. “The current OEMs serving this market are actually limiting the ability to produce and to grow the data center market,” he noted. “Having another player … with enough capacity to compensate those shortfalls has been received very, very well.” While Generac isn’t seeking to reinvent the wheel, it is intent on differentiation. Customers, Navarro explained, want a good quality product, uneventful deployment, and a responsive support network. On top of those essentials, Generac is leveraging its ongoing transformation from generator manufacturer to energy technology company, a shift accelerated by a series of acquisitions in areas like telemetry, monitoring, and energy management. “We’ve made several acquisitions to move away from being just a generator manufacturer to actually being an energy technology company,” Navarro said. “So we are entering this space of energy efficiency, energy management—monitoring, telemetrics, everything that improves the experience and improves the usage of those generators and the energy management at sites.” That foundation positions Generac to meet the newest challenge reshaping backup generation: the rise of AI-centric workloads. Natural Gas Interest—and the Race to Shorter Lead Times As the industry looks beyond diesel, customer interest in natural gas generation is rising. Navarro acknowledged the shift, but noted that diesel still retains an edge. “We’ve seen an increase on gas requests,” he said. “But the power density of diesel is more convenient than gas today.” That tradeoff, however, could narrow. Navarro pointed to innovations such as industrial storage paired with gas units, which

Read More »

Executive Roundtable: Cooling, Costs, and Integration in the AI Data Center Era

Becky Wacker, Trane:  As AI workloads increasingly dominate new data center builds, operators face significant challenges in managing thermal loads and water resources. These challenges include significantly higher heat density, large, aggregated load spikes, uneven distribution of cooling needs, and substantial water requirements if using traditional evaporative cooling methods. The most critical risks include overheating, inefficient cooling systems, and water scarcity. These issues can lead to reduced hardware lifespan, hardware throttling, sudden shutdowns, failure to meet PUE targets, higher operational costs, and limitations on where AI data centers can be built due to water constraints. At Trane, we are evolving our solutions to meet these challenges through advanced cooling technologies such as liquid cooling and immersion cooling, which offer higher efficiency and lower thermal resistance compared to traditional air-cooling methods. Flexibility and scalability are central to our design philosophy. We believe a total system solution is crucial, integrating components such as CDUs, Fan Walls, CRAHs, and Chillers to anticipate demand and respond effectively. In addition, we are developing smart monitoring and control systems that leverage AI to predict and manage thermal loads in real-time, ensuring optimal performance and preventing overheating through Building Management Systems and integration with DCIM platforms. Our water management solutions are also being enhanced to recycle and reuse water, minimizing consumption and addressing scarcity concerns.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »