Stay Ahead, Stay ONMINE

When Optimal is the Enemy of Good: High-Budget Differential Privacy for Medical AI

Imagine you’re building your dream home. Just about everything is ready. All that’s left to do is pick out a front door. Since the neighborhood has a low crime rate, you decide you want a door with a standard lock — nothing too fancy, but probably enough to deter 99.9% of would-be burglars. Unfortunately, the local homeowners’ association (HOA) has a rule stating that all front doors in the neighborhood must be bank vault doors. Their reasoning? Bank vault doors are the only doors that have been mathematically proven to be absolutely secure. As far as they’re concerned, any front door below that standard may as well not be there at all. You’re left with three options, none of which seems particularly appealing: Concede defeat and have a bank vault door installed. Not only is this expensive and cumbersome, but you’ll be left with a front door that bogs you down every single time you want to open or close it. At least burglars won’t be a problem! Leave your house doorless. The HOA rule imposes requirements on any front door in the neighborhood, but it doesn’t technically forbid you from not installing a door at all. That would save you a lot of time and money. The downside, of course, is that it would allow anyone to come and go as they please. On top of that, the HOA could always close the loophole, taking you back to square one. Opt out entirely. Faced with such a stark dilemma (all-in on either security or practicality), you choose not to play the game at all, selling your nearly-complete house and looking for someplace else to live. This scenario is obviously completely unrealistic. In real life, everybody strives to strike an appropriate balance between security and practicality. This balance is informed by everyone’s own circumstances and risk analysis, but it universally lands somewhere between the two extremes of bank vault door and no door at all. But what if instead of your dream home, you imagined a medical AI model that has the power to help doctors improve patient outcomes? Highly-sensitive training data points from patients are your valuables. The privacy protection measures you take are the front door you choose to install. Healthcare providers and the scientific community are the HOA.  Suddenly, the scenario is much closer to reality. In this article, we’ll explore why that is. After understanding the problem, we’ll consider a simple but empirically effective solution proposed in the paper Reconciling privacy and accuracy in AI for medical imaging [1]. The authors propose a balanced alternative to the three bad choices laid out above, much like the real-life approach of a typical front door. The State of Patient Privacy in Medical AI Over the past few years, artificial intelligence has become an ever more ubiquitous part of our day-to-day lives, proving its utility across a wide range of domains. The rising use of AI models has, however, raised questions and concerns about protecting the privacy of the data used to train them. You may remember the well-known case of ChatGPT, just months after its initial release, exposing proprietary code from Samsung [2]. Some of the privacy risks associated with AI models are obvious. For example, if the training data used for a model isn’t stored securely enough, bad actors could find ways to access it directly. Others are more insidious, such as the risk of reconstruction. As the name implies, in a reconstruction attack, a bad actor attempts to reconstruct a model’s training data without needing to gain direct access to the dataset. Medical records are one of the most sensitive kinds of personal information there are. Although specific regulation varies by jurisdiction, patient data is generally subject to stringent safeguards, with hefty fines for inadequate protection. Beyond the letter of the law, unintentionally exposing such data could irreparably damage our ability to use specialized AI to empower medical professionals.  As Ziller, Mueller, Stieger, et al. point out [1], fully taking advantage of medical AI requires rich datasets comprising information from actual patients. This information must be obtained with the full consent of the patient. Ethically acquiring medical data for research was challenging enough as it was before the unique challenges posed by AI came into play. But if proprietary code being exposed caused Samsung to ban the use of ChatGPT [2], what would happen if attackers managed to reconstruct MRI scans and identify the patients they belonged to? Even isolated instances of negligent protection against data reconstruction could end up being a monumental setback for medical AI as a whole. Tying this back into our front door metaphor, the HOA statute calling for bank vault doors starts to make a little bit more sense. When the cost of a single break-in could be so catastrophic for the entire neighborhood, it’s only natural to want to go to any lengths to prevent them.  Differential Privacy (DP) as a Theoretical Bank Vault Door Before we discuss what an appropriate balance between privacy and practicality might look like in the context of medical AI, we have to turn our attention to the inherent tradeoff between protecting an AI model’s training data and optimizing for quality of performance. This will set the stage for us to develop a basic understanding of Differential Privacy (DP), the theoretical gold standard of privacy protection. Although academic interest in training data privacy has increased significantly over the past four years, principles on which much of the conversation is based were pointed out by researchers well before the recent LLM boom, and even before OpenAI was founded in 2015. Though it doesn’t deal with reconstruction per se, the 2013 paper Hacking smart machines with smarter ones [3] demonstrates a generalizable attack methodology capable of accurately inferring statistical properties of machine learning classifiers, noting: “Although ML algorithms are known and publicly released, training sets may not be reasonably ascertainable and, indeed, may be guarded as trade secrets. While much research has been performed about the privacy of the elements of training sets, […] we focus our attention on ML classifiers and on the statistical information that can be unconsciously or maliciously revealed from them. We show that it is possible to infer unexpected but useful information from ML classifiers.” [3] Theoretical data reconstruction attacks were described even earlier, in a context not directly pertaining to machine learning. The landmark 2003 paper Revealing information while preserving privacy [4] demonstrates a polynomial-time reconstruction algorithm for statistical databases. (Such databases are intended to provide answers to questions about their data in aggregate while keeping individual data points anonymous.) The authors show that to mitigate the risk of reconstruction, a certain amount of noise needs to be introduced into the data. Needless to say, perturbing the original data in this way, while necessary for privacy, has implications for the quality of the responses to queries, i.e., the accuracy of the statistical database. In explaining the purpose of DP in the first chapter of their book The Algorithmic Foundations of Differential Privacy [5], Cynthia Dwork and Aaron Roth address this tradeoff between privacy and accuracy: “[T]he Fundamental Law of Information Recovery states that overly accurate answers to too many questions will destroy privacy in a spectacular way. The goal of algorithmic research on differential privacy is to postpone this inevitability as long as possible. Differential privacy addresses the paradox of learning nothing about an individual while learning useful information about a population.” [5] The notion of “learning nothing about an individual while learning useful information about a population” is captured by considering two datasets that differ by a single entry (one that includes the entry and one that doesn’t). An (ε, δ)-differentially private querying mechanism is one for which the probability of a certain output being returned when querying one dataset is at most a multiplicative factor of the probability when querying the other dataset. Denoting the mechanism by M, the set of possible outputs by S, and the datasets by x and y, we formalize this as [5]: Pr[M(x) ∈ S] ≤ exp(ε) ⋅ Pr[M(y) ∈ S] + δ Where ε is the privacy loss parameter and δ is the failure probability parameter. ε quantifies how much privacy is lost as a result of a query, while a positive δ allows for privacy to fail altogether for a query at a certain (usually very low) probability. Note that ε is an exponential parameter, meaning that even slightly increasing it can cause privacy to decay significantly. An important and useful property of DP is composition. Notice that the definition above only applies to cases where we run a single query. The composition property helps us generalize it to cover multiple queries based on the fact that privacy loss and failure probability accumulate predictably when we compose several queries, be they based on the same mechanism or different ones. This accumulation is easily proven to be (at most) linear [5]. What this means is that, rather than considering a privacy loss parameter for one query, we may view ε as a privacy budget that can be utilized across a number of queries. For example, when taken together, one query using a (1, 0)-DP mechanism and two queries using a (0.5, 0)-DP mechanism satisfy (2, 0)-DP. The value of DP comes from the theoretical privacy guarantees it promises. Setting ε = 1 and δ = 0, for example, we find that the probability of any given output occurring when querying dataset y is at most exp(1) = e ≈ 2.718 times greater than that same output occurring when querying dataset x. Why does this matter? Because the greater the discrepancy between the probabilities of certain outputs occurring, the easier it is to determine the contribution of the individual entry by which the two datasets differ, and the easier it is to ultimately reconstruct that individual entry. In practice, designing an (ε, δ)-differentially private randomized mechanism entails the addition of random noise drawn from a distribution dependent on ε and δ. The specifics are beyond the scope of this article. Shifting our focus back to machine learning, though, we find that the idea is the same: DP for ML hinges on introducing noise into the training data, which yields robust privacy guarantees in much the same way. Of course, this is where the tradeoff we mentioned comes into play. Adding noise to the training data comes at the cost of making learning more difficult. We could absolutely add enough noise to achieve ε = 0.01 and δ = 0, making the difference in output probabilities between x and y virtually nonexistent. This would be wonderful for privacy, but terrible for learning. A model trained on such a noisy dataset would perform very poorly on most tasks. There is no consensus on what constitutes a “good” ε value, or on universal methodologies or best practices for ε selection [6]. In many ways, ε embodies the privacy/accuracy tradeoff, and the “proper” value to aim for is highly context-dependent. ε = 1 is generally regarded as offering high privacy guarantees. Although privacy diminishes exponentially with respect to ε, values as high as ε = 32 are mentioned in literature and thought to provide moderately strong privacy guarantees [1].  The authors of Reconciling privacy and accuracy in AI for medical imaging [1] test the effects of DP on the accuracy of AI models on three real-world medical imaging datasets. They do so using various values of ε and comparing them to a non-private (non-DP) control. Table 1 provides a partial summary of their results for ε = 1 and ε = 8: Table 1: Comparison of AI model performance across the RadImageNet [7], HAM10000 [8], and MSD Liver [9] datasets with δ = 8⁻⁷⋅10 and privacy budgets of ε = 1, ε = 8, and without DP (non-private). A higher MCC/Dice score indicates higher accuracy. Although providing strong theoretical privacy guarantees in the face of a worst-case adversary, DP significantly degrades model accuracy. The negative impact on performance is especially noticeable in the latter two datasets, which are considered small datasets. Image by the author, based on image by A. Ziller, T.T. Mueller, S. Stieger, et al from Table 3 in Reconciling privacy and accuracy in AI for medical imaging [1] (use under CC-BY 4.0 license). Even approaching the higher end of the typical ε values attested in literature, DP is still as cumbersome as a bank vault door for medical imaging tasks. The noise introduced into the training data is catastrophic for AI model accuracy, especially when the datasets at hand are small. Note, for example, the huge drop-off in Dice score on the MSD Liver dataset, even with the relatively high ε value of 8. Ziller, Mueller, Stieger, et al. suggest that the accuracy drawbacks of DP with typical ε values may contribute to the lack of widespread adoption of DP in the field of Medical Ai [1]. Yes, wanting mathematically-provable privacy guarantees is definitely sensible, but at what cost? Leaving so much of the diagnostic power of AI models on the table in the name of privacy is not an easy choice to make. Revisiting our dream home scenario armed with an understanding of DP, we find that the options we (seem to) have map neatly onto the three we had for our front door. DP with typical values of ε is like installing a bank vault door: costly, but effective for privacy. As we’ll see, it’s also complete overkill in this case. Not using DP is like not installing a door at all: much easier, but risky. As mentioned above, though, DP has yet to be widely applied in medical AI [1]. Passing up opportunities to use AI is like giving up and selling the house: it saves us the headache of dealing with privacy concerns weighed against incentives to maximize accuracy, but a lot of potential is lost in the process. It looks like we’re at an impasse… unless we think outside the box. High-Budget DP: Privacy and Accuracy Aren’t an Either/Or In Reconciling privacy and accuracy in AI for medical imaging [1], Ziller, Mueller, Stieger, et al. offer the medical AI equivalent of a regular front door — an approach that manages to protect privacy while giving up very little in the way of model performance. Granted, this protection is not theoretically optimal — far from it. However, as the authors show through a series of experiments, it is good enough to counter almost any realistic threat of reconstruction.  As the saying goes, “Perfect is the enemy of good.” In this case, it is the “optimal” — an insistence on arbitrarily low ε values — that locks us into the false dichotomy of total privacy versus total accuracy. Just as a bank vault door has its place in the real world, so does DP with ε ≤ 32. Still, the existence of the bank vault door doesn’t mean plain old front doors don’t also have a place in the world. The same goes for high-budget DP. The idea behind high-budget DP is straightforward: using privacy budgets (ε values) that are so high that they “are near-universally shunned as being meaningless” [1] — budgets ranging from ε = 10⁶ to as high as ε = 10¹⁵. In theory, these provide such weak privacy guarantees that it seems like common sense to dismiss them as no better than not using DP at all. In practice, though, this couldn’t be further from the truth. As we will see by looking at the results from the paper, high-budget DP shows significant promise in countering realistic threats. As Ziller, Mueller, Stieger, et al. put it [1]: “[E]ven a ‘pinch of privacy’ has drastic effects in practical scenarios.” First, though, we need to ask ourselves what we consider to be a “realistic” threat. Any discussion of the efficacy of high-budget DP is inextricably tied to the threat model under which we choose to evaluate it. In this context, a threat model is simply the set of assumptions we make about what a bad actor interested in obtaining our model’s training data is able to do. Table 2: Comparison of threat models. For all three, we also assume that the adversary has unbounded computational ability. Image by A. Ziller, T.T. Mueller, S. Stieger, et al from Table 1 in Reconciling privacy and accuracy in AI for medical imaging [1] (use under CC-BY 4.0 license). The paper’s findings hinge on a calibration of the assumptions to better suit real-world threats to patient privacy. The authors argue that the worst-case model, which is the one typically used for DP, is far too pessimistic. For example, it assumes that the adversary has full access to each original image while attempting to reconstruct it based on the AI model (see Table 2) [1]. This pessimism explains the discrepancy between the reported “drastic effects in practical scenarios” of high privacy budgets and the very weak theoretical privacy guarantees that they offer. We may liken it to incorrectly assessing the security threats a typical house faces, wrongly assuming they are likely to be as sophisticated and enduring as those faced by a bank.  The authors therefore propose two alternative threat models, which they call the “relaxed” and “realistic” models. Under both of these, adversaries keep some core capabilities from the worst-case model: access to the AI model’s architecture and weights, the ability to manipulate its hyperparameters, and unbounded computational abilities (see Table 2). The realistic adversary is assumed to have no access to the original images and an imperfect reconstruction algorithm. Even these assumptions leave us with a rigorous threat model that may still be considered pessimistic for most real-world scenarios [1]. Having established the three relevant threat models to consider, Ziller, Mueller, Stieger, et al. compare AI model accuracy in conjunction with the reconstruction risk under each threat model at different values of ε. As we saw in Table 1, this is done for three exemplary Medical Imaging datasets. Their full results are presented in Table 3: Table 3: Comparison of AI model performance and reconstruction risk per threat model across the RadImageNet [7], HAM10000 [8], and MSD Liver [9] datasets with δ = 8⁻⁷⋅10 and various privacy budgets, including some as high as ε = 10⁹ and ε = 10¹². A higher MCC/Dice score indicates higher accuracy. Image by A. Ziller, T.T. Mueller, S. Stieger, et al from Table 3 in Reconciling privacy and accuracy in AI for medical imaging [1] (use under CC-BY 4.0 license). Unsurprisingly, high privacy budgets (exceeding ε = 10⁶) significantly mitigate the loss of accuracy seen with lower (stricter) privacy budgets. Across all tested datasets, models trained with high-budget DP at ε = 10⁹ (HAM10000, MSD Liver) or ε = 10¹² (RadImageNet) perform nearly as well as their non-privately trained counterparts. This is in line with our understanding of the privacy/accuracy tradeoff: the less noise introduced into the training data, the better a model can learn. What is surprising is the degree of empirical protection afforded by high-budget DP against reconstruction under the realistic threat model. Remarkably, the realistic reconstruction risk is assessed to be 0% for each of the aforementioned models. The high efficacy of high-budget DP in defending medical AI training images against realistic reconstruction attacks is made even clearer by looking at the results of reconstruction attempts. Figure 1 below shows the five most readily reconstructed images from the MSD Liver dataset [9] using DP with high privacy budgets of ε = 10⁶, ε = 10⁹, ε = 10¹², and ε = 10¹⁵. Figure 1: The five most readily reconstructed images from the MSD Liver dataset [9] using DP with high privacy budgets of ε = 10⁶, ε = 10⁹, ε = 10¹², and ε = 10¹⁵. Image by A. Ziller, T.T. Mueller, S. Stieger, et al from Figure 3 in Reconciling privacy and accuracy in AI for medical imaging [1] (use under CC-BY 4.0 license). Note that, at least to the naked eye, even the best reconstructions obtained when using the former two budgets are visually indistinguishable from random noise. This lends intuitive credence to the argument that budgets often deemed too high to provide any meaningful protection could be instrumental in protecting privacy without giving up accuracy when using AI for medical imaging. In contrast, the reconstructions when using ε = 10¹⁵ closely resemble the original images, showing that not all high budgets are created equal. Based on their findings, Ziller, Mueller, Stieger, et al. make the case for training medical imaging AI models using (at least) high-budget DP as the norm. They note the empirical efficacy of high-budget DP in countering realistic reconstruction risks at very little cost in terms of model accuracy. The authors go so far as to claim that “it seems negligent to train AI models without any form of formal privacy guarantee.” [1] Conclusion We started with a hypothetical scenario in which you were forced to decide between a bank vault door or no door at all for your dream home (or giving up and selling the incomplete house). After an exploration of the risks posed by inadequate privacy protection in medical AI, we looked into the privacy/accuracy tradeoff as well as the history and theory behind reconstruction attacks and differential privacy (DP). We then saw how DP with common privacy budgets (ε values) degrades medical AI model performance and compared it to the bank vault door in our hypothetical.  Finally, we examined empirical results from the paper Reconciling privacy and accuracy in AI for medical imaging to find out how high-budget differential privacy can be used to escape the false dichotomy of bank vault door vs. no door and protect Patient Privacy in the real world without sacrificing model accuracy in the process. If you enjoyed this article, please consider following me on LinkedIn to keep up with future articles and projects. References [1] Ziller, A., Mueller, T.T., Stieger, S. et al. Reconciling privacy and accuracy in AI for medical imaging. Nat Mach Intell 6, 764–774 (2024). https://doi.org/10.1038/s42256-024-00858-y. [2] Ray, S. Samsung bans ChatGPT and other chatbots for employees after sensitive code leak. Forbes (2023). https://www.forbes.com/sites/siladityaray/2023/05/02/samsung-bans-chatgpt-and-other-chatbots-for-employees-after-sensitive-code-leak/. [3] Ateniese, G., Mancini, L. V., Spognardi, A. et al. Hacking smart machines with smarter ones: how to extract meaningful data from machine learning classifiers. International Journal of Security and Networks 10, 137–150 (2015). https://doi.org/10.48550/arXiv.1306.4447. [4] Dinur, I. & Nissim, K. Revealing information while preserving privacy. Proc. 22nd ACM SIGMOD-SIGACT-SIGART Symp Principles Database Syst 202–210 (2003). https://doi.org/10.1145/773153.773173. [5] Dwork, C. & Roth, A. The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science 9, 211–407 (2014). https://doi.org/10.1561/0400000042. [6] Dwork, C., Kohli, N. & Mulligan, D. Differential privacy in practice: expose your epsilons! Journal of Privacy and Confidentiality 9 (2019). https://doi.org/10.29012/jpc.689. [7] Mei, X., Liu, Z., Robson, P.M. et al. RadImageNet: an open radiologic deep learning research dataset for effective transfer learning. Radiol Artif Intell 4.5, e210315 (2022). https://doi.org/10.1148/ryai.210315. [8] Tschandl, P., Rosendahl, C. & Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 5, 180161 (2018). https://doi.org/10.1038/sdata.2018.161. [9] Antonelli, M., Reinke, A., Bakas, S. et al. The Medical Segmentation Decathlon. Nat Commun 13, 4128 (2022). https://doi.org/10.1038/s41467-022-30695-9.

Imagine you’re building your dream home. Just about everything is ready. All that’s left to do is pick out a front door. Since the neighborhood has a low crime rate, you decide you want a door with a standard lock — nothing too fancy, but probably enough to deter 99.9% of would-be burglars.

Unfortunately, the local homeowners’ association (HOA) has a rule stating that all front doors in the neighborhood must be bank vault doors. Their reasoning? Bank vault doors are the only doors that have been mathematically proven to be absolutely secure. As far as they’re concerned, any front door below that standard may as well not be there at all.

You’re left with three options, none of which seems particularly appealing:

  • Concede defeat and have a bank vault door installed. Not only is this expensive and cumbersome, but you’ll be left with a front door that bogs you down every single time you want to open or close it. At least burglars won’t be a problem!
  • Leave your house doorless. The HOA rule imposes requirements on any front door in the neighborhood, but it doesn’t technically forbid you from not installing a door at all. That would save you a lot of time and money. The downside, of course, is that it would allow anyone to come and go as they please. On top of that, the HOA could always close the loophole, taking you back to square one.
  • Opt out entirely. Faced with such a stark dilemma (all-in on either security or practicality), you choose not to play the game at all, selling your nearly-complete house and looking for someplace else to live.

This scenario is obviously completely unrealistic. In real life, everybody strives to strike an appropriate balance between security and practicality. This balance is informed by everyone’s own circumstances and risk analysis, but it universally lands somewhere between the two extremes of bank vault door and no door at all.

But what if instead of your dream home, you imagined a medical AI model that has the power to help doctors improve patient outcomes? Highly-sensitive training data points from patients are your valuables. The privacy protection measures you take are the front door you choose to install. Healthcare providers and the scientific community are the HOA. 

Suddenly, the scenario is much closer to reality. In this article, we’ll explore why that is. After understanding the problem, we’ll consider a simple but empirically effective solution proposed in the paper Reconciling privacy and accuracy in AI for medical imaging [1]. The authors propose a balanced alternative to the three bad choices laid out above, much like the real-life approach of a typical front door.


The State of Patient Privacy in Medical AI

Over the past few years, artificial intelligence has become an ever more ubiquitous part of our day-to-day lives, proving its utility across a wide range of domains. The rising use of AI models has, however, raised questions and concerns about protecting the privacy of the data used to train them. You may remember the well-known case of ChatGPT, just months after its initial release, exposing proprietary code from Samsung [2].

Some of the privacy risks associated with AI models are obvious. For example, if the training data used for a model isn’t stored securely enough, bad actors could find ways to access it directly. Others are more insidious, such as the risk of reconstruction. As the name implies, in a reconstruction attack, a bad actor attempts to reconstruct a model’s training data without needing to gain direct access to the dataset.

Medical records are one of the most sensitive kinds of personal information there are. Although specific regulation varies by jurisdiction, patient data is generally subject to stringent safeguards, with hefty fines for inadequate protection. Beyond the letter of the law, unintentionally exposing such data could irreparably damage our ability to use specialized AI to empower medical professionals. 

As Ziller, Mueller, Stieger, et al. point out [1], fully taking advantage of medical AI requires rich datasets comprising information from actual patients. This information must be obtained with the full consent of the patient. Ethically acquiring medical data for research was challenging enough as it was before the unique challenges posed by AI came into play. But if proprietary code being exposed caused Samsung to ban the use of ChatGPT [2], what would happen if attackers managed to reconstruct MRI scans and identify the patients they belonged to? Even isolated instances of negligent protection against data reconstruction could end up being a monumental setback for medical AI as a whole.

Tying this back into our front door metaphor, the HOA statute calling for bank vault doors starts to make a little bit more sense. When the cost of a single break-in could be so catastrophic for the entire neighborhood, it’s only natural to want to go to any lengths to prevent them. 

Differential Privacy (DP) as a Theoretical Bank Vault Door

Before we discuss what an appropriate balance between privacy and practicality might look like in the context of medical AI, we have to turn our attention to the inherent tradeoff between protecting an AI model’s training data and optimizing for quality of performance. This will set the stage for us to develop a basic understanding of Differential Privacy (DP), the theoretical gold standard of privacy protection.

Although academic interest in training data privacy has increased significantly over the past four years, principles on which much of the conversation is based were pointed out by researchers well before the recent LLM boom, and even before OpenAI was founded in 2015. Though it doesn’t deal with reconstruction per se, the 2013 paper Hacking smart machines with smarter ones [3] demonstrates a generalizable attack methodology capable of accurately inferring statistical properties of machine learning classifiers, noting:

“Although ML algorithms are known and publicly released, training sets may not be reasonably ascertainable and, indeed, may be guarded as trade secrets. While much research has been performed about the privacy of the elements of training sets, […] we focus our attention on ML classifiers and on the statistical information that can be unconsciously or maliciously revealed from them. We show that it is possible to infer unexpected but useful information from ML classifiers.” [3]

Theoretical data reconstruction attacks were described even earlier, in a context not directly pertaining to machine learning. The landmark 2003 paper Revealing information while preserving privacy [4] demonstrates a polynomial-time reconstruction algorithm for statistical databases. (Such databases are intended to provide answers to questions about their data in aggregate while keeping individual data points anonymous.) The authors show that to mitigate the risk of reconstruction, a certain amount of noise needs to be introduced into the data. Needless to say, perturbing the original data in this way, while necessary for privacy, has implications for the quality of the responses to queries, i.e., the accuracy of the statistical database.

In explaining the purpose of DP in the first chapter of their book The Algorithmic Foundations of Differential Privacy [5], Cynthia Dwork and Aaron Roth address this tradeoff between privacy and accuracy:

“[T]he Fundamental Law of Information Recovery states that overly accurate answers to too many questions will destroy privacy in a spectacular way. The goal of algorithmic research on differential privacy is to postpone this inevitability as long as possible. Differential privacy addresses the paradox of learning nothing about an individual while learning useful information about a population.” [5]

The notion of “learning nothing about an individual while learning useful information about a population” is captured by considering two datasets that differ by a single entry (one that includes the entry and one that doesn’t). An (ε, δ)-differentially private querying mechanism is one for which the probability of a certain output being returned when querying one dataset is at most a multiplicative factor of the probability when querying the other dataset. Denoting the mechanism by M, the set of possible outputs by S, and the datasets by x and y, we formalize this as [5]:

Pr[M(x) S] ≤ exp(ε) Pr[M(y) S] + δ

Where ε is the privacy loss parameter and δ is the failure probability parameter. ε quantifies how much privacy is lost as a result of a query, while a positive δ allows for privacy to fail altogether for a query at a certain (usually very low) probability. Note that ε is an exponential parameter, meaning that even slightly increasing it can cause privacy to decay significantly.

An important and useful property of DP is composition. Notice that the definition above only applies to cases where we run a single query. The composition property helps us generalize it to cover multiple queries based on the fact that privacy loss and failure probability accumulate predictably when we compose several queries, be they based on the same mechanism or different ones. This accumulation is easily proven to be (at most) linear [5]. What this means is that, rather than considering a privacy loss parameter for one query, we may view ε as a privacy budget that can be utilized across a number of queries. For example, when taken together, one query using a (1, 0)-DP mechanism and two queries using a (0.5, 0)-DP mechanism satisfy (2, 0)-DP.

The value of DP comes from the theoretical privacy guarantees it promises. Setting ε = 1 and δ = 0, for example, we find that the probability of any given output occurring when querying dataset y is at most exp(1) = e ≈ 2.718 times greater than that same output occurring when querying dataset x. Why does this matter? Because the greater the discrepancy between the probabilities of certain outputs occurring, the easier it is to determine the contribution of the individual entry by which the two datasets differ, and the easier it is to ultimately reconstruct that individual entry.

In practice, designing an (ε, δ)-differentially private randomized mechanism entails the addition of random noise drawn from a distribution dependent on ε and δ. The specifics are beyond the scope of this article. Shifting our focus back to machine learning, though, we find that the idea is the same: DP for ML hinges on introducing noise into the training data, which yields robust privacy guarantees in much the same way.

Of course, this is where the tradeoff we mentioned comes into play. Adding noise to the training data comes at the cost of making learning more difficult. We could absolutely add enough noise to achieve ε = 0.01 and δ = 0, making the difference in output probabilities between x and y virtually nonexistent. This would be wonderful for privacy, but terrible for learning. A model trained on such a noisy dataset would perform very poorly on most tasks.

There is no consensus on what constitutes a “good” ε value, or on universal methodologies or best practices for ε selection [6]. In many ways, ε embodies the privacy/accuracy tradeoff, and the “proper” value to aim for is highly context-dependent. ε = 1 is generally regarded as offering high privacy guarantees. Although privacy diminishes exponentially with respect to ε, values as high as ε = 32 are mentioned in literature and thought to provide moderately strong privacy guarantees [1]. 

The authors of Reconciling privacy and accuracy in AI for medical imaging [1] test the effects of DP on the accuracy of AI models on three real-world medical imaging datasets. They do so using various values of ε and comparing them to a non-private (non-DP) control. Table 1 provides a partial summary of their results for ε = 1 and ε = 8:

Table 1: Comparison of AI model performance across the RadImageNet [7], HAM10000 [8], and MSD Liver [9] datasets with δ = 8⁻⁷⋅10 and privacy budgets of ε = 1, ε = 8, and without DP (non-private). A higher MCC/Dice score indicates higher accuracy. Although providing strong theoretical privacy guarantees in the face of a worst-case adversary, DP significantly degrades model accuracy. The negative impact on performance is especially noticeable in the latter two datasets, which are considered small datasets. Image by the author, based on image by A. Ziller, T.T. Mueller, S. Stieger, et al from Table 3 in Reconciling privacy and accuracy in AI for medical imaging [1] (use under CC-BY 4.0 license).

Even approaching the higher end of the typical ε values attested in literature, DP is still as cumbersome as a bank vault door for medical imaging tasks. The noise introduced into the training data is catastrophic for AI model accuracy, especially when the datasets at hand are small. Note, for example, the huge drop-off in Dice score on the MSD Liver dataset, even with the relatively high ε value of 8.

Ziller, Mueller, Stieger, et al. suggest that the accuracy drawbacks of DP with typical ε values may contribute to the lack of widespread adoption of DP in the field of Medical Ai [1]. Yes, wanting mathematically-provable privacy guarantees is definitely sensible, but at what cost? Leaving so much of the diagnostic power of AI models on the table in the name of privacy is not an easy choice to make.

Revisiting our dream home scenario armed with an understanding of DP, we find that the options we (seem to) have map neatly onto the three we had for our front door.

  • DP with typical values of ε is like installing a bank vault door: costly, but effective for privacy. As we’ll see, it’s also complete overkill in this case.
  • Not using DP is like not installing a door at all: much easier, but risky. As mentioned above, though, DP has yet to be widely applied in medical AI [1].
  • Passing up opportunities to use AI is like giving up and selling the house: it saves us the headache of dealing with privacy concerns weighed against incentives to maximize accuracy, but a lot of potential is lost in the process.

It looks like we’re at an impasse… unless we think outside the box.

High-Budget DP: Privacy and Accuracy Aren’t an Either/Or

In Reconciling privacy and accuracy in AI for medical imaging [1], Ziller, Mueller, Stieger, et al. offer the medical AI equivalent of a regular front door — an approach that manages to protect privacy while giving up very little in the way of model performance. Granted, this protection is not theoretically optimal — far from it. However, as the authors show through a series of experiments, it is good enough to counter almost any realistic threat of reconstruction. 

As the saying goes, “Perfect is the enemy of good.” In this case, it is the “optimal” — an insistence on arbitrarily low ε values — that locks us into the false dichotomy of total privacy versus total accuracy. Just as a bank vault door has its place in the real world, so does DP with ε ≤ 32. Still, the existence of the bank vault door doesn’t mean plain old front doors don’t also have a place in the world. The same goes for high-budget DP.

The idea behind high-budget DP is straightforward: using privacy budgets (ε values) that are so high that they “are near-universally shunned as being meaningless” [1] — budgets ranging from ε = 10⁶ to as high as ε = 10¹⁵. In theory, these provide such weak privacy guarantees that it seems like common sense to dismiss them as no better than not using DP at all. In practice, though, this couldn’t be further from the truth. As we will see by looking at the results from the paper, high-budget DP shows significant promise in countering realistic threats. As Ziller, Mueller, Stieger, et al. put it [1]:

“[E]ven a ‘pinch of privacy’ has drastic effects in practical scenarios.”

First, though, we need to ask ourselves what we consider to be a “realistic” threat. Any discussion of the efficacy of high-budget DP is inextricably tied to the threat model under which we choose to evaluate it. In this context, a threat model is simply the set of assumptions we make about what a bad actor interested in obtaining our model’s training data is able to do.

Table 2: Comparison of threat models. For all three, we also assume that the adversary has unbounded computational ability. Image by A. Ziller, T.T. Mueller, S. Stieger, et al from Table 1 in Reconciling privacy and accuracy in AI for medical imaging [1] (use under CC-BY 4.0 license).

The paper’s findings hinge on a calibration of the assumptions to better suit real-world threats to patient privacy. The authors argue that the worst-case model, which is the one typically used for DP, is far too pessimistic. For example, it assumes that the adversary has full access to each original image while attempting to reconstruct it based on the AI model (see Table 2) [1]. This pessimism explains the discrepancy between the reported “drastic effects in practical scenarios” of high privacy budgets and the very weak theoretical privacy guarantees that they offer. We may liken it to incorrectly assessing the security threats a typical house faces, wrongly assuming they are likely to be as sophisticated and enduring as those faced by a bank. 

The authors therefore propose two alternative threat models, which they call the “relaxed” and “realistic” models. Under both of these, adversaries keep some core capabilities from the worst-case model: access to the AI model’s architecture and weights, the ability to manipulate its hyperparameters, and unbounded computational abilities (see Table 2). The realistic adversary is assumed to have no access to the original images and an imperfect reconstruction algorithm. Even these assumptions leave us with a rigorous threat model that may still be considered pessimistic for most real-world scenarios [1].

Having established the three relevant threat models to consider, Ziller, Mueller, Stieger, et al. compare AI model accuracy in conjunction with the reconstruction risk under each threat model at different values of ε. As we saw in Table 1, this is done for three exemplary Medical Imaging datasets. Their full results are presented in Table 3:

Table 3: Comparison of AI model performance and reconstruction risk per threat model across the RadImageNet [7], HAM10000 [8], and MSD Liver [9] datasets with δ = 8⁻⁷⋅10 and various privacy budgets, including some as high as ε = 10⁹ and ε = 10¹². A higher MCC/Dice score indicates higher accuracy. Image by A. Ziller, T.T. Mueller, S. Stieger, et al from Table 3 in Reconciling privacy and accuracy in AI for medical imaging [1] (use under CC-BY 4.0 license).

Unsurprisingly, high privacy budgets (exceeding ε = 10⁶) significantly mitigate the loss of accuracy seen with lower (stricter) privacy budgets. Across all tested datasets, models trained with high-budget DP at ε = 10⁹ (HAM10000, MSD Liver) or ε = 10¹² (RadImageNet) perform nearly as well as their non-privately trained counterparts. This is in line with our understanding of the privacy/accuracy tradeoff: the less noise introduced into the training data, the better a model can learn.

What is surprising is the degree of empirical protection afforded by high-budget DP against reconstruction under the realistic threat model. Remarkably, the realistic reconstruction risk is assessed to be 0% for each of the aforementioned models. The high efficacy of high-budget DP in defending medical AI training images against realistic reconstruction attacks is made even clearer by looking at the results of reconstruction attempts. Figure 1 below shows the five most readily reconstructed images from the MSD Liver dataset [9] using DP with high privacy budgets of ε = 10⁶, ε = 10⁹, ε = 10¹², and ε = 10¹⁵.

Figure 1: The five most readily reconstructed images from the MSD Liver dataset [9] using DP with high privacy budgets of ε = 10⁶, ε = 10⁹, ε = 10¹², and ε = 10¹⁵. Image by A. Ziller, T.T. Mueller, S. Stieger, et al from Figure 3 in Reconciling privacy and accuracy in AI for medical imaging [1] (use under CC-BY 4.0 license).

Note that, at least to the naked eye, even the best reconstructions obtained when using the former two budgets are visually indistinguishable from random noise. This lends intuitive credence to the argument that budgets often deemed too high to provide any meaningful protection could be instrumental in protecting privacy without giving up accuracy when using AI for medical imaging. In contrast, the reconstructions when using ε = 10¹⁵ closely resemble the original images, showing that not all high budgets are created equal.

Based on their findings, Ziller, Mueller, Stieger, et al. make the case for training medical imaging AI models using (at least) high-budget DP as the norm. They note the empirical efficacy of high-budget DP in countering realistic reconstruction risks at very little cost in terms of model accuracy. The authors go so far as to claim that “it seems negligent to train AI models without any form of formal privacy guarantee.” [1]


Conclusion

We started with a hypothetical scenario in which you were forced to decide between a bank vault door or no door at all for your dream home (or giving up and selling the incomplete house). After an exploration of the risks posed by inadequate privacy protection in medical AI, we looked into the privacy/accuracy tradeoff as well as the history and theory behind reconstruction attacks and differential privacy (DP). We then saw how DP with common privacy budgets (ε values) degrades medical AI model performance and compared it to the bank vault door in our hypothetical. 

Finally, we examined empirical results from the paper Reconciling privacy and accuracy in AI for medical imaging to find out how high-budget differential privacy can be used to escape the false dichotomy of bank vault door vs. no door and protect Patient Privacy in the real world without sacrificing model accuracy in the process.

If you enjoyed this article, please consider following me on LinkedIn to keep up with future articles and projects.

References

[1] Ziller, A., Mueller, T.T., Stieger, S. et al. Reconciling privacy and accuracy in AI for medical imaging. Nat Mach Intell 6, 764–774 (2024). https://doi.org/10.1038/s42256-024-00858-y.

[2] Ray, S. Samsung bans ChatGPT and other chatbots for employees after sensitive code leak. Forbes (2023). https://www.forbes.com/sites/siladityaray/2023/05/02/samsung-bans-chatgpt-and-other-chatbots-for-employees-after-sensitive-code-leak/.

[3] Ateniese, G., Mancini, L. V., Spognardi, A. et al. Hacking smart machines with smarter ones: how to extract meaningful data from machine learning classifiers. International Journal of Security and Networks 10, 137–150 (2015). https://doi.org/10.48550/arXiv.1306.4447.

[4] Dinur, I. & Nissim, K. Revealing information while preserving privacy. Proc. 22nd ACM SIGMOD-SIGACT-SIGART Symp Principles Database Syst 202–210 (2003). https://doi.org/10.1145/773153.773173.

[5] Dwork, C. & Roth, A. The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science 9, 211–407 (2014). https://doi.org/10.1561/0400000042.

[6] Dwork, C., Kohli, N. & Mulligan, D. Differential privacy in practice: expose your epsilons! Journal of Privacy and Confidentiality 9 (2019). https://doi.org/10.29012/jpc.689.

[7] Mei, X., Liu, Z., Robson, P.M. et al. RadImageNet: an open radiologic deep learning research dataset for effective transfer learning. Radiol Artif Intell 4.5, e210315 (2022). https://doi.org/10.1148/ryai.210315.

[8] Tschandl, P., Rosendahl, C. & Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 5, 180161 (2018). https://doi.org/10.1038/sdata.2018.161.

[9] Antonelli, M., Reinke, A., Bakas, S. et al. The Medical Segmentation Decathlon. Nat Commun 13, 4128 (2022). https://doi.org/10.1038/s41467-022-30695-9.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

F5 to acquire CalypsoAI for advanced AI security capabilities

CalypsoAI’s platform creates what the company calls an Inference Perimeter that protects across models, vendors, and environments. The offers several products including Inference Red Team, Inference Defend, and Inference Observe, which deliver adversarial testing, threat detection and prevention, and enterprise oversight, respectively, among other capabilities. CalypsoAI says its platform proactively

Read More »

HomeLM: A foundation model for ambient AI

Capabilities of a HomeLM What makes a foundation model like HomeLM powerful is its ability to learn generalizable representations of sensor streams, allowing them to be reused, recombined and adapted across diverse tasks. This fundamentally differs from traditional signal processing and machine learning pipelines in RF sensing, which are typically

Read More »

IEA Says World Must Spend $540B a Year Looking for Oil, Gas

The world needs to spend some $540 billion a year looking for oil and gas to maintain current output by 2050, according to the International Energy Agency.  While global spending is likely to hit $570 billion this year, the amount would be down slightly from 2024, Christophe McGlade, head of the IEA’s energy supply unit, said on a webinar. The outlook means that companies will need to tap reserves that haven’t yet been discovered, unless demand shifts away from fossil fuels. Its forecast is part of a report that analyzed more than 15,000 fields and how fast their output is declining. Without investment, global supply would fall by the combined production of Norway and Brazil — more than 5 million barrels a day — every year. That amount is around 40% higher than it was in 2010, partly because of more reliance on shale production, particularly from the US, which typically depletes faster than conventional reserves. The outlook matters because there’s little sign of oil demand peaking soon, meaning that elevated output will be needed for years to come. While a global oil surplus is forecast for this year and next, BP Plc this year projected that supply growth outside of the Organization of the Petroleum Exporting Countries from early 2026 would remain largely flat for 12 to 18 months. “In the case of oil, an absence of upstream investment would remove the equivalent of Brazil and Norway’s combined production each year from the global market balance,” IEA Executive Director Fatih Birol said in a statement. “The situation means that the industry has to run much faster just to stand still.” WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments

Read More »

Preparing for regulatory audits in an era of affordability scrutiny

Jim McMahon is a vice president and practice leader of Charles River Associates’ energy practice. Across the electric utility sector, regulatory audits are becoming more frequent, more detailed and more focused on the question of affordability. Rising customer bills, driven by fuel and purchased power volatility, transmission and distribution investment, and renewable integration costs, have made cost management a central point of regulatory and public interest. For electric utilities, this means audits are no longer just compliance exercises; they are reputational moments that can influence rate outcomes, regulatory relationships and public trust. Electric utilities that approach audits reactively often find themselves stretched thin, scrambling to assemble data, align narratives and respond to follow-up requests under time pressure. In contrast, those that prepare strategically not only navigate the process more smoothly but also use it to reinforce their credibility as responsible stewards of customer resources. A structured approach to audit readiness, such as the Audit Readiness Test, or ART, offers a roadmap for ensuring that preparation is not just about meeting requirements but about strengthening the organization’s position before, during and after the review. Why the strategic approach matters Audits are, at their core, about telling a story that is both evidence-based and credible. For electric utilities, the most effective audit narratives weave together data, policy and operational decisions, from resource planning and grid investments to rate case filings, into a cohesive account that demonstrates responsible stewardship of customer resources. This story must clearly connect operational and financial choices to measurable customer value, with particular emphasis on how these decisions support affordability. An audit is not simply a technical compliance review; it is also a test of how well the organization can explain why it made certain choices, how those choices were implemented and what tangible benefits they delivered. Regulators and

Read More »

AccuWeather Updates Atlantic Hurricane Season Forecast

In a media advisory sent to Rigzone by the AccuWeather team recently, AccuWeather said its hurricane experts are “slightly reducing the[ir] forecast for the highest potential number of named storms and hurricanes expected to develop [in the Atlantic] this season”.   AccuWeather now forecasts 13-16 named storms and six to nine hurricanes for the 2025 Atlantic hurricane season, the advisory noted, adding that this is the first update to the AccuWeather 2025 Atlantic Hurricane Season Forecast, which the advisory pointed out was first issued back in March.   The initial forecast, which was also sent to Rigzone by the AccuWeather team earlier this year, predicted 13-18 named storms in 2025. That forecast expected 7-10 of those storms to strengthen into hurricanes, and three to five of those storms to strengthen into major hurricanes. AccuWeather also noted in that forecast that its hurricane experts “predict that three to six storms can directly impact the U.S. this year”.  In its latest advisory, AccuWeather highlighted that the forecast for three to five major hurricanes and three to six direct impacts to the United States has not changed. It pointed out that there have been two direct impacts to the U.S. so far this year and said its hurricane experts are urging people, businesses, and officials near the coast and in inland areas that have been affected by hurricanes and tropical storms in recent years to remain prepared and vigilant. “AccuWeather hurricane experts are constantly refining and integrating new data into our predictions,” AccuWeather Lead Hurricane Expert Alex DaSilva said in the advisory. “Unusual surges of dry air, Saharan dust, disruptive wind shear, cooler water temperatures off the western coast of Africa, and other atmospheric conditions have hampered multiple tropical waves from developing into tropical storms or hurricanes, during what are typically the peak weeks

Read More »

Ring Energy CFO Steps Down

Ring Energy, Inc. said its chief financial officer Travis Thomas, has resigned effective immediately to pursue other opportunities. Thomas’ resignation was not the result of any disagreement on any financial or other matter related to the operations, policies, or practices of Ring Energy, the company said in a news release. Ring Energy Vice President of Accounting, Controller and Assistant Treasurer Rocky Kwon, has been appointed interim chief financial officer while the company conducts a search for a new CFO, according to the release. Kwon, who has been with Ring since 2021, previously held financial leadership positions at Earthstone Energy, Inc. and The AES Corporation, the release said. Ring Energy Chairman and CEO Paul McKinney said, “Ring is positioned for financial success with the skilled leadership of Rocky. I want to personally thank Travis for his five years of dedication and service to the Company and the executive management team, and I wish him great success in his future endeavors. With this leadership transition plan in place, Ring remains firmly committed to delivering shareholder value and advancing its strategic objectives, including its continued focus on debt reduction”. Meanwhile, Ring Energy said it established a debt reduction target of approximately $18 million for the third quarter. The company said it expects to have approximately $430 million in borrowings outstanding on its credit facility as of Sept. 30, down from $448 million in borrowings outstanding as of June 30. Ring Energy also noted that Warburg Pincus has recently exited its full common equity position in the company. McKinney said, “In response to the drop in oil prices experienced earlier this year, the Company responded by adjusting capital spending and other operational alternatives within our control to focus on maximizing free cash flow generation and paying down debt. We believe our debt reduction target

Read More »

EIA Sees NatGas Price Jumping Well Over $4 in 2026

The U.S. Energy Information Administration (EIA) projected that the Henry Hub spot price will average well above $4 per million British thermal units (MMBtu) next year in its latest short term energy outlook (STEO), which was released on September 9. According to its latest STEO, the EIA sees the Henry Hub natural gas spot price averaging $3.52 per MMBtu in 2025 and $4.28 per MMBtu in 2026. The commodity averaged $2.19 per MMBtu in 2024, the STEO showed. A quarterly breakdown included in the EIA’s latest STEO highlighted that the EIA expects the Henry Hub natural gas spot price to average $3.04 per MMBtu in the third quarter of 2025, $3.72 per MMBtu in the fourth quarter, $4.25 per MMBtu in the first quarter of next year, $3.64 per MMBtu in the second quarter, $4.26 per MMBtu in the third quarter, and $4.99 per MMBtu in the fourth quarter of 2026. In its previous STEO, which was released last month, the EIA projected that the Henry Hub natural gas spot price would average $3.61 per MMBtu in 2025 and $4.34 per MMBtu in 2026. That STEO saw the commodity averaging $3.25 per MMBtu in the third quarter of 2025, $3.87 per MMBtu in the fourth quarter, $4.35 per MMBtu in the first quarter of 2026, $3.69 per MMBtu in the second quarter, $4.29 per MMBtu in the third quarter, and $5.01 per MMBtu in the fourth quarter. “Natural gas inventories remain relatively high, and August ended with six percent more natural gas in storage compared with the five-year average,” the EIA said in its September STEO. “The Henry Hub spot price averaged $2.91 per MMBtu in August (10 percent below our August STEO estimate). Lower prices over this summer have been driven by robust production and reduced natural gas consumption

Read More »

Australia Approves Extension for Woodside-Operated NWS Project

The Australian government has granted environmental approval to the Woodside-operated North West Shelf (NWS) project extension. Minister for the Environment and Water Murray Watt said in a statement that the approval is subject to “48 strict conditions” to avoid and mitigate significant impacts on the Murujuga rock art, which forms part of Western Australia’s Dampier Archipelago. “Specifically, I have imposed conditions that will require a reduction in certain gas emissions below their current levels, in some cases by 60 percent by 2030 with ongoing reductions beyond that,” Watt said. The conditions should account for any new science achieved through the Murujuga Rock Art Monitoring Program and require the joint venture for the asset to comply with any air quality objectives and standards that are derived from the program, according to the statement. The project will be required to reduce its emissions every year and reach net zero greenhouse gas emissions by 2050. Woodside and the NWS joint venture said they welcomed the Australian government’s final decision to grant environmental approval for the project. The final government approval “followed an extensive assessment and appeal process and included rigorous conditions to manage the protection of cultural heritage,” Woodside COO Australia Liz Westcott said in a separate statement. “This final approval provides certainty for the ongoing operation of the North West Shelf Project, so it can continue to provide reliable energy supplies as it has for more than 40 years,” Westcott said. “Over this time, the North West Shelf Project has paid more than [AUD 40 billion] in royalties and excise, supported thousands of Australian jobs and contributed well over [AUD 300 million] to communities in the Pilbara through social investment initiatives and infrastructure support”. According to Woodside, the NWS project, one of the largest liquefied natural gas (LNG) projects in the world,

Read More »

Arista touts liquid cooling, optical tech to reduce power consumption for AI networking

Both technologies will likely find a role in future AI and optical networks, experts say, as both promise to reduce power consumption and support improved bandwidth density. Both have advantages and disadvantages as well – CPOs are more complex to deploy given the amount of technology included in a CPO package, whereas LPOs promise more simplicity.  Bechtolsheim said that LPO can provide an additional 20% power savings over other optical forms. Early tests show good receiver performance even under degraded conditions, though transmit paths remain sensitive to reflections and crosstalk at the connector level, Bechtolsheim added. At the recent Hot Interconnects conference, he said: “The path to energy-efficient optics is constrained by high-volume manufacturing,” stressing that advanced optics packaging remains difficult and risky without proven production scale.  “We are nonreligious about CPO, LPO, whatever it is. But we are religious about one thing, which is the ability to ship very high volumes in a very predictable fashion,” Bechtolsheim said at the investor event. “So, to put this in quantity numbers here, the industry expects to ship something like 50 million OSFP modules next calendar year. The current shipment rate of CPO is zero, okay? So going from zero to 50 million is just not possible. The supply chain doesn’t exist. So, even if the technology works and can be demonstrated in a lab, to get to the volume required to meet the needs of the industry is just an incredible effort.” “We’re all in on liquid cooling to reduce power, eliminating fan power, supporting the linear pluggable optics to reduce power and cost, increasing rack density, which reduces data center footprint and related costs, and most importantly, optimizing these fabrics for the AI data center use case,” Bechtolsheim added. “So what we call the ‘purpose-built AI data center fabric’ around Ethernet

Read More »

Network and cloud implications of agentic AI

The chain analogy is critical here. Realistic uses of AI agents will require core database access; what can possibly make an AI business case that isn’t tied to a company’s critical data? The four critical elements of these applications—the agent, the MCP server, the tools, and the data— are all dragged along with each other, and traffic on the network is the linkage in the chain. How much traffic is generated? Here, enterprises had another surprise. Enterprises told me that their initial view of their AI hosting was an “AI cluster” with a casual data link to their main data center network. With AI agents, they now see smaller AI servers actually installed within their primary data centers, and all the traffic AI creates, within the model and to and from it, now flows on the data center network. Vendors who told enterprises that AI networking would have a profound impact are proving correct. You can run a query or perform a task with an agent and have that task parse an entire database of thousands or millions of records. Someone not aware of what an agent application implies in terms of data usage can easily create as much traffic as a whole week’s normal access-and-update would create. Enough, they say, to impact network capacity and the QoE of other applications. And, enterprises remind us, if that traffic crosses in/out of the cloud, the cloud costs could skyrocket. About a third of the enterprises said that issues with AI agents generated enough traffic to create local congestion on the network or a blip in cloud costs large enough to trigger a financial review. MCP tool use by agents is also a major security and governance headache. Enterprises point out that MCP standards haven’t always required strong authentication, and they also

Read More »

There are 121 AI processor companies. How many will succeed?

The US currently leads in AI hardware and software, but China’s DeepSeek and Huawei continue to push advanced chips, India has announced an indigenous GPU program targeting production by 2029, and policy shifts in Washington are reshaping the playing field. In Q2, the rollback of export restrictions allowed US companies like Nvidia and AMD to strike multibillion-dollar deals in Saudi Arabia.  JPR categorizes vendors into five segments: IoT (ultra-low-power inference in microcontrollers or small SoCs); Edge (on-device or near-device inference in 1–100W range, used outside data centers); Automotive (distinct enough to break out from Edge); data center training; and data center inference. There is some overlap between segments as many vendors play in multiple segments. Of the five categories, inference has the most startups with 90. Peddie says the inference application list is “humongous,” with everything from wearable health monitors to smart vehicle sensor arrays, to personal items in the home, and every imaginable machine in every imaginable manufacturing and production line, plus robotic box movers and surgeons.  Inference also offers the most versatility. “Smart devices” in the past, like washing machines or coffee makers, could do basically one thing and couldn’t adapt to any changes. “Inference-based systems will be able to duck and weave, adjust in real time, and find alternative solutions, quickly,” said Peddie. Peddie said despite his apparent cynicism, this is an exciting time. “There are really novel ideas being tried like analog neuron processors, and in-memory processors,” he said.

Read More »

Data Center Jobs: Engineering, Construction, Commissioning, Sales, Field Service and Facility Tech Jobs Available in Major Data Center Hotspots

Each month Data Center Frontier, in partnership with Pkaza, posts some of the hottest data center career opportunities in the market. Here’s a look at some of the latest data center jobs posted on the Data Center Frontier jobs board, powered by Pkaza Critical Facilities Recruiting. Looking for Data Center Candidates? Check out Pkaza’s Active Candidate / Featured Candidate Hotlist (and coming soon free Data Center Intern listing). Data Center Critical Facility Manager Impact, TX There position is also available in: Cheyenne, WY; Ashburn, VA or Manassas, VA. This opportunity is working directly with a leading mission-critical data center developer / wholesaler / colo provider. This firm provides data center solutions custom-fit to the requirements of their client’s mission-critical operational facilities. They provide reliability of mission-critical facilities for many of the world’s largest organizations (enterprise and hyperscale customers). This career-growth minded opportunity offers exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits. Electrical Commissioning Engineer New Albany, OH This traveling position is also available in: Richmond, VA; Ashburn, VA; Charlotte, NC; Atlanta, GA; Hampton, GA; Fayetteville, GA; Cedar Rapids, IA; Phoenix, AZ; Dallas, TX or Chicago, IL. *** ALSO looking for a LEAD EE and ME CxA Agents and CxA PMs. *** Our client is an engineering design and commissioning company that has a national footprint and specializes in MEP critical facilities design. They provide design, commissioning, consulting and management expertise in the critical facilities space. They have a mindset to provide reliability, energy efficiency, sustainable design and LEED expertise when providing these consulting services for enterprise, colocation and hyperscale companies. This career-growth minded opportunity offers exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits.  Data Center Engineering Design ManagerAshburn, VA This opportunity is working directly with a leading mission-critical data center developer /

Read More »

Modernizing Legacy Data Centers for the AI Revolution with Schneider Electric’s Steven Carlini

As artificial intelligence workloads drive unprecedented compute density, the U.S. data center industry faces a formidable challenge: modernizing aging facilities that were never designed to support today’s high-density AI servers. In a recent Data Center Frontier podcast, Steven Carlini, Vice President of Innovation and Data Centers at Schneider Electric, shared his insights on how operators are confronting these transformative pressures. “Many of these data centers were built with the expectation they would go through three, four, five IT refresh cycles,” Carlini explains. “Back then, growth in rack density was moderate. Facilities were designed for 10, 12 kilowatts per rack. Now with systems like Nvidia’s Blackwell, we’re seeing 132 kilowatts per rack, and each rack can weigh 5,000 pounds.” The implications are seismic. Legacy racks, floor layouts, power distribution systems, and cooling infrastructure were simply not engineered for such extreme densities. “With densification, a lot of the power distribution, cooling systems, even the rack systems — the new servers don’t fit in those racks. You need more room behind the racks for power and cooling. Almost everything needs to be changed,” Carlini notes. For operators, the first questions are inevitably about power availability. At 132 kilowatts per rack, even a single cluster can challenge the limits of older infrastructure. Many facilities are conducting rigorous evaluations to decide whether retrofitting is feasible or whether building new sites is the more practical solution. Carlini adds, “You may have transformers spaced every hundred yards, twenty of them. Now, one larger transformer can replace that footprint, and power distribution units feed busways that supply each accelerated compute rack. The scale and complexity are unlike anything we’ve seen before.” Safety considerations also intensify with these densifications. “At 132 kilowatts, maintenance is still feasible,” Carlini says, “but as voltages rise, data centers are moving toward environments where

Read More »

Google Backs Advanced Nuclear at TVA’s Clinch River as ORNL Pushes Quantum Frontiers

Inside the Hermes Reactor Design Kairos Power’s Hermes reactor is based on its KP-FHR architecture — short for fluoride salt–cooled, high-temperature reactor. Unlike conventional water-cooled reactors, Hermes uses a molten salt mixture called FLiBe (lithium fluoride and beryllium fluoride) as a coolant. Because FLiBe operates at atmospheric pressure, the design eliminates the risk of high-pressure ruptures and allows for inherently safer operation. Fuel for Hermes comes in the form of TRISO particles rather than traditional enriched uranium fuel rods. Each TRISO particle is encapsulated within ceramic layers that function like miniature containment vessels. These particles can withstand temperatures above 1,600 °C — far beyond the reactor’s normal operating range of about 700 °C. In combination with the salt coolant, Hermes achieves outlet temperatures between 650–750 °C, enabling efficient power generation and potential industrial applications such as hydrogen production. Because the salt coolant is chemically stable and requires no pressurization, the reactor can shut down and dissipate heat passively, without external power or operator intervention. This passive safety profile differentiates Hermes from traditional light-water reactors and reflects the Generation IV industry focus on safer, modular designs. From Hermes-1 to Hermes-2: Iterative Nuclear Development The first step in Kairos’ roadmap is Hermes-1, a 35 MW thermal demonstration reactor now under construction at TVA’s Clinch River site under a 2023 NRC license. Hermes-1 is not designed to generate electricity but will validate reactor physics, fuel handling, licensing strategies, and construction techniques. Building on that experience, Hermes-2 will be a 50 MW electric reactor connected to TVA’s grid, with operations targeted for 2030. Under the agreement, TVA will purchase electricity from Hermes-2 and supply it to Google’s data centers in Tennessee and Alabama. Kairos describes its development philosophy as “iterative,” scaling incrementally rather than attempting to deploy large fleets of units at once. By

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »