Stay Ahead, Stay ONMINE

Overcome Failing Document Ingestion & RAG Strategies with Agentic Knowledge Distillation

Introduction Many generative AI use cases still revolve around Retrieval Augmented Generation (RAG), yet consistently fall short of user expectations. Despite the growing body of research on RAG improvements and even adding Agents into the process, many solutions still fail to return exhaustive results, miss information that is critical but infrequently mentioned in the documents, require multiple search iterations, and generally struggle to reconcile key themes across multiple documents. To top it all off, many implementations still rely on cramming as much “relevant” information as possible into the model’s context window alongside detailed system and user prompts. Reconciling all this information often exceeds the model’s cognitive capacity and compromises response quality and consistency. This is where our Agentic Knowledge Distillation + Pyramid Search Approach comes into play. Instead of chasing the best chunking strategy, retrieval algorithm, or inference-time reasoning method, my team, Jim Brown, Mason Sawtell, Sandi Besen, and I, take an agentic approach to document ingestion. We leverage the full capability of the model at ingestion time to focus exclusively on distilling and preserving the most meaningful information from the document dataset. This fundamentally simplifies the RAG process by allowing the model to direct its reasoning abilities toward addressing the user/system instructions rather than struggling to understand formatting and disparate information across document chunks.  We specifically target high-value questions that are often difficult to evaluate because they have multiple correct answers or solution paths. These cases are where traditional RAG solutions struggle most and existing RAG evaluation datasets are largely insufficient for testing this problem space. For our research implementation, we downloaded annual and quarterly reports from the last year for the 30 companies in the DOW Jones Industrial Average. These documents can be found through the SEC EDGAR website. The information on EDGAR is accessible and able to be downloaded for free or can be queried through EDGAR public searches. See the SEC privacy policy for additional details, information on the SEC website is “considered public information and may be copied or further distributed by users of the web site without the SEC’s permission”. We selected this dataset for two key reasons: first, it falls outside the knowledge cutoff for the models evaluated, ensuring that the models cannot respond to questions based on their knowledge from pre-training; second, it’s a close approximation for real-world business problems while allowing us to discuss and share our findings using publicly available data.  While typical RAG solutions excel at factual retrieval where the answer is easily identified in the document dataset (e.g., “When did Apple’s annual shareholder’s meeting occur?”), they struggle with nuanced questions that require a deeper understanding of concepts across documents (e.g., “Which of the DOW companies has the most promising AI strategy?”). Our Agentic Knowledge Distillation + Pyramid Search Approach addresses these types of questions with much greater success compared to other standard approaches we tested and overcomes limitations associated with using knowledge graphs in RAG systems.  In this article, we’ll cover how our knowledge distillation process works, key benefits of this approach, examples, and an open discussion on the best way to evaluate these types of systems where, in many cases, there is no singular “right” answer. Building the pyramid: How Agentic Knowledge Distillation works Image by author and team depicting pyramid structure for document ingestion. Robots meant to represent agents building the pyramid. Overview Our knowledge distillation process creates a multi-tiered pyramid of information from the raw source documents. Our approach is inspired by the pyramids used in deep learning computer vision-based tasks, which allow a model to analyze an image at multiple scales. We take the contents of the raw document, convert it to markdown, and distill the content into a list of atomic insights, related concepts, document abstracts, and general recollections/memories. During retrieval it’s possible to access any or all levels of the pyramid to respond to the user request.  How to distill documents and build the pyramid:  Convert documents to Markdown: Convert all raw source documents to Markdown. We’ve found models process markdown best for this task compared to other formats like JSON and it is more token efficient. We used Azure Document Intelligence to generate the markdown for each page of the document, but there are many other open-source libraries like MarkItDown which do the same thing. Our dataset included 331 documents and 16,601 pages.  Extract atomic insights from each page: We process documents using a two-page sliding window, which allows each page to be analyzed twice. This gives the agent the opportunity to correct any potential mistakes when processing the page initially. We instruct the model to create a numbered list of insights that grows as it processes the pages in the document. The agent can overwrite insights from the previous page if they were incorrect since it sees each page twice. We instruct the model to extract insights in simple sentences following the subject-verb-object (SVO) format and to write sentences as if English is the second language of the user. This significantly improves performance by encouraging clarity and precision. Rolling over each page multiple times and using the SVO format also solves the disambiguation problem, which is a huge challenge for knowledge graphs. The insight generation step is also particularly helpful for extracting information from tables since the model captures the facts from the table in clear, succinct sentences. Our dataset produced 216,931 total insights, about 13 insights per page and 655 insights per document. Distilling concepts from insights: From the detailed list of insights, we identify higher-level concepts that connect related information about the document. This step significantly reduces noise and redundant information in the document while preserving essential information and themes. Our dataset produced 14,824 total concepts, about 1 concept per page and 45 concepts per document.  Creating abstracts from concepts: Given the insights and concepts in the document, the LLM writes an abstract that appears both better than any abstract a human would write and more information-dense than any abstract present in the original document. The LLM generated abstract provides incredibly comprehensive knowledge about the document with a small token density that carries a significant amount of information. We produce one abstract per document, 331 total. Storing recollections/memories across documents: At the top of the pyramid we store critical information that is useful across all tasks. This can be information that the user shares about the task or information the agent learns about the dataset over time by researching and responding to tasks. For example, we can store the current 30 companies in the DOW as a recollection since this list is different from the 30 companies in the DOW at the time of the model’s knowledge cutoff. As we conduct more and more research tasks, we can continuously improve our recollections and maintain an audit trail of which documents these recollections originated from. For example, we can keep track of AI strategies across companies, where companies are making major investments, etc. These high-level connections are super important since they reveal relationships and information that are not apparent in a single page or document. Sample subset of insights extracted from IBM 10Q, Q3 2024 (page 4) We store the text and embeddings for each layer of the pyramid (pages and up) in Azure PostgreSQL. We originally used Azure AI Search, but switched to PostgreSQL for cost reasons. This required us to write our own hybrid search function since PostgreSQL doesn’t yet natively support this feature. This implementation would work with any vector database or vector index of your choosing. The key requirement is to store and efficiently retrieve both text and vector embeddings at any level of the pyramid.  This approach essentially creates the essence of a knowledge graph, but stores information in natural language, the way an LLM natively wants to interact with it, and is more efficient on token retrieval. We also let the LLM pick the terms used to categorize each level of the pyramid, this seemed to let the model decide for itself the best way to describe and differentiate between the information stored at each level. For example, the LLM preferred “insights” to “facts” as the label for the first level of distilled knowledge. Our goal in doing this was to better understand how an LLM thinks about the process by letting it decide how to store and group related information.  Using the pyramid: How it works with RAG & Agents At inference time, both traditional RAG and agentic approaches benefit from the pre-processed, distilled information ingested in our knowledge pyramid. The pyramid structure allows for efficient retrieval in both the traditional RAG case, where only the top X related pieces of information are retrieved or in the Agentic case, where the Agent iteratively plans, retrieves, and evaluates information before returning a final response.  The benefit of the pyramid approach is that information at any and all levels of the pyramid can be used during inference. For our implementation, we used PydanticAI to create a search agent that takes in the user request, generates search terms, explores ideas related to the request, and keeps track of information relevant to the request. Once the search agent determines there’s sufficient information to address the user request, the results are re-ranked and sent back to the LLM to generate a final reply. Our implementation allows a search agent to traverse the information in the pyramid as it gathers details about a concept/search term. This is similar to walking a knowledge graph, but in a way that’s more natural for the LLM since all the information in the pyramid is stored in natural language. Depending on the use case, the Agent could access information at all levels of the pyramid or only at specific levels (e.g. only retrieve information from the concepts). For our experiments, we did not retrieve raw page-level data since we wanted to focus on token efficiency and found the LLM-generated information for the insights, concepts, abstracts, and recollections was sufficient for completing our tasks. In theory, the Agent could also have access to the page data; this would provide additional opportunities for the agent to re-examine the original document text; however, it would also significantly increase the total tokens used.  Here is a high-level visualization of our Agentic approach to responding to user requests: Image created by author and team providing an overview of the agentic research & response process Results from the pyramid: Real-world examples To evaluate the effectiveness of our approach, we tested it against a variety of question categories, including typical fact-finding questions and complex cross-document research and analysis tasks.  Fact-finding (spear fishing):  These tasks require identifying specific information or facts that are buried in a document. These are the types of questions typical RAG solutions target but often require many searches and consume lots of tokens to answer correctly.  Example task: “What was IBM’s total revenue in the latest financial reporting?” Example response using pyramid approach: “IBM’s total revenue for the third quarter of 2024 was $14.968 billion [ibm-10q-q3-2024.pdf, pg. 4] Total tokens used to research and generate response This result is correct (human-validated) and was generated using only 9,994 total tokens, with 1,240 tokens in the generated final response.  Complex research and analysis:  These tasks involve researching and understanding multiple concepts to gain a broader understanding of the documents and make inferences and informed assumptions based on the gathered facts. Example task: “Analyze the investments Microsoft and NVIDIA are making in AI and how they are positioning themselves in the market. The report should be clearly formatted.” Example response: Response generated by the agent analyzing AI investments and positioning for Microsoft and NVIDIA. The result is a comprehensive report that executed quickly and contains detailed information about each of the companies. 26,802 total tokens were used to research and respond to the request with a significant percentage of them used for the final response (2,893 tokens or ~11%). These results were also reviewed by a human to verify their validity. Snippet indicating total token usage for the task Example task: “Create a report on analyzing the risks disclosed by the various financial companies in the DOW. Indicate which risks are shared and unique.” Example response: Part 1 of response generated by the agent on disclosed risks. Part 2 of response generated by the agent on disclosed risks. Similarly, this task was completed in 42.7 seconds and used 31,685 total tokens, with 3,116 tokens used to generate the final report.  Snippet indicating total token usage for the task These results for both fact-finding and complex analysis tasks demonstrate that the pyramid approach efficiently creates detailed reports with low latency using a minimal amount of tokens. The tokens used for the tasks carry dense meaning with little noise allowing for high-quality, thorough responses across tasks. Benefits of the pyramid: Why use it? Overall, we found that our pyramid approach provided a significant boost in response quality and overall performance for high-value questions.  Some of the key benefits we observed include:  Reduced model’s cognitive load: When the agent receives the user task, it retrieves pre-processed, distilled information rather than the raw, inconsistently formatted, disparate document chunks. This fundamentally improves the retrieval process since the model doesn’t waste its cognitive capacity on trying to break down the page/chunk text for the first time.  Superior table processing: By breaking down table information and storing it in concise but descriptive sentences, the pyramid approach makes it easier to retrieve relevant information at inference time through natural language queries. This was particularly important for our dataset since financial reports contain lots of critical information in tables.  Improved response quality to many types of requests: The pyramid enables more comprehensive context-aware responses to both precise, fact-finding questions and broad analysis based tasks that involve many themes across numerous documents.  Preservation of critical context: Since the distillation process identifies and keeps track of key facts, important information that might appear only once in the document is easier to maintain. For example, noting that all tables are represented in millions of dollars or in a particular currency. Traditional chunking methods often cause this type of information to slip through the cracks.  Optimized token usage, memory, and speed: By distilling information at ingestion time, we significantly reduce the number of tokens required during inference, are able to maximize the value of information put in the context window, and improve memory use.  Scalability: Many solutions struggle to perform as the size of the document dataset grows. This approach provides a much more efficient way to manage a large volume of text by only preserving critical information. This also allows for a more efficient use of the LLMs context window by only sending it useful, clear information. Efficient concept exploration: The pyramid enables the agent to explore related information similar to navigating a knowledge graph, but does not require ever generating or maintaining relationships in the graph. The agent can use natural language exclusively and keep track of important facts related to the concepts it’s exploring in a highly token-efficient and fluid way.  Emergent dataset understanding: An unexpected benefit of this approach emerged during our testing. When asking questions like “what can you tell me about this dataset?” or “what types of questions can I ask?”, the system is able to respond and suggest productive search topics because it has a more robust understanding of the dataset context by accessing higher levels in the pyramid like the abstracts and recollections.  Beyond the pyramid: Evaluation challenges & future directions Challenges While the results we’ve observed when using the pyramid search approach have been nothing short of amazing, finding ways to establish meaningful metrics to evaluate the entire system both at ingestion time and during information retrieval is challenging. Traditional RAG and Agent evaluation frameworks often fail to address nuanced questions and analytical responses where many different responses are valid. Our team plans to write a research paper on this approach in the future, and we are open to any thoughts and feedback from the community, especially when it comes to evaluation metrics. Many of the existing datasets we found were focused on evaluating RAG use cases within one document or precise information retrieval across multiple documents rather than robust concept and theme analysis across documents and domains.  The main use cases we are interested in relate to broader questions that are representative of how businesses actually want to interact with GenAI systems. For example, “tell me everything I need to know about customer X” or “how do the behaviors of Customer A and B differ? Which am I more likely to have a successful meeting with?”. These types of questions require a deep understanding of information across many sources. The answers to these questions typically require a person to synthesize data from multiple areas of the business and think critically about it. As a result, the answers to these questions are rarely written or saved anywhere which makes it impossible to simply store and retrieve them through a vector index in a typical RAG process.  Another consideration is that many real-world use cases involve dynamic datasets where documents are consistently being added, edited, and deleted. This makes it difficult to evaluate and track what a “correct” response is since the answer will evolve as the available information changes.  Future directions In the future, we believe that the pyramid approach can address some of these challenges by enabling more effective processing of dense documents and storing learned information as recollections. However, tracking and evaluating the validity of the recollections over time will be critical to the system’s overall success and remains a key focus area for our ongoing work.  When applying this approach to organizational data, the pyramid process could also be used to identify and assess discrepancies across areas of the business. For example, uploading all of a company’s sales pitch decks could surface where certain products or services are being positioned inconsistently. It could also be used to compare insights extracted from various line of business data to help understand if and where teams have developed conflicting understandings of topics or different priorities. This application goes beyond pure information retrieval use cases and would allow the pyramid to serve as an organizational alignment tool that helps identify divergences in messaging, terminology, and overall communication.  Conclusion: Key takeaways and why the pyramid approach matters The knowledge distillation pyramid approach is significant because it leverages the full power of the LLM at both ingestion and retrieval time. Our approach allows you to store dense information in fewer tokens which has the added benefit of reducing noise in the dataset at inference. Our approach also runs very quickly and is incredibly token efficient, we are able to generate responses within seconds, explore potentially hundreds of searches, and on average use

Introduction

Many generative AI use cases still revolve around Retrieval Augmented Generation (RAG), yet consistently fall short of user expectations. Despite the growing body of research on RAG improvements and even adding Agents into the process, many solutions still fail to return exhaustive results, miss information that is critical but infrequently mentioned in the documents, require multiple search iterations, and generally struggle to reconcile key themes across multiple documents. To top it all off, many implementations still rely on cramming as much “relevant” information as possible into the model’s context window alongside detailed system and user prompts. Reconciling all this information often exceeds the model’s cognitive capacity and compromises response quality and consistency.

This is where our Agentic Knowledge Distillation + Pyramid Search Approach comes into play. Instead of chasing the best chunking strategy, retrieval algorithm, or inference-time reasoning method, my team, Jim Brown, Mason Sawtell, Sandi Besen, and I, take an agentic approach to document ingestion.

We leverage the full capability of the model at ingestion time to focus exclusively on distilling and preserving the most meaningful information from the document dataset. This fundamentally simplifies the RAG process by allowing the model to direct its reasoning abilities toward addressing the user/system instructions rather than struggling to understand formatting and disparate information across document chunks. 

We specifically target high-value questions that are often difficult to evaluate because they have multiple correct answers or solution paths. These cases are where traditional RAG solutions struggle most and existing RAG evaluation datasets are largely insufficient for testing this problem space. For our research implementation, we downloaded annual and quarterly reports from the last year for the 30 companies in the DOW Jones Industrial Average. These documents can be found through the SEC EDGAR website. The information on EDGAR is accessible and able to be downloaded for free or can be queried through EDGAR public searches. See the SEC privacy policy for additional details, information on the SEC website is “considered public information and may be copied or further distributed by users of the web site without the SEC’s permission”. We selected this dataset for two key reasons: first, it falls outside the knowledge cutoff for the models evaluated, ensuring that the models cannot respond to questions based on their knowledge from pre-training; second, it’s a close approximation for real-world business problems while allowing us to discuss and share our findings using publicly available data. 

While typical RAG solutions excel at factual retrieval where the answer is easily identified in the document dataset (e.g., “When did Apple’s annual shareholder’s meeting occur?”), they struggle with nuanced questions that require a deeper understanding of concepts across documents (e.g., “Which of the DOW companies has the most promising AI strategy?”). Our Agentic Knowledge Distillation + Pyramid Search Approach addresses these types of questions with much greater success compared to other standard approaches we tested and overcomes limitations associated with using knowledge graphs in RAG systems. 

In this article, we’ll cover how our knowledge distillation process works, key benefits of this approach, examples, and an open discussion on the best way to evaluate these types of systems where, in many cases, there is no singular “right” answer.

Building the pyramid: How Agentic Knowledge Distillation works

AI-generated image showing a pyramid structure for document ingestion with labelled sections.
Image by author and team depicting pyramid structure for document ingestion. Robots meant to represent agents building the pyramid.

Overview

Our knowledge distillation process creates a multi-tiered pyramid of information from the raw source documents. Our approach is inspired by the pyramids used in deep learning computer vision-based tasks, which allow a model to analyze an image at multiple scales. We take the contents of the raw document, convert it to markdown, and distill the content into a list of atomic insights, related concepts, document abstracts, and general recollections/memories. During retrieval it’s possible to access any or all levels of the pyramid to respond to the user request. 

How to distill documents and build the pyramid: 

  1. Convert documents to Markdown: Convert all raw source documents to Markdown. We’ve found models process markdown best for this task compared to other formats like JSON and it is more token efficient. We used Azure Document Intelligence to generate the markdown for each page of the document, but there are many other open-source libraries like MarkItDown which do the same thing. Our dataset included 331 documents and 16,601 pages. 
  2. Extract atomic insights from each page: We process documents using a two-page sliding window, which allows each page to be analyzed twice. This gives the agent the opportunity to correct any potential mistakes when processing the page initially. We instruct the model to create a numbered list of insights that grows as it processes the pages in the document. The agent can overwrite insights from the previous page if they were incorrect since it sees each page twice. We instruct the model to extract insights in simple sentences following the subject-verb-object (SVO) format and to write sentences as if English is the second language of the user. This significantly improves performance by encouraging clarity and precision. Rolling over each page multiple times and using the SVO format also solves the disambiguation problem, which is a huge challenge for knowledge graphs. The insight generation step is also particularly helpful for extracting information from tables since the model captures the facts from the table in clear, succinct sentences. Our dataset produced 216,931 total insights, about 13 insights per page and 655 insights per document.
  3. Distilling concepts from insights: From the detailed list of insights, we identify higher-level concepts that connect related information about the document. This step significantly reduces noise and redundant information in the document while preserving essential information and themes. Our dataset produced 14,824 total concepts, about 1 concept per page and 45 concepts per document. 
  4. Creating abstracts from concepts: Given the insights and concepts in the document, the LLM writes an abstract that appears both better than any abstract a human would write and more information-dense than any abstract present in the original document. The LLM generated abstract provides incredibly comprehensive knowledge about the document with a small token density that carries a significant amount of information. We produce one abstract per document, 331 total.
  5. Storing recollections/memories across documents: At the top of the pyramid we store critical information that is useful across all tasks. This can be information that the user shares about the task or information the agent learns about the dataset over time by researching and responding to tasks. For example, we can store the current 30 companies in the DOW as a recollection since this list is different from the 30 companies in the DOW at the time of the model’s knowledge cutoff. As we conduct more and more research tasks, we can continuously improve our recollections and maintain an audit trail of which documents these recollections originated from. For example, we can keep track of AI strategies across companies, where companies are making major investments, etc. These high-level connections are super important since they reveal relationships and information that are not apparent in a single page or document.
Sample subset of insights extracted from IBM 10Q, Q3 2024
Sample subset of insights extracted from IBM 10Q, Q3 2024 (page 4)

We store the text and embeddings for each layer of the pyramid (pages and up) in Azure PostgreSQL. We originally used Azure AI Search, but switched to PostgreSQL for cost reasons. This required us to write our own hybrid search function since PostgreSQL doesn’t yet natively support this feature. This implementation would work with any vector database or vector index of your choosing. The key requirement is to store and efficiently retrieve both text and vector embeddings at any level of the pyramid. 

This approach essentially creates the essence of a knowledge graph, but stores information in natural language, the way an LLM natively wants to interact with it, and is more efficient on token retrieval. We also let the LLM pick the terms used to categorize each level of the pyramid, this seemed to let the model decide for itself the best way to describe and differentiate between the information stored at each level. For example, the LLM preferred “insights” to “facts” as the label for the first level of distilled knowledge. Our goal in doing this was to better understand how an LLM thinks about the process by letting it decide how to store and group related information. 

Using the pyramid: How it works with RAG & Agents

At inference time, both traditional RAG and agentic approaches benefit from the pre-processed, distilled information ingested in our knowledge pyramid. The pyramid structure allows for efficient retrieval in both the traditional RAG case, where only the top X related pieces of information are retrieved or in the Agentic case, where the Agent iteratively plans, retrieves, and evaluates information before returning a final response. 

The benefit of the pyramid approach is that information at any and all levels of the pyramid can be used during inference. For our implementation, we used PydanticAI to create a search agent that takes in the user request, generates search terms, explores ideas related to the request, and keeps track of information relevant to the request. Once the search agent determines there’s sufficient information to address the user request, the results are re-ranked and sent back to the LLM to generate a final reply. Our implementation allows a search agent to traverse the information in the pyramid as it gathers details about a concept/search term. This is similar to walking a knowledge graph, but in a way that’s more natural for the LLM since all the information in the pyramid is stored in natural language.

Depending on the use case, the Agent could access information at all levels of the pyramid or only at specific levels (e.g. only retrieve information from the concepts). For our experiments, we did not retrieve raw page-level data since we wanted to focus on token efficiency and found the LLM-generated information for the insights, concepts, abstracts, and recollections was sufficient for completing our tasks. In theory, the Agent could also have access to the page data; this would provide additional opportunities for the agent to re-examine the original document text; however, it would also significantly increase the total tokens used. 

Here is a high-level visualization of our Agentic approach to responding to user requests:

Overview of the agentic research & response process
Image created by author and team providing an overview of the agentic research & response process

Results from the pyramid: Real-world examples

To evaluate the effectiveness of our approach, we tested it against a variety of question categories, including typical fact-finding questions and complex cross-document research and analysis tasks. 

Fact-finding (spear fishing): 

These tasks require identifying specific information or facts that are buried in a document. These are the types of questions typical RAG solutions target but often require many searches and consume lots of tokens to answer correctly. 

Example task: “What was IBM’s total revenue in the latest financial reporting?”

Example response using pyramid approach: “IBM’s total revenue for the third quarter of 2024 was $14.968 billion [ibm-10q-q3-2024.pdf, pg. 4]

Screenshot of total tokens used to research and generate response
Total tokens used to research and generate response

This result is correct (human-validated) and was generated using only 9,994 total tokens, with 1,240 tokens in the generated final response. 

Complex research and analysis: 

These tasks involve researching and understanding multiple concepts to gain a broader understanding of the documents and make inferences and informed assumptions based on the gathered facts.

Example task: “Analyze the investments Microsoft and NVIDIA are making in AI and how they are positioning themselves in the market. The report should be clearly formatted.”

Example response:

Screenshot of the response generated by the agent analyzing AI investments and positioning for Microsoft and NVIDIA.
Response generated by the agent analyzing AI investments and positioning for Microsoft and NVIDIA.

The result is a comprehensive report that executed quickly and contains detailed information about each of the companies. 26,802 total tokens were used to research and respond to the request with a significant percentage of them used for the final response (2,893 tokens or ~11%). These results were also reviewed by a human to verify their validity.

Screenshot of snippet indicating total token usage for the task
Snippet indicating total token usage for the task

Example task: “Create a report on analyzing the risks disclosed by the various financial companies in the DOW. Indicate which risks are shared and unique.”

Example response:

Screenshot of part 1 of a response generated by the agent on disclosed risks.
Part 1 of response generated by the agent on disclosed risks.
Screenshot of part 2 of a response generated by the agent on disclosed risks.
Part 2 of response generated by the agent on disclosed risks.

Similarly, this task was completed in 42.7 seconds and used 31,685 total tokens, with 3,116 tokens used to generate the final report. 

Screenshot of a snippet indicating total token usage for the task
Snippet indicating total token usage for the task

These results for both fact-finding and complex analysis tasks demonstrate that the pyramid approach efficiently creates detailed reports with low latency using a minimal amount of tokens. The tokens used for the tasks carry dense meaning with little noise allowing for high-quality, thorough responses across tasks.

Benefits of the pyramid: Why use it?

Overall, we found that our pyramid approach provided a significant boost in response quality and overall performance for high-value questions. 

Some of the key benefits we observed include: 

  • Reduced model’s cognitive load: When the agent receives the user task, it retrieves pre-processed, distilled information rather than the raw, inconsistently formatted, disparate document chunks. This fundamentally improves the retrieval process since the model doesn’t waste its cognitive capacity on trying to break down the page/chunk text for the first time. 
  • Superior table processing: By breaking down table information and storing it in concise but descriptive sentences, the pyramid approach makes it easier to retrieve relevant information at inference time through natural language queries. This was particularly important for our dataset since financial reports contain lots of critical information in tables. 
  • Improved response quality to many types of requests: The pyramid enables more comprehensive context-aware responses to both precise, fact-finding questions and broad analysis based tasks that involve many themes across numerous documents. 
  • Preservation of critical context: Since the distillation process identifies and keeps track of key facts, important information that might appear only once in the document is easier to maintain. For example, noting that all tables are represented in millions of dollars or in a particular currency. Traditional chunking methods often cause this type of information to slip through the cracks. 
  • Optimized token usage, memory, and speed: By distilling information at ingestion time, we significantly reduce the number of tokens required during inference, are able to maximize the value of information put in the context window, and improve memory use. 
  • Scalability: Many solutions struggle to perform as the size of the document dataset grows. This approach provides a much more efficient way to manage a large volume of text by only preserving critical information. This also allows for a more efficient use of the LLMs context window by only sending it useful, clear information.
  • Efficient concept exploration: The pyramid enables the agent to explore related information similar to navigating a knowledge graph, but does not require ever generating or maintaining relationships in the graph. The agent can use natural language exclusively and keep track of important facts related to the concepts it’s exploring in a highly token-efficient and fluid way. 
  • Emergent dataset understanding: An unexpected benefit of this approach emerged during our testing. When asking questions like “what can you tell me about this dataset?” or “what types of questions can I ask?”, the system is able to respond and suggest productive search topics because it has a more robust understanding of the dataset context by accessing higher levels in the pyramid like the abstracts and recollections. 

Beyond the pyramid: Evaluation challenges & future directions

Challenges

While the results we’ve observed when using the pyramid search approach have been nothing short of amazing, finding ways to establish meaningful metrics to evaluate the entire system both at ingestion time and during information retrieval is challenging. Traditional RAG and Agent evaluation frameworks often fail to address nuanced questions and analytical responses where many different responses are valid.

Our team plans to write a research paper on this approach in the future, and we are open to any thoughts and feedback from the community, especially when it comes to evaluation metrics. Many of the existing datasets we found were focused on evaluating RAG use cases within one document or precise information retrieval across multiple documents rather than robust concept and theme analysis across documents and domains. 

The main use cases we are interested in relate to broader questions that are representative of how businesses actually want to interact with GenAI systems. For example, “tell me everything I need to know about customer X” or “how do the behaviors of Customer A and B differ? Which am I more likely to have a successful meeting with?”. These types of questions require a deep understanding of information across many sources. The answers to these questions typically require a person to synthesize data from multiple areas of the business and think critically about it. As a result, the answers to these questions are rarely written or saved anywhere which makes it impossible to simply store and retrieve them through a vector index in a typical RAG process. 

Another consideration is that many real-world use cases involve dynamic datasets where documents are consistently being added, edited, and deleted. This makes it difficult to evaluate and track what a “correct” response is since the answer will evolve as the available information changes. 

Future directions

In the future, we believe that the pyramid approach can address some of these challenges by enabling more effective processing of dense documents and storing learned information as recollections. However, tracking and evaluating the validity of the recollections over time will be critical to the system’s overall success and remains a key focus area for our ongoing work. 

When applying this approach to organizational data, the pyramid process could also be used to identify and assess discrepancies across areas of the business. For example, uploading all of a company’s sales pitch decks could surface where certain products or services are being positioned inconsistently. It could also be used to compare insights extracted from various line of business data to help understand if and where teams have developed conflicting understandings of topics or different priorities. This application goes beyond pure information retrieval use cases and would allow the pyramid to serve as an organizational alignment tool that helps identify divergences in messaging, terminology, and overall communication. 

Conclusion: Key takeaways and why the pyramid approach matters

The knowledge distillation pyramid approach is significant because it leverages the full power of the LLM at both ingestion and retrieval time. Our approach allows you to store dense information in fewer tokens which has the added benefit of reducing noise in the dataset at inference. Our approach also runs very quickly and is incredibly token efficient, we are able to generate responses within seconds, explore potentially hundreds of searches, and on average use (this includes all the search iterations!). 

We find that the LLM is much better at writing atomic insights as sentences and that these insights effectively distill information from both text-based and tabular data. This distilled information written in natural language is very easy for the LLM to understand and navigate at inference since it does not have to expend unnecessary energy reasoning about and breaking down document formatting or filtering through noise

The ability to retrieve and aggregate information at any level of the pyramid also provides significant flexibility to address a variety of query types. This approach offers promising performance for large datasets and enables high-value use cases that require nuanced information retrieval and analysis. 


Note: The opinions expressed in this article are solely my own and do not necessarily reflect the views or policies of my employer.

Interested in discussing further or collaborating? Reach out on LinkedIn!

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Nutanix expands beyond HCI

The Pure Storage integration will also be supported within Cisco’s FlashStack offering, creating a “FlashStack with Nutanix” solution with storage provided by Pure, networking capabilities as well as UCS servers from Cisco, and then the common Nutanix Cloud Platform. Cloud Native AOS: Breaking free from hypervisors Another sharp departure from

Read More »

IBM introduces new generation of LinuxOne AI mainframe

In addition to generative AI applications, new multiple model AI approaches are engineered to enhance prediction and accuracy in many industry use cases like advanced fraud detection, image processing and retail automation, according to IBM. LinuxONE Emperor 5 also comes with advanced security features specifically designed for the AI threat

Read More »

Hornsea 4 cancellation puts pressure on AR7

The UK government has proposed changes to the way it procures offshore wind as it now needs to claw back capacity after the massive Hornsea 4 project ground to a halt. The Department for Energy Security and Net Zero (DESNZ) confirmed changes to the way it will run its contracts for difference (CfD) auctions, starting with the upcoming Allocation Round 7 (AR7), expected this year. Under the reforms, the government would no longer set a monetary budget for the various technologies across the auction, such as the £1.5 billion allocated for offshore wind in AR6, at the start of the auction. Instead, the government would publish a “capacity ambition,” stating instead the amount of power it aims to procure. However, it would still publish a budget for the auction after the process has run. In addition, the reforms envision allowing the secretary of state to see the anonymous bids, including price and capacity. They would use this information to determine how much capacity to procure and to set the final budget. AR7 The amendments will also end flexible bidding for fixed-bottom offshore wind applications. According to the proposals, flexible bids are no longer useful if the auction sets the budget after seeing the bids in advance. Finally, the proposed reforms also considered accelerating the offshore wind part of the auction if developers get their bids in on time and there are no appeals. However, the government said that legislation needed to make change could not be delivered before AR7 – though it did not rule it out for subsequent auctions. © Supplied by OrstedOrsted’s Hornsea One wind farm. It added that the government is exploring non-legislative routes to accelerate a fixed-bottom offshore wind auction in time for AR7. In comments to Energy Voice, Aegir Insights market analyst Signe Tellier Christensen

Read More »

Grid queue: Lay of the land for renewables developers is still unclear

Renewable energy developments can only export the electricity they produce to the grid if they have a grid connection. This has created a large queue of developers waiting for a connection date for their projects, which can extend to over a decade in the future. This backlog is causing significant uncertainty for developers and strain on some renewable projects preventing their construction from being progressed. Once they are in it, developers rarely leave the queue even if they ultimately decide that their project isn’t viable. As the queue currently operates on a “first come, first served” basis, it means that viable and ready-to-build projects can be delayed longer than necessary. To help address these lengthy delays and enable new clean energy projects to secure grid connections, a new grid queue management system is being developed by the National Energy System Operator (NESO). Expected to be introduced this summer, this new system aims to ease the current bottleneck by allocating “confirmed connection dates, connection points and queue positions” to projects which are deemed viable and ready to progress over those which don’t meet its criteria. One of the biggest changes for developers will be demonstrating they have secured land rights to keep their place in the queue when satisfying the milestones known as “gate 2”. While this new initiative will be welcomed across the renewables sector, it raises several issues for project developers to consider including how they negotiate new land agreements. NESO has been clear that nothing short of a signed option agreement will be required for projects to qualify for a grid position under gate 2 – an exclusivity agreement or heads of terms will no longer suffice. Although NESO is clear that only projects that are demonstrably viable will keep their place in the grid connection queue, how

Read More »

Business leaders and SNP call on Starmer to visit Aberdeen amid North Sea job losses

Aberdeen business leaders and the SNP are calling on the Prime Minister to visit the north-east of Scotland as they blamed Labour policies for yet more job losses in the oil and gas sector. On Wednesday, Harbour Energy announced that it would cut 250 jobs from its onshore operations, accounting for a 25% reduction in headcount. The UK’s largest producer of oil and gas has claimed that the hostile fiscal policy facing oil and gas businesses prompted the decision as it slows investment in the country, opting to allocate funds overseas. On the day of this announcement, Aberdeen South MP and SNP Westminster leader Stephen Flynn brought the news to the attention of prime minister Sir Keir Starmer. © BloombergEmissions from chimneys at the British Steel Ltd. plant in Scunthorpe, UK. He asked Starmer to “explain to my constituents why he is willing to move heaven and earth to save jobs in Scunthorpe while destroying jobs in Scotland.” The SNP leader was referring to the government’s recent move to nationalise British Steel. The UK government took control of the British steel company from its Chinese owner, Jingye Group, after losses from its steelmaking operations forced it to the brink. Now the SNP MP, alongside his colleagues in Westminster and Holyrood, has written to the Labour Party leader, inviting him to see the impacts his government’s energy policy is having on Aberdeen and its people. “We are writing to you as the local MPs and MSPs for Aberdeen, to invite you to urgently visit Aberdeen to meet with local representatives, businesses, trade unions and workers to hear about the damaging impact that Labour government policies are having on Scottish energy jobs – and to discuss the urgent investment needed to protect jobs and deliver prosperity,” the letter reads. ‘Haemorrhaging investment in

Read More »

Oil Gains 3% as Trade Hopes Rise

Oil rose as President Donald Trump announced a trade framework with the UK, spurring some optimism about deals to come. West Texas Intermediate climbed 3.2% to approach $60 a barrel. Trump said the UK would fast-track US items through its customs process and reduce barriers on billions of dollars of agricultural, chemical, energy and industrial exports, including ethanol. Notably, the terms are limited in scope and a 10% baseline tariff remains. The British deal is raising investors’ confidence that agreements can be reached in the more complicated trade talks that lie ahead, specifically negotiations between US and Chinese officials kicking off this weekend. Trump said that the 145% levy against China, the world’s largest crude-importer, could be lowered if talks go well. “The real driver of risk assets today appears to be renewed optimism around progress in the US–China trade talks,” said Rebecca Babin, a senior energy trader at CIBC Private Wealth Group. “It’s also worth noting that sentiment toward crude remains overwhelmingly bearish.” Crude has slid since Trump took office on concerns that his global trade war will dent economic growth and slow energy demand. Adding to the bearishness, OPEC+ has decided to revive idled output faster than expected. Already, the drop in oil prices is spurring American shale producers to cut spending in the Permian Basin. Still, small pockets of bullishness are visible in the options market. There was active trading of Brent $95 September call options, which profit when futures rise. The US on Thursday sanctioned a third Chinese “teapot” oil refinery and various other entities associated with Iran, days ahead of a fourth round of nuclear talks between Washington and Tehran. The failure of the negotiations could push Brent up toward $70 a barrel, Citigroup analysts including Eric Lee said in a note. In the US,

Read More »

Indian LNG Buyers Embrace USA Benchmark to Balance Volatility

Indian liquefied natural gas importers have signed a flurry of long-term purchase agreements linked to the US price benchmark, the latest effort by the nation’s buyers to protect themselves from volatile markets. State-owned companies have signed at least four contracts since December, totaling nearly 11 million tons per year, priced to the Henry Hub index, according to the executives familiar with the deals. Until now, most of India’s long-term contracts have been linked to crude oil, the traditional way to price LNG deals. Pricing the fuel to the Henry Hub index doesn’t necessarily mean that the fuel will come from the US, rather it is a move to hedge risk.  India’s consumers — from power plants to petrochemical facilities — are highly price-sensitive as gas competes head-to-head with cheaper and dirtier alternatives. Companies that relied on the spot market or oil-linked contracts have periodically been forced to cut back purchases due to price spikes. US gas futures have also been relatively less volatile and more liquid than the Asian spot benchmark, the Japan-Korea Marker. “The last ten year average shows that there have been periods during winter months JKM benchmark surged beyond imagination, while Henry Hub prices saw proportionally smaller growth,” Bharat Petroelum Corp Ltd’s Director Finance V.R.K. Gupta said. BPCL in February signed a deal with ADNOC Trading for 2.5 million tons of LNG for five years. The Mumbai-based refiner will evaluate the performance of the deal and may sign more such contracts, Gupta said.  Indian Oil Corp. last week signed a deal with Trafigura for 2.5 million tons, or 27 cargoes, spread over five years, with supplies starting the middle of this year. The recent deals have been signed at a 115% link to Henry Hub plus $5 to $6 per million British thermal units. The supply is

Read More »

PJM, utilities urge FERC to dismiss call for colocation settlement talks

The Federal Energy Regulatory Commission should reject a call for a 90-day pause in its deliberations over the PJM Interconnection’s rules for colocating data centers at power plants, according to PJM, major utilities and other organizations. “The national interest will be best served by a quick dismissal of this proceeding, and a ruling that the existing PJM Tariff remains just and reasonable,” PJM transmission owners said in a Wednesday filing urging FERC to dismiss a call for stakeholder settlement talks. “Rather than fighting about a wish list of new rules, the parties will then instead begin to focus on obtaining service under the rules in place today.” The transmission owners include utility companies such as American Electric Power, Dominion Energy, Duke Energy, Exelon, FirstEnergy and PPL Electric. “The record is clear — no matter how connected to the PJM transmission system, large loads pose both a safety and a reliability concern,” the utilities said. “It is unrealistic to ask the [transmission owners] to accede to these demands in the context of settlement procedures while those questions remain unresolved.” PJM also wants FERC to ignore the call for settlement discussions that was made in late April by the Electric Power Supply Association, the PJM Power Providers Group, Calpine, Cogentrix Energy Power Management, Constellation Energy Generation and LS Power Development. “The Commission should not pause its work on offering the industry guidance on a path forward for co-location arrangements,” PJM said in a Monday filing. The call for settlement talks lacks broad stakeholder support, PJM said, noting it is holding a workshop on “large load” issues on Friday. American Municipal Power, a wholesale power provider for public power utilities, and Northern Virginia Electric Cooperative and Northeastern Rural Electric Membership Corp. also oppose holding settlement talks. Beside the power generators and trade organizations,

Read More »

Tech CEOs warn Senate: Outdated US power grid threatens AI ambitions

The implications are clear: without dramatic improvements to the US energy infrastructure, the nation’s AI ambitions could be significantly constrained by simple physical limitations – the inability to power the massive computing clusters necessary for advanced AI development and deployment. Streamlining permitting processes The tech executives have offered specific recommendations to address these challenges, with several focusing on the need to dramatically accelerate permitting processes for both energy generation and the transmission infrastructure needed to deliver that power to AI facilities, the report added. Intrator specifically called for efforts “to streamline the permitting process to enable the addition of new sources of generation and the transmission infrastructure to deliver it,” noting that current regulatory frameworks were not designed with the urgent timelines of the AI race in mind. This acceleration would help technology companies build and power the massive data centers needed for AI training and inference, which require enormous amounts of electricity delivered reliably and consistently. Beyond the cloud: bringing AI to everyday devices While much of the testimony focused on large-scale infrastructure needs, AMD CEO Lisa Su emphasized that true AI leadership requires “rapidly building data centers at scale and powering them with reliable, affordable, and clean energy sources.” Su also highlighted the importance of democratizing access to AI technologies: “Moving faster also means moving AI beyond the cloud. To ensure every American benefits, AI must be built into the devices we use every day and made as accessible and dependable as electricity.”

Read More »

Networking errors pose threat to data center reliability

Still, IT and networking issues increased in 2024, according to Uptime Institute. The analysis attributed the rise in outages due to increased IT and network complexity, specifically, change management and misconfigurations. “Particularly with distributed services, cloud services, we find that cascading failures often occur when networking equipment is replicated across an entire network,” Lawrence explained. “Sometimes the failure of one forces traffic to move in one direction, overloading capacity at another data center.” The most common causes of major network-related outages were cited as: Configuration/change management failure: 50% Third-party network provider failure: 34% Hardware failure: 31% Firmware/software error: 26% Line breakages: 17% Malicious cyberattack: 17% Network overload/congestion failure: 13% Corrupted firewall/routing tables issues: 8% Weather-related incident: 7% Configuration/change management issues also attributed for 62% of the most common causes of major IT system-/software-related outages. Change-related disruptions consistently are responsible for software-related outages. Human error continues to be one of the “most persistent challenges in data center operations,” according to Uptime’s analysis. The report found that the biggest cause of these failures is data center staff failing to follow established procedures, which has increased by about 10 percentage points compared to 2023. “These are things that were 100% under our control. I mean, we can’t control when the UPS module fails because it was either poorly manufactured, it had a flaw, or something else. This is 100% under our control,” Brown said. The most common causes of major human error-related outages were reported as:

Read More »

Liquid cooling technologies: reducing data center environmental impact

“Highly optimized cold-plate or one-phase immersion cooling technologies can perform on par with two-phase immersion, making all three liquid-cooling technologies desirable options,” the researchers wrote. Factors to consider There are numerous factors to consider when adopting liquid cooling technologies, according to Microsoft’s researchers. First, they advise performing a full environmental, health, and safety analysis, and end-to-end life cycle impact analysis. “Analyzing the full data center ecosystem to include systems interactions across software, chip, server, rack, tank, and cooling fluids allows decision makers to understand where savings in environmental impacts can be made,” they wrote. It is also important to engage with fluid vendors and regulators early, to understand chemical composition, disposal methods, and compliance risks. And associated socioeconomic, community, and business impacts are equally critical to assess. More specific environmental considerations include ozone depletion and global warming potential; the researchers emphasized that operators should only use fluids with low to zero ozone depletion potential (ODP) values, and not hydrofluorocarbons or carbon dioxide. It is also critical to analyze a fluid’s viscosity (thickness or stickiness), flammability, and overall volatility. And operators should only use fluids with minimal bioaccumulation (the buildup of chemicals in lifeforms, typically in fish) and terrestrial and aquatic toxicity. Finally, once up and running, data center operators should monitor server lifespan and failure rates, tracking performance uptime and adjusting IT refresh rates accordingly.

Read More »

Cisco unveils prototype quantum networking chip

Clock synchronization allows for coordinated time-dependent communications between end points that might be cloud databases or in large global databases that could be sitting across the country or across the world, he said. “We saw recently when we were visiting Lawrence Berkeley Labs where they have all of these data sources such as radio telescopes, optical telescopes, satellites, the James Webb platform. All of these end points are taking snapshots of a piece of space, and they need to synchronize those snapshots to the picosecond level, because you want to detect things like meteorites, something that is moving faster than the rotational speed of planet Earth. So the only way you can detect that quickly is if you synchronize these snapshots at the picosecond level,” Pandey said. For security use cases, the chip can ensure that if an eavesdropper tries to intercept the quantum signals carrying the key, they will likely disturb the state of the qubits, and this disturbance can be detected by the legitimate communicating parties and the link will be dropped, protecting the sender’s data. This feature is typically implemented in a Quantum Key Distribution system. Location information can serve as a critical credential for systems to authenticate control access, Pandey said. The prototype quantum entanglement chip is just part of the research Cisco is doing to accelerate practical quantum computing and the development of future quantum data centers.  The quantum data center that Cisco envisions would have the capability to execute numerous quantum circuits, feature dynamic network interconnection, and utilize various entanglement generation protocols. The idea is to build a network connecting a large number of smaller processors in a controlled environment, the data center warehouse, and provide them as a service to a larger user base, according to Cisco.  The challenges for quantum data center network fabric

Read More »

Zyxel launches 100GbE switch for enterprise networks

Port specifications include: 48 SFP28 ports supporting dual-rate 10GbE/25GbE connectivity 8 QSFP28 ports supporting 100GbE connections Console port for direct management access Layer 3 routing capabilities include static routing with support for access control lists (ACLs) and VLAN segmentation. The switch implements IEEE 802.1Q VLAN tagging, port isolation, and port mirroring for traffic analysis. For link aggregation, the switch supports IEEE 802.3ad for increased throughput and redundancy between switches or servers. Target applications and use cases The CX4800-56F targets multiple deployment scenarios where high-capacity backbone connectivity and flexible port configurations are required. “This will be for service providers initially or large deployments where they need a high capacity backbone to deliver a primarily 10G access layer to the end point,” explains Nguyen. “Now with Wi-Fi 7, more 10G/25G capable POE switches are being powered up and need interconnectivity without the bottleneck. We see this for data centers, campus, MDU (Multi-Dwelling Unit) buildings or community deployments.” Management is handled through Zyxel’s NebulaFlex Pro technology, which supports both standalone configuration and cloud management via the Nebula Control Center (NCC). The switch includes a one-year professional pack license providing IGMP technology and network analytics features. The SFP28 ports maintain backward compatibility between 10G and 25G standards, enabling phased migration paths for organizations transitioning between these speeds.

Read More »

Engineers rush to master new skills for AI-driven data centers

According to the Uptime Institute survey, 57% of data centers are increasing salary spending. Data center job roles that saw the highest increases were in operations management – 49% of data center operators said they saw highest increases in this category – followed by junior and mid-level operations staff at 45%, and senior management and strategy at 35%. Other job categories that saw salary growth were electrical, at 32% and mechanical, at 23%. Organizations are also paying premiums on top of salaries for particular skills and certifications. Foote Partners tracks pay premiums for more than 1,300 certified and non-certified skills for IT jobs in general. The company doesn’t segment the data based on whether the jobs themselves are data center jobs, but it does track 60 skills and certifications related to data center management, including skills such as storage area networking, LAN, and AIOps, and 24 data center-related certificates from Cisco, Juniper, VMware and other organizations. “Five of the eight data center-related skills recording market value gains in cash pay premiums in the last twelve months are all AI-related skills,” says David Foote, chief analyst at Foote Partners. “In fact, they are all among the highest-paying skills for all 723 non-certified skills we report.” These skills bring in 16% to 22% of base salary, he says. AIOps, for example, saw an 11% increase in market value over the past year, now bringing in a premium of 20% over base salary, according to Foote data. MLOps now brings in a 22% premium. “Again, these AI skills have many uses of which the data center is only one,” Foote adds. The percentage increase in the specific subset of these skills in data centers jobs may vary. The Uptime Institute survey suggests that the higher pay is motivating workers to stay in the

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »