Stay Ahead, Stay ONMINE

Mastering Prompt Engineering with Functional Testing: A Systematic Guide to Reliable LLM Outputs

Creating efficient prompts for large language models often starts as a simple task… but it doesn’t always stay that way. Initially, following basic best practices seems sufficient: adopt the persona of a specialist, write clear instructions, require a specific response format, and include a few relevant examples. But as requirements multiply, contradictions emerge, and even minor modifications can introduce unexpected failures. What was working perfectly in one prompt version suddenly breaks in another. If you have ever felt trapped in an endless loop of trial and error, adjusting one rule only to see another one fail, you’re not alone! The reality is that traditional prompt optimisation is clearly missing a structured, more scientific approach that will help to ensure reliability. That’s where functional testing for prompt engineering comes in! This approach, inspired by methodologies of experimental science, leverages automated input-output testing with multiple iterations and algorithmic scoring to turn prompt engineering into a measurable, data-driven process.  No more guesswork. No more tedious manual validation. Just precise and repeatable results that allow you to fine-tune prompts efficiently and confidently. In this article, we will explore a systematic approach for mastering prompt engineering, which ensures your Llm outputs will be efficient and reliable even for the most complex AI tasks. Balancing precision and consistency in prompt optimisation Adding a large set of rules to a prompt can introduce partial contradictions between rules and lead to unexpected behaviors. This is especially true when following a pattern of starting with a general rule and following it with multiple exceptions or specific contradictory use cases. Adding specific rules and exceptions can cause conflict with the primary instruction and, potentially, with each other. What might seem like a minor modification can unexpectedly impact other aspects of a prompt. This is not only true when adding a new rule but also when adding more detail to an existing rule, like changing the order of the set of instructions or even simply rewording it. These minor modifications can unintentionally change the way the model interprets and prioritizes the set of instructions. The more details you add to a prompt, the greater the risk of unintended side effects. By trying to give too many details to every aspect of your task, you increase as well the risk of getting unexpected or deformed results. It is, therefore, essential to find the right balance between clarity and a high level of specification to maximise the relevance and consistency of the response. At a certain point, fixing one requirement can break two others, creating the frustrating feeling of taking one step forward and two steps backward in the optimization process. Testing each change manually becomes quickly overwhelming. This is especially true when one needs to optimize prompts that must follow numerous competing specifications in a complex AI task. The process cannot simply be about modifying the prompt for one requirement after the other, hoping the previous instruction remains unaffected. It also can’t be a system of selecting examples and checking them by hand. A better process with a more scientific approach should focus on ensuring repeatability and reliability in prompt optimization. From laboratory to AI: Why testing LLM responses requires multiple iterations Science teaches us to use replicates to ensure reproducibility and build confidence in an experiment’s results. I have been working in academic research in chemistry and biology for more than a decade. In those fields, experimental results can be influenced by a multitude of factors that can lead to significant variability. To ensure the reliability and reproducibility of experimental results, scientists mostly employ a method known as triplicates. This approach involves conducting the same experiment three times under identical conditions, allowing the experimental variations to be of minor importance in the result. Statistical analysis (standard mean and deviation) conducted on the results, mostly in biology, allows the author of an experiment to determine the consistency of the results and strengthens confidence in the findings. Just like in biology and chemistry, this approach can be used with LLMs to achieve reliable responses. With LLMs, the generation of responses is non-deterministic, meaning that the same input can lead to different outputs due to the probabilistic nature of the models. This variability is challenging when evaluating the reliability and consistency of LLM outputs. In the same way that biological/chemical experiments require triplicates to ensure reproducibility, testing LLMs should need multiple iterations to measure reproducibility. A single test by use case is, therefore, not sufficient because it does not represent the inherent variability in LLM responses. At least five iterations per use case allow for a better assessment. By analyzing the consistency of the responses across these iterations, one can better evaluate the reliability of the model and identify any potential issues or variation. It ensures that the output of the model is correctly controlled. Multiply this across 10 to 15 different prompt requirements, and one can easily understand how, without a structured testing approach, we end up spending time in trial-and-error testing with no efficient way to assess quality. A systematic approach: Functional testing for prompt optimization To address these challenges, a structured evaluation methodology can be used to ease and accelerate the testing process and enhance the reliability of LLM outputs. This approach has several key components: Data fixtures: The approach’s core center is the data fixtures, which are composed of predefined input-output pairs specifically created for prompt testing. These fixtures serve as controlled scenarios that represent the various requirements and edge cases the LLM must handle. By using a diverse set of fixtures, the performance of the prompt can be evaluated efficiently across different conditions. Automated test validation: This approach automates the validation of the requirements on a set of data fixtures by comparison between the expected outputs defined in the fixtures and the LLM response. This automated comparison ensures consistency and reduces the potential for human error or bias in the evaluation process. It allows for quick identification of discrepancies, enabling fine and efficient prompt adjustments. Multiple iterations: To assess the inherent variability of the LLM responses, this method runs multiple iterations for each test case. This iterative approach mimics the triplicate method used in biological/chemical experiments, providing a more robust dataset for analysis. By observing the consistency of responses across iterations, we can better assess the stability and reliability of the prompt. Algorithmic scoring: The results of each test case are scored algorithmically, reducing the need for long and laborious « human » evaluation. This scoring system is designed to be objective and quantitative, providing clear metrics for assessing the performance of the prompt. And by focusing on measurable outcomes, we can make data-driven decisions to optimize the prompt effectively.      Step 1: Defining test data fixtures Selecting or creating compatible test data fixtures is the most challenging step of our systematic approach because it requires careful thought. A fixture is not only any input-output pair; it must be crafted meticulously to evaluate the most accurate as possible performance of the LLM for a specific requirement. This process requires: 1. A deep understanding of the task and the behavior of the model to make sure the selected examples effectively test the expected output while minimizing ambiguity or bias. 2. Foresight into how the evaluation will be conducted algorithmically during the test. The quality of a fixture, therefore, depends not only on the good representativeness of the example but also on ensuring it can be efficiently tested algorithmically. A fixture consists of:     • Input example: This is the data that will be given to the LLM for processing. It should represent a typical or edge-case scenario that the LLM is expected to handle. The input should be designed to cover a wide range of possible variations that the LLM might have to deal with in production.     • Expected output: This is the expected result that the LLM should produce with the provided input example. It is used for comparison with the actual LLM response output during validation. Step 2: Running automated tests Once the test data fixtures are defined, the next step involves the execution of automated tests to systematically evaluate the performance of the LLM response on the selected use cases. As previously stated, this process makes sure that the prompt is thoroughly tested against various scenarios, providing a reliable evaluation of its efficiency. Execution process     1. Multiple iterations: For each test use case, the same input is provided to the LLM multiple times. A simple for loop in nb_iter with nb_iter = 5 and voila!     2. Response comparison: After each iteration, the LLM response is compared to the expected output of the fixture. This comparison checks whether the LLM has correctly processed the input according to the specified requirements.     3. Scoring mechanism: Each comparison results in a score:         ◦ Pass (1): The response matches the expected output, indicating that the LLM has correctly handled the input.         ◦ Fail (0): The response does not match the expected output, signaling a discrepancy that needs to be fixed.     4. Final score calculation: The scores from all iterations are aggregated to calculate the overall final score. This score represents the proportion of successful responses out of the total number of iterations. A high score, of course, indicates high prompt performance and reliability. Example: Removing author signatures from an article Let’s consider a simple scenario where an AI task is to remove author signatures from an article. To efficiently test this functionality, we need a set of fixtures that represent the various signature styles.  A dataset for this example could be: Example InputExpected OutputA long articleJean LeblancThe long articleA long articleP. W. HartigThe long articleA long articleMCZThe long article Validation process: Signature removal check: The validation function checks if the signature is absent from the rewritten text. This is easily done programmatically by searching for the signature needle in the haystack output text. Test failure criteria: If the signature is still in the output, the test fails. This indicates that the LLM did not correctly remove the signature and that further adjustments to the prompt are required. If it is not, the test is passed.  The test evaluation provides a final score that allows a data-driven assessment of the prompt efficiency. If it scores perfectly, there is no need for further optimization. However, in most cases, you will not get a perfect score because either the consistency of the LLM response to a case is low (for example, 3 out of 5 iterations scored positive) or there are edge cases that the model struggles with (0 out of 5 iterations).  The feedback clearly indicates that there is still room for further improvements and it guides you to reexamine your prompt for ambiguous phrasing, conflicting rules, or edge cases. By continuously monitoring your score alongside your prompt modifications, you can incrementally reduce side effects, achieve greater efficiency and consistency, and approach an optimal and reliable output.  A perfect score is, however, not always achievable with the selected model. Changing the model might just fix the situation. If it doesn’t, you know the limitations of your system and can take this fact into account in your workflow. With luck, this situation might just be solved in the near future with a simple model update.  Benefits of this method  Reliability of the result: Running five to ten iterations provides reliable statistics on the performance of the prompt. A single test run may succeed once but not twice, and consistent success for multiple iterations indicates a robust and well-optimized prompt. Efficiency of the process: Unlike traditional scientific experiments that may take weeks or months to replicate, automated testing of LLMs can be carried out quickly. By setting a high number of iterations and waiting for a few minutes, we can obtain a high-quality, reproducible evaluation of the prompt efficiency. Data-driven optimization: The score obtained from these tests provides a data-driven assessment of the prompt’s ability to meet requirements, allowing targeted improvements. Side-by-side evaluation: Structured testing allows for an easy assessment of prompt versions. By comparing the test results, one can identify the most effective set of parameters for the instructions (phrasing, order of instructions) to achieve the desired results. Quick iterative improvement: The ability to quickly test and iterate prompts is a real advantage to carefully construct the prompt ensuring that the previously validated requirements remain as the prompt increases in complexity and length. By adopting this automated testing approach, we can systematically evaluate and enhance prompt performance, ensuring consistent and reliable outputs with the desired requirements. This method saves time and provides a robust analytical tool for continuous prompt optimization. Systematic prompt testing: Beyond prompt optimization Implementing a systematic prompt testing approach offers more advantages than just the initial prompt optimization. This methodology is valuable for other aspects of AI tasks:     1. Model comparison:         ◦ Provider evaluation: This approach allows the efficient comparison of different LLM providers, such as ChatGPT, Claude, Gemini, Mistral, etc., on the same tasks. It becomes easy to evaluate which model performs the best for their specific needs.         ◦ Model version: State-of-the-art model versions are not always necessary when a prompt is well-optimized, even for complex AI tasks. A lightweight, faster version can provide the same results with a faster response. This approach allows a side-by-side comparison of the different versions of a model, such as Gemini 1.5 flash vs. 1.5 pro vs. 2.0 flash or ChatGPT 3.5 vs. 4o mini vs. 4o, and allows the data-driven selection of the model version.     2. Version upgrades:         ◦ Compatibility verification: When a new model version is released, systematic prompt testing helps validate if the upgrade maintains or improves the prompt performance. This is crucial for ensuring that updates do not unintentionally break the functionality.         ◦ Seamless Transitions: By identifying key requirements and testing them, this method can facilitate better transitions to new model versions, allowing fast adjustment when necessary in order to maintain high-quality outputs.     3. Cost optimization:         ◦ Performance-to-cost ratio: Systematic prompt testing helps in choosing the best cost-effective model based on the performance-to-cost ratio. We can efficiently identify the most efficient option between performance and operational costs to get the best return on LLM costs. Overcoming the challenges The biggest challenge of this approach is the preparation of the set of test data fixtures, but the effort invested in this process will pay off significantly as time passes. Well-prepared fixtures save considerable debugging time and enhance model efficiency and reliability by providing a robust foundation for evaluating the LLM response. The initial investment is quickly returned by improved efficiency and effectiveness in LLM development and deployment. Quick pros and cons Key advantages: Continuous improvement: The ability to add more requirements over time while ensuring existing functionality stays intact is a significant advantage. This allows for the evolution of the AI task in response to new requirements, ensuring that the system remains up-to-date and efficient. Better maintenance: This approach enables the easy validation of prompt performance with LLM updates. This is crucial for maintaining high standards of quality and reliability, as updates can sometimes introduce unintended changes in behavior. More flexibility: With a set of quality control tests, switching LLM providers becomes more straightforward. This flexibility allows us to adapt to changes in the market or technological advancements, ensuring we can always use the best tool for the job. Cost optimization: Data-driven evaluations enable better decisions on performance-to-cost ratio. By understanding the performance gains of different models, we can choose the most cost-effective solution that meets the needs. Time savings: Systematic evaluations provide quick feedback, reducing the need for manual testing. This efficiency allows to quickly iterate on prompt improvement and optimization, accelerating the development process. Challenges Initial time investment: Creating test fixtures and evaluation functions can require a significant investment of time.  Defining measurable validation criteria: Not all AI tasks have clear pass/fail conditions. Defining measurable criteria for validation can sometimes be challenging, especially for tasks that involve subjective or nuanced outputs. This requires careful consideration and may involve a difficult selection of the evaluation metrics. Cost associated with multiple tests: Multiple test use cases associated with 5 to 10 iterations can generate a high number of LLM requests for a single test automation. But if the cost of a single LLM call is neglectable, as it is in most cases for text input/output calls, the overall cost of a test remains minimal.   Conclusion: When should you implement this approach? Implementing this systematic testing approach is, of course, not always necessary, especially for simple tasks. However, for complex AI workflows in which precision and reliability are critical, this approach becomes highly valuable by offering a systematic way to assess and optimize prompt performance, preventing endless cycles of trial and error. By incorporating functional testing principles into Prompt Engineering, we transform a traditionally subjective and fragile process into one that is measurable, scalable, and robust. Not only does it enhance the reliability of LLM outputs, it helps achieve continuous improvement and efficient resource allocation. The decision to implement systematic prompt Testing should be based on the complexity of your project. For scenarios demanding high precision and consistency, investing the time to set up this methodology can significantly improve outcomes and speed up the development processes. However, for simpler tasks, a more classical, lightweight approach may be sufficient. The key is to balance the need for rigor with practical considerations, ensuring that your testing strategy aligns with your goals and constraints. Thanks for reading!

Creating efficient prompts for large language models often starts as a simple task… but it doesn’t always stay that way. Initially, following basic best practices seems sufficient: adopt the persona of a specialist, write clear instructions, require a specific response format, and include a few relevant examples. But as requirements multiply, contradictions emerge, and even minor modifications can introduce unexpected failures. What was working perfectly in one prompt version suddenly breaks in another.

If you have ever felt trapped in an endless loop of trial and error, adjusting one rule only to see another one fail, you’re not alone! The reality is that traditional prompt optimisation is clearly missing a structured, more scientific approach that will help to ensure reliability.

That’s where functional testing for prompt engineering comes in! This approach, inspired by methodologies of experimental science, leverages automated input-output testing with multiple iterations and algorithmic scoring to turn prompt engineering into a measurable, data-driven process. 

No more guesswork. No more tedious manual validation. Just precise and repeatable results that allow you to fine-tune prompts efficiently and confidently.

In this article, we will explore a systematic approach for mastering prompt engineering, which ensures your Llm outputs will be efficient and reliable even for the most complex AI tasks.

Balancing precision and consistency in prompt optimisation

Adding a large set of rules to a prompt can introduce partial contradictions between rules and lead to unexpected behaviors. This is especially true when following a pattern of starting with a general rule and following it with multiple exceptions or specific contradictory use cases. Adding specific rules and exceptions can cause conflict with the primary instruction and, potentially, with each other.

What might seem like a minor modification can unexpectedly impact other aspects of a prompt. This is not only true when adding a new rule but also when adding more detail to an existing rule, like changing the order of the set of instructions or even simply rewording it. These minor modifications can unintentionally change the way the model interprets and prioritizes the set of instructions.

The more details you add to a prompt, the greater the risk of unintended side effects. By trying to give too many details to every aspect of your task, you increase as well the risk of getting unexpected or deformed results. It is, therefore, essential to find the right balance between clarity and a high level of specification to maximise the relevance and consistency of the response. At a certain point, fixing one requirement can break two others, creating the frustrating feeling of taking one step forward and two steps backward in the optimization process.

Testing each change manually becomes quickly overwhelming. This is especially true when one needs to optimize prompts that must follow numerous competing specifications in a complex AI task. The process cannot simply be about modifying the prompt for one requirement after the other, hoping the previous instruction remains unaffected. It also can’t be a system of selecting examples and checking them by hand. A better process with a more scientific approach should focus on ensuring repeatability and reliability in prompt optimization.

From laboratory to AI: Why testing LLM responses requires multiple iterations

Science teaches us to use replicates to ensure reproducibility and build confidence in an experiment’s results. I have been working in academic research in chemistry and biology for more than a decade. In those fields, experimental results can be influenced by a multitude of factors that can lead to significant variability. To ensure the reliability and reproducibility of experimental results, scientists mostly employ a method known as triplicates. This approach involves conducting the same experiment three times under identical conditions, allowing the experimental variations to be of minor importance in the result. Statistical analysis (standard mean and deviation) conducted on the results, mostly in biology, allows the author of an experiment to determine the consistency of the results and strengthens confidence in the findings.

Just like in biology and chemistry, this approach can be used with LLMs to achieve reliable responses. With LLMs, the generation of responses is non-deterministic, meaning that the same input can lead to different outputs due to the probabilistic nature of the models. This variability is challenging when evaluating the reliability and consistency of LLM outputs.

In the same way that biological/chemical experiments require triplicates to ensure reproducibility, testing LLMs should need multiple iterations to measure reproducibility. A single test by use case is, therefore, not sufficient because it does not represent the inherent variability in LLM responses. At least five iterations per use case allow for a better assessment. By analyzing the consistency of the responses across these iterations, one can better evaluate the reliability of the model and identify any potential issues or variation. It ensures that the output of the model is correctly controlled.

Multiply this across 10 to 15 different prompt requirements, and one can easily understand how, without a structured testing approach, we end up spending time in trial-and-error testing with no efficient way to assess quality.

A systematic approach: Functional testing for prompt optimization

To address these challenges, a structured evaluation methodology can be used to ease and accelerate the testing process and enhance the reliability of LLM outputs. This approach has several key components:

  • Data fixtures: The approach’s core center is the data fixtures, which are composed of predefined input-output pairs specifically created for prompt testing. These fixtures serve as controlled scenarios that represent the various requirements and edge cases the LLM must handle. By using a diverse set of fixtures, the performance of the prompt can be evaluated efficiently across different conditions.
  • Automated test validation: This approach automates the validation of the requirements on a set of data fixtures by comparison between the expected outputs defined in the fixtures and the LLM response. This automated comparison ensures consistency and reduces the potential for human error or bias in the evaluation process. It allows for quick identification of discrepancies, enabling fine and efficient prompt adjustments.
  • Multiple iterations: To assess the inherent variability of the LLM responses, this method runs multiple iterations for each test case. This iterative approach mimics the triplicate method used in biological/chemical experiments, providing a more robust dataset for analysis. By observing the consistency of responses across iterations, we can better assess the stability and reliability of the prompt.
  • Algorithmic scoring: The results of each test case are scored algorithmically, reducing the need for long and laborious « human » evaluation. This scoring system is designed to be objective and quantitative, providing clear metrics for assessing the performance of the prompt. And by focusing on measurable outcomes, we can make data-driven decisions to optimize the prompt effectively.     

Step 1: Defining test data fixtures

Selecting or creating compatible test data fixtures is the most challenging step of our systematic approach because it requires careful thought. A fixture is not only any input-output pair; it must be crafted meticulously to evaluate the most accurate as possible performance of the LLM for a specific requirement. This process requires:

1. A deep understanding of the task and the behavior of the model to make sure the selected examples effectively test the expected output while minimizing ambiguity or bias.

2. Foresight into how the evaluation will be conducted algorithmically during the test.

The quality of a fixture, therefore, depends not only on the good representativeness of the example but also on ensuring it can be efficiently tested algorithmically.

A fixture consists of:

    • Input example: This is the data that will be given to the LLM for processing. It should represent a typical or edge-case scenario that the LLM is expected to handle. The input should be designed to cover a wide range of possible variations that the LLM might have to deal with in production.

    • Expected output: This is the expected result that the LLM should produce with the provided input example. It is used for comparison with the actual LLM response output during validation.

Step 2: Running automated tests

Once the test data fixtures are defined, the next step involves the execution of automated tests to systematically evaluate the performance of the LLM response on the selected use cases. As previously stated, this process makes sure that the prompt is thoroughly tested against various scenarios, providing a reliable evaluation of its efficiency.

Execution process

    1. Multiple iterations: For each test use case, the same input is provided to the LLM multiple times. A simple for loop in nb_iter with nb_iter = 5 and voila!

    2. Response comparison: After each iteration, the LLM response is compared to the expected output of the fixture. This comparison checks whether the LLM has correctly processed the input according to the specified requirements.

    3. Scoring mechanism: Each comparison results in a score:

        ◦ Pass (1): The response matches the expected output, indicating that the LLM has correctly handled the input.

        ◦ Fail (0): The response does not match the expected output, signaling a discrepancy that needs to be fixed.

    4. Final score calculation: The scores from all iterations are aggregated to calculate the overall final score. This score represents the proportion of successful responses out of the total number of iterations. A high score, of course, indicates high prompt performance and reliability.

Example: Removing author signatures from an article

Let’s consider a simple scenario where an AI task is to remove author signatures from an article. To efficiently test this functionality, we need a set of fixtures that represent the various signature styles. 

A dataset for this example could be:

Example Input Expected Output
A long article
Jean Leblanc
The long article
A long article
P. W. Hartig
The long article
A long article
MCZ
The long article

Validation process:

  • Signature removal check: The validation function checks if the signature is absent from the rewritten text. This is easily done programmatically by searching for the signature needle in the haystack output text.
  • Test failure criteria: If the signature is still in the output, the test fails. This indicates that the LLM did not correctly remove the signature and that further adjustments to the prompt are required. If it is not, the test is passed. 

The test evaluation provides a final score that allows a data-driven assessment of the prompt efficiency. If it scores perfectly, there is no need for further optimization. However, in most cases, you will not get a perfect score because either the consistency of the LLM response to a case is low (for example, 3 out of 5 iterations scored positive) or there are edge cases that the model struggles with (0 out of 5 iterations). 

The feedback clearly indicates that there is still room for further improvements and it guides you to reexamine your prompt for ambiguous phrasing, conflicting rules, or edge cases. By continuously monitoring your score alongside your prompt modifications, you can incrementally reduce side effects, achieve greater efficiency and consistency, and approach an optimal and reliable output. 

A perfect score is, however, not always achievable with the selected model. Changing the model might just fix the situation. If it doesn’t, you know the limitations of your system and can take this fact into account in your workflow. With luck, this situation might just be solved in the near future with a simple model update. 

Benefits of this method 

  • Reliability of the result: Running five to ten iterations provides reliable statistics on the performance of the prompt. A single test run may succeed once but not twice, and consistent success for multiple iterations indicates a robust and well-optimized prompt.
  • Efficiency of the process: Unlike traditional scientific experiments that may take weeks or months to replicate, automated testing of LLMs can be carried out quickly. By setting a high number of iterations and waiting for a few minutes, we can obtain a high-quality, reproducible evaluation of the prompt efficiency.
  • Data-driven optimization: The score obtained from these tests provides a data-driven assessment of the prompt’s ability to meet requirements, allowing targeted improvements.
  • Side-by-side evaluation: Structured testing allows for an easy assessment of prompt versions. By comparing the test results, one can identify the most effective set of parameters for the instructions (phrasing, order of instructions) to achieve the desired results.
  • Quick iterative improvement: The ability to quickly test and iterate prompts is a real advantage to carefully construct the prompt ensuring that the previously validated requirements remain as the prompt increases in complexity and length.

By adopting this automated testing approach, we can systematically evaluate and enhance prompt performance, ensuring consistent and reliable outputs with the desired requirements. This method saves time and provides a robust analytical tool for continuous prompt optimization.

Systematic prompt testing: Beyond prompt optimization

Implementing a systematic prompt testing approach offers more advantages than just the initial prompt optimization. This methodology is valuable for other aspects of AI tasks:

    1. Model comparison:

        ◦ Provider evaluation: This approach allows the efficient comparison of different LLM providers, such as ChatGPT, Claude, Gemini, Mistral, etc., on the same tasks. It becomes easy to evaluate which model performs the best for their specific needs.

        ◦ Model version: State-of-the-art model versions are not always necessary when a prompt is well-optimized, even for complex AI tasks. A lightweight, faster version can provide the same results with a faster response. This approach allows a side-by-side comparison of the different versions of a model, such as Gemini 1.5 flash vs. 1.5 pro vs. 2.0 flash or ChatGPT 3.5 vs. 4o mini vs. 4o, and allows the data-driven selection of the model version.

    2. Version upgrades:

        ◦ Compatibility verification: When a new model version is released, systematic prompt testing helps validate if the upgrade maintains or improves the prompt performance. This is crucial for ensuring that updates do not unintentionally break the functionality.

        ◦ Seamless Transitions: By identifying key requirements and testing them, this method can facilitate better transitions to new model versions, allowing fast adjustment when necessary in order to maintain high-quality outputs.

    3. Cost optimization:

        ◦ Performance-to-cost ratio: Systematic prompt testing helps in choosing the best cost-effective model based on the performance-to-cost ratio. We can efficiently identify the most efficient option between performance and operational costs to get the best return on LLM costs.

Overcoming the challenges

The biggest challenge of this approach is the preparation of the set of test data fixtures, but the effort invested in this process will pay off significantly as time passes. Well-prepared fixtures save considerable debugging time and enhance model efficiency and reliability by providing a robust foundation for evaluating the LLM response. The initial investment is quickly returned by improved efficiency and effectiveness in LLM development and deployment.

Quick pros and cons

Key advantages:

  • Continuous improvement: The ability to add more requirements over time while ensuring existing functionality stays intact is a significant advantage. This allows for the evolution of the AI task in response to new requirements, ensuring that the system remains up-to-date and efficient.
  • Better maintenance: This approach enables the easy validation of prompt performance with LLM updates. This is crucial for maintaining high standards of quality and reliability, as updates can sometimes introduce unintended changes in behavior.
  • More flexibility: With a set of quality control tests, switching LLM providers becomes more straightforward. This flexibility allows us to adapt to changes in the market or technological advancements, ensuring we can always use the best tool for the job.
  • Cost optimization: Data-driven evaluations enable better decisions on performance-to-cost ratio. By understanding the performance gains of different models, we can choose the most cost-effective solution that meets the needs.
  • Time savings: Systematic evaluations provide quick feedback, reducing the need for manual testing. This efficiency allows to quickly iterate on prompt improvement and optimization, accelerating the development process.

Challenges

  • Initial time investment: Creating test fixtures and evaluation functions can require a significant investment of time. 
  • Defining measurable validation criteria: Not all AI tasks have clear pass/fail conditions. Defining measurable criteria for validation can sometimes be challenging, especially for tasks that involve subjective or nuanced outputs. This requires careful consideration and may involve a difficult selection of the evaluation metrics.
  • Cost associated with multiple tests: Multiple test use cases associated with 5 to 10 iterations can generate a high number of LLM requests for a single test automation. But if the cost of a single LLM call is neglectable, as it is in most cases for text input/output calls, the overall cost of a test remains minimal.  

Conclusion: When should you implement this approach?

Implementing this systematic testing approach is, of course, not always necessary, especially for simple tasks. However, for complex AI workflows in which precision and reliability are critical, this approach becomes highly valuable by offering a systematic way to assess and optimize prompt performance, preventing endless cycles of trial and error.

By incorporating functional testing principles into Prompt Engineering, we transform a traditionally subjective and fragile process into one that is measurable, scalable, and robust. Not only does it enhance the reliability of LLM outputs, it helps achieve continuous improvement and efficient resource allocation.

The decision to implement systematic prompt Testing should be based on the complexity of your project. For scenarios demanding high precision and consistency, investing the time to set up this methodology can significantly improve outcomes and speed up the development processes. However, for simpler tasks, a more classical, lightweight approach may be sufficient. The key is to balance the need for rigor with practical considerations, ensuring that your testing strategy aligns with your goals and constraints.

Thanks for reading!

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

ExxonMobil bumps up 2030 target for Permian production

ExxonMobil Corp., Houston, is looking to grow production in the Permian basin to about 2.5 MMboe/d by 2030, an increase of 200,000 boe/d from executives’ previous forecasts and a jump of more than 45% from this year’s output. Helping drive that higher target is an expected 2030 cost profile that

Read More »

OPEC Data Points to Balanced Global Oil Market in 2026

OPEC kept forecasts for global oil supplies and demand in 2026 steady, pointing to a balanced world market that clashes with widespread predictions of a surplus. The Organization of the Petroleum Exporting Countries and its allies will need to produce an average of 43 million barrels a day next year to balance supply and demand, roughly in line with the amount pumped last month, according to a report on OPEC’s website. This runs counter to prevailing industry expectations for a supply excess in 2026. Top trader Trafigura Group said this week it could amount to a “super glut,” and the International Energy Agency — while paring its projections in its report earlier Thursday — continues to expect a record overhang. Key OPEC+ nations led by Saudi Arabia acknowledged the fragile backdrop last month by agreeing to pause further output increases during the first quarter after rapidly ramping up production earlier this year.  The outlook from OPEC’s Vienna-based secretariat has proven excessively bullish in recent years. Last year, OPEC was ultimately forced to slash demand projections by 32% over the course of six monthly downgrades. In late 2023, it forecast a record inventory deficit that never materialized. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

Antero adds to Marcellus portfolio, Infinity picks up divested Ohio Utica interests

Antero Resources Corp., Denver, Co., has signed deals to expand its Marcellus shale footprint in West Virginia and to divest its certain Ohio Utica shale assets. Adding the Marcellus assets expands Antero Resources’ core acreage position, enhancing its position “as the premier liquids developer in the Marcellus,” and provides the company “with further dry gas optionality for local demand from data centers and natural gas fired power plants,” said Michael Kennedy, president and chief executive officer, in a release Dec. 8. Marcellus acquisition from HG Energy Through a deal to acquire the upstream assets of HG Energy II LLC, Parkersburg, WV, Antero aims to add 850 MMcfed of expected Marcellus production in 2026. The deal, expected to close in second-quarter 2026, was signed for $2.8 billion in cash plus the assumption of HG Energy’s commodity hedge book. Antero said about 90% of HG natural gas production is hedged in 2026 and 2027 at average NYMEX prices of $4.00 and $3.88, respectively. The deal adds 385,000 net acres offsetting Antero’s existing 475,000 net core Marcellus acreage position and includes over 400 additional locations that immediately compete for capital (75% liquids), the company said in a related investor presentation.  Antero said it anticipates capital synergies of about $550 million inclusive of development planning optimization and drilling and completions savings. Another $400 in income-related synergies is expected. Separately, Antero Midstream agreed to acquire the midstream assets from HG Energy for $1.1 billion in cash. The deal includes about 50 miles of bi-directional dry and rich gas gathering pipelines and water assets in which Antero plans to invest about $25 million to integrate with its legacy gathering and water system. Utica sale to Infinity Natural Resources Infinity Natural Resources Inc., in a release Dec. 8, said subsidiary Infinity Natural Resources LLC will acquire upstream and

Read More »

Market Focus: Oversupply takes center stage, fundamentals catch up with the market

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #c19a06 !important; border-color: #c19a06 !important; } <!–> In this Market Focus episode of the Oil & Gas Journal ReEnterprised podcast, Conglin Xu, managing editor, economics, takes a look at the growing oversupply in global crude markets and the shift now under way as fundamentals begin overtaking sentiment and geopolitics as the primary price driver. ]–>

Read More »

Aramco, ExxonMobil weigh new chemical complex for Samref refinery

Saudi Aramco and partner ExxonMobil Corp. subsidiary Mobil Yanbu Refining Co. Inc. are discussing the possibility of executing a major overhaul and expansion of 50-50 joint venture Saudi Aramco-Mobil Refinery Co. Ltd.’s (Samref) 400,000-b/d Samref refinery in Yanbu, Saudi Arabia. As part of a venture framework agreement (VFA) signed on Dec. 8, the partners will evaluate potential capital investments to expand and diversify the refinery’s existing production slate, including the addition of a grassroots petrochemical complex at the site, Aramco said in a statement. In addition to upgrading and diversifying Samref’s production to include lower-emission, high-quality distillates and high-performance chemicals, the project scope would involve works to improve the refinery’s energy efficiency and implement a sitewide integrated emissions reduction strategy, according to Aramco. With the VFA now signed, the companies said they will begin the project’s preliminary front-end engineering and design (pre-FEED) study, which will focus on opportunities to maximize the site’s operational advantage and enhance its competitiveness while meeting Saudi Arabia’s growing demand for high-quality petrochemical products. For Aramco, the proposed project—the design of which aims to increase the conversion of crude oil and other petroleum liquids into higher-value chemicals—further reinforces the company’s commitment to creating further value of its overall downstream business as well as its liquids-to-chemicals strategy, according to Mohammed Y. Al Qahtani, Aramco’s downstream president. “[The proposed expansion and integration project] will also position Samref as a key driver in the growth of [Saudi Arabia’s] petrochemical sector,” Al Qahtani added. Without disclosing a timeline as to when the partners expect to complete the pre-FEED study or reach final investment decision, Aramco confirmed existing plans for the potential project would remain subject to market conditions and necessary regulatory approvals. Samref previously completed modifications and renovations at the Yanbu refinery in 2014-15 related to a two-phased clean-fuels project

Read More »

Harbour Energy to add North Sea assets through Waldorf acquisition

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #c19a06 !important; border-color: #c19a06 !important; } Harbour Energy plc has agreed to acquire substantially all the subsidiaries of Waldorf Energy Partners Ltd. and Waldorf Production Ltd., currently in administration, for $170 million. The company, in a release Dec. 12, said the deal would add oil-weighted production of 20,000 boe/d and 2P reserves of 35 MMboe. In addition, the deal would increase Harbour’s interest in its operated Catcher oil and gas field to 90% from 50% and provide a new production base  for Harbour in the northern North Sea with the addition of a 29.5% non-operated interest in the EnQuest plc-operated Kraken oil field. The deal is expected to close in second-quarter 2026, subject to regulatory approvals and full and final settlement of all creditor claims against Waldorf’s subsidiaries.

Read More »

EIA: US oil inventories drop 1.8 million bbl

US commercial crude inventories for the week ended Dec. 5, excluding those in the Strategic Petroleum Reserve, dropped 1.8 million bbl from the previous week to 425.7 million bbl, which is about 4% below the average range for this time of year, according to the US Energy Information Administration’s (EIA) Weekly Petroleum Status Report. Total motor gasoline inventories gained 6.4 million bbl last week and are about 1% below the 5-year average range for this time of year. Finished gasoline inventories and blending components inventories rose. Distillate fuel inventories increased by 2.5 million bbl but are 7% below the 5-year average for this time of year. EIA reported that US crude refinery inputs last week averaged 16.9 million b/d, down 17,000 b/d from the previous week’s average. Refineries operated at 94.5% of their operable capacity. Gasoline production decreased to 9.6 million b/d, while distillate fuel production increased by 380,000 b/d, averaging 5.4 million b/d. US crude imports averaged 6.6 million b/d, up 609,000 b/d from the previous week’s average. Over the last 4 weeks, crude imports averaged 6.2 million b/d, down 7.7% from the same 4-week period last year. Total motor gasoline imports, including both finished gasoline and gasoline blending components, averaged 659,000 b/d. Distillate fuel imports averaged 181,000 b/d last week.

Read More »

Executive Roundtable: Converging Disciplines in the AI Buildout

At Data Center Frontier, we rely on industry leaders to help us understand the most urgent challenges facing digital infrastructure. And in the fourth quarter of 2025, the data center industry is adjusting to a new kind of complexity.  AI-scale infrastructure is redefining what “mission critical” means, from megawatt density and modular delivery to the chemistry of cooling fluids and the automation of energy systems. Every project has arguably in effect now become an ecosystem challenge, demanding that electrical, mechanical, construction, and environmental disciplines act as one.  For this quarter’s Executive Roundtable, DCF convened subject matter experts from Ecolab, EdgeConneX, Rehlko and Schneider Electric – leaders spanning the full chain of facilities design, deployment, and operation. Their insights illuminate how liquid cooling, energy management, and sustainable process design in data centers are now converging to set the pace for the AI era. Our distinguished executive panelists for this quarter include: Rob Lowe, Director RD&E – Global High Tech, Ecolab Phillip Marangella, Chief Marketing and Product Officer, EdgeConneX Ben Rapp, Manager, Strategic Project Development, Rehlko Joe Reele, Vice President, Datacenter Solution Architects, Schneider Electric Today: Engineering the New Normal – Liquid Cooling at Scale  Today’s kickoff article grapples with how, as liquid cooling technology transitions to default hyperscale design, the challenge is no longer if, but how to scale builds safely, repeatably, and globally.  Cold plates, immersion, dielectric fluids, and liquid-to-chip loops are converging into factory-integrated building blocks, yet variability in chemistry, serviceability, materials, commissioning practices, and long-term maintenance threatens to fragment adoption just as demand accelerates.  Success now hinges on shared standards and tighter collaboration across OEMs, builders, and process specialists worldwide. So how do developers coordinate across the ecosystem to make liquid cooling a safe, maintainable global default? What’s Ahead in the Roundtable Over the coming days, our panel

Read More »

DCF Trends Summit 2025: AI for Good – How Operators, Vendors and Cooling Specialists See the Next Phase of AI Data Centers

At the 2025 Data Center Frontier Trends Summit (Aug. 26-28) in Reston, Va., the conversation around AI and infrastructure moved well past the hype. In a panel sponsored by Schneider Electric—“AI for Good: Building for AI Workloads and Using AI for Smarter Data Centers”—three industry leaders explored what it really means to design, cool and operate the new class of AI “factories,” while also turning AI inward to run those facilities more intelligently. Moderated by Data Center Frontier Editor in Chief Matt Vincent, the session brought together: Steve Carlini, VP, Innovation and Data Center Energy Management Business, Schneider Electric Sudhir Kalra, Chief Data Center Operations Officer, Compass Datacenters Andrew Whitmore, VP of Sales, Motivair Together, they traced both sides of the “AI for Good” equation: building for AI workloads at densities that would have sounded impossible just a few years ago, and using AI itself to reduce risk, improve efficiency and minimize environmental impact. From Bubble Talk to “AI Factories” Carlini opened by acknowledging the volatility surrounding AI investments, citing recent headlines and even Sam Altman’s public use of the word “bubble” to describe the current phase of exuberance. “It’s moving at an incredible pace,” Carlini noted, pointing out that roughly half of all VC money this year has flowed into AI, with more already spent than in all of the previous year. Not every investor will win, he said, and some companies pouring in hundreds of billions may not recoup their capital. But for infrastructure, the signal is clear: the trajectory is up and to the right. GPU generations are cycling faster than ever. Densities are climbing from high double-digits per rack toward hundreds of kilowatts. The hyperscale “AI factories,” as NVIDIA calls them, are scaling to campus capacities measured in gigawatts. Carlini reminded the audience that in 2024,

Read More »

FinOps Foundation sharpens FOCUS to reduce cloud cost chaos

“The big change that’s really started to happen in late 2024 early 2025 is that the FinOps practice started to expand past the cloud,” Storment said. “A lot of organizations got really good at using FinOps to manage the value of cloud, and then their organizations went, ‘oh, hey, we’re living in this happily hybrid state now where we’ve got cloud, SaaS, data center. Can you also apply the FinOps practice to our SaaS? Or can you apply it to our Snowflake? Can you apply it to our data center?’” The FinOps Foundation’s community has grown to approximately 100,000 practitioners. The organization now includes major cloud vendors, hardware providers like Nvidia and AMD, data center operators and data cloud platforms like Snowflake and Databricks. Some 96 of the Fortune 100 now participate in FinOps Foundation programs. The practice itself has shifted in two directions. It has moved left into earlier architectural and design processes, becoming more proactive rather than reactive. It has also moved up organizationally, from director-level cloud management roles to SVP and COO positions managing converged technology portfolios spanning multiple infrastructure types. This expansion has driven the evolution of FOCUS beyond its original cloud billing focus. Enterprises are implementing FOCUS as an internal standard for chargeback reporting even when their providers don’t generate native FOCUS data. Some newer cloud providers, particularly those focused on AI infrastructure, are using the FOCUS specification to define their billing data structures from the ground up rather than retrofitting existing systems. The FOCUS 1.3 release reflects this maturation, addressing technical gaps that have emerged as organizations apply cost management practices across increasingly complex hybrid environments. FOCUS 1.3 exposes cost allocation logic for shared infrastructure The most significant technical enhancement in FOCUS 1.3 addresses a gap in how shared infrastructure costs are allocated and

Read More »

Aetherflux joins the race to launch orbital data centers by 2027

Enterprises will connect to and manage orbital workloads “the same way they manage cloud workloads today,” using optical links, the spokesperson added. The company’s approach is to “continuously launch new hardware and quickly integrate the latest architectures,” with older systems running lower-priority tasks to serve out the full useful lifetime of their high-end GPUs. The company declined to disclose pricing. Aetherflux plans to launch about 30 satellites at a time on SpaceX Falcon 9 rockets. Before the data center launch, the company will launch a power-beaming demonstration satellite in 2026 to test transmission of one kilowatt of energy from orbit to ground stations, using infrared lasers. Competition in the sector has intensified in recent months. In November, Starcloud launched its Starcloud-1 satellite carrying an Nvidia H100 GPU, which is 100 times more powerful than any previous GPU flown in space, according to the company, and demonstrated running Google’s Gemma AI model in orbit. In the same month, Google announced Project Suncatcher, with a 2027 demonstration mission planned. Analysts see limited near-term applications Despite the competitive activity, orbital data centers won’t replace terrestrial cloud regions for general hosting through 2030, said Ashish Banerjee, senior principal analyst at Gartner. Instead, they suit specific workloads, including meeting data sovereignty requirements for jurisdictionally complex scenarios, offering disaster recovery immune to terrestrial risks, and providing asynchronous high-performance computing, he said. “Orbital centers are ideal for high-compute, low-I/O batch jobs,” Banerjee said. “Think molecular folding simulations for pharma, massive Monte Carlo financial simulations, or training specific AI model weights. If the job takes 48 hours, the 500ms latency penalty of LEO is irrelevant.” One immediate application involves processing satellite-generated data in orbit, he said. Earth observation satellites using synthetic aperture radar generate roughly 10 gigabytes per second, but limited downlink bandwidth creates bottlenecks. Processing data in

Read More »

Here’s what Oracle’s soaring infrastructure spend could mean for enterprises

He said he had earlier told analysts in a separate call that margins for AI workloads in these data centers would be in the 30% to 40% range over the life of a customer contract. Kehring reassured that there would be demand for the data centers when they were completed, pointing to Oracle’s increasing remaining performance obligations, or services contracted but not yet delivered, up $68 billion on the previous quarter, saying that Oracle has been seeing unprecedented demand for AI workloads driven by the likes of Meta and Nvidia. Rising debt and margin risks raise flags for CIOs For analysts, though, the swelling debt load is hard to dismiss, even with Oracle’s attempts to de-risk its spend and squeeze more efficiency out of its buildouts. Gogia sees Oracle already under pressure, with the financial ecosystem around the company pricing the risk — one of the largest debts in corporate history, crossing $100 billion even before the capex spend this quarter — evident in the rising cost of insuring the debt and the shift in credit outlook. “The combination of heavy capex, negative free cash flow, increasing financing cost and long-dated revenue commitments forms a structural pressure that will invariably finds its way into the commercial posture of the vendor,” Gogia said, hinting at an “eventual” increase in pricing of the company’s offerings. He was equally unconvinced by Magouyrk’s assurances about the margin profile of AI workloads as he believes that AI infrastructure, particularly GPU-heavy clusters, delivers significantly lower margins in the early years because utilisation takes time to ramp.

Read More »

New Nvidia software gives data centers deeper visibility into GPU thermals and reliability

Addressing the challenge Modern AI accelerators now draw more than 700W per GPU, and multi-GPU nodes can reach 6kW, creating concentrated heat zones, rapid power swings, and a higher risk of interconnect degradation in dense racks, according to Manish Rawat, semiconductor analyst at TechInsights. Traditional cooling methods and static power planning increasingly struggle to keep pace with these loads. “Rich vendor telemetry covering real-time power draw, bandwidth behavior, interconnect health, and airflow patterns shifts operators from reactive monitoring to proactive design,” Rawat said. “It enables thermally aware workload placement, faster adoption of liquid or hybrid cooling, and smarter network layouts that reduce heat-dense traffic clusters.” Rawat added that the software’s fleet-level configuration insights can also help operators catch silent errors caused by mismatched firmware or driver versions. This can improve training reproducibility and strengthen overall fleet stability. “Real-time error and interconnect health data also significantly accelerates root-cause analysis, reducing MTTR and minimizing cluster fragmentation,” Rawat said. These operational pressures can shape budget decisions and infrastructure strategy at the enterprise level.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »