Stay Ahead, Stay ONMINE

Why context-aware AI agents will give us superpowers in 2025

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 will be the year that big tech transitions from selling us more and more powerful tools to selling us more and more powerful abilities. The difference between a tool and an ability is subtle yet […]

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More


2025 will be the year that big tech transitions from selling us more and more powerful tools to selling us more and more powerful abilities. The difference between a tool and an ability is subtle yet profound.  We use tools as external artifacts that help us overcome our organic limitations. From cars and planes to phones and computers, tools greatly expand what we can accomplish as individuals, in large teams and as vast civilizations.

Abilities are different. We experience abilities in the first person as self-embodied capabilities that feel internal and instantly accessible to our conscious minds. For example, language and mathematics are human created technologies that we load into our brains and carry around with us throughout our lives, expanding our abilities to think, create and collaborate. They are superpowers that feel so inherent to our existence that we rarely think of them as technologies at all. Fortunately, we don’t need to buy a service plan.  

The next wave of superpowers, however, will not be free. But just like our abilities to think verbally and numerically, we will experience these powers as self-embodied capabilities that we carry around with us throughout our lives. I refer to this new technological discipline as augmented mentality and it will emerge from the convergence of AI, conversational computing and augmented reality. And, in 2025 it will kick off an arms race among the largest companies in the world to sell us superhuman abilities.

These new superpowers will be unleashed by context-aware AI agents that are loaded into body-worn devices (like AI glasses) that travel with us throughout our lives, seeing what we see, hearing what we hear, experiencing what we experience and providing us with enhanced abilities to perceive and interpret our world. In fact, by 2030, I predict that a majority of us will live our lives with the aid of context-aware AI agents that bring digital superpowers into our normal daily experiences.  

How will our super human future unfold?

First and foremost, we will whisper to these intelligent agents, and they will whisper back, acting like an omniscient alter ego that gives us context-aware recommendations, knowledge, guidance, advice, spatial reminders, directional cues, haptic nudges and other verbal and perceptual content that will coach us through our days and educate us about our world. 

Consider this simple scenario: You are walking downtown and spot a store across the street. You wonder, what time does it open?  So, you grab your phone and type (or say) the name of the store. You quickly find the hours on a website and maybe review other info about the store as well. That is the basic tool-use computing model prevalent today.

Now, let’s look at how big tech will transition to an ability computing model.

Stage 1: You are wearing AI-powered glasses that can see what you see, hear what you hear and process your surroundings through a multimodal large language model (LLM). Now when you spot that store across the street, you simply whisper to yourself, “I wonder when it opens?” and a voice will instantly ring back into your ears “10:30 AM.”

I know this is a subtle shift from asking your phone to look up the name of a store, but it will feel profound. The reason is that the context-aware AI agent will share your reality. It’s not just tracking your location like GPS, it is seeing, hearing and paying attention to what you are paying attention to. This will make it feel far less like a tool, and far more like an internal ability that is linked to your first-person reality.

And when we are asked a question by the AI-powered alter ego in our ears, we will often answer by just nodding our heads to affirm (detected by sensors in the glasses) or shaking our heads to reject. It will feel so natural and seamless, we might not even consciously realize we replied. 

Stage 2: By 2030, we will not need to whisper to the AI agents traveling with us through our lives. Instead, we will be able to simply mouth the words, and the AI will know what we are saying by reading our lips and detecting activation signals from our muscles. I am confident that “mouthing” will be deployed, as it’s more private, more resilient in noisy spaces, and most importantly, it will feel more personal, internal and self-embodied.

Stage 3: By 2035, you may not even need to mouth the words. That’s because the AI will learn to interpret the signals in our muscles with such subtlety and precision, we will simply need to think about mouthing words to convey our intent. We will be able to focus our attention on any item or activity in our world and think something, and useful information will ring back from our AI glasses like an all-knowing voice in our heads.

Of course, the capabilities will go far beyond just wondering about things around you. That’s because the onboard AI that shares your first-person reality will learn to anticipate the information you desire before you even ask for it. For example, when a coworker approaches from down the hall and you can’t quite remember his name, the AI will sense your unease, and a voice will ring: “Gregg from engineering.”

Or when you pick up a can of soup in a store and are curious about the carbs or wonder if it’s cheaper at Walmart, the answers will just ring in your ears or appear visually. It will even give you superhuman abilities to assess the emotions on other people’s faces, predict their moods, goals or intentions, and coach you during real-time conversations to make you more compelling, appealing or persuasive (see this fun video example).    

I know some people will be skeptical about the level of adoption I predict above and the rapid time frame, but I don’t make these claims lightly. I’ve spent much of my career working on technologies that augment and expand human abilities, and I can say that without question, the mobile computing market is about to run in this direction in a very big way.  

Over the last 12 months, two of the most influential and innovative companies in the world, Meta and Google, revealed their intentions to give us self-embodied superpowers. Meta made the first big move by adding a context-aware AI to their Ray-Ban glasses and by showing off their Orion mixed reality prototype that adds impressive visual capabilities. Meta is now very well positioned to leverage their big investments in AI and extended reality (XR) and become a major player in the mobile computing market, and they will likely do it by selling us superpowers we can’t resist.  

Not to be outdone, Google recently announced Android XR, a new AI-powered operating system for augmenting our world with seamless context-aware content. They also announced a partnership with Samsung to bring new glasses and headsets to market. With more than 70% market-share for mobile operating systems and an increasingly strong AI presence with Gemini, I believe that Google is well-positioned to be the leading provider of technology-enabled human superpowers within the next few years. 

Of course, we need to consider the risks

To quote the famous 1962 Spiderman comic, “with great power comes great responsibility.” This wisdom is literally about superpowers. The difference is that the great responsibility will not fall on the consumers who purchase these techno-powers, but on the companies that provide them and the regulators that oversee them.

After all, when wearing AI-powered augmented reality (AR) eyewear, each of us could find ourselves in a new reality where technologies controlled by third parties can selectively alter what we see and hear, while AI-powered voices whisper in our ears with advice, information and guidance. While the intentions are positive, even magical, the potential for abuse is just as profound.   

To avoid the dystopian outcomes, my primary recommendation to both consumers and manufacturers is to adopt a subscription business model.  If the arms race for selling superpowers is driven by which company can provide the most amazing new abilities for a reasonable monthly fee — we will all benefit. If instead, the business model becomes a competition to monetize superpowers by delivering the most effective targeted influence into our eyes and ears throughout our daily lives, consumers could easily be manipulated with precision and pervasiveness that we have never before faced.

Ultimately, these superpowers won’t feel optional. After all, not having them could put us at a cognitive disadvantage. It is now up to the industry and regulators to ensure that we roll out these new abilities in a way that is not intrusive, manipulative or dangerous. I am confident this can be a magical new direction for computing, but it requires careful planning and oversight.

Louis Rosenberg founded Immersion Corp, Outland Research and Unanimous AI, and authored Our Next Reality. 

DataDecisionMakers

Welcome to the VentureBeat community!

DataDecisionMakers is where experts, including the technical people doing data work, can share data-related insights and innovation.

If you want to read about cutting-edge ideas and up-to-date information, best practices, and the future of data and data tech, join us at DataDecisionMakers.

You might even consider contributing an article of your own!

Read More From DataDecisionMakers

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Top quantum breakthroughs of 2025

The Helios quantum computing platform is available to customers through Quantinuum’s cloud service and on-premises offering. HSBC is using IBM’s Heron quantum computer to improve their bond trading predictions by 34% compared to classical computing. Caltech physicists create 6,100-qubit array. Kon H. Leung is seen working on the apparatus used

Read More »

How enterprises are rethinking online AI tools

A second path enterprises like had only about 35% buy-in, but generated the most enthusiasm. It is to use an online AI tool that offers more than a simple answer to a question, something more like an “interactive AI agent” than a chatbot. Two that got all the attention are

Read More »

Occidental Beats Q3 Profit Estimates on Higher Production

Occidental Petroleum Corp has reported $649 million or 64 cents per share in net income adjusted for nonrecurring items for the third quarter. That beat the Zacks Consensus Estimate – which averages forecasts by brokerage analysts – of 48 cents, as production exceeded the upper end of the company’s guidance. Net profit before adjustment was $661 million, or $0.65 per diluted share, the Warren Buffett-backed company said in its quarterly report. Occidental maintained its dividend at $0.24 per share. July-September output averaged 1.47 million barrels of oil equivalent per day (MMboepd). The Permian Basin accounted for 800,000 boepd. The Rockies and other United States assets contributed 288,000 boepd, while the Gulf of America produced 139,000 boepd. Occidental derived 238,000 boepd from outside the U.S. Net sales totaled $6.62 billion, down from $7.17 billion for Q3 2024. Q3 oil and gas pre-tax income was $1.3 billion. “Excluding items affecting comparability, the increase in third quarter oil and gas income, compared to the second quarter of 2025, was due to higher crude oil volumes and prices”, Occidental said. “For the third quarter of 2025, average WTI and Brent marker prices were $64.93 per barrel and $68.14 per barrel, respectively. Average worldwide realized crude oil prices increased by two percent from the prior quarter to $64.78 per barrel. Average worldwide realized natural gas liquids prices decreased by five percent from the prior quarter to $19.60 per barrel. Average domestic realized gas prices increased by 11 percent from the prior quarter to $1.48 per thousand cubic feet”. Occidental Chemical Corp (OxyChem) generated $197 million in pre-tax earnings, down quarter-on-quarter due to lower realized prices and volumes across most products. These were “partially offset by favorable raw material costs”, Occidental said. Buffett’s holding company Berkshire Hathaway Inc is in the process of acquiring OxyChem for $9.7 billion.

Read More »

[Podcast] How Utilities Are Planning for Demand

From the electrification of transportation to the heating and cooling of data centers, utilities across the U.S. face the challenge of meeting surging demand for electricity. “How Utilities Are Planning for Demand” is a three-part podcast series that examines the increasingly complex utility sector landscape. The series features the insights of utility experts addressing industry-critical topics, including the vital role of smart planning in meeting historic demand, how to meet demand on accelerated timelines and the grid of tomorrow. Check out the podcast episodes! ⬆ <!– Ep. 3 Planning the Grid of Tomorrow –> <!– Ep. 2 The Need for Speed –> Ep. 1 The Big Picture: Why Smart Planning is Key to Meeting Historic Demand <!– Ep. 3 Planning the Grid of Tomorrow Meeting today’s soaring electricity demand is challenging enough — but what about the decades ahead? In this episode, industry experts explore how long-term planning, transmission buildouts, and advanced tools can give utilities the confidence to invest wisely and prepare for a future shaped by renewables, bidirectional power flows, and extreme weather. COMING SOON –> <!– Ep. 2 The Need for Speed What makes many emerging utility customers different today? They need a lot of electricity fast. In this episode, we explore how utilities can respond quickly to meet the accelerating load growth. Listen to “The Need for Speed” on Spreaker. –> Ep. 1 The Big Picture: Why Smart Planning is Key to Meeting Historic Demand Whether it’s growing demand, an aging workforce and grid, or the influx of renewable energy, the utility sector is more complex than ever. In this episode, we will explore the broad range of issues utility leaders must navigate to reliably and affordably deliver growing amounts of electricity to customers.

Read More »

EIA Raises Oil Price Forecasts but Still Sees Drop in 2026

In its latest short term energy outlook (STEO), which was released on November 12, the U.S. Energy Information Administration (EIA) increased its Brent price forecast for 2025 and 2026 but still projected that the commodity will drop next year compared to 2025. According to its November STEO, the EIA now sees the Brent spot price averaging $68.76 per barrel this year and $54.92 per barrel next year. In its previous STEO, which was released in October, the EIA projected that the Brent spot price would average $68.64 per barrel in 2025 and $52.16 per barrel in 2026. A quarterly breakdown included in the EIA’s latest STEO projected that the Brent spot price will come in at $62.52 per barrel in the fourth quarter of this year, $54.30 per barrel in the first quarter of next year, $54.02 per barrel in the second quarter, $55.32 per barrel in the third quarter, and $56.00 per barrel in the fourth quarter of 2026. In its previous STEO, the EIA forecast that the Brent spot price would average $62.05 per barrel in the fourth quarter of 2025, $51.97 per barrel in the first quarter of 2026, $51.67 per barrel in the second quarter, $52.00 per barrel in the third quarter, and $53.00 per barrel in the fourth quarter. The EIA highlighted in its latest STEO that Brent crude oil spot prices averaged $65 per barrel in October, which it pointed out was $3 per barrel less than the average in September and $15 per barrel less than the average in January 2025. “Crude oil prices fell in October as growing supplies of crude oil outweighed uncertainties related to the effect of new rounds of sanctions on Russia’s oil sector,” the EIA said in its November STEO. “We forecast that growing global oil production and

Read More »

Energy Department Strengthens Puerto Rico’s Energy Grid with Renewed Orders

As the island continues to repair critical infrastructure and prepares for next summer’s peak demand season, additional emergency orders are needed in order to strengthen Puerto Rico’s electric grid. WASHINGTON—The U.S. Department of Energy (DOE) today renewed two emergency orders to further strengthen Puerto Rico’s electric grid as the island prepares for rising demand and seasonal storm risks. Building on previous actions in May and August 2025, DOE’s emergency orders authorize the Puerto Rico Electric Power Authority (PREPA) to dispatch generation units essential for maintaining critical generation capacity, while accelerating vegetation management to reduce outages and strengthen long-term grid reliability. “Modernizing Puerto Rico’s energy grid is essential to achieving long-term reliability and affordability for the Commonwealth,” said U.S. Secretary of Energy Chris Wright. “Our team is working with local and federal partners to boost power generation and accelerate vegetation management efforts to strengthen Puerto Rico’s electrical grid. The Trump Administration is fully committed to delivering affordable, reliable and secure energy to all Americans.” This year, DOE’s emergency orders and actions assisted the Puerto Rican government in restoring up to 820 MW of baseload generation capacity in Puerto Rico, resulting in an approximate 13% increase to the island’s systemwide generation capacity of 6,460 MW. With DOE funding, PREPA was able to bring a key unit back online after being inoperative for more than two years–strengthening Puerto Rico’s grid. These orders also address vegetation management issues near high-voltage lines. Falling tree limbs or brush falling during Puerto Rico’s frequent storms and high winds can damage transmission lines, cause widespread outages and potentially cause wildfires. Addressing these hazards to public health and safety is critically important. Additional information can be found here. “The Department of Energy’s 202(c) emergency orders have provided concrete benefits for Puerto Rico, allowing us to restore 1,200 MW of

Read More »

Chevron Chooses West Texas for 1st AI Data Center Power Project

Chevron Corp. chose West Texas as the site of its first project to provide natural gas-fired power to a data center, the beginning of a new line of business for the oil giant to capitalize on the boom in artificial intelligence.  The company is in exclusive talks with the data center’s end user, which it didn’t name, and anticipates making a final investment decision early next year, according to a statement and presentation released ahead of Chevron’s investor day on Wednesday. The facility is expected be operational in 2027, and will have capacity to generate as much as 5,000 megawatts in the future. Big Oil is looking to cash in on the enormous demand for energy that will be needed to power data centers, which are being located further away from major population centers and closer to sources of fuel. Chevron is one of the biggest producers in the Permian Basin of West Texas, which spews out so much natural gas that it often overwhelms pipelines and has to be burned off. “We’ve got the gas,” Chief Financial Officer Eimear Bonner said in an interview prior to Chevron’s investor presentation in New York on Wednesday. “We are uniquely positioned to have a very competitive project.” The power project is expected to ramp up by its third year to have the capacity to produce about 2,500 megawatts, which is more than the equivalent of two nuclear reactors. It will likely be built separately from the grid to avoid competing with electricity supply for the wider population. Chevron sees an opportunity to secure demand for its 3 billion cubic feet per day of natural gas output. The stock declined 1.7% by 10 a.m. in New York, with Brent crude prices trading down 2.7% at $63.41 a barrel.  Key to Chevron’s venture into AI

Read More »

Constellation Energy looks to demand response to accommodate load growth

BY THE NUMBERS: Constellation Energy Q3 2025 5.8 GW Power generation and battery storage Constellation is proposing to bring online in Maryland to meet rising demand for electricity. 1 GW The capacity the utility hopes to add to its demand response programs. “A full nuclear unit’s worth of output,” said Jim McHugh, the company’s chief commercial officer. 19 TWh Electric load served to the Mid-Atlantic in Q3 2025. 46,477 GWh Produced by Constellation’s nuclear fleet in the third quarter, compared with 45,510 GWh last year. ‘Strong pipeline’ for demand response products Constellation Energy is “seeing a lot of great capability to use backup generation and flex compute,” President and CEO Joe Dominguez said in the company’s third-quarter earnings call on Friday. He added, however, that “I don’t think we’re going to get to a point where we could flex on and off the full output of data centers.” Dominguez said the company is exploring using artificial intelligence to “attract some of our other customers to actually providing the relief or the slack on the system during the key hours,” then “use their own backup generation or curtail their own consumption of energy during peak hours.” A lot of Constellation’s customers have shown interest in demand response products, and the pipeline for that “looks really strong right now,” said Chief Commercial Officer Jim McHugh. “We’ve found this kind of unique opportunity,” McHugh said. “We’re trying to be innovative around the product structure itself … We started executing [deals], working towards 1,000 MW or so in between now and the next couple of capacity auctions.” McHugh noted that 1 GW “portends to look like a full nuclear unit’s worth of output in terms of demand response.” “I think we’re still in the early days of this,” he said. “I think the combination of

Read More »

AI networking demand fueled Cisco’s upbeat Q1 financials

Customers are very focused on modernizing their network infrastructure in the enterprise in preparation for inferencing and AI workloads, Robbins said. “These things are always multi-year efforts,” and this is only the beginning, Robbins said. The AI opportunity “As we look at the AI opportunity, we see customer use cases growing across training, inferencing, and connectivity, with secure networking increasingly critical as workloads move from the data center to end users, devices, and agents at the edge,” Robbins said. “Agents are transforming network traffic from predictable bursts to persistent high-intensity loads, with agentic AI queries generating up to 25 times more network traffic than chatbots.” “Instead of pulling data to and from the data center, AI workloads require models and infrastructure to be closer to where data is created and decisions are made, particularly in industries such as retail, healthcare, and manufacturing.” Robbins pointed to last week’s introduction of Cisco Unified Edge, a converged platform that integrates networking, compute and storage to help enterprise customers more efficiently handle data from AI and other workloads at the edge. “Unified Edge enables real-time inferencing for agentic and physical AI workloads, so enterprises can confidently deploy and manage AI at scale,” Robbins said. On the hyperscaler front, “we see a lot of solid pipeline throughout the rest of the year. The use cases, we see it expanding,” Robbins said. “Obviously, we’ve been selling networking infrastructure under the training models. We’ve been selling scale-out. We launched the P200-based router that will begin to address some of the scale-across opportunities.” Cisco has also seen great success with its pluggable optics, Robbins said. “All of the hyperscalers now are officially customers of our pluggable optics, so we feel like that’s a great opportunity. They not only plug into our products, but they can be used with other companies’

Read More »

When the Cloud Leaves Earth: Google and NVIDIA Test Space Data Centers for the Orbital AI Era

On November 4, 2025, Google unveiled Project Suncatcher, a moonshot research initiative exploring the feasibility of AI data centers in space. The concept envisions constellations of solar-powered satellites in Low Earth Orbit (LEO), each equipped with Tensor Processing Units (TPUs) and interconnected via free-space optical laser links. Google’s stated objective is to launch prototype satellites by early 2027 to test the idea and evaluate scaling paths if the technology proves viable. Rather than a commitment to move production AI workloads off-planet, Suncatcher represents a time-bound research program designed to validate whether solar-powered, laser-linked LEO constellations can augment terrestrial AI factories, particularly for power-intensive, latency-tolerant tasks. The 2025–2027 window effectively serves as a go/no-go phase to assess key technical hurdles including thermal management, radiation resilience, launch economics, and optical-link reliability. If these milestones are met, Suncatcher could signal the emergence of a new cloud tier: one that scales AI with solar energy rather than substations. Inside Google’s Suncatcher Vision Google has released a detailed technical paper titled “Towards a Future Space-Based, Highly Scalable AI Infrastructure Design.” The accompanying Google Research blog describes Project Suncatcher as “a moonshot exploring a new frontier” – an early-stage effort to test whether AI compute clusters in orbit can become a viable complement to terrestrial data centers. The paper outlines several foundational design concepts: Orbit and Power Project Suncatcher targets Low Earth Orbit (LEO), where solar irradiance is significantly higher and can remain continuous in specific orbital paths. Google emphasizes that space-based solar generation will serve as the primary power source for the TPU-equipped satellites. Compute and Interconnect Each satellite would host Tensor Processing Unit (TPU) accelerators, forming a constellation connected through free-space optical inter-satellite links (ISLs). Together, these would function as a disaggregated orbital AI cluster, capable of executing large-scale batch and training workloads. Downlink

Read More »

Cloud-based GPU savings are real – for the nimble

The pattern points to an evolving GPU ecosystem: while top-tier chips like Nvidia’s new GB200 Blackwell processors remain in extremely short supply, older models such as the A100 and H100 are becoming cheaper and more available. Yet, customer behavior may not match practical needs. “Many are buying the newest GPUs because of FOMO—the fear of missing out,” he added. “ChatGPT itself was built on older architecture, and no one complained about its performance.” Gil emphasized that managing cloud GPU resources now requires agility, both operationally and geographically. Spot capacity fluctuates hourly or even by the minute, and availability varies across data center regions. Enterprises willing to move workloads dynamically between regions—often with the help of AI-driven automation—can achieve cost reductions of up to 80%. “If you can move your workloads where the GPUs are cheap and available, you pay five times less than a company that can’t move,” he said. “Human operators can’t respond that fast automation is essential.” Conveniently, Cast sells an AI automation solution. But it is not the only one and the argument is valid. If spot pricing can be found cheaper at another location, you want to take it to keep the cloud bill down/ Gil concluded by urging engineers and CTOs to embrace flexibility and automation rather than lock themselves into fixed regions or infrastructure providers. “If you want to win this game, you have to let your systems self-adjust and find capacity where it exists. That’s how you make AI infrastructure sustainable.”

Read More »

Harnessing Gravity: RRPT Hydro Reimagines Data Center Power

At the 2025 Data Center Frontier Trends Summit, amid panels on AI, nuclear, and behind-the-meter power, few technologies stirred more curiosity than a modular hydropower system without dams or flowing rivers. That concept—piston-driven hydropower—was presented by Expanse Energy Corporation President and CEO Ed Nichols and Chief Electrical Engineer Gregory Tarver during the Trends Summit’s closing “6 Moonshots for the 2026 Data Center Frontier” panel. Nichols and Tarver joined the Data Center Frontier Show recently to discuss how their Reliable Renewable Power Technology (RRPT Hydro) platform could rewrite the economics of clean, resilient power for the AI era. A New Kind of Hydropower Patented in the U.S. and entering commercial readiness, RRPT Hydro’s system replaces flowing water with a gravity-and-buoyancy engine housed in vertical cylinders. Multiple pistons alternately sink and rise inside these cylinders—heavy on the downward stroke, buoyant on the upward—creating continuous motion that drives electrical generation. “It’s not perpetual motion,” Nichols emphasizes. “You need a starter source—diesel, grid, solar, anything—but once in motion, the system sustains itself, converting gravity’s constant pull and buoyancy’s natural lift into renewable energy.” The concept traces its roots to a moment of natural awe. Its inventor, a gas-processing engineer, was moved to action by the 2004 Boxing Day tsunami, seeking a way to “containerize” and safely harvest the vast energy seen in that disaster. Two decades later, that spark has evolved into a patented, scalable system designed for industrial deployment. Physics-Based Power: Gravity Down, Buoyancy Up Each RRPT module operates as a closed-loop hydropower system: On the downstroke, pistons filled with water become dense and fall under gravity, generating kinetic energy. On the upstroke, air ballast tanks lighten the pistons, allowing buoyant forces to restore potential energy. By combining gravitational and buoyant forces—both constant, free, and renewable—RRPT converts natural equilibrium into sustained mechanical power.

Read More »

Buyer’s guide to AI networking technology

Extreme Networks: AI management over AI hardware Extreme deliberately prioritizes AI-powered network management over building specialized hyperscale AI infrastructure, a pragmatic positioning for a vendor targeting enterprise and mid-market.Named a Leader in IDC MarketScape: Worldwide Enterprise Wireless LAN 2025 (October 2025) for AI-powered automation, flexible deployment options and expertise in high-density environments. The company specializes in challenging wireless environments including stadiums, airports and historic venues (Fenway Park, Lambeau Field, Dubai World Trade Center, Liverpool FC’s Anfield Stadium). Key AI networking hardware 8730 Switch: 32×400GbE QSFP-DD fixed configuration delivering 12.8 Tbps throughput in 2RU for IP fabric spine/leaf designs. Designed for AI and HPC workloads with low latency, robust traffic management and power efficiency. Runs Extreme ONE OS (microservices architecture). Supports integrated application hosting with dedicated CPU for VM-based apps. Available Q3 2025. 7830 Switch: High-density 100G/400G fixed-modular core switch delivering 32×100Gb QSFP28 + 8×400Gb QSFP-DD ports with two VIM expansion slots. VIM modules enable up to 64×100Gb or 24×400Gb total capacity with 12.8 Tbps throughput in 2RU. Powered by Fabric Engine OS. Announced May 2025, available Q3 2025. Wi-Fi 7 access points: AP4020 (indoor) and AP4060 (outdoor with external antenna support, GA September 2025) completing premium Wi-Fi 7 portfolio. Extreme Platform ONE:Generally available Q3 2025 with 265+ customers. Integrates conversational, multimodal and agentic AI with three agents (AI Expert, AI Canvas, Service AI Agent) cutting resolution times 98%. Includes embedded Universal ZTNA and two-tier simplified licensing. ExtremeCloud IQ: Cloud-based network management integrating wireless, wired and SD-WAN with AI/ML capabilities and digital twin support for testing configurations before deployment. Extreme Fabric: Native SPB-based Layer 2 fabric with sub-second convergence, automated macro and micro-segmentation and free licensing (no controllers required). Multi-area fabric architecture solves traditional SPB scaling limitations. Analyst Rankings: Market leadership in AI networking Foundry Each of the vendors has its

Read More »

Microsoft’s In-Chip Microfluidics Technology Resets the Limits of AI Cooling

Raising the Thermal Ceiling for AI Hardware As Microsoft positions it, the significance of in-chip microfluidics goes well beyond a novel way to cool silicon. By removing heat at its point of generation, the technology raises the thermal ceiling that constrains today’s most power-dense compute devices. That shift could redefine how next-generation accelerators are designed, packaged, and deployed across hyperscale environments. Impact of this cooling change: Higher-TDP accelerators and tighter packing. Where thermal density has been the limiting factor, in-chip microfluidics could enable denser server sleds—such as NVL- or NVL-like trays—or allow higher per-GPU power budgets without throttling. 3D-stacked and HBM-heavy silicon. Microsoft’s documentation explicitly ties microfluidic cooling to future 3D-stacked and high-bandwidth-memory (HBM) architectures, which would otherwise be heat-limited. By extracting heat inside the package, the approach could unlock new levels of performance and packaging density for advanced AI accelerators. Implications for the AI Data Center If microfluidics can be scaled from prototype to production, its influence will ripple through every layer of the data center, from the silicon package to the white space and plant. The technology touches not only chip design but also rack architecture, thermal planning, and long-term cost models for AI infrastructure. Rack densities, white space topology, and facility thermals Raising thermal efficiency at the chip level has a cascading effect on system design: GPU TDP trajectory. Press materials and analysis around Microsoft’s collaboration with Corintis suggest the feasibility of far higher thermal design power (TDP) envelopes than today’s roughly 1–2 kW per device. Corintis executives have publicly referenced dissipation targets in the 4 kW to 10 kW range, highlighting how in-chip cooling could sustain next-generation GPU power levels without throttling. Rack, ring, and row design. By removing much of the heat directly within the package, microfluidics could reduce secondary heat spread into boards and

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »