Stay Ahead, Stay ONMINE

R.E.D.: Scaling Text Classification with Expert Delegation

With the new age of problem-solving augmented by Large Language Models (LLMs), only a handful of problems remain that have subpar solutions. Most classification problems (at a PoC level) can be solved by leveraging LLMs at 70–90% Precision/F1 with just good prompt engineering techniques, as well as adaptive in-context-learning (ICL) examples. What happens when you want to consistently achieve performance higher than that — when prompt engineering no longer suffices? The classification conundrum Text classification is one of the oldest and most well-understood examples of supervised learning. Given this premise, it should really not be hard to build robust, well-performing classifiers that handle a large number of input classes, right…? Welp. It is. It actually has to do a lot more with the ‘constraints’ that the algorithm is generally expected to work under: low amount of training data per class high classification accuracy (that plummets as you add more classes) possible addition of new classes to an existing subset of classes quick training/inference cost-effectiveness (potentially) really large number of training classes (potentially) endless required retraining of some classes due to data drift, etc. Ever tried building a classifier beyond a few dozen classes under these conditions? (I mean, even GPT could probably do a great job up to ~30 text classes with just a few samples…) Considering you take the GPT route — If you have more than a couple dozen classes or a sizeable amount of data to be classified, you are gonna have to reach deep into your pockets with the system prompt, user prompt, few shot example tokens that you will need to classify one sample. That is after making peace with the throughput of the API, even if you are running async queries. In applied ML, problems like these are generally tricky to solve since they don’t fully satisfy the requirements of supervised learning or aren’t cheap/fast enough to be run via an LLM. This particular pain point is what the R.E.D algorithm addresses: semi-supervised learning, when the training data per class is not enough to build (quasi)traditional classifiers. The R.E.D. algorithm R.E.D: Recursive Expert Delegation is a novel framework that changes how we approach text classification. This is an applied ML paradigm — i.e., there is no fundamentally different architecture to what exists, but its a highlight reel of ideas that work best to build something that is practical and scalable. In this post, we will be working through a specific example where we have a large number of text classes (100–1000), each class only has few samples (30–100), and there are a non-trivial number of samples to classify (10,000–100,000). We approach this as a semi-supervised learning problem via R.E.D. Let’s dive in. How it works simple representation of what R.E.D. does Instead of having a single classifier classify between a large number of classes, R.E.D. intelligently: Divides and conquers — Break the label space (large number of input labels) into multiple subsets of labels. This is a greedy label subset formation approach. Learns efficiently — Trains specialized classifiers for each subset. This step focuses on building a classifier that oversamples on noise, where noise is intelligently modeled as data from other subsets. Delegates to an expert — Employes LLMs as expert oracles for specific label validation and correction only, similar to having a team of domain experts. Using an LLM as a proxy, it empirically ‘mimics’ how a human expert validates an output. Recursive retraining — Continuously retrains with fresh samples added back from the expert until there are no more samples to be added/a saturation from information gain is achieved The intuition behind it is not very hard to grasp: Active Learning employs humans as domain experts to consistently ‘correct’ or ‘validate’ the outputs from an ML model, with continuous training. This stops when the model achieves acceptable performance. We intuit and rebrand the same, with a few clever innovations that will be detailed in a research pre-print later. Let’s take a deeper look… Greedy subset selection with least similar elements When the number of input labels (classes) is high, the complexity of learning a linear decision boundary between classes increases. As such, the quality of the classifier deteriorates as the number of classes increases. This is especially true when the classifier does not have enough samples to learn from — i.e. each of the training classes has only a few samples. This is very reflective of a real-world scenario, and the primary motivation behind the creation of R.E.D. Some ways of improving a classifier’s performance under these constraints: Restrict the number of classes a classifier needs to classify between Make the decision boundary between classes clearer, i.e., train the classifier on highly dissimilar classes Greedy Subset Selection does exactly this — since the scope of the problem is Text Classification, we form embeddings of the training labels, reduce their dimensionality via UMAP, then form S subsets from them. Each of the S subsets has elements as n training labels. We pick training labels greedily, ensuring that every label we pick for the subset is the most dissimilar label w.r.t. the other labels that exist in the subset: import numpy as np from sklearn.metrics.pairwise import cosine_similarity def avg_embedding(candidate_embeddings): return np.mean(candidate_embeddings, axis=0) def get_least_similar_embedding(target_embedding, candidate_embeddings): similarities = cosine_similarity(target_embedding, candidate_embeddings) least_similar_index = np.argmin(similarities) # Use argmin to find the index of the minimum least_similar_element = candidate_embeddings[least_similar_index] return least_similar_element def get_embedding_class(embedding, embedding_map): reverse_embedding_map = {value: key for key, value in embedding_map.items()} return reverse_embedding_map.get(embedding) # Use .get() to handle missing keys gracefully def select_subsets(embeddings, n): visited = {cls: False for cls in embeddings.keys()} subsets = [] current_subset = [] while any(not visited[cls] for cls in visited): for cls, average_embedding in embeddings.items(): if not current_subset: current_subset.append(average_embedding) visited[cls] = True elif len(current_subset) >= n: subsets.append(current_subset.copy()) current_subset = [] else: subset_average = avg_embedding(current_subset) remaining_embeddings = [emb for cls_, emb in embeddings.items() if not visited[cls_]] if not remaining_embeddings: break # handle edge case least_similar = get_least_similar_embedding(target_embedding=subset_average, candidate_embeddings=remaining_embeddings) visited_class = get_embedding_class(least_similar, embeddings) if visited_class is not None: visited[visited_class] = True current_subset.append(least_similar) if current_subset: # Add any remaining elements in current_subset subsets.append(current_subset) return subsets the result of this greedy subset sampling is all the training labels clearly boxed into subsets, where each subset has at most only n classes. This inherently makes the job of a classifier easier, compared to the original S classes it would have to classify between otherwise! Semi-supervised classification with noise oversampling Cascade this after the initial label subset formation — i.e., this classifier is only classifying between a given subset of classes. Picture this: when you have low amounts of training data, you absolutely cannot create a hold-out set that is meaningful for evaluation. Should you do it at all? How do you know if your classifier is working well? We approached this problem slightly differently — we defined the fundamental job of a semi-supervised classifier to be pre-emptive classification of a sample. This means that regardless of what a sample gets classified as it will be ‘verified’ and ‘corrected’ at a later stage: this classifier only needs to identify what needs to be verified. As such, we created a design for how it would treat its data: n+1 classes, where the last class is noise noise: data from classes that are NOT in the current classifier’s purview. The noise class is oversampled to be 2x the average size of the data for the classifier’s labels Oversampling on noise is a faux-safety measure, to ensure that adjacent data that belongs to another class is most likely predicted as noise instead of slipping through for verification. How do you check if this classifier is working well — in our experiments, we define this as the number of ‘uncertain’ samples in a classifier’s prediction. Using uncertainty sampling and information gain principles, we were effectively able to gauge if a classifier is ‘learning’ or not, which acts as a pointer towards classification performance. This classifier is consistently retrained unless there is an inflection point in the number of uncertain samples predicted, or there is only a delta of information being added iteratively by new samples. Proxy active learning via an LLM agent This is the heart of the approach — using an LLM as a proxy for a human validator. The human validator approach we are talking about is Active Labelling Let’s get an intuitive understanding of Active Labelling: Use an ML model to learn on a sample input dataset, predict on a large set of datapoints For the predictions given on the datapoints, a subject-matter expert (SME) evaluates ‘validity’ of predictions Recursively, new ‘corrected’ samples are added as training data to the ML model The ML model consistently learns/retrains, and makes predictions until the SME is satisfied by the quality of predictions For Active Labelling to work, there are expectations involved for an SME: when we expect a human expert to ‘validate’ an output sample, the expert understands what the task is a human expert will use judgement to evaluate ‘what else’ definitely belongs to a label L when deciding if a new sample should belong to L Given these expectations and intuitions, we can ‘mimic’ these using an LLM: give the LLM an ‘understanding’ of what each label means. This can be done by using a larger model to critically evaluate the relationship between {label: data mapped to label} for all labels. In our experiments, this was done using a 32B variant of DeepSeek that was self-hosted. Giving an LLM the capability to understand ‘why, what, and how’ Instead of predicting what is the correct label, leverage the LLM to identify if a prediction is ‘valid’ or ‘invalid’ only (i.e., LLM only has to answer a binary query). Reinforce the idea of what other valid samples for the label look like, i.e., for every pre-emptively predicted label for a sample, dynamically source c closest samples in its training (guaranteed valid) set when prompting for validation. The result? A cost-effective framework that relies on a fast, cheap classifier to make pre-emptive classifications, and an LLM that verifies these using (meaning of the label + dynamically sourced training samples that are similar to the current classification): import math def calculate_uncertainty(clf, sample): predicted_probabilities = clf.predict_proba(sample.reshape(1, -1))[0] # Reshape sample for predict_proba uncertainty = -sum(p * math.log(p, 2) for p in predicted_probabilities) return uncertainty def select_informative_samples(clf, data, k): informative_samples = [] uncertainties = [calculate_uncertainty(clf, sample) for sample in data] # Sort data by descending order of uncertainty sorted_data = sorted(zip(data, uncertainties), key=lambda x: x[1], reverse=True) # Get top k samples with highest uncertainty for sample, uncertainty in sorted_data[:k]: informative_samples.append(sample) return informative_samples def proxy_label(clf, llm_judge, k, testing_data): #llm_judge – any LLM with a system prompt tuned for verifying if a sample belongs to a class. Expected output is a bool : True or False. True verifies the original classification, False refutes it predicted_classes = clf.predict(testing_data) # Select k most informative samples using uncertainty sampling informative_samples = select_informative_samples(clf, testing_data, k) # List to store correct samples voted_data = [] # Evaluate informative samples with the LLM judge for sample in informative_samples: sample_index = testing_data.tolist().index(sample.tolist()) # changed from testing_data.index(sample) because of numpy array type issue predicted_class = predicted_classes[sample_index] # Check if LLM judge agrees with the prediction if llm_judge(sample, predicted_class): # If correct, add the sample to voted data voted_data.append(sample) # Return the list of correct samples with proxy labels return voted_data By feeding the valid samples (voted_data) to our classifier under controlled parameters, we achieve the ‘recursive’ part of our algorithm: Recursive Expert Delegation: R.E.D. By doing this, we were able to achieve close-to-human-expert validation numbers on controlled multi-class datasets. Experimentally, R.E.D. scales up to 1,000 classes while maintaining a competent degree of accuracy almost on par with human experts (90%+ agreement). I believe this is a significant achievement in applied ML, and has real-world uses for production-grade expectations of cost, speed, scale, and adaptability. The technical report, publishing later this year, highlights relevant code samples as well as experimental setups used to achieve given results. All images, unless otherwise noted, are by the author Interested in more details? Reach out to me over Medium or email for a chat!

With the new age of problem-solving augmented by Large Language Models (LLMs), only a handful of problems remain that have subpar solutions. Most classification problems (at a PoC level) can be solved by leveraging LLMs at 70–90% Precision/F1 with just good prompt engineering techniques, as well as adaptive in-context-learning (ICL) examples.

What happens when you want to consistently achieve performance higher than that — when prompt engineering no longer suffices?

The classification conundrum

Text classification is one of the oldest and most well-understood examples of supervised learning. Given this premise, it should really not be hard to build robust, well-performing classifiers that handle a large number of input classes, right…?

Welp. It is.

It actually has to do a lot more with the ‘constraints’ that the algorithm is generally expected to work under:

  • low amount of training data per class
  • high classification accuracy (that plummets as you add more classes)
  • possible addition of new classes to an existing subset of classes
  • quick training/inference
  • cost-effectiveness
  • (potentially) really large number of training classes
  • (potentially) endless required retraining of some classes due to data drift, etc.

Ever tried building a classifier beyond a few dozen classes under these conditions? (I mean, even GPT could probably do a great job up to ~30 text classes with just a few samples…)

Considering you take the GPT route — If you have more than a couple dozen classes or a sizeable amount of data to be classified, you are gonna have to reach deep into your pockets with the system prompt, user prompt, few shot example tokens that you will need to classify one sample. That is after making peace with the throughput of the API, even if you are running async queries.

In applied ML, problems like these are generally tricky to solve since they don’t fully satisfy the requirements of supervised learning or aren’t cheap/fast enough to be run via an LLM. This particular pain point is what the R.E.D algorithm addresses: semi-supervised learning, when the training data per class is not enough to build (quasi)traditional classifiers.

The R.E.D. algorithm

R.E.D: Recursive Expert Delegation is a novel framework that changes how we approach text classification. This is an applied ML paradigm — i.e., there is no fundamentally different architecture to what exists, but its a highlight reel of ideas that work best to build something that is practical and scalable.

In this post, we will be working through a specific example where we have a large number of text classes (100–1000), each class only has few samples (30–100), and there are a non-trivial number of samples to classify (10,000–100,000). We approach this as a semi-supervised learning problem via R.E.D.

Let’s dive in.

How it works

simple representation of what R.E.D. does

Instead of having a single classifier classify between a large number of classes, R.E.D. intelligently:

  1. Divides and conquers — Break the label space (large number of input labels) into multiple subsets of labels. This is a greedy label subset formation approach.
  2. Learns efficiently — Trains specialized classifiers for each subset. This step focuses on building a classifier that oversamples on noise, where noise is intelligently modeled as data from other subsets.
  3. Delegates to an expert — Employes LLMs as expert oracles for specific label validation and correction only, similar to having a team of domain experts. Using an LLM as a proxy, it empirically ‘mimics’ how a human expert validates an output.
  4. Recursive retraining — Continuously retrains with fresh samples added back from the expert until there are no more samples to be added/a saturation from information gain is achieved

The intuition behind it is not very hard to grasp: Active Learning employs humans as domain experts to consistently ‘correct’ or ‘validate’ the outputs from an ML model, with continuous training. This stops when the model achieves acceptable performance. We intuit and rebrand the same, with a few clever innovations that will be detailed in a research pre-print later.

Let’s take a deeper look…

Greedy subset selection with least similar elements

When the number of input labels (classes) is high, the complexity of learning a linear decision boundary between classes increases. As such, the quality of the classifier deteriorates as the number of classes increases. This is especially true when the classifier does not have enough samples to learn from — i.e. each of the training classes has only a few samples.

This is very reflective of a real-world scenario, and the primary motivation behind the creation of R.E.D.

Some ways of improving a classifier’s performance under these constraints:

  • Restrict the number of classes a classifier needs to classify between
  • Make the decision boundary between classes clearer, i.e., train the classifier on highly dissimilar classes

Greedy Subset Selection does exactly this — since the scope of the problem is Text Classification, we form embeddings of the training labels, reduce their dimensionality via UMAP, then form S subsets from them. Each of the subsets has elements as training labels. We pick training labels greedily, ensuring that every label we pick for the subset is the most dissimilar label w.r.t. the other labels that exist in the subset:

import numpy as np
from sklearn.metrics.pairwise import cosine_similarity


def avg_embedding(candidate_embeddings):
    return np.mean(candidate_embeddings, axis=0)

def get_least_similar_embedding(target_embedding, candidate_embeddings):
    similarities = cosine_similarity(target_embedding, candidate_embeddings)
    least_similar_index = np.argmin(similarities)  # Use argmin to find the index of the minimum
    least_similar_element = candidate_embeddings[least_similar_index]
    return least_similar_element


def get_embedding_class(embedding, embedding_map):
    reverse_embedding_map = {value: key for key, value in embedding_map.items()}
    return reverse_embedding_map.get(embedding)  # Use .get() to handle missing keys gracefully


def select_subsets(embeddings, n):
    visited = {cls: False for cls in embeddings.keys()}
    subsets = []
    current_subset = []

    while any(not visited[cls] for cls in visited):
        for cls, average_embedding in embeddings.items():
            if not current_subset:
                current_subset.append(average_embedding)
                visited[cls] = True
            elif len(current_subset) >= n:
                subsets.append(current_subset.copy())
                current_subset = []
            else:
                subset_average = avg_embedding(current_subset)
                remaining_embeddings = [emb for cls_, emb in embeddings.items() if not visited[cls_]]
                if not remaining_embeddings:
                    break # handle edge case
                
                least_similar = get_least_similar_embedding(target_embedding=subset_average, candidate_embeddings=remaining_embeddings)

                visited_class = get_embedding_class(least_similar, embeddings)

                
                if visited_class is not None:
                  visited[visited_class] = True


                current_subset.append(least_similar)
    
    if current_subset:  # Add any remaining elements in current_subset
        subsets.append(current_subset)
        

    return subsets

the result of this greedy subset sampling is all the training labels clearly boxed into subsets, where each subset has at most only classes. This inherently makes the job of a classifier easier, compared to the original classes it would have to classify between otherwise!

Semi-supervised classification with noise oversampling

Cascade this after the initial label subset formation — i.e., this classifier is only classifying between a given subset of classes.

Picture this: when you have low amounts of training data, you absolutely cannot create a hold-out set that is meaningful for evaluation. Should you do it at all? How do you know if your classifier is working well?

We approached this problem slightly differently — we defined the fundamental job of a semi-supervised classifier to be pre-emptive classification of a sample. This means that regardless of what a sample gets classified as it will be ‘verified’ and ‘corrected’ at a later stage: this classifier only needs to identify what needs to be verified.

As such, we created a design for how it would treat its data:

  • n+1 classes, where the last class is noise
  • noise: data from classes that are NOT in the current classifier’s purview. The noise class is oversampled to be 2x the average size of the data for the classifier’s labels

Oversampling on noise is a faux-safety measure, to ensure that adjacent data that belongs to another class is most likely predicted as noise instead of slipping through for verification.

How do you check if this classifier is working well — in our experiments, we define this as the number of ‘uncertain’ samples in a classifier’s prediction. Using uncertainty sampling and information gain principles, we were effectively able to gauge if a classifier is ‘learning’ or not, which acts as a pointer towards classification performance. This classifier is consistently retrained unless there is an inflection point in the number of uncertain samples predicted, or there is only a delta of information being added iteratively by new samples.

Proxy active learning via an LLM agent

This is the heart of the approach — using an LLM as a proxy for a human validator. The human validator approach we are talking about is Active Labelling

Let’s get an intuitive understanding of Active Labelling:

  • Use an ML model to learn on a sample input dataset, predict on a large set of datapoints
  • For the predictions given on the datapoints, a subject-matter expert (SME) evaluates ‘validity’ of predictions
  • Recursively, new ‘corrected’ samples are added as training data to the ML model
  • The ML model consistently learns/retrains, and makes predictions until the SME is satisfied by the quality of predictions

For Active Labelling to work, there are expectations involved for an SME:

  • when we expect a human expert to ‘validate’ an output sample, the expert understands what the task is
  • a human expert will use judgement to evaluate ‘what else’ definitely belongs to a label L when deciding if a new sample should belong to L

Given these expectations and intuitions, we can ‘mimic’ these using an LLM:

  • give the LLM an ‘understanding’ of what each label means. This can be done by using a larger model to critically evaluate the relationship between {label: data mapped to label} for all labels. In our experiments, this was done using a 32B variant of DeepSeek that was self-hosted.
Giving an LLM the capability to understand ‘why, what, and how’
  • Instead of predicting what is the correct label, leverage the LLM to identify if a prediction is ‘valid’ or ‘invalid’ only (i.e., LLM only has to answer a binary query).
  • Reinforce the idea of what other valid samples for the label look like, i.e., for every pre-emptively predicted label for a sample, dynamically source c closest samples in its training (guaranteed valid) set when prompting for validation.

The result? A cost-effective framework that relies on a fast, cheap classifier to make pre-emptive classifications, and an LLM that verifies these using (meaning of the label + dynamically sourced training samples that are similar to the current classification):

import math

def calculate_uncertainty(clf, sample):
    predicted_probabilities = clf.predict_proba(sample.reshape(1, -1))[0]  # Reshape sample for predict_proba
    uncertainty = -sum(p * math.log(p, 2) for p in predicted_probabilities)
    return uncertainty


def select_informative_samples(clf, data, k):
    informative_samples = []
    uncertainties = [calculate_uncertainty(clf, sample) for sample in data]

    # Sort data by descending order of uncertainty
    sorted_data = sorted(zip(data, uncertainties), key=lambda x: x[1], reverse=True)

    # Get top k samples with highest uncertainty
    for sample, uncertainty in sorted_data[:k]:
        informative_samples.append(sample)

    return informative_samples


def proxy_label(clf, llm_judge, k, testing_data):
    #llm_judge - any LLM with a system prompt tuned for verifying if a sample belongs to a class. Expected output is a bool : True or False. True verifies the original classification, False refutes it
    predicted_classes = clf.predict(testing_data)

    # Select k most informative samples using uncertainty sampling
    informative_samples = select_informative_samples(clf, testing_data, k)

    # List to store correct samples
    voted_data = []

    # Evaluate informative samples with the LLM judge
    for sample in informative_samples:
        sample_index = testing_data.tolist().index(sample.tolist()) # changed from testing_data.index(sample) because of numpy array type issue
        predicted_class = predicted_classes[sample_index]

        # Check if LLM judge agrees with the prediction
        if llm_judge(sample, predicted_class):
            # If correct, add the sample to voted data
            voted_data.append(sample)

    # Return the list of correct samples with proxy labels
    return voted_data

By feeding the valid samples (voted_data) to our classifier under controlled parameters, we achieve the ‘recursive’ part of our algorithm:

Recursive Expert Delegation: R.E.D.

By doing this, we were able to achieve close-to-human-expert validation numbers on controlled multi-class datasets. Experimentally, R.E.D. scales up to 1,000 classes while maintaining a competent degree of accuracy almost on par with human experts (90%+ agreement).

I believe this is a significant achievement in applied ML, and has real-world uses for production-grade expectations of cost, speed, scale, and adaptability. The technical report, publishing later this year, highlights relevant code samples as well as experimental setups used to achieve given results.

All images, unless otherwise noted, are by the author

Interested in more details? Reach out to me over Medium or email for a chat!

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Takeaways from Cisco’s AI Summit

Software development is in an absolute frenzy right now, Scott said. “You have very, very senior people, the best coders you’ve ever met in your life, who are just completely overwhelmed trying to keep up with the rate of progress that’s happening right now.” Optimizing AI development for agents or humans?

Read More »

Eying AI factories, Nvidia buys bigger stake in CoreWeave

Nvidia continues to throw its sizable bank account around, this time making a $2 billion investment in GPU cloud service provider CoreWeave. The company says the investment reflects Nvidia’s “confidence in CoreWeave’s business, team and growth strategy as a cloud platform built on Nvidia infrastructure.” CoreWeave is not the only

Read More »

AI, security tailwinds signal promising 2026 for Cisco

A big component of AI in communications is agentic agents talking to employees and customers, and bringing trust to the system is where Cisco should shine. It builds and runs its own infrastructure, which is secure by design. Cisco has relationships with governments all over the world, and between Webex

Read More »

Oil Ends Higher Amid Rising Middle East Risks

Oil edged higher as traders parsed conflicting reports on the status of nuclear talks between the US and Iran, clouding the outlook on whether Washington will proceed with military strikes against the major oil producer. West Texas Intermediate rose 3.1% to settle above $65 a barrel. Prices pared gains in post-settlement trading as Iranian Foreign Minister Abbas Araghchi confirmed in a social media post that negotiations will be held in Oman on Friday. The commodity surged earlier on reports that the US told Iran it will not agree to Tehran’s demands to change the location and format of talks planned for Friday, Axios said, citing two US officials. Adding to bullish momentum, US President Donald Trump said that Iran’s Supreme Leader Ayatollah Ali Khamenei “should be very worried” in an interview with NBC. Traders have been closely monitoring the risk of possible US military intervention in Iran, which could disrupt key shipping lanes as well as the country’s roughly 3.3 million barrels-per-day oil production. Doubts over whether talks surrounding Iran’s nuclear program would proceed as planned have intensified since Tuesday, when US and Iranian forces appeared to square off in the sea and air. An Iranian drone approached an American aircraft carrier in the Arabian Sea and was shot down just hours after a US-flagged oil tanker was hailed by small armed ships in the Strait of Hormuz off Iran’s coast. Concern over a potential conflict in the Middle East, a source of about a third of the world’s crude, helped lift prices last month despite signs of a growing oversupply. It has also kept the cost of bullish options high relative to bearish ones for the longest stretch in more than a year. “Geopolitical tensions are really driving it,” Equinor Chief Financial Officer Torgrim Reitan said in a Bloomberg

Read More »

Holtum Says LNG Projects Need New Financing Playbook

Trafigura Group Chief Executive Officer Richard Holtum said the liquefied natural gas industry needs a “bit of innovation” when it comes to financing projects. “I feel sorry for LNG projects in the US,” Holtum said on a panel at the LNG 2026 conference in Doha. “They would only get bank financing when they show that they’ve sold 80%-90% of their volume on long-term projects.”  LNG developers are scrambling to fully finance their projects to export more of the fuel, with the next wave of production from terminals under construction in the US and Qatar due to enter the market over the next decade. In the US, several projects including Delfin LNG off the coast of Louisiana, are working to finalize the debt and equity commitments. The current approach of LNG financing contrasts with oil, where banks are more comfortable with the inherent value of the commodity, the CEO said. “Whilst if your project financing some oil exploration, it’s simply the bank takes a view that, okay, oil is worth $40, $50, $60, $70, whatever it is, it doesn’t matter, they take a view, that’s what it’s worth in the long term,” he said. A similar model for LNG, where project financing is based on a long-term price forecast for the fuel, doesn’t seem to be developing, Holtum said. Still, global LNG capacity is set to rise by about 50% by the end of the decade — the biggest build-out in the industry’s history — led by the US.  The current arrangement, where 90% of LNG is sold to utilities under long-term contracts, risks running into difficulties because many companies and countries have made net-zero commitments, according to the Trafigura CEO. “If they have made those commitments, signing a 20-year contract or a 25-year contract that starts in 2030 is inherently problematic,” Holtum

Read More »

Russian Oil Revenues Plunge to 5 Year Low

The Russian government’s oil revenues collapsed to the lowest in more than five years in January as weaker global prices, steeper discounts for the nation’s barrels, and a stronger currency took a toll on the budget. Oil-related taxes halved to 281.7 billion rubles ($3.7 billion) last month from a year earlier, according to Bloomberg calculations based on finance ministry data published Wednesday. Combined oil and gas revenue also declined by 50%, to 393.3 billion rubles.  Lower proceeds from the two industries, which between them contribute about a quarter of the budget, will put more strain on the nation’s coffers as the war in Ukraine drags toward a fifth year with little sign of ending.  Brent oil futures were 15% lower year on year for the fiscal period, but US sanctions made the market downturn even worse for Russia. January’s oil revenue was the lowest since June 2020. The nation’s flagship grade Urals traded at about $26 a barrel below Dated Brent, a benchmark for physical oil trades, at the point of export. That compares with over $12 below the same marker a year earlier, data from Argus Media show.  The discounts ballooned following the US blacklisting of Rosneft PJSC and Lukoil PJSC, Russia’s two largest producers, measures that were announced in October. This week, US President Donald Trump said the US would cut import tariffs for goods from India — a major buyer of Russian crude — in exchange for New Delhi halting purchases of oil from Moscow. It’s not clear the extent to which India will cut back in practice. Russia’s finance ministry calculated oil revenue based on the average price of Urals of $39.18 a barrel in December, a 38% drop from a year earlier. That’s much lower than the government assumed when planned nation’s budget for this year and expected crude

Read More »

Eneos to Expand Oil Trading Portfolio Outside Japan

Eneos Holdings Inc. plans to expand its team to handle more oil-derivative trading at its overseas offices including Singapore, as Japan’s largest refiner looks to increase its presence at major trading hubs. The company intends to trade more oil derivatives, arbitrages and time spreads, as well as other paper market instruments, according to people familiar with the matter. They asked not to be named as they aren’t authorized to speak to the media.  Eneos will hire traders, as well as other executives in middle and back office roles, said people with knowledge of those plans. Kenneth Quek, a former trader from Mercuria Energy Group, recently joined in Singapore to focus on crude and related derivatives.  A company spokesperson didn’t respond to a request for comment during office hours. Some of these roles may be filled by internal candidates. The beefing up of its trading presence is part of a broader push to create more value across business sectors, including a bid for overseas assets such as Chevron Corp.’s stake in a Singapore oil refinery. Bloomberg previously reported that Eneos was a frontrunner in the process, ahead of rivals including trading houses Glencore Plc and Vitol Group. Oil markets have kicked off the year with a high level of volatility as geopolitical risks ran ahead of market glut concerns. India’s state-owned refiner Bharat Petroleum Corp. is also planning to set up a trading arm in Singapore this month. Eneos has a market capitalization of 3.6 trillion yen ($23 billion), making it Japan’s largest oil processor following years of consolidation in the country’s wider petroleum sector. It acquired renewable energy assets in recent years, and sold off its copper mining assets. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review.

Read More »

ADNOC, TAQA Pen 27 Year TA’ZIZ Deal

In a statement posted on ADNOC’s website recently, ADNOC and Abu Dhabi National Energy Company PJSC (TAQA) announced the signing of a 27 year utilities purchase agreement to supply “critical utilities” to the TA’ZIZ Industrial Chemicals Zone in Ruwais Industrial City, Abu Dhabi. The value of the deal was not disclosed in the statement, which noted that the duration of the agreement includes the offtake of the utilities and construction of the plant. Under the deal, ADNOC and TAQA will jointly develop the central utilities project, including the electricity grid connection, steam production, process cooling, and a range of water and wastewater utilities required to enable TA’ZIZ’s chemicals and transition-fuels projects, the statement revealed. The statement said TA’ZIZ, which is a joint venture between ADNOC and ADQ, will set up and own a service management company which will be the sole offtaker of the utilities, “providing a stable foundation for efficient industrial activity within the TA’ZIZ Industrial Chemicals Zone”. The statement noted that the agreement “marks a significant milestone in the development of the TA’ZIZ ecosystem”. “TA’ZIZ is set to accelerate the UAE’s industrial diversification and is set to produce 4.7 million tons per annum (MTPA) commencing in 2028. This will include methanol, low-carbon ammonia, polyvinyl chloride (PVC), ethylene dichloride (EDC), vinyl chloride monomer (VCM), and caustic soda,” it added. “TAQA’s Generation business continues to expand its regional portfolio with several major projects, including the 1-gigawatt Al Dhafra Gas Turbine project in the UAE and 3.6 GW new high-efficiency power plants – Rumah 2 IPP and Al Nairyah 2 IPP – in Saudi Arabia, being developed alongside partners JERA and AlBawani,” it continued. In the statement, Farid Al Awlaqi, Chief Executive Officer of TAQA’s Generation business, said, “this agreement strengthens TAQA’s role in enabling industrial growth in the UAE by

Read More »

Texas Upstream Employment Rises

Employment in the Texas upstream sector increased between November and December 2025. That’s what the Texas Independent Producers and Royalty Owners Association (TIPRO) said in a statement sent to Rigzone on Friday, which cited the latest Current Employment Statistics (CES) report from the U.S. Bureau of Labor Statistics (BLS) at the time. TIPRO highlighted in the statement that oil and natural gas extraction jobs rose by 500, or 0.7 percent, month on month, to 70,200, and support activities employment grew by 1,500, or 1.1 percent month on month, to 133,200. TIPRO reported in the statement that combined upstream employment increased by 2,000 jobs, or 1.0 percent month on month, to 203,400. “From January to December 2025, employment in the Texas upstream sector showed early gains followed by later fluctuations,” TIPRO said in the statement. “Oil and Gas Extraction added a net 2,000 jobs (+2.9 percent), reaching a peak of 70,200 in June, July, and December, driven by robust Permian production despite market pressures,” it added. “Support Activities employment recorded a net loss of 2,100 jobs (-1.6 percent), with a February0May surge (+2,800) partially offset by mid-year declines (-3,400 in June-July) and subsequent volatility, reflecting rig count reductions and service sector adjustments,” it continued. “Combined, the sectors ended essentially flat, with a net change of -100 jobs (-0.05 percent), reaching 203,400 by December and underscoring the industry’s critical yet volatile role in sustaining Texas’ energy workforce,” TIPRO noted. In the statement, TIPRO said its workforce data “continues to indicate strong job postings for the Texas oil and natural gas industry in December” but added that analysis “revealed a continued decline in Q4 driven by lower oil prices, industry consolidation, and ongoing efficiency gains, which allow companies to maintain or increase production with reduced hiring activity”. There were 7,887 unique industry job postings in Texas during the

Read More »

Azure outage disrupts VMs and identity services for over 10 hours

After multiple infrastructure scale-up attempts failed to handle the backlog and retry volumes, Microsoft ultimately removed traffic from the affected service to repair the underlying infrastructure without load. “The outage didn’t just take websites offline, but it halted development workflows and disrupted real-world operations,” said Pareekh Jain, CEO at EIIRTrend & Pareekh Consulting. Cloud outages on the rise Cloud outages have become more frequent in recent years, with major providers such as AWS, Google Cloud, and IBM all experiencing high-profile disruptions. AWS services were severely impacted for more than 15 hours when a DNS problem rendered the DynamoDB API unreliable. In November, a bad configuration file in Cloudflare’s Bot Management system led to intermittent service disruptions across several online platforms. In June, an invalid automated update disrupted the company’s identity and access management (IAM) system, resulting in users being unable to use Google to authenticate on third-party apps. “The evolving data center architecture is shaped by the shift to more demanding, intricate workloads driven by the new velocity and variability of AI. This rapid expansion is not only introducing complexities but also challenging existing dependencies. So any misconfiguration or mismanagement at the control layer can disrupt the environment,” said Neil Shah, co-founder and VP at Counterpoint Research. Preparing for the next cloud incident This is not an isolated incident. For CIOs, the event only reinforces the need to rethink resilience strategies. In the immediate aftermath when a hyperscale dependency fails, waiting is not a recommended strategy for CIOs, and they should focus on a strategy of stabilize, prioritize, and communicate, stated Jain. “First, stabilize by declaring a formal cloud incident with a single incident commander, quickly determining whether the issue affects control-plane operations or running workloads, and freezing all non-essential changes such as deployments and infrastructure updates.”

Read More »

Intel sets sights on data center GPUs amid AI-driven infrastructure shifts

Supply chain reliability is another underappreciated advantage. Hyperscalers want a credible second source, but only if Intel can offer stable, predictable roadmaps across multiple product generations. However, the company runs into a major constraint at the software layer. “The decisive bottleneck is software,” Rawat said. “CUDA functions as an industry operating standard, embedded across models, pipelines, and DevOps. Intel’s challenge is to prove that migration costs are low, and that ongoing optimization does not become a hidden engineering tax.” For enterprise buyers, that software gap translates directly into switching risk. Tighter integration of Intel CPUs, GPUs, and networking could improve system-level efficiency for enterprises and cloud providers, but the dominance of the CUDA ecosystem remains the primary barrier to switching, said Charlie Dai, VP and principal analyst at Forrester. “Even with strong hardware integration, buyers will hesitate without seamless compatibility with mainstream ML/DL frameworks and tooling,” Dai added.

Read More »

8 hot networking trends for 2026

Recurring license fees may have dissuaded enterprises from adopting AIOps in the past, but that’s changing, Morgan adds: “Over the past few years, vendors have added features and increased the value of those licenses, including 24×7 support. Now, by paying the equivalent of a fraction of a network engineer’s salary in license fees, a mid-sized enterprise can reduce hours spent on operations and level-one support in order to allocate more of their valuable networking experts’ time to AI projects. Every enterprise’s business case will be different, but with networking expertise in high demand, we predict that in 2026, the labor savings will outweigh the additional license costs for the majority of mid-to-large sized enterprises.” 2. AI boosts data center networking investments Enterprise data centers, which not so long ago were on the endangered species list, have made a remarkable comeback, driven by the reality that many AI workloads need to be hosted on premises, either for privacy, security, regulatory, latency or cost considerations. The global market for data center networking technologies was estimated at around $46 billion in 2025 and is projected to reach $103 billion by the end of 2030, a growth rate of nearly 18%, according to BCC Research: “The data center networking technologies market is rapidly changing due to increasing use of AI-powered solutions across data centers and sectors like telecom, IT, banking, financial services, insurance, government and commercial industries.” McKinsey predicts that global demand for data center capacity could nearly triple by 2030, with about 70% of that demand coming from AI workloads. McKinsey says both training and inference workloads are contributing to data center growth, with inference expected to become the dominant workload by 2030. 3. Private clouds roll in Clearly, the hyperscalers are driving most of the new data center construction, but enterprises are

Read More »

Cisco: Infrastructure, trust, model development are key AI challenges

“The G200 chip was for the scale out, because what’s happening now is these models are getting bigger where they don’t just fit within a single data center. You don’t have enough power to just pull into a single data center,” Patel said. “So now you need to have data centers that might be hundreds of kilometers apart, that operate like an ultra-cluster that are coherent. And so that requires a completely different chip architecture to make sure that you have capabilities like deep buffering and so on and so forth… You need to make sure that these data centers can be scaled across physical boundaries.”  “In addition, we are reaching the physical limits of copper and optics, and coherent optics especially are going to be extremely important as we go start building out this data center infrastructure. So that’s an area that you’re starting to see a tremendous amount of progress being made,” Patel said. The second constraint is the AI trust deficit, Patel said. “We currently need to make sure that these systems are trusted by the people that are using them, because if you don’t trust these systems, you’ll never use them,” Patel said. “This is the first time that security is actually becoming a prerequisite for adoption. In the past, you always ask the question whether you want to be secure, or you want to be productive. And those were kind of needs that offset each other,” Patel said. “We need to make sure that we trust not just using AI for cyber defense, but we trust AI itself,” Patel said. The third constraint is the notion of a data gap. AI models get trained on human-generated data that’s publicly available on the Internet, but “we’re running out,” Patel said. “And what you’re starting to see happen

Read More »

How Robotics Is Re-Engineering Data Center Construction and Operations

Physical AI: A Reusable Robotics Stack for Data Center Operations This is where the recent collaboration between Multiply Labs and NVIDIA becomes relevant, even though the application is biomanufacturing rather than data centers. Multiply Labs has outlined a robotics approach built on three core elements: Digital twins using NVIDIA Isaac Sim to model hardware and validate changes in simulation before deployment. Foundation-model-based skill learning via NVIDIA Isaac GR00T, enabling robots to generalize tasks rather than rely on brittle, hard-coded behaviors. Perception pipelines including FoundationPose and FoundationStereo, that convert expert demonstrations into structured training data. Taken together, this represents a reusable blueprint for data center robotics. Applying the Lesson to Data Center Environments The same physical-AI techniques now being applied in lab and manufacturing environments map cleanly onto the realities of data center operations, particularly where safety, uptime, and variability intersect. Digital-twin-first deployment Before a robot ever enters a live data hall, it needs to be trained in simulation. That means modeling aisle geometry, obstacles, rack layouts, reflective surfaces, and lighting variation; along with “what if” scenarios such as blocked aisles, emergency egress conditions, ladders left in place, or spill events. Simulation-first workflows make it possible to validate behavior and edge cases before introducing any new system into a production environment. Skill learning beats hard-coded rules Data centers appear structured, but in practice they are full of variability: temporary cabling, staged parts, mixed-vendor racks, and countless human exceptions. Foundation-model approaches to manipulation are designed to generalize across that messiness far better than traditional rule-based automation, which tends to break when conditions drift even slightly from the expected state. Imitation learning captures tribal knowledge Many operational tasks rely on tacit expertise developed over years in the field, such as how to manage stiff patch cords, visually confirm latch engagement, or stage a

Read More »

Applied Digital CEO Wes Cummins On the Hard Part of the AI Boom: Execution

Designing for What Comes After the Current AI Cycle Applied Digital’s design philosophy starts with a premise many developers still resist: today’s density assumptions may not hold. “We’re designing for maximum flexibility for the future—higher density power, lower density power, higher voltage delivery, and more floor space,” Cummins said. “It’s counterintuitive because densities are going up, but we don’t know what comes next.” That choice – to allocate more floor space even as rack densities climb – signals a long-view approach. Facilities are engineered to accommodate shifts in voltage, cooling topology, and customer requirements without forcing wholesale retrofits. Higher-voltage delivery, mixed cooling configurations, and adaptable data halls are baked in from the start. The goal is not to predict the future perfectly, Cummins stressed, but to avoid painting infrastructure into a corner. Supply Chain as Competitive Advantage If flexibility is the design thesis, supply chain control is the execution weapon. “It’s a huge advantage that we locked in our MEP supply chain 18 to 24 months ago,” Cummins said. “It’s a tight environment, and more timelines are going to get missed in 2026 because of it.” Applied Digital moved early to secure long-lead mechanical, electrical, and plumbing components; well before demand pressure fully rippled through transformers, switchgear, chillers, generators, and breakers. That foresight now underpins the company’s ability to make credible delivery commitments while competitors confront procurement bottlenecks. Cummins was blunt: many delays won’t stem from poor planning, but from simple unavailability. From 100 MW to 700 MW Without Losing Control The past year marked a structural pivot for Applied Digital. What began as a single, 100-megawatt “field of dreams” facility in North Dakota has become more than 700 MW under construction, with expansion still ahead. “A hundred megawatts used to be considered scale,” Cummins said. “Now we’re at 700

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »