Stay Ahead, Stay ONMINE

Generative AI Is Declarative

ChatGPT launched in 2022 and kicked off the Generative Ai boom. In the two years since, academics, technologists, and armchair experts have written libraries worth of articles on the technical underpinnings of generative AI and about the potential capabilities of both current and future generative AI models. Surprisingly little has been written about how we interact with these tools—the human-AI interface. The point where we interact with AI models is at least as important as the algorithms and data that create them. “There is no success where there is no possibility of failure, no art without the resistance of the medium” (Raymond Chandler). In that vein, it’s useful to examine human-AI interaction and the strengths and weaknesses inherent in that interaction. If we understand the “resistance in the medium” then product managers can make smarter decisions about how to incorporate generative AI into their products. Executives can make smarter decisions about what capabilities to invest in. Engineers and designers can build around the tools’ limitations and showcase their strengths. Everyday people can know when to use generative AI and when not to. Imagine walking into a restaurant and ordering a cheeseburger. You don’t tell the chef how to grind the beef, how hot to set the grill, or how long to toast the bun. Instead, you simply describe what you want: “I’d like a cheeseburger, medium rare, with lettuce and tomato.” The chef interprets your request, handles the implementation, and delivers the desired outcome. This is the essence of declarative interaction—focusing on the what rather than the how. Now, imagine interacting with a Large Language Model (LLM) like ChatGPT. You don’t have to provide step-by-step instructions for how to generate a response. Instead, you describe the result you’re looking for: “A user story that lets us implement A/B testing for the Buy button on our website.” The LLM interprets your prompt, fills in the missing details, and delivers a response. Just like ordering a cheeseburger, this is a declarative mode of interaction. Explaining the steps to make a cheeseburger is an imperative interaction. Our LLM prompts sometimes feel imperative. We might phrase our prompts like a question: ”What is the tallest mountain on earth?” This is equivalent to describing “the answer to the question ‘What is the tallest mountain on earth?’” We might phrase our prompt as a series of instructions: ”Write a summary of the attached report, then read it as if you are a product manager, then type up some feedback on the report.” But, again, we’re describing the result of a process with some context for what that process is. In this case, it is a sequence of descriptive results—the report then the feedback. This is a more useful way to think about LLMs and generative AI. In some ways it is more accurate; the neural network model behind the curtain doesn’t explain why or how it produced one output instead of another. More importantly though, the limitations and strengths of generative AI make more sense and become more predictable when we think of these models as declarative. LLMs as a declarative mode of interaction Computer scientists use the term “declarative” to describe coding languages. SQL is one of the most common. The code describes the output table and the procedures in the database figure out how to retrieve and combine the data to produce the result. LLMs share many of the benefits of declarative languages like SQL or declarative interactions like ordering a cheeseburger. Focus on desired outcome: Just as you describe the cheeseburger you want, you describe the output you want from the LLM. For example, “Summarize this article in three bullet points” focuses on the result, not the process. Abstraction of implementation: When you order a cheeseburger, you don’t need to know how the chef prepares it. When submitting SQL code to a server, the server figures out where the data lives, how to fetch it, and how to aggregate it based on your description. You as the user don’t need to know how. With LLMs, you don’t need to know how the model generates the response. The underlying mechanisms are abstracted away. Filling in missing details: If you don’t specify onions on your cheeseburger, the chef won’t include them. If you don’t specify a field in your SQL code, it won’t show up in the output table. This is where LLMs differ slightly from declarative coding languages like SQL. If you ask ChatGPT to create an image of “a cheeseburger with lettuce and tomato” it may also show the burger on a sesame seed bun or include pickles, even if that wasn’t in your description. The details you omit are inferred by the LLM using the “average” or “most likely” detail depending on the context, with a bit of randomness thrown in. Ask for the cheeseburger image six times; it may show you three burgers with cheddar cheese, two with Swiss, and one with pepper jack. Like other forms of declarative interaction, LLMs share one key limitation. If your description is vague, ambiguous, or lacks enough detail, then the result may not be what you hoped to see. It is up to the user to describe the result with sufficient detail. This explains why we often iterate to get what we’re looking for when using LLMs and generative AI. Going back to our cheeseburger analogy, the process to generate a cheeseburger from an LLM may look like this. “Make me a cheeseburger, medium rare, with lettuce and tomatoes.” The result also has pickles and uses cheddar cheese. The bun is toasted. There’s mayo on the top bun. “Make the same thing but this time no pickles, use pepper jack cheese, and a sriracha mayo instead of plain mayo.” The result now has pepper jack, no pickles. The sriracha mayo is applied to the bottom bun and the bun is no longer toasted. “Make the same thing again, but this time, put the sriracha mayo on the top bun. The buns should be toasted.” Finally, you have the cheeseburger you’re looking for. This example demonstrates one of the main points of friction with human-AI interaction. Human beings are really bad at describing what they want with sufficient detail on the first attempt. When we asked for a cheeseburger, we had to refine our description to be more specific (the type of cheese). In the second generation, some of the inferred details (whether the bun was toasted) changed from one iteration to the next, so then we had to add that specificity to our description as well. Iteration is an important part of AI-human generation. Insight: When using generative AI, we need to design an iterative human-AI interaction loop that enables people to discover the details of what they want and refine their descriptions accordingly. To iterate, we need to evaluate the results. Evaluation is extremely important with generative AI. Say you’re using an LLM to write code. You can evaluate the code quality if you know enough to understand it or if you can execute it and inspect the results. On the other hand, hypothetical questions can’t be tested. Say you ask ChatGPT, “What if we raise our product prices by 5 percent?” A seasoned expert could read the output and know from experience if a recommendation doesn’t take into account important details. If your product is property insurance, then increasing premiums by 5 percent may mean pushback from regulators, something an experienced veteran of the industry would know. For non-experts in a topic, there’s no way to tell if the “average” details inferred by the model make sense for your specific use case. You can’t test and iterate. Insight: LLMs work best when the user can evaluate the result quickly, whether through execution or through prior knowledge. The examples so far involve general knowledge. We all know what a cheeseburger is. When you start asking about non-general information—like when you can make dinner reservations next week—you delve into new points of friction. In the next section we’ll think about different types of information, what we can expect the AI to “know”, and how this impacts human-AI interaction. What did the AI know, and when did it know it? Above, I explained how generative AI is a declarative mode of interaction and how that helps understand its strengths and weaknesses. Here, I’ll identify how different types of information create better or worse human-AI interactions. Understanding the information available When we describe what we want to an LLM, and when it infers missing details from our description, it draws from different sources of information. Understanding these sources of information is important. Here’s a useful taxonomy for information types: General information used to train the base model. Non-general information that the base model is not aware of. Fresh information that is new or changes rapidly, like stock prices or current events. Non-public information, like facts about you and where you live or about your company, its employees, its processes, or its codebase. General information vs. non-general information LLMs are built on a massive corpus of written word data. A large part of GPT-3 was trained on a combination of books, journals, Wikipedia, Reddit, and CommonCrawl (an open-source repository of web crawl data). You can think of the models as a highly compressed version of that data, organized in a gestalt manner—all the like things are close together. When we submit a prompt, the model takes the words we use (and any words added to the prompt behind the scenes) and finds the closest set of related words based on how those things appear in the data corpus. So when we say “cheeseburger” it knows that word is related to “bun” and “tomato” and “lettuce” and “pickles” because they all occur in the same context throughout many data sources. Even when we don’t specify pickles, it uses this gestalt approach to fill in the blanks. This training information is general information, and a good rule of thumb is this: if it was in Wikipedia a year ago then the LLM “knows” about it. There could be new articles on Wikipedia, but that didn’t exist when the model was trained. The LLM doesn’t know about that unless told. Now, say you’re a company using an LLM to write a product requirements document for a new web app feature. Your company, like most companies, is full of its own lingo. It has its own lore and history scattered across thousands of Slack messages, emails, documents, and some tenured employees who remember that one meeting in Q1 last year. The LLM doesn’t know any of that. It will infer any missing details from general information. You need to supply everything else. If it wasn’t in Wikipedia a year ago, the LLM doesn’t know about it. The resulting product requirements document may be full of general facts about your industry and product but could lack important details specific to your firm. This is non-general information. This includes personal info, anything kept behind a log-in or paywall, and non-digital information. This non-general information permeates our lives, and incorporating it is another source of friction when working with generative AI. Non-general information can be incorporated into a generative AI application in three ways: Through model fine-tuning (supplying a large corpus to the base model to expand its reference data). Retrieved and fed it to the model at query time (e.g., the retrieval augmented generation or “RAG” technique). Supplied by the user in the prompt. Insight: When designing any human-AI interactions, you should think about what non-general information is required, where you will get it, and how you will expose it to the AI. Fresh information Any information that changes in real-time or is new can be called fresh information. This includes new facts like current events but also frequently changing facts like your bank account balance. If the fresh information is available in a database or some searchable source, then it needs to be retrieved and incorporated into the application. To retrieve the information from a database, the LLM must create a query, which may require specific details that the user didn’t include. Here’s an example. I have a chatbot that gives information on the stock market. You, the user, type the following: “What is the current price of Apple? Has it been increasing or decreasing recently?” The LLM doesn’t have the current price of Apple in its training data. This is fresh, non-general information. So, we need to retrieve it from a database. The LLM can read “Apple”, know that you’re talking about the computer company, and that the ticker symbol is AAPL. This is all general information. What about the “increasing or decreasing” part of the prompt? You did not specify over what period—increasing in the past day, month, year? In order to construct a database query, we need more detail. LLMs are bad at knowing when to ask for detail and when to fill it in. The application could easily pull the wrong data and provide an unexpected or inaccurate answer. Only you know what these details should be, depending on your intent. You must be more specific in your prompt. A designer of this LLM application can improve the user experience by specifying required parameters for expected queries. We can ask the user to explicitly input the time range or design the chatbot to ask for more specific details if not provided. In either case, we need to have a specific type of query in mind and explicitly design how to handle it. The LLM will not know how to do this unassisted. Insight: If a user is expecting a more specific type of output, you need to explicitly ask for enough detail. Too little detail could produce a poor quality output. Non-public information Incorporating non-public information into an LLM prompt can be done if that information can be accessed in a database. This introduces privacy issues (should the LLM be able to access my medical records?) and complexity when incorporating multiple non-public sources of information. Let’s say I have a chatbot that helps you make dinner reservations. You, the user, type the following: “Help me make dinner reservations somewhere with good Neapolitan pizza.” The LLM knows what a Neapolitan pizza is and can infer that “dinner” means this is for an evening meal. To do this task well, it needs information about your location, the restaurants near you and their booking status, or even personal details like dietary restrictions. Assuming all that non-public information is available in databases, bringing them all together into the prompt takes a lot of engineering work. Even if the LLM could find the “best” restaurant for you and book the reservation, can you be confident it has done that correctly? You never specified how many people you need a reservation for. Since only you know this information, the application needs to ask for it upfront. If you’re designing this LLM-based application, you can make some thoughtful choices to help with these problems. We could ask about a user’s dietary restrictions when they sign up for the app. Other information, like the user’s schedule that evening, can be given in a prompting tip or by showing the default prompt option “show me reservations for two for tomorrow at 7PM”. Promoting tips may not feel as automagical as a bot that does it all, but they are a straightforward way to collect and integrate the non-public information. Some non-public information is large and can’t be quickly collected and processed when the prompt is given. These need to be fine-tuned in batch or retrieved at prompt time and incorporated. A chatbot that answers information about a company’s HR policies can obtain this information from a corpus of non-public HR documents. You can fine-tune the model ahead of time by feeding it the corpus. Or you can implement a retrieval augmented generation technique, searching a corpus for relevant documents and summarizing the results. Either way, the response will only be as accurate and up-to-date as the corpus itself. Insight: When designing an AI application, you need to be aware of non-public information and how to retrieve it. Some of that information can be pulled from databases. Some needs to come from the user, which may require prompt suggestions or explicitly asking. If you understand the types of information and treat human-AI interaction as declarative, you can more easily predict which AI applications will work and which ones won’t. In the next section we’ll look at OpenAI’s Operator and deep research products. Using this framework, we can see where these applications fall short, where they work well, and why. Critiquing OpenAI’s Operator and deep research through a declarative lens I have now explained how thinking of generative AI as declarative helps us understand its strengths and weaknesses. I also identified how different types of information create better or worse human-AI interactions. Now I’ll apply these ideas by critiquing two recent products from OpenAI—Operator and deep research. It’s important to be honest about the shortcomings of AI applications. Bigger models trained on more data or using new techniques might one day solve some issues with generative AI. But other issues arise from the human-AI interaction itself and can only be addressed by making appropriate design and product choices. These critiques demonstrate how the framework can help identify where the limitations are and how to address them. The limitations of Operator Journalist Casey Newton of Platformer reviewed Operator in an article that was largely positive. Newton has covered AI extensively and optimistically. Still, Newton couldn’t help but point out some of Operator’s frustrating limitations. [Operator] can take action on your behalf in ways that are new to AI systems — but at the moment it requires a lot of hand-holding, and may cause you to throw up your hands in frustration.  My most frustrating experience with Operator was my first one: trying to order groceries. “Help me buy groceries on Instacart,” I said, expecting it to ask me some basic questions. Where do I live? What store do I usually buy groceries from? What kinds of groceries do I want?  It didn’t ask me any of that. Instead, Operator opened Instacart in the browser tab and begin searching for milk in grocery stores located in Des Moines, Iowa. The prompt “Help me buy groceries on Instacart,” viewed declaratively, describes groceries being purchased using Instacart. It doesn’t have a lot of the information someone would need to buy groceries, like what exactly to buy, when it would be delivered, and to where. It’s worth repeating: LLMs are not good at knowing when to ask additional questions unless explicitly programmed to do so in the use case. Newton gave a vague request and expected follow-up questions. Instead, the LLM filled in all the missing details with the “average”. The average item was milk. The average location was Des Moines, Iowa. Newton doesn’t mention when it was scheduled to be delivered, but if the “average” delivery time is tomorrow, then that was likely the default. If we engineered this application specifically for ordering groceries, keeping in mind the declarative nature of AI and the information it “knows”, then we could make thoughtful design choices that improve functionality. We would need to prompt the user to specify when and where they want groceries up front (non-public information). With that information, we could find an appropriate grocery store near them. We would need access to that grocery store’s inventory (more non-public information). If we have access to the user’s previous orders, we could also pre-populate a cart with items typical to their order. If not, we may add a few suggested items and guide them to add more. By limiting the use case, we only have to deal with two sources of non-public information. This is a more tractable problem than Operator’s “agent that does it all” approach. Newton also mentions that this process took eight minutes to complete, and “complete” means that Operator did everything up to placing the order. This is a long time with very little human-in-the-loop iteration. Like we said before, an iteration loop is very important for human-AI interaction. A better-designed application would generate smaller steps along the way and provide more frequent interaction. We could prompt the user to describe what to add to their shopping list. The user might say, “Add barbeque sauce to the list,” and see the list update. If they see a vinegar-based barbecue sauce, they can refine that by saying, “Replace that with a barbeque sauce that goes well with chicken,” and might be happier when it’s replaced by a honey barbecue sauce. These frequent iterations make the LLM a creative tool rather than a does-it-all agent. The does-it-all agent looks automagical in marketing, but a more guided approach provides more utility with a less frustrating and more delightful experience. Elsewhere in the article, Newton gives an example of a prompt that Operator performed well: “Put together a lesson plan on the Great Gatsby for high school students, breaking it into readable chunks and then creating assignments and connections tied to the Common Core learning standard.” This prompt describes an output using much more specificity. It also solely relies on general information—the Great Gatsby, the Common Core standard, and a general sense of what assignments are. The general-information use case lends itself better to AI generation, and the prompt is explicit and detailed in its request. In this case, very little guidance was given to create the prompt, so it worked better. (In fact, this prompt comes from Ethan Mollick who has used it to evaluate AI chatbots.) This is the risk of general-purpose AI applications like Operator. The quality of the result relies heavily on the use case and specificity provided by the user. An application with a more specific use case allows for more design guidance and can produce better output more reliably. The limitations of deep research Newton also reviewed deep research, which, according to OpenAI’s website, is an “agent that uses reasoning to synthesize large amounts of online information and complete multi-step research tasks for you.” Deep research came out after Newton’s review of Operator. Newton chose an intentionally tricky prompt that prods at some of the tool’s limitations regarding fresh information and non-general information: “I wanted to see how OpenAI’s agent would perform given that it was researching a story that was less than a day old, and for which much of the coverage was behind paywalls that the agent would not be able to access. And indeed, the bot struggled more than I expected.” Near the end of the article, Newton elaborates on some of the shortcomings he noticed with deep research. OpenAI’s deep research suffers from the same design problem that almost all AI products have: its superpowers are completely invisible and must be harnessed through a frustrating process of trial and error. Generally speaking, the more you already know about something, the more useful I think deep research is. This may be somewhat counterintuitive; perhaps you expected that an AI agent would be well suited to getting you up to speed on an important topic that just landed on your lap at work, for example.  In my early tests, the reverse felt true. Deep research excels for drilling deep into subjects you already have some expertise in, letting you probe for specific pieces of information, types of analysis, or ideas that are new to you. The “frustrating trial and error” shows a mismatch between Newton’s expectations and a necessary aspect of many generative AI applications. A good response requires more information than the user will probably give in the first attempt. The challenge is to design the application and set the user’s expectations so that this interaction is not frustrating but exciting. Newton’s more poignant criticism is that the application requires already knowing something about the topic for it to work well. From the perspective of our framework, this makes sense. The more you know about a topic, the more detail you can provide. And as you iterate, having knowledge about a topic helps you observe and evaluate the output. Without the ability to describe it well or evaluate the results, the user is less likely to use the tool to generate good output. A version of deep research designed for lawyers to perform legal research could be powerful. Lawyers have an extensive and common vocabulary for describing legal matters, and they’re more likely to see a result and know if it makes sense. Generative AI tools are fallible, though. So, the tool should focus on a generation-evaluation loop rather than writing a final draft of a legal document. The article also highlights many improvements compared to Operator. Most notably, the bot asked clarifying questions. This is the most impressive aspect of the tool. Undoubtedly, it helps that deep search has a focused use-case of retrieving and summarizing general information instead of a does-it-all approach. Having a focused use case narrows the set of likely interactions, letting you design better guidance into the prompt flow. Good application design with generative AI Designing effective generative AI applications requires thoughtful consideration of how users interact with the technology, the types of information they need, and the limitations of the underlying models. Here are some key principles to guide the design of generative AI tools: 1. Constrain the input and focus on providing details Applications are inputs and outputs. We want the outputs to be useful and pleasant. By giving a user a conversational chatbot interface, we allow for a vast surface area of potential inputs, making it a challenge to guarantee useful outputs. One strategy is to limit or guide the input to a more manageable subset. For example, FigJam, a collaborative whiteboarding tool, uses pre-set template prompts for timelines, Gantt charts, and other common whiteboard artifacts. This provides some structure and predictability to the inputs. Users still have the freedom to describe further details like color or the content for each timeline event. This approach ensures that the AI has enough specificity to generate meaningful outputs while giving users creative control. 2. Design frequent iteration and evaluation into the tool Iterating in a tight generation-evaluation loop is essential for refining outputs and ensuring they meet user expectations. OpenAI’s Dall-E is great at this. Users quickly iterate on image prompts and refine their descriptions to add additional detail. If you type “a picture of a cheeseburger on a plate”, you may then add more detail by specifying “with pepperjack cheese”. AI code generating tools work well because users can run a generated code snippet immediately to see if it works, enabling rapid iteration and validation. This quick evaluation loop produces better results and a better coder experience.  Designers of generative AI applications should pull the user in the loop early, often, in a way that is engaging rather than frustrating. Designers should also consider the user’s knowledge level. Users with domain expertise can iterate more effectively. Referring back to the FigJam example, the prompts and icons in the app quickly communicate “this is what we call a mind map” or “this is what we call a gantt chart” for users who want to generate these artifacts but don’t know the terms for them. Giving the user some basic vocabulary can help them better generate desired results quickly with less frustration. 3. Be mindful of the types of information needed LLMs excel at tasks involving general knowledge already in the base training set. For example, writing class assignments involves absorbing general information, synthesizing it, and producing a written output, so LLMs are very well-suited for that task. Use cases that require non-general information are more complex. Some questions the designer and engineer should ask include: Does this application require fresh information? Maybe this is knowledge of current events or a user’s current bank account balance. If so, that information needs to be retrieved and incorporated into the model. How much non-general information does the LLM need to know? If it’s a lot of information—like a corpus of company documentation and communication—then the model may need to be fine tuned in batch ahead of time. If the information is relatively small, a retrieval augmented generation (RAG) approach at query time may suffice.  How many sources of non-general information—small and finite or potentially infinite? General purpose agents like Operator face the challenge of potentially infinite non-general information sources. Depending on what the user requires, it could need to access their contacts, restaurant reservation lists, financial data, or even other people’s calendars. A single-purpose restaurant reservation chatbot may only need access to Yelp, OpenTable, and the user’s calendar. It’s much easier to reconcile access and authentication for a handful of known data sources. Is there context-specific information that can only come from the user? Consider our restaurant reservation chatbot. Is the user making reservations for just themselves? Probably not. “How many people and who” is a detail that only the user can provide, an example of non-public information that only the user knows. We shouldn’t expect the user to provide this information upfront and unguided. Instead, we can use prompt suggestions so they include the information. We may even be able to design the LLM to ask these questions when the detail is not provided. 4. Focus on specific use cases Broad, all-purpose chatbots often struggle to deliver consistent results due to the complexity and variability of user needs. Instead, focus on specific use cases where the AI’s shortcomings can be mitigated through thoughtful design. Narrowing the scope helps us address many of the issues above. We can identify common requests for the use case and incorporate those into prompt suggestions. We can design an iteration loop that works well with the type of thing we’re generating. We can identify sources of non-general information and devise solutions to incorporate it into the model or prompt. 5. Translation or summary tasks work well A common task for ChatGPT is to rewrite something in a different style, explain what some computer code is doing, or summarize a long document. These tasks involve converting a set of information from one form to another. We have the same concerns about non-general information and context. For instance, a Chatbot asked to explain a code script doesn’t know the system that script is part of unless that information is provided. But in general, the task of transforming or summarizing information is less prone to missing details. By definition, you have provided the details it needs. The result should have the same information in a different or more condensed form. The exception to the rules There is a case when it doesn’t matter if you break any or all of these rules—when you’re just having fun. LLMs are creative tools by nature. They can be an easel to paint on, a sandbox to build in, a blank sheet to scribe. Iteration is still important; the user wants to see the thing they’re creating as they create it. But unexpected results due to lack of information or omitted details may add to the experience. If you ask for a cheeseburger recipe, you might get some funny or interesting ingredients. If the stakes are low and the process is its own reward, don’t worry about the rules.

ChatGPT launched in 2022 and kicked off the Generative Ai boom. In the two years since, academics, technologists, and armchair experts have written libraries worth of articles on the technical underpinnings of generative AI and about the potential capabilities of both current and future generative AI models.

Surprisingly little has been written about how we interact with these tools—the human-AI interface. The point where we interact with AI models is at least as important as the algorithms and data that create them. “There is no success where there is no possibility of failure, no art without the resistance of the medium” (Raymond Chandler). In that vein, it’s useful to examine human-AI interaction and the strengths and weaknesses inherent in that interaction. If we understand the “resistance in the medium” then product managers can make smarter decisions about how to incorporate generative AI into their products. Executives can make smarter decisions about what capabilities to invest in. Engineers and designers can build around the tools’ limitations and showcase their strengths. Everyday people can know when to use generative AI and when not to.

Imagine walking into a restaurant and ordering a cheeseburger. You don’t tell the chef how to grind the beef, how hot to set the grill, or how long to toast the bun. Instead, you simply describe what you want: “I’d like a cheeseburger, medium rare, with lettuce and tomato.” The chef interprets your request, handles the implementation, and delivers the desired outcome. This is the essence of declarative interaction—focusing on the what rather than the how.

Now, imagine interacting with a Large Language Model (LLM) like ChatGPT. You don’t have to provide step-by-step instructions for how to generate a response. Instead, you describe the result you’re looking for: “A user story that lets us implement A/B testing for the Buy button on our website.” The LLM interprets your prompt, fills in the missing details, and delivers a response. Just like ordering a cheeseburger, this is a declarative mode of interaction.

Explaining the steps to make a cheeseburger is an imperative interaction. Our LLM prompts sometimes feel imperative. We might phrase our prompts like a question: ”What is the tallest mountain on earth?” This is equivalent to describing “the answer to the question ‘What is the tallest mountain on earth?’” We might phrase our prompt as a series of instructions: ”Write a summary of the attached report, then read it as if you are a product manager, then type up some feedback on the report.” But, again, we’re describing the result of a process with some context for what that process is. In this case, it is a sequence of descriptive results—the report then the feedback.

This is a more useful way to think about LLMs and generative AI. In some ways it is more accurate; the neural network model behind the curtain doesn’t explain why or how it produced one output instead of another. More importantly though, the limitations and strengths of generative AI make more sense and become more predictable when we think of these models as declarative.

LLMs as a declarative mode of interaction

Computer scientists use the term “declarative” to describe coding languages. SQL is one of the most common. The code describes the output table and the procedures in the database figure out how to retrieve and combine the data to produce the result. LLMs share many of the benefits of declarative languages like SQL or declarative interactions like ordering a cheeseburger.

  1. Focus on desired outcome: Just as you describe the cheeseburger you want, you describe the output you want from the LLM. For example, “Summarize this article in three bullet points” focuses on the result, not the process.
  2. Abstraction of implementation: When you order a cheeseburger, you don’t need to know how the chef prepares it. When submitting SQL code to a server, the server figures out where the data lives, how to fetch it, and how to aggregate it based on your description. You as the user don’t need to know how. With LLMs, you don’t need to know how the model generates the response. The underlying mechanisms are abstracted away.
  3. Filling in missing details: If you don’t specify onions on your cheeseburger, the chef won’t include them. If you don’t specify a field in your SQL code, it won’t show up in the output table. This is where LLMs differ slightly from declarative coding languages like SQL. If you ask ChatGPT to create an image of “a cheeseburger with lettuce and tomato” it may also show the burger on a sesame seed bun or include pickles, even if that wasn’t in your description. The details you omit are inferred by the LLM using the “average” or “most likely” detail depending on the context, with a bit of randomness thrown in. Ask for the cheeseburger image six times; it may show you three burgers with cheddar cheese, two with Swiss, and one with pepper jack.

Like other forms of declarative interaction, LLMs share one key limitation. If your description is vague, ambiguous, or lacks enough detail, then the result may not be what you hoped to see. It is up to the user to describe the result with sufficient detail.

This explains why we often iterate to get what we’re looking for when using LLMs and generative AI. Going back to our cheeseburger analogy, the process to generate a cheeseburger from an LLM may look like this.

  • “Make me a cheeseburger, medium rare, with lettuce and tomatoes.” The result also has pickles and uses cheddar cheese. The bun is toasted. There’s mayo on the top bun.
  • “Make the same thing but this time no pickles, use pepper jack cheese, and a sriracha mayo instead of plain mayo.” The result now has pepper jack, no pickles. The sriracha mayo is applied to the bottom bun and the bun is no longer toasted.
  • “Make the same thing again, but this time, put the sriracha mayo on the top bun. The buns should be toasted.” Finally, you have the cheeseburger you’re looking for.

This example demonstrates one of the main points of friction with human-AI interaction. Human beings are really bad at describing what they want with sufficient detail on the first attempt.

When we asked for a cheeseburger, we had to refine our description to be more specific (the type of cheese). In the second generation, some of the inferred details (whether the bun was toasted) changed from one iteration to the next, so then we had to add that specificity to our description as well. Iteration is an important part of AI-human generation.

Insight: When using generative AI, we need to design an iterative human-AI interaction loop that enables people to discover the details of what they want and refine their descriptions accordingly.

To iterate, we need to evaluate the results. Evaluation is extremely important with generative AI. Say you’re using an LLM to write code. You can evaluate the code quality if you know enough to understand it or if you can execute it and inspect the results. On the other hand, hypothetical questions can’t be tested. Say you ask ChatGPT, “What if we raise our product prices by 5 percent?” A seasoned expert could read the output and know from experience if a recommendation doesn’t take into account important details. If your product is property insurance, then increasing premiums by 5 percent may mean pushback from regulators, something an experienced veteran of the industry would know. For non-experts in a topic, there’s no way to tell if the “average” details inferred by the model make sense for your specific use case. You can’t test and iterate.

Insight: LLMs work best when the user can evaluate the result quickly, whether through execution or through prior knowledge.

The examples so far involve general knowledge. We all know what a cheeseburger is. When you start asking about non-general information—like when you can make dinner reservations next week—you delve into new points of friction.

In the next section we’ll think about different types of information, what we can expect the AI to “know”, and how this impacts human-AI interaction.

What did the AI know, and when did it know it?

Above, I explained how generative AI is a declarative mode of interaction and how that helps understand its strengths and weaknesses. Here, I’ll identify how different types of information create better or worse human-AI interactions.

Understanding the information available

When we describe what we want to an LLM, and when it infers missing details from our description, it draws from different sources of information. Understanding these sources of information is important. Here’s a useful taxonomy for information types:

  • General information used to train the base model.
  • Non-general information that the base model is not aware of.
    • Fresh information that is new or changes rapidly, like stock prices or current events.
    • Non-public information, like facts about you and where you live or about your company, its employees, its processes, or its codebase.

General information vs. non-general information

LLMs are built on a massive corpus of written word data. A large part of GPT-3 was trained on a combination of books, journals, Wikipedia, Reddit, and CommonCrawl (an open-source repository of web crawl data). You can think of the models as a highly compressed version of that data, organized in a gestalt manner—all the like things are close together. When we submit a prompt, the model takes the words we use (and any words added to the prompt behind the scenes) and finds the closest set of related words based on how those things appear in the data corpus. So when we say “cheeseburger” it knows that word is related to “bun” and “tomato” and “lettuce” and “pickles” because they all occur in the same context throughout many data sources. Even when we don’t specify pickles, it uses this gestalt approach to fill in the blanks.

This training information is general information, and a good rule of thumb is this: if it was in Wikipedia a year ago then the LLM “knows” about it. There could be new articles on Wikipedia, but that didn’t exist when the model was trained. The LLM doesn’t know about that unless told.

Now, say you’re a company using an LLM to write a product requirements document for a new web app feature. Your company, like most companies, is full of its own lingo. It has its own lore and history scattered across thousands of Slack messages, emails, documents, and some tenured employees who remember that one meeting in Q1 last year. The LLM doesn’t know any of that. It will infer any missing details from general information. You need to supply everything else. If it wasn’t in Wikipedia a year ago, the LLM doesn’t know about it. The resulting product requirements document may be full of general facts about your industry and product but could lack important details specific to your firm.

This is non-general information. This includes personal info, anything kept behind a log-in or paywall, and non-digital information. This non-general information permeates our lives, and incorporating it is another source of friction when working with generative AI.

Non-general information can be incorporated into a generative AI application in three ways:

  • Through model fine-tuning (supplying a large corpus to the base model to expand its reference data).
  • Retrieved and fed it to the model at query time (e.g., the retrieval augmented generation or “RAG” technique).
  • Supplied by the user in the prompt.

Insight: When designing any human-AI interactions, you should think about what non-general information is required, where you will get it, and how you will expose it to the AI.

Fresh information

Any information that changes in real-time or is new can be called fresh information. This includes new facts like current events but also frequently changing facts like your bank account balance. If the fresh information is available in a database or some searchable source, then it needs to be retrieved and incorporated into the application. To retrieve the information from a database, the LLM must create a query, which may require specific details that the user didn’t include.

Here’s an example. I have a chatbot that gives information on the stock market. You, the user, type the following: “What is the current price of Apple? Has it been increasing or decreasing recently?”

  • The LLM doesn’t have the current price of Apple in its training data. This is fresh, non-general information. So, we need to retrieve it from a database.
  • The LLM can read “Apple”, know that you’re talking about the computer company, and that the ticker symbol is AAPL. This is all general information.
  • What about the “increasing or decreasing” part of the prompt? You did not specify over what period—increasing in the past day, month, year? In order to construct a database query, we need more detail. LLMs are bad at knowing when to ask for detail and when to fill it in. The application could easily pull the wrong data and provide an unexpected or inaccurate answer. Only you know what these details should be, depending on your intent. You must be more specific in your prompt.

A designer of this LLM application can improve the user experience by specifying required parameters for expected queries. We can ask the user to explicitly input the time range or design the chatbot to ask for more specific details if not provided. In either case, we need to have a specific type of query in mind and explicitly design how to handle it. The LLM will not know how to do this unassisted.

Insight: If a user is expecting a more specific type of output, you need to explicitly ask for enough detail. Too little detail could produce a poor quality output.

Non-public information

Incorporating non-public information into an LLM prompt can be done if that information can be accessed in a database. This introduces privacy issues (should the LLM be able to access my medical records?) and complexity when incorporating multiple non-public sources of information.

Let’s say I have a chatbot that helps you make dinner reservations. You, the user, type the following: “Help me make dinner reservations somewhere with good Neapolitan pizza.”

  • The LLM knows what a Neapolitan pizza is and can infer that “dinner” means this is for an evening meal.
  • To do this task well, it needs information about your location, the restaurants near you and their booking status, or even personal details like dietary restrictions. Assuming all that non-public information is available in databases, bringing them all together into the prompt takes a lot of engineering work.
  • Even if the LLM could find the “best” restaurant for you and book the reservation, can you be confident it has done that correctly? You never specified how many people you need a reservation for. Since only you know this information, the application needs to ask for it upfront.

If you’re designing this LLM-based application, you can make some thoughtful choices to help with these problems. We could ask about a user’s dietary restrictions when they sign up for the app. Other information, like the user’s schedule that evening, can be given in a prompting tip or by showing the default prompt option “show me reservations for two for tomorrow at 7PM”. Promoting tips may not feel as automagical as a bot that does it all, but they are a straightforward way to collect and integrate the non-public information.

Some non-public information is large and can’t be quickly collected and processed when the prompt is given. These need to be fine-tuned in batch or retrieved at prompt time and incorporated. A chatbot that answers information about a company’s HR policies can obtain this information from a corpus of non-public HR documents. You can fine-tune the model ahead of time by feeding it the corpus. Or you can implement a retrieval augmented generation technique, searching a corpus for relevant documents and summarizing the results. Either way, the response will only be as accurate and up-to-date as the corpus itself.

Insight: When designing an AI application, you need to be aware of non-public information and how to retrieve it. Some of that information can be pulled from databases. Some needs to come from the user, which may require prompt suggestions or explicitly asking.

If you understand the types of information and treat human-AI interaction as declarative, you can more easily predict which AI applications will work and which ones won’t. In the next section we’ll look at OpenAI’s Operator and deep research products. Using this framework, we can see where these applications fall short, where they work well, and why.

Critiquing OpenAI’s Operator and deep research through a declarative lens

I have now explained how thinking of generative AI as declarative helps us understand its strengths and weaknesses. I also identified how different types of information create better or worse human-AI interactions.

Now I’ll apply these ideas by critiquing two recent products from OpenAI—Operator and deep research. It’s important to be honest about the shortcomings of AI applications. Bigger models trained on more data or using new techniques might one day solve some issues with generative AI. But other issues arise from the human-AI interaction itself and can only be addressed by making appropriate design and product choices.

These critiques demonstrate how the framework can help identify where the limitations are and how to address them.

The limitations of Operator

Journalist Casey Newton of Platformer reviewed Operator in an article that was largely positive. Newton has covered AI extensively and optimistically. Still, Newton couldn’t help but point out some of Operator’s frustrating limitations.

[Operator] can take action on your behalf in ways that are new to AI systems — but at the moment it requires a lot of hand-holding, and may cause you to throw up your hands in frustration. 

My most frustrating experience with Operator was my first one: trying to order groceries. “Help me buy groceries on Instacart,” I said, expecting it to ask me some basic questions. Where do I live? What store do I usually buy groceries from? What kinds of groceries do I want? 

It didn’t ask me any of that. Instead, Operator opened Instacart in the browser tab and begin searching for milk in grocery stores located in Des Moines, Iowa.

The prompt “Help me buy groceries on Instacart,” viewed declaratively, describes groceries being purchased using Instacart. It doesn’t have a lot of the information someone would need to buy groceries, like what exactly to buy, when it would be delivered, and to where.

It’s worth repeating: LLMs are not good at knowing when to ask additional questions unless explicitly programmed to do so in the use case. Newton gave a vague request and expected follow-up questions. Instead, the LLM filled in all the missing details with the “average”. The average item was milk. The average location was Des Moines, Iowa. Newton doesn’t mention when it was scheduled to be delivered, but if the “average” delivery time is tomorrow, then that was likely the default.

If we engineered this application specifically for ordering groceries, keeping in mind the declarative nature of AI and the information it “knows”, then we could make thoughtful design choices that improve functionality. We would need to prompt the user to specify when and where they want groceries up front (non-public information). With that information, we could find an appropriate grocery store near them. We would need access to that grocery store’s inventory (more non-public information). If we have access to the user’s previous orders, we could also pre-populate a cart with items typical to their order. If not, we may add a few suggested items and guide them to add more. By limiting the use case, we only have to deal with two sources of non-public information. This is a more tractable problem than Operator’s “agent that does it all” approach.

Newton also mentions that this process took eight minutes to complete, and “complete” means that Operator did everything up to placing the order. This is a long time with very little human-in-the-loop iteration. Like we said before, an iteration loop is very important for human-AI interaction. A better-designed application would generate smaller steps along the way and provide more frequent interaction. We could prompt the user to describe what to add to their shopping list. The user might say, “Add barbeque sauce to the list,” and see the list update. If they see a vinegar-based barbecue sauce, they can refine that by saying, “Replace that with a barbeque sauce that goes well with chicken,” and might be happier when it’s replaced by a honey barbecue sauce. These frequent iterations make the LLM a creative tool rather than a does-it-all agent. The does-it-all agent looks automagical in marketing, but a more guided approach provides more utility with a less frustrating and more delightful experience.

Elsewhere in the article, Newton gives an example of a prompt that Operator performed well: “Put together a lesson plan on the Great Gatsby for high school students, breaking it into readable chunks and then creating assignments and connections tied to the Common Core learning standard.” This prompt describes an output using much more specificity. It also solely relies on general information—the Great Gatsby, the Common Core standard, and a general sense of what assignments are. The general-information use case lends itself better to AI generation, and the prompt is explicit and detailed in its request. In this case, very little guidance was given to create the prompt, so it worked better. (In fact, this prompt comes from Ethan Mollick who has used it to evaluate AI chatbots.)

This is the risk of general-purpose AI applications like Operator. The quality of the result relies heavily on the use case and specificity provided by the user. An application with a more specific use case allows for more design guidance and can produce better output more reliably.

The limitations of deep research

Newton also reviewed deep research, which, according to OpenAI’s website, is an “agent that uses reasoning to synthesize large amounts of online information and complete multi-step research tasks for you.”

Deep research came out after Newton’s review of Operator. Newton chose an intentionally tricky prompt that prods at some of the tool’s limitations regarding fresh information and non-general information: “I wanted to see how OpenAI’s agent would perform given that it was researching a story that was less than a day old, and for which much of the coverage was behind paywalls that the agent would not be able to access. And indeed, the bot struggled more than I expected.”

Near the end of the article, Newton elaborates on some of the shortcomings he noticed with deep research.

OpenAI’s deep research suffers from the same design problem that almost all AI products have: its superpowers are completely invisible and must be harnessed through a frustrating process of trial and error.

Generally speaking, the more you already know about something, the more useful I think deep research is. This may be somewhat counterintuitive; perhaps you expected that an AI agent would be well suited to getting you up to speed on an important topic that just landed on your lap at work, for example. 

In my early tests, the reverse felt true. Deep research excels for drilling deep into subjects you already have some expertise in, letting you probe for specific pieces of information, types of analysis, or ideas that are new to you.

The “frustrating trial and error” shows a mismatch between Newton’s expectations and a necessary aspect of many generative AI applications. A good response requires more information than the user will probably give in the first attempt. The challenge is to design the application and set the user’s expectations so that this interaction is not frustrating but exciting.

Newton’s more poignant criticism is that the application requires already knowing something about the topic for it to work well. From the perspective of our framework, this makes sense. The more you know about a topic, the more detail you can provide. And as you iterate, having knowledge about a topic helps you observe and evaluate the output. Without the ability to describe it well or evaluate the results, the user is less likely to use the tool to generate good output.

A version of deep research designed for lawyers to perform legal research could be powerful. Lawyers have an extensive and common vocabulary for describing legal matters, and they’re more likely to see a result and know if it makes sense. Generative AI tools are fallible, though. So, the tool should focus on a generation-evaluation loop rather than writing a final draft of a legal document.

The article also highlights many improvements compared to Operator. Most notably, the bot asked clarifying questions. This is the most impressive aspect of the tool. Undoubtedly, it helps that deep search has a focused use-case of retrieving and summarizing general information instead of a does-it-all approach. Having a focused use case narrows the set of likely interactions, letting you design better guidance into the prompt flow.

Good application design with generative AI

Designing effective generative AI applications requires thoughtful consideration of how users interact with the technology, the types of information they need, and the limitations of the underlying models. Here are some key principles to guide the design of generative AI tools:

1. Constrain the input and focus on providing details

Applications are inputs and outputs. We want the outputs to be useful and pleasant. By giving a user a conversational chatbot interface, we allow for a vast surface area of potential inputs, making it a challenge to guarantee useful outputs. One strategy is to limit or guide the input to a more manageable subset.

For example, FigJam, a collaborative whiteboarding tool, uses pre-set template prompts for timelines, Gantt charts, and other common whiteboard artifacts. This provides some structure and predictability to the inputs. Users still have the freedom to describe further details like color or the content for each timeline event. This approach ensures that the AI has enough specificity to generate meaningful outputs while giving users creative control.

2. Design frequent iteration and evaluation into the tool

Iterating in a tight generation-evaluation loop is essential for refining outputs and ensuring they meet user expectations. OpenAI’s Dall-E is great at this. Users quickly iterate on image prompts and refine their descriptions to add additional detail. If you type “a picture of a cheeseburger on a plate”, you may then add more detail by specifying “with pepperjack cheese”.

AI code generating tools work well because users can run a generated code snippet immediately to see if it works, enabling rapid iteration and validation. This quick evaluation loop produces better results and a better coder experience. 

Designers of generative AI applications should pull the user in the loop early, often, in a way that is engaging rather than frustrating. Designers should also consider the user’s knowledge level. Users with domain expertise can iterate more effectively.

Referring back to the FigJam example, the prompts and icons in the app quickly communicate “this is what we call a mind map” or “this is what we call a gantt chart” for users who want to generate these artifacts but don’t know the terms for them. Giving the user some basic vocabulary can help them better generate desired results quickly with less frustration.

3. Be mindful of the types of information needed

LLMs excel at tasks involving general knowledge already in the base training set. For example, writing class assignments involves absorbing general information, synthesizing it, and producing a written output, so LLMs are very well-suited for that task.

Use cases that require non-general information are more complex. Some questions the designer and engineer should ask include:

  • Does this application require fresh information? Maybe this is knowledge of current events or a user’s current bank account balance. If so, that information needs to be retrieved and incorporated into the model.
  • How much non-general information does the LLM need to know? If it’s a lot of information—like a corpus of company documentation and communication—then the model may need to be fine tuned in batch ahead of time. If the information is relatively small, a retrieval augmented generation (RAG) approach at query time may suffice. 
  • How many sources of non-general information—small and finite or potentially infinite? General purpose agents like Operator face the challenge of potentially infinite non-general information sources. Depending on what the user requires, it could need to access their contacts, restaurant reservation lists, financial data, or even other people’s calendars. A single-purpose restaurant reservation chatbot may only need access to Yelp, OpenTable, and the user’s calendar. It’s much easier to reconcile access and authentication for a handful of known data sources.
  • Is there context-specific information that can only come from the user? Consider our restaurant reservation chatbot. Is the user making reservations for just themselves? Probably not. “How many people and who” is a detail that only the user can provide, an example of non-public information that only the user knows. We shouldn’t expect the user to provide this information upfront and unguided. Instead, we can use prompt suggestions so they include the information. We may even be able to design the LLM to ask these questions when the detail is not provided.

4. Focus on specific use cases

Broad, all-purpose chatbots often struggle to deliver consistent results due to the complexity and variability of user needs. Instead, focus on specific use cases where the AI’s shortcomings can be mitigated through thoughtful design.

Narrowing the scope helps us address many of the issues above.

  • We can identify common requests for the use case and incorporate those into prompt suggestions.
  • We can design an iteration loop that works well with the type of thing we’re generating.
  • We can identify sources of non-general information and devise solutions to incorporate it into the model or prompt.

5. Translation or summary tasks work well

A common task for ChatGPT is to rewrite something in a different style, explain what some computer code is doing, or summarize a long document. These tasks involve converting a set of information from one form to another.

We have the same concerns about non-general information and context. For instance, a Chatbot asked to explain a code script doesn’t know the system that script is part of unless that information is provided.

But in general, the task of transforming or summarizing information is less prone to missing details. By definition, you have provided the details it needs. The result should have the same information in a different or more condensed form.

The exception to the rules

There is a case when it doesn’t matter if you break any or all of these rules—when you’re just having fun. LLMs are creative tools by nature. They can be an easel to paint on, a sandbox to build in, a blank sheet to scribe. Iteration is still important; the user wants to see the thing they’re creating as they create it. But unexpected results due to lack of information or omitted details may add to the experience. If you ask for a cheeseburger recipe, you might get some funny or interesting ingredients. If the stakes are low and the process is its own reward, don’t worry about the rules.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Nvidia is still working with suppliers on RAM chips for Rubin

Nvidia changed its requirements for suppliers of the next generation of high-bandwidth memory, HBM4, but is close to certifying revised chips from Samsung Electronics for use in its AI systems, according to reports. Nvidia revised its specifications for memory chips for its Rubin platform in the third quarter of 2025,

Read More »

Storage shortage may cause AI delays for enterprises

Higher prices ahead All indicators are showing a steep price increase for memory and storage in 2026. Brad Gastwirth, for example, says he met with many of the most important players in the market at CES earlier this month, and his analysis suggests there will be a 50% or more

Read More »

Rust 1.93 updates bundled musl library to boost networking

The Rust team has unveiled Rust 1.93, the latest version of the programming language designed to create fast and safe system-level software. This release improves operations involving the DNS resolver for the musl implementation of the  C standard library. Linux binaries are expected to be more reliable for networking as

Read More »

Energy Secretary Issues Emergency Orders to Deploy Backup Generation in the Mid-Atlantic and Carolinas Following Winter Storm Fern

Secretary Wright issues two emergency orders to stabilize the grid in the Mid-Atlantic and Carolinas to save lives and lower costs after Winter Storm Fern. WASHINGTON—The U.S. Department of Energy (DOE) today issued two emergency orders authorizing the deployment of backup generation resources to mitigate blackouts in the Mid-Atlantic and Carolinas following Winter Storm Fern. Issued pursuant to Section 202(c) of the Federal Power Act, the orders authorize PJM Interconnection, LLC (PJM) and Duke Energy Carolinas, LLC and Duke Energy Progress (collectively, Duke Energy), respectively, to deploy backup generation resources at data centers and other major facilities. Today’s action follows a letter Secretary Wright sent Thursday to grid operators asking them to be prepared to use backup generation if needed to mitigate the risk of blackouts from the storm. DOE estimates more than 35 GW of unused backup generation remains available nationwide. The order will help PJM and Duke respond to extreme temperatures and storm damage across the Mid-Atlantic and Carolinas and reduce costs for Americans in the days following the storm. These actions mark the second set of emergency orders issued to PJM and Duke during Winter Storm Fern, following earlier orders to run specified resources located within the PJM and Duke regions, regardless of limits established by environmental permits or state law. “The Trump administration is committed to unleashing all available power generation needed to keep Americans safe during Winter Storm Fern,” said U.S. Energy Secretary Wright. “Unfortunately, the last administration had the nation on track to lose significant amounts of baseload power, but we are doing everything in our power to reverse those reckless decisions. The Trump administration will continue taking action to ensure that the 35 GW of untapped backup generation that exists across the country can be deployed as needed during Winter Storm Fern and

Read More »

Ukraine Says It Attacked Refinery in Southern Russia

Ukraine said it hit a small oil refinery in southern Russia, the third attack this month on its foe’s fuel-producing industry.  Explosions were recorded at the territory of the Slavyansk facility after Ukrainian drones struck it overnight and hit “elements of a primary crude processing unit”, the General Staff in Kyiv said in a Telegram statement. The scale of damage of the facility, which is involved in supplying Russian military forces, is being clarified, it added. Bloomberg couldn’t independently verify the claim. Slavyansk ECO, the operator of the refinery, didn’t immediately respond to a request for comment.  The refinery is in the Krasnodar region, near Ukraine. Kyiv and Moscow continue to trade strikes on energy infrastructure even as Ukrainian, Russian and US delegations held talks last week aiming at ending the Kremlin’s war on its neighbor that’s about to enter a fifth year.   Ukraine has reduced the intensity of attacks on Russian refineries so far this year with the three targeted in January comparing with 11 of them in December. Kyiv has also gone after ports and tankers handling Moscow’s oil. At the same time Russia has intensified strikes on Ukraine’s power sector, leaving hundreds of thousands of people without heating, water and electricity amid freezing temperatures.  Ukraine’s capital, Kyiv, and other cities are rushing to restore power after huge Russian air-strikes over the weekend caused widespread outages, even as peace talks were underway in the United Arab Emirates. The Slavyansk refinery processed an average 467,000 tons of crude a month in the first half of 2025, according to its financial report. That equates to almost 115,000 barrels a day based on the 7.33 barrels-per-ton conversion rate.  WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial

Read More »

Crude Eases Despite Winter Storm Risks

Oil edged down as an improving supply outlook out of OPEC+ member Kazakhstan overshadowed fears that a winter storm which pounded swaths of the US with snow, ice and freezing temperatures will crimp production. West Texas Intermediate fell slightly to settle below $61 a barrel, after climbing 2.9% on Friday, the biggest gain in two weeks. Disruptions to Kazakh oil flows that had tightened the European crude market eased as a key Black Sea terminal that accounts for most of Kazakhstan’s exports was brought back into service. At the same time, output from the country’s giant Tengiz field is set to restart shortly. The fresh injection of supply mitigated fears of shortages as investors assess the fallout from a winter storm that gripped much of the US. Several plants, including ExxonMobil Corp.’s Baytown mega refinery, curtailed operations ahead of the freeze, while diesel rallied by the most since November on higher demand for heating. The full extent of cold-related supply shut-ins remains unclear. Meanwhile, tensions persist in the Middle East after US President Donald Trump dispatched naval assets to the region, prompting speculation he may follow through on threats to attack Iran’s regime and spurring concern over the country’s oil output. Geopolitical turmoil and short-term supply disruptions have supported crude prices amid widespread expectations that swelling output from the Americas will create a glut. Hedge funds raised their bullish bets on crude to the highest since August in the week through Jan. 20. “The constant stir in geopolitics is keeping risk premiums alive,” said Priyanka Sachdeva, a senior market analyst at brokerage Phillip Nova Pte in Singapore. “However, the broader market remains cautious with production growth from the US and other major exporters outpacing demand growth.” OPEC+ delegates, meanwhile, said they are currently expecting to stick with plans to keep

Read More »

IEA upgrades forecast for 2026 oil demand growth

Global oil demand growth is projected to average 930,000 b/d in 2026, up from 850,000 b/d in 2025, the International Energy Agency (IEA) said in its January 2026 Oil Market Montly Report, reflecting a normalization of economic conditions after last year’s tariff disruptions and oil prices trending lower than a year ago.  This contrasts with the agency’s earlier projections of 830,000 b/d for 2025 and 860,000 b/d for 2026. The recovery in petrochemical feedstock demand will be partially offset by a continued slowdown in gasoline demand growth. All of the growth in 2026 will again come from non-OECD countries, IEA said in the report.  Global oil supply fell by 350,000 b/d month-on-month in December to 107.4 million b/d, 1.6 million b/d below the record high reached in September. Production declines in Kazakhstan and some Middle Eastern OPEC producers were partially offset by a strong rebound in Russian output. Global oil supply is now projected to grow by 2.5 million b/d this year to 108.7 million b/d, following a 3 million b/d increase in 2025. Non-OPEC+ countries contributed 1.8 million b/d of the growth in 2025 and 1.3 million b/d of the growth in 2026. “The current global surplus has been underpinned by a robust growth in oil supply since the start of 2025, with non-OPEC+ producers accounting for close to 60% of the 3 million b/d total increase. Saudi Arabia has led the rise in OPEC+ supply following the unwinding of production cuts, while the Americas quintet of the US, Canada, Brazil, Guyana, and Argentina has dominated non-OPEC+ increases. Barring any significant sustained disruptions to output – and if OPEC+ stays the course with its current production policy and activity in the US shale patch avoids major downshifts – global oil supplies could increase by a further 2.5 million b/d

Read More »

Hamm suspends Bakken drilling; Continental reallocates capital to Argentina’s Neuquén basin

Continental Resources has suspended new drilling activity in North Dakota’s Bakken shale, citing inadequate economics under current oil price conditions. The decision was disclosed by founder and controlling shareholder Harold Hamm during an investor call hosted by Bloomberg, where Hamm said prevailing prices no longer support incremental drilling in the play. After more than 30 years of continuous activity in the Bakken, margins have compressed to levels below Continental’s return thresholds, Hamm said. Elevated service costs and weaker crude pricing have pushed breakeven requirements above current market levels, he continued.  The company characterized the move as a tactical pause rather than a permanent exit, indicating that drilling could resume if pricing improves.  The Bakken was central to the early expansion of horizontal drilling and hydraulic fracturing in the US. However, as the play matures, productivity gains have moderated and capital efficiency has come under pressure.  Argentina Meanwhile, Continental is advancing its first large-scale expansion outside the US, targeting Vaca Muerta in Argentina’s Neuquén basin. On Jan. 5, 2026, Continental finalized an agreement with Pan American Energy (PAE), acquiring a 20% non-operated interest in four shale blocks. PAE Group chief executive Marcos Bulgheroni said Continental’s participation adds technical expertise focused on efficiency and risk reduction. Continental chief executive officer Doug Lawler said the company views Vaca Muerta as one of the most competitive shale plays globally. That deal follows Continental’s acquisition of a 90% operated interest in Los Toldos II Oeste from Pluspetrol, establishing the company in Argentina as both an operator and a non-operating partner.

Read More »

Venture Global gets arbitrator’s nod in Repsol dispute

An arbitrator has ruled in favor of Venture Global Inc. in the liquefied natural gas company’s dispute with Repsol LNG Holding SA over its decision to delay the commercial operations date for its 10-million tonne/year Calcasieu Pass LNG plant. In a filing with the US Securities and Exchange Commission, executives of Virginia-based Venture Global said the International Chamber of Commerce’s arbitration body has found that the company acted as a “reasonable and prudent operator” and hadn’t breached the terms of its contract with Spain’s Repsol. The companies’ tussle centers on Venture Global’s decision earlier this decade to—citing problems with some Calcasieu Pass equipment as well as the plant’s power infrastructure—hold off on declaring COD but still export some cargoes during the commissioning phase at spot rates in early 2022. “The company is pleased that another arbitral tribunal has ruled in [Venture Global Calcasieu Pass LLC]’s favor in the proceeding with Repsol,” Venture Global’s SEC filing reads. “Multiple proceedings have now affirmed what the company has stated from the outset: VGCP has fully honored the clear and mutually agreed-upon terms of its long-term contracts without exception.” Repsol and other big energy names—Shell, bp and China Petroleum & Chemical Corp. among them—had claimed Venture Global was profiteering from high spot rates rather than meeting its contracts with them and took their cases to the International Chamber of Commerce, claiming damages that could have topped $7 billion. The ICC’s arbitrators also have sided with Venture Global in Shell’s case but last October ruled in favor of bp, whose executives’ claim of damages of at least $1 billion is expected to be adjudicated this year. Venture Global—whose leaders declared COD for Calcasieu Pass last April—nearly 4 months ago settled its dispute with China Petroleum & Chemical Corp. Shares of Venture Global (Ticker: VG) were

Read More »

Photonic chip vendor snags Gates investment

“Moore’s Law is slowing, but AI can’t afford to wait. Our breakthrough in photonics unlocks an entirely new dimension of scaling, by packing massive optical parallelism on a single chip,” said Patrick Bowen, CEO of Neurophos. “This physics-level shift means both efficiency and raw speed improve as we scale up, breaking free from the power walls that constrain traditional GPUs.” The new funding includes investments from Microsoft’s investment fund M12 that will help speed up delivery of Neurophos’ first integrated photonic compute system, including datacenter-ready OPU modules. Neurophos is not the only company exploring this field. Last April, Lightmatter announced the launch of photonic chips to tackle data center bottlenecks, And in 2024, IBM said its researchers were exploring optical chips and developing a prototype in this area.

Read More »

Intel wrestling with CPU supply shortage

“We have important customers in the data center side. We have important OEM customers on both data center and client and that needs to be our priority to get the limited supply we have to those customers,” he added. CEO Lip-Bu Tan added that the continuing proliferation and diversification of AI workloads is placing significant capacity constraints on traditional and new hardware infrastructure, reinforcing the growing and essential role CPUs play in the AI era. Because of this, Intel decided to simplify its server road map, focusing resources on the 16-channel Diamond Rapids product and accelerate the introduction of Coral Rapids. Intel had removed multithreading from diamond Rapids, presumably to get rid of the performance bottlenecks. With each core running two threads, they often competed for resources. That’s why, for example, Ampere does not use threading but instead applies many more cores per CPU. With Coral Rapids, Intel is not only reintroducing multi-threading back into our data center road map but working closely with Nvidia to build a custom Xeon fully integrated with their NVLink technology to Build the tighter connection between Intel Xeon processors and Nvidia GPUs. Another aspect impacting supply has been yields or the new 18A process node. Tan said he was disappointed that the company could not fully meet the demand of the markets, and that while yields are in line with internal plans, “they’re still below where I want them to be,” Tan said.  Tan said yields for 18A are improving month-over-month and Intel is targeting a 7% to 8% improvement each month.

Read More »

Intel’s AI pivot could make lower-end PCs scarce in 2026

However, he noted, “CPUs are not being cannibalized by GPUs. Instead, they have become ‘chokepoints’ in AI infrastructure.” For instance, CPUs such as Granite Rapids are essential in GPU clusters, and for handling agentic AI workloads and orchestrating distributed inference. How pricing might increase for enterprises Ultimately, rapid demand for higher-end offerings resulted in foundry shortages of Intel 10/7 nodes, Bickley noted, which represent the bulk of the company’s production volume. He pointed out that it can take up to three quarters for new server wafers to move through the fab process, so Intel will be “under the gun” until at least Q2 2026, when it projects an increase in chip production. Meanwhile, manufacturing capacity for Xeon is currently sold out for 2026, with varying lead times by distributor, while custom silicon programs are seeing lead times of 6 to 8 months, with some orders rolling into 2027, Bickley said. In the data center, memory is the key bottleneck, with expected price increases of more than 65% year over year in 2026 and up to 25% for NAND Flash, he noted. Some specific products have already seen price inflation of over 1,000% since 2025, and new greenfield capacity for memory is not expected until 2027 or 2028. Moor’s Sag was a little more optimistic, forecasting that, on the client side, “memory prices will probably stabilize this year until more capacity comes online in 2027.” How enterprises can prepare Supplier diversification is the best solution for enterprises right now, Sag noted. While it might make things more complex, it also allows data center operators to better absorb price shocks because they can rebalance against suppliers who have either planned better or have more resilient supply chains.

Read More »

Reports of SATA’s demise are overblown, but the technology is aging fast

The SATA 1.0 interface made its debut in 2003. It was developed by a consortium consisting of Intel, Dell, and storage vendors like Seagate and Maxtor. It quickly advanced to SATA III in 2009, but there never was a SATA IV. There was just nibbling around the edges with incremental updates as momentum and emphasis shifted to PCI Express and NVMe. So is there any life to be had in the venerable SATA interface? Surprisingly, yes, say the analysts. “At a high level, yes, SATA for consumer is pretty much a dead end, although if you’re storing TB of photos and videos, it is still the least expensive option,” said Bob O’Donnell, president and chief analyst with TECHnalysis Research. Similarly for enterprise, for massive storage demands, the 20 and 30 TB SATA drives from companies like Seagate and WD are apparently still in wide use in cloud data centers for things like cold storage. “In fact, both of those companies are seeing recording revenues based, in part, on the demand for these huge, high-capacity low-cost drives,” he said. “SATA doesn’t make much sense anymore. It underperforms NVMe significantly,” said Rob Enderle, principal analyst with The Enderle Group. “It really doesn’t make much sense to continue make it given Samsung allegedly makes three to four times more margin on NVMe.” And like O’Donnell, Enderle sees continued life for SATA-based high-capacity hard drives. “There will likely be legacy makers doing SATA for some time. IT doesn’t flip technology quickly and SATA drives do wear out, so there will likely be those producing legacy SATA products for some time,” he said.

Read More »

DCN becoming the new WAN for AI-era applications

“DCN is increasingly treated as an end-to-end operating model that standardizes connectivity, security policy enforcement, and telemetry across users, the middle mile, and cloud/application edges,” Sanchez said. Dell’Oro defines DCN as platforms and services that deliver consistent connectivity, policy enforcement, and telemetry from users, across the WAN, to distributed cloud and application edges spanning branch sites, data centers and public clouds. The category is gaining relevance as hybrid architectures and AI-era traffic patterns increase the operational penalty for fragmented control planes. DCN buyers are moving beyond isolated upgrades and are prioritizing architectures that reduce operational seams across connectivity, security and telemetry so that incident response and change control can follow a single thread, according to Dell’Oro’s research. What makes DCN distinct is that it links user-to-application experience with where policy and visibility are enforced. This matters as application delivery paths become more dynamic and workloads shift between on-premises data centers, public cloud, and edge locations. The architectural requirement is eliminating handoffs between networking and security teams rather than optimizing individual network segments. Where DCN is growing the fastest Cloud/application edge is the fastest-growing DCN pillar. This segment deploys policy enforcement and telemetry collection points adjacent to workloads rather than backhauling traffic to centralized security stacks. “Multi-cloud remains a reality, but it is no longer the durable driver by itself,” Sanchez said. “Cloud/application edge is accelerating because enterprises are trying to make application paths predictable and secure across hybrid environments, and that requires pushing application-aware steering, policy enforcement, and unified telemetry closer to workloads.”

Read More »

Edged US Builds Waterless, High-Density AI Data Center Campuses at Scale

Edged US is targeting a narrow but increasingly valuable lane of the hyperscale AI infrastructure market: high-density compute delivered at speed, paired with a sustainability posture centered on waterless, closed-loop cooling and a portfolio-wide design PUE target of roughly 1.15. Two recent announcements illustrate the model. In Aurora, Illinois, Edged is developing a 72-MW facility purpose-built for AI training and inference, with liquid-to-chip cooling designed to support rack densities exceeding 200 kW. In Irving, Texas, a 24-MW campus expansion combines air-cooled densities above 120 kW per rack with liquid-to-chip capability reaching 400 kW. Taken together, the projects point to a consistent strategy: standardized, multi-building campuses in major markets; a vertically integrated technical stack with cooling at its core; and an operating model built around repeatable designs, modular systems, and readiness for rapidly escalating AI densities. A Campus-First Platform Strategy Edged US’s platform strategy is built around campus-scale expansion rather than one-off facilities. The company positions itself as a gigawatt-scale, AI-ready portfolio expanding across major U.S. metros through repeatable design targets and multi-building campuses: an emphasis that is deliberate and increasingly consequential. In Chicago/Aurora, Edged is developing a multi-building campus with an initial facility already online and a second 72-MW building under construction. Dallas/Irving follows the same playbook: the first facility opened in January 2025, with a second 24-MW building approved unanimously by the city. Taken together with developments in Atlanta, Chicago, Columbus, Dallas, Des Moines, Kansas City, and Phoenix, the footprint reflects a portfolio-first mindset rather than a collection of bespoke sites. This focus on campus-based expansion matters because the AI factory era increasingly rewards developers that can execute three things at once: Lock down power and land at scale. Standardize delivery across markets. Operate efficiently while staying aligned with community and regulatory expectations. Edged is explicitly selling the second

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »