Stay Ahead, Stay ONMINE

Building customer-centric convenience

In partnership withInfosys Cobalt In the U.S., two-thirds of the country’s 150,000 convenience stores are run by independent operators. Mom-and-pop shops, powered by personal relationships and local knowledge, are the backbone of the convenience sector. These neighborhood operators have long lacked the resources needed to compete with larger chains when it comes to technology, operations, and customer loyalty programs.  As consumer expectations evolve, many small business owners find themselves grappling with outdated systems, rising costs, and limited digital tools to keep up. “What would happen if these small operations could combine their knowledge of their market, of their neighborhood, with the state-of-the-art technology?” asks GM of digital products, mobility, and convenience for the Americas at bp, Tarang Sethia. That question is shaping a years-long, multi-pronged initiative to bring modern retail tools, like cloud-connected point-of-sale systems and personalized AI, into the hands of local convenience store operators, without stripping their independence.  Sethia’s mission is to close the digital gap. bp’s newly launched Earnify app centralizes loyalty rewards for convenience stores across the country, helping independent stores build repeat business with data-informed promotions. Behind the scenes, a cloud-based operating system can proactively monitor store operations and infrastructure to automate fixes to routine issues and reduce costly downtime. This is especially critical for businesses that double as their own IT departments.  “We’ve aggregated all of that into one offering for our customers. We proactively monitor it. We fix it. We take ownership of making sure that these systems are up. We make sure that the systems are personalizing offers for the customers,” says Sethia.  But the goal isn’t to corporatize corner stores. “We want them to stay local,” says Sethia. “We want them to stay the mom-and-pop store operator that their customers trust, but we are providing them the tools to run their stores more efficiently and to delight their guests.” From personalizing promotions to proactively resolving technical issues to optimizing in-store inventory, the success of AI should be measured, says Sethia, by its ability to make frontline workers more effective and customers more loyal. The future, Sethia believes, lies in thoughtful integration of technology that centers humans rather than replacing them.  “AI and other technologies should help us create an ecosystem that does not replace humans, but actually augments their ability to serve consumers and to serve the consumers so well that the consumers don’t go back to their old ways.” This episode of Business Lab is produced in association with Infosys Cobalt. Full Transcript  Megan Tatum: From MIT Technology Review, I’m Megan Tatum, and this is Business Lab, the show that helps business leaders make sense of new technologies coming out of the lab and into the marketplace.  This episode is produced in partnership with Infosys Cobalt.  Our topic today is innovating with AI. As companies move along in their journey to digitalization and AI adoption, we’re starting to see real-world business models that demonstrate the innovation these emerging technologies enable.  Two words for you: ecosystem innovation.  My guest today is Tarang Sethia, the GM of digital products, mobility and convenience for the Americas at BP.  Welcome, Tarang. Tarang Sethia: Thank you. Megan: Lovely to have you. Now, for a bit of context just to start with, could you give us some background about the current convenience store and gas station landscape in the United States and what the challenges are for owners and customers right now? Tarang: Absolutely. What is important to understand is, what is the state of the market? If you look at the convenience and mobility market, it is a very fragmented market. The growth and profitability are driven by consumer loyalty, store experience, and also buying power of the products that they sell to the customers that come into their stores. And from an operations perspective, there is a vast difference. If you put the bucket of these single-store smaller operators, these guys are very well run, they are in the community, they know their customers. Sometimes they even know the frequent buyers that are coming in, and they address them by name and keep the product ready. They know their communities and customers, and they have a personal affinity with them. They also know their likes and dislikes. But they also need to rapidly change to the changing needs of the customers. These mom-and-pop stores represent the core of the convenience market. And these constitute about 60% of the entire market. Now, where the fragmentation lies is, there are also larger operations that are equally motivated to develop strong relationships with customers and they have the scale. They may not match the personal affinity of these mom-and-pop store operators, but they do have the capital to actually leverage data, technology, AI, to personalize and customize their stores for the consumers or the customers that come to their stores.  And this is like the 25% or 30% of the market. Just to put that number in perspective, out of the 150,000 convenience stores in the US market, 60% constitute almost 100,000 stores, which are mom-and-pop operated. The rest are through organized retail. Okay.Now let me talk about the problems that they face. In today’s day and age, these mom-and-pop stores don’t have the capital to create a loyalty program and to create those offers that make customers choose to come to the store instead of going to somebody else. They also don’t have a simpler operations technology and the operations ecosystem. What I mean is that they don’t have the systems that stay up, these are still legacy POS systems that run their stores. So they spend a lot of time making the transaction happen. Finally, what they pay for, say, a bottle of soda, compared to the larger operation, because of the lack of buying power, also eats into their margin. So overall, the problems are that they’re not able to delight their guests with loyalty. Their operations are not simple, and so they do a lot of work to keep their operations up to date and pay a lot more for their operations, both technology and convenience operations. That’s kind of the summary. Megan: Right, and I suppose there’s a way to help them address these challenges. I know bp has created this new way to reach convenience store owners to offer various new opportunities and products. Could you tell us a bit about what you’ve been working on? For example, I know there’s an app, point of sale and payment systems, and a snack brand, and also how these sort of benefit convenience store owners and their customers in this climate that we’re talking about. Tarang: So bp is in pursuit of these digital first customer experiences that don’t replace the one-on-one human interactions of mom-and-pop store operators, but they amplify that by providing them with an ecosystem that helps them delight their guests, run their stores simply and more efficiently, and also reduce their cost while doing so. And what we have done as bp is, we’ve launched a suite of customer solutions and an innovative retail operating system experience. We’ve branded it Crosscode so that it works from the forecourt to the backcourt, it works for the consumers, it works for the stores to run their stores more efficiently, and we can leverage all kinds of technologies like AI to personalize and customize for the customers and the stores. The reason why we did this is, we asked ourselves, what would happen if these small operations could combine their knowledge of their market, of their neighborhood, with the state-of-the-art technology? That’s how we came up with a consumer app called Earnify. It is kind of the Uber of loyalty programs. We did not name it BPme. We did not name it BP Rewards or ampm or Thorntons. We created one standardized loyalty program that would work in the entire country to get more loyal consumers and drive their frequency, and we’ve scaled it to about 8,000 stores in the last year, and the results are amazing. There are 68% more active, loyal consumers that are coming through Earnify nationally.  And the second piece, which is even more important is, which a lot of companies haven’t taken care of, is a simple to operate, cloud-based retail operating system, which is kind of the POS, point of sale, and the ecosystem of the products that they sell to customers and payment systems. We have applied AI to make a lot of tasks automated in this retail operating system.What that has led to is 20% reduction in the operating costs for these mom-and-pop store operators. That 20% reduction in operating costs, goes directly to the bottom line of these stores. So now, the mom-and-pop store operators are going to be able to delight their guests, keeping their customers loyal. Number two, they’re able to spend less money on running their store operations. And number three, very, very, very important, they are able to spend more time serving the guests instead of running the store. Megan: Yeah, absolutely. Really fantastic results that you’ve achieved there already. And you touched on a couple of the sort of technologies you’ve made use of there, but I wondered if you could share a bit more detail on what additional technologies, like cloud and AI, did you adopt and implement, and perhaps what were some of the barriers to adoption as well? Tarang: Absolutely. I will first start with how did we enable these mom-and-pop store operators to delight their guests? The number one thing that we did was we first started with a basic points-based loyalty program where their guests earn points and value for both fueling at the fuel pump and buying convenience store items inside the store. And when they have enough points to redeem, they can redeem them either way. So they have value for going from the forecourt to the backcourt and backcourt to the forecourt. Number one thing, right? Then we leveraged data, machine learning, and artificial intelligence to personalize the offer for customers. If you’re on Earnify and I am in New York, and if I were a bagel enthusiast, then it would send me offers of a bagel plus coffee. And say my wife likes to go to a convenience store to quickly pick up a salad and a diet soda. She would get offers for that, right? So personalization.  What we also applied is, now these mom-and-pop store operators, depending on the changing seasons or the changing landscape, could create their own offers and they could be instantly available to their customers. That’s how they are able to delight their guests. Number two is, these mom-and-pop store operators, their biggest problem with technology is that it goes down, and when it goes down, they lose sales. They are on calls, they become the IT support help desk, right? They’re trying to call five different numbers.So we first provided a proactively monitored help desk. So when we leveraged AI technology to monitor what is working in their store, what is not working, and actually look at patterns to find out what may be going down, like a PIN pad. We would know hours before, looking at the patterns that the PIN pad may have issues. We proactively call the customer or the store to say, “Hey, you may have some problems with the PIN pad. You need to replace it, you need to restart it.”What that does is, it takes away the six to eight hours of downtime and lost sales for these stores. That’s a proactively monitored solution. And also, if ever they have an issue, they need to call one number, and we take ownership of solving the problems of the store for them. Now, it’s almost like they have an outsourced help desk, which is leveraging AI technology to both proactively monitor, resolve, and also fix the issues faster because we now know that store X also had this issue and this is what it took to resolve, instead of constantly trying to resolve it and take hours. The third thing that we’ve done is we have put in a cloud-based POS system so we can constantly monitor their POS. We’ve connected it to their back office pricing systems so they can change the prices of products faster, and [monitor] how they are performing. This actually helps the store to say, “Okay, what is working, what is not working? What do I need to change?” in almost near real-time, instead of waiting hours or days or weeks to react to the changing customer needs. And now they don’t need to make a decision. Do I have the capital to invest in this technology? The scale of bp allows them to get in, to leverage technology that is 20% cheaper and is working so much better for them. Megan: Fantastic. Some really impactful examples of how you’ve used technology there. Thank you for that. And how has bp also been agile or quick to respond to the data it has received during this campaign? Tarang: Agility is a mindset. What we’ve done is to bring in a customer-obsessed mindset. Like our leader Greg Franks talks about, we have put the customer at the heart of everything that we do. For us, customers are people who come to our stores and the people on the frontline who serve them. Their needs are of the utmost importance. What we did was, we changed how we went to business about them. Instead of going to vendors and putting vendors in charge of the store technology and consumer technology, we took ownership. We built out a technology team that was trained in the latest tools and technologies like AI, like POS, like APIs. Then we changed the processes of how quickly we go to market. Instead of waiting two years on an enterprise project and then delivering it three years later, what we said was, “Let’s look at an MVP experience, most valuable experience delivered through a product for the customers.” And we started putting it in the stores so that the store owners could start delighting their guests and learning. Some things worked, some didn’t, but we learned much faster and were able to react almost on a weekly basis. Our store owners now get these updates on a biweekly basis instead of waiting two years or three years. Third, we’ve applied an ecosystem mindset. Companies like Airbnb and Uber are known for their aggregator business models. They don’t do everything themselves, and we don’t do everything ourselves. But what we have done is, we’ve become an aggregator of all the capabilities, like consumer app, like POS, like back office or convenience value chain, like pricing, like customer support. We’ve aggregated all of that into one offering for our customers. We proactively monitor it. We fix it. We take ownership of making sure that these systems are up. We make sure that the systems are personalizing offers for the customers. So the store owner can just focus on delighting their guests. We have branded this as Crosscode Retail Operating System, and we are providing it as a SaaS service. You can see in the name, there’s no bp in the name because, unlike the very big convenience players, we are not trying to make them into a particular brand that we want them. We want them to stay local. We want them to stay the mom-and-pop store operator that their customers trust, but we are providing them the tools to run their stores more efficiently and to delight their guests. Megan: Really fantastic. And you mentioned that this was a very customer-centric approach that you took. So, how important was it to focus on that customer experience, in addition to the  technology and all that it can provide? Tarang: The customer experience was the most important thing. We could have started with a project and determined, “Hey, this is how it makes money for bp first.” But we said, “Okay, let’s look at solving the core problems of the customer.” Our customer told us, “Hey, I want to pay frictionlessly at the pump, when I come to the pump.” So what did we do? We launched pay for fuel feature, where they can come to the pump, they don’t need to take their wallet out. They just take their app out and choose what pump and what payment method.  Then they said, “Hey, I don’t get any value from buying fuel every week and going inside. These are two different stores for me.” So what did we do? We launched a unified loyalty program. Then the store owner said, “Hey, my customers don’t like the same offers that you do nationally.” So what did we do? We created both personalized offers and build-your-own offers for the store owner.  Finally, to be even more customer-obsessed, we said that being customer-obsessed doesn’t just happen. We have to measure it. We are constantly measuring how the consumers are rating the offers in our app and how the consumers are rating that experience. And we made a dramatic shift. The consumers, if you go to the Earnify app in the app store, they’re rating it as 4.9.  We have 68% more loyal consumers. We are also measuring these loyal consumers, how often they are coming and what they are buying. Then we said, “Okay, from a store owner perspective, their satisfaction is important.” We are constantly measuring the satisfaction of these store operators and the frontline employees who are operating the systems. Customer satisfaction used to be three out of 10 when we first started, and now, it has reached an 8.7 out of 10, and we are constantly monitoring. Some stores go down because we haven’t paid enough attention. We learn from it and we apply.Finally, what we’ve also done is with this Earnify app, instead of a local store operator having their own loyalty program with a few hundred customers, how many people are going to download that app? We’ve given them a network of millions of consumers nationwide that can be part of the ecosystem. The technologies that we are using are helping the stores delight the consumers, helping the stores providing the value to the consumers that they see, helping the stores provide the experience to the consumers that they see, and also helping bp to provide the seamless experience to the frontline employees. Megan: Fantastic. There are some incredible results there in terms of customer satisfaction. Are there any other metrics of success that you’re tracking along the way? Any other kind of wins that you can share so far in the implementation of all of this? Tarang: We are tracking a very important deeper metric so that we can hold ourselves accountable, the uptime of the store. The meantime to resolve the issues, the sales uplift of the stores, the transaction uplift of the stores. Are the consumers buying more? Are the consumers rating their consumer experience higher? Are they engaging in different offers? Because we may do hundreds of offers. If consumers don’t like it, then they are just offers. On this journey, we are measuring every metric, and we are making it transparent. That entire team is on the same scorecard of metrics that the customers or the store owners have for the performance of their business. Their performance and the consumer delight are embedded into the metrics on how all of us digital employees are measured. Megan: Yes, absolutely. It sounds like you’re measuring success through several different lenses, so it’s really interesting to hear about that approach. Given where you are in your journey, as many companies struggle to adopt and implement AI and other emerging technologies, is there any advice that you’d offer, given the lessons you’ve learned so far? Tarang: On AI, we have to keep it very, very simple. Instead of saying that, “Hey, we are going to create, we are going to use AI technology for the sake of it,” we have to tie the usage of AI technology to the impact it has on the customers. I’ll use four examples on how we are doing that.  When we say we are leveraging AI to personalize the offers, leveraging data for consumers, what are we measuring, and what are we applying? We are looking at the data of consumer behavior and applying AI models to see, based on the current transactions, how would they react, what would they buy? People living in Frisco, Texas, age, whatever, what do they buy, when do they come, and what are they buying other places? So let’s personalize offers so that they make that left turn. And we are measuring, whether personalization is driving the delight enough that the consumers come back to the store and don’t go back to their old ways, number one. Number two, what we are also doing is, like I mentioned earlier, we are leveraging data and AI technologies to constantly monitor the trends right in the marketplace, and we’ve created some automation to leverage those trends and act quickly, which also leads to some level of personalization. It’s more regionalization.  Now, as we do that, we also look at the patterns of what equipment or what transactions are slowing down and we proactively monitor and resolve them. So if the store has issues and if payment has issue, loyalty has issue, or POS has issue, back office has issue, we proactively work on it to resolve that. Number three that we are doing is, we are looking at the convenience market and we are looking at what is selling and what is in stock, so we are optimizing our supply chain inventory, pricing, and inventory, so that we could enable the store owners to cater to their consumers who come to the stores. This is actually really helping us have the product in the store that the customer actually came for. Megan: Absolutely. Looking ahead, when you think about the path to generative AI and other emerging technologies? Is there something that excites you the most, kind of looking ahead in the years to come as well? Tarang: That’s a great question, Megan. I’m going to answer that question a little bit philosophically because as technologists, our tendency is, whenever there is a new technology like generative AI, to create a lot of toys with it, right? But I’ve learned through this experience that whatever technology we use, like generative AI, we need to tie it to the objectives and key results for the consumer and the store.  As an example, if we are going to leverage generative AI to do personalized offers, to do personalized creative, then we need to be able to create frameworks to measure the impact on the store, to measure the impact on the consumer, and tie that directly to the use of the technology. Are we making the consumers more loyal? Are they coming more often? Are they buying more? Because only then, we will have adopters of that technology, both the store and stores driving the consumers to adopt. Number two, AI and other technologies should help us create an ecosystem that does not replace humans, but actually augments their ability to serve consumers and to serve the consumers so well that the consumers don’t go back to their old ways. That’s where we have to stay very, very customer-obsessed instead of just business-obsessed. When I say ecosystem, what excites me the most is, think about it. These small mom-and-pop store operators, these generational businesses, which are the core of the American dream or entrepreneurialism, we are going to enable them with an ecosystem like an Airbnb of mobility and convenience, where they get a loyalty program with personalization, where they can delight their guests. They get technology to run their stores very, very efficiently and reduce their cost by 20%. Number three, and very important, their frontline employees look like heroes to the guests that are walking into the store. If we achieve these three things and create an ecosystem, then that will drive prosperity leveraging technology. And bp, as a company, we would love to be part of that. Megan: I think that’s fantastic advice. Thank you so much, Tarang, for that. Tarang: Thank you. Megan: That was Tarang Sethia, the GM of digital products, mobility and convenience for the Americas at bp, whom I spoke with from Brighton, England.  That’s it for this episode of Business Lab. I’m your host, Megan Tatum. I’m a contributing editor and host for Insights, the custom publishing division of MIT Technology Review. We were founded in 1899 at the Massachusetts Institute of Technology, and you can find us in print on the web and at events each year around the world. For more information about us and the show, please check out our website at technologyreview.com. This show is available wherever you get your podcasts, and if you enjoy this episode, we hope you’ll take a moment to rate and review us. Business Lab is a production of MIT Technology Review. This episode was produced by Giro Studios. Thanks ever so much for listening. This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff. This content was researched, designed, and written entirely by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.

In partnership withInfosys Cobalt

In the U.S., two-thirds of the country’s 150,000 convenience stores are run by independent operators. Mom-and-pop shops, powered by personal relationships and local knowledge, are the backbone of the convenience sector. These neighborhood operators have long lacked the resources needed to compete with larger chains when it comes to technology, operations, and customer loyalty programs. 

As consumer expectations evolve, many small business owners find themselves grappling with outdated systems, rising costs, and limited digital tools to keep up.

“What would happen if these small operations could combine their knowledge of their market, of their neighborhood, with the state-of-the-art technology?” asks GM of digital products, mobility, and convenience for the Americas at bp, Tarang Sethia. That question is shaping a years-long, multi-pronged initiative to bring modern retail tools, like cloud-connected point-of-sale systems and personalized AI, into the hands of local convenience store operators, without stripping their independence. 

Sethia’s mission is to close the digital gap. bp’s newly launched Earnify app centralizes loyalty rewards for convenience stores across the country, helping independent stores build repeat business with data-informed promotions. Behind the scenes, a cloud-based operating system can proactively monitor store operations and infrastructure to automate fixes to routine issues and reduce costly downtime. This is especially critical for businesses that double as their own IT departments. 

“We’ve aggregated all of that into one offering for our customers. We proactively monitor it. We fix it. We take ownership of making sure that these systems are up. We make sure that the systems are personalizing offers for the customers,” says Sethia. 

But the goal isn’t to corporatize corner stores. “We want them to stay local,” says Sethia. “We want them to stay the mom-and-pop store operator that their customers trust, but we are providing them the tools to run their stores more efficiently and to delight their guests.”

From personalizing promotions to proactively resolving technical issues to optimizing in-store inventory, the success of AI should be measured, says Sethia, by its ability to make frontline workers more effective and customers more loyal.

The future, Sethia believes, lies in thoughtful integration of technology that centers humans rather than replacing them. 

“AI and other technologies should help us create an ecosystem that does not replace humans, but actually augments their ability to serve consumers and to serve the consumers so well that the consumers don’t go back to their old ways.”

This episode of Business Lab is produced in association with Infosys Cobalt.

Full Transcript 

Megan Tatum: From MIT Technology Review, I’m Megan Tatum, and this is Business Lab, the show that helps business leaders make sense of new technologies coming out of the lab and into the marketplace. 

This episode is produced in partnership with Infosys Cobalt. 

Our topic today is innovating with AI. As companies move along in their journey to digitalization and AI adoption, we’re starting to see real-world business models that demonstrate the innovation these emerging technologies enable. 

Two words for you: ecosystem innovation. 

My guest today is Tarang Sethia, the GM of digital products, mobility and convenience for the Americas at BP. 

Welcome, Tarang.

Tarang Sethia: Thank you.

Megan: Lovely to have you. Now, for a bit of context just to start with, could you give us some background about the current convenience store and gas station landscape in the United States and what the challenges are for owners and customers right now?

Tarang: Absolutely. What is important to understand is, what is the state of the market? If you look at the convenience and mobility market, it is a very fragmented market. The growth and profitability are driven by consumer loyalty, store experience, and also buying power of the products that they sell to the customers that come into their stores.

And from an operations perspective, there is a vast difference. If you put the bucket of these single-store smaller operators, these guys are very well run, they are in the community, they know their customers. Sometimes they even know the frequent buyers that are coming in, and they address them by name and keep the product ready. They know their communities and customers, and they have a personal affinity with them. They also know their likes and dislikes. But they also need to rapidly change to the changing needs of the customers. These mom-and-pop stores represent the core of the convenience market. And these constitute about 60% of the entire market.

Now, where the fragmentation lies is, there are also larger operations that are equally motivated to develop strong relationships with customers and they have the scale. They may not match the personal affinity of these mom-and-pop store operators, but they do have the capital to actually leverage data, technology, AI, to personalize and customize their stores for the consumers or the customers that come to their stores. 

And this is like the 25% or 30% of the market. Just to put that number in perspective, out of the 150,000 convenience stores in the US market, 60% constitute almost 100,000 stores, which are mom-and-pop operated. The rest are through organized retail. Okay.

Now let me talk about the problems that they face. In today’s day and age, these mom-and-pop stores don’t have the capital to create a loyalty program and to create those offers that make customers choose to come to the store instead of going to somebody else. They also don’t have a simpler operations technology and the operations ecosystem. What I mean is that they don’t have the systems that stay up, these are still legacy POS systems that run their stores. So they spend a lot of time making the transaction happen.

Finally, what they pay for, say, a bottle of soda, compared to the larger operation, because of the lack of buying power, also eats into their margin. So overall, the problems are that they’re not able to delight their guests with loyalty. Their operations are not simple, and so they do a lot of work to keep their operations up to date and pay a lot more for their operations, both technology and convenience operations. That’s kind of the summary.

Megan: Right, and I suppose there’s a way to help them address these challenges. I know bp has created this new way to reach convenience store owners to offer various new opportunities and products. Could you tell us a bit about what you’ve been working on? For example, I know there’s an app, point of sale and payment systems, and a snack brand, and also how these sort of benefit convenience store owners and their customers in this climate that we’re talking about.

Tarang: So bp is in pursuit of these digital first customer experiences that don’t replace the one-on-one human interactions of mom-and-pop store operators, but they amplify that by providing them with an ecosystem that helps them delight their guests, run their stores simply and more efficiently, and also reduce their cost while doing so. And what we have done as bp is, we’ve launched a suite of customer solutions and an innovative retail operating system experience. We’ve branded it Crosscode so that it works from the forecourt to the backcourt, it works for the consumers, it works for the stores to run their stores more efficiently, and we can leverage all kinds of technologies like AI to personalize and customize for the customers and the stores.

The reason why we did this is, we asked ourselves, what would happen if these small operations could combine their knowledge of their market, of their neighborhood, with the state-of-the-art technology? That’s how we came up with a consumer app called Earnify. It is kind of the Uber of loyalty programs. We did not name it BPme. We did not name it BP Rewards or ampm or Thorntons. We created one standardized loyalty program that would work in the entire country to get more loyal consumers and drive their frequency, and we’ve scaled it to about 8,000 stores in the last year, and the results are amazing. There are 68% more active, loyal consumers that are coming through Earnify nationally. 

And the second piece, which is even more important is, which a lot of companies haven’t taken care of, is a simple to operate, cloud-based retail operating system, which is kind of the POS, point of sale, and the ecosystem of the products that they sell to customers and payment systems. We have applied AI to make a lot of tasks automated in this retail operating system.

What that has led to is 20% reduction in the operating costs for these mom-and-pop store operators. That 20% reduction in operating costs, goes directly to the bottom line of these stores. So now, the mom-and-pop store operators are going to be able to delight their guests, keeping their customers loyal. Number two, they’re able to spend less money on running their store operations. And number three, very, very, very important, they are able to spend more time serving the guests instead of running the store.

Megan: Yeah, absolutely. Really fantastic results that you’ve achieved there already. And you touched on a couple of the sort of technologies you’ve made use of there, but I wondered if you could share a bit more detail on what additional technologies, like cloud and AI, did you adopt and implement, and perhaps what were some of the barriers to adoption as well?

Tarang: Absolutely. I will first start with how did we enable these mom-and-pop store operators to delight their guests? The number one thing that we did was we first started with a basic points-based loyalty program where their guests earn points and value for both fueling at the fuel pump and buying convenience store items inside the store. And when they have enough points to redeem, they can redeem them either way. So they have value for going from the forecourt to the backcourt and backcourt to the forecourt. Number one thing, right? Then we leveraged data, machine learning, and artificial intelligence to personalize the offer for customers.

If you’re on Earnify and I am in New York, and if I were a bagel enthusiast, then it would send me offers of a bagel plus coffee. And say my wife likes to go to a convenience store to quickly pick up a salad and a diet soda. She would get offers for that, right? So personalization. 

What we also applied is, now these mom-and-pop store operators, depending on the changing seasons or the changing landscape, could create their own offers and they could be instantly available to their customers. That’s how they are able to delight their guests. Number two is, these mom-and-pop store operators, their biggest problem with technology is that it goes down, and when it goes down, they lose sales. They are on calls, they become the IT support help desk, right? They’re trying to call five different numbers.

So we first provided a proactively monitored help desk. So when we leveraged AI technology to monitor what is working in their store, what is not working, and actually look at patterns to find out what may be going down, like a PIN pad. We would know hours before, looking at the patterns that the PIN pad may have issues. We proactively call the customer or the store to say, “Hey, you may have some problems with the PIN pad. You need to replace it, you need to restart it.”

What that does is, it takes away the six to eight hours of downtime and lost sales for these stores. That’s a proactively monitored solution. And also, if ever they have an issue, they need to call one number, and we take ownership of solving the problems of the store for them. Now, it’s almost like they have an outsourced help desk, which is leveraging AI technology to both proactively monitor, resolve, and also fix the issues faster because we now know that store X also had this issue and this is what it took to resolve, instead of constantly trying to resolve it and take hours.

The third thing that we’ve done is we have put in a cloud-based POS system so we can constantly monitor their POS. We’ve connected it to their back office pricing systems so they can change the prices of products faster, and [monitor] how they are performing. This actually helps the store to say, “Okay, what is working, what is not working? What do I need to change?” in almost near real-time, instead of waiting hours or days or weeks to react to the changing customer needs. And now they don’t need to make a decision. Do I have the capital to invest in this technology? The scale of bp allows them to get in, to leverage technology that is 20% cheaper and is working so much better for them.

Megan: Fantastic. Some really impactful examples of how you’ve used technology there. Thank you for that. And how has bp also been agile or quick to respond to the data it has received during this campaign?

Tarang: Agility is a mindset. What we’ve done is to bring in a customer-obsessed mindset. Like our leader Greg Franks talks about, we have put the customer at the heart of everything that we do. For us, customers are people who come to our stores and the people on the frontline who serve them. Their needs are of the utmost importance. What we did was, we changed how we went to business about them. Instead of going to vendors and putting vendors in charge of the store technology and consumer technology, we took ownership. We built out a technology team that was trained in the latest tools and technologies like AI, like POS, like APIs.

Then we changed the processes of how quickly we go to market. Instead of waiting two years on an enterprise project and then delivering it three years later, what we said was, “Let’s look at an MVP experience, most valuable experience delivered through a product for the customers.” And we started putting it in the stores so that the store owners could start delighting their guests and learning. Some things worked, some didn’t, but we learned much faster and were able to react almost on a weekly basis. Our store owners now get these updates on a biweekly basis instead of waiting two years or three years.

Third, we’ve applied an ecosystem mindset. Companies like Airbnb and Uber are known for their aggregator business models. They don’t do everything themselves, and we don’t do everything ourselves. But what we have done is, we’ve become an aggregator of all the capabilities, like consumer app, like POS, like back office or convenience value chain, like pricing, like customer support. We’ve aggregated all of that into one offering for our customers. We proactively monitor it. We fix it. We take ownership of making sure that these systems are up. We make sure that the systems are personalizing offers for the customers. So the store owner can just focus on delighting their guests.

We have branded this as Crosscode Retail Operating System, and we are providing it as a SaaS service. You can see in the name, there’s no bp in the name because, unlike the very big convenience players, we are not trying to make them into a particular brand that we want them. We want them to stay local. We want them to stay the mom-and-pop store operator that their customers trust, but we are providing them the tools to run their stores more efficiently and to delight their guests.

Megan: Really fantastic. And you mentioned that this was a very customer-centric approach that you took. So, how important was it to focus on that customer experience, in addition to the 

technology and all that it can provide?

Tarang: The customer experience was the most important thing. We could have started with a project and determined, “Hey, this is how it makes money for bp first.” But we said, “Okay, let’s look at solving the core problems of the customer.” Our customer told us, “Hey, I want to pay frictionlessly at the pump, when I come to the pump.” So what did we do? We launched pay for fuel feature, where they can come to the pump, they don’t need to take their wallet out. They just take their app out and choose what pump and what payment method. 

Then they said, “Hey, I don’t get any value from buying fuel every week and going inside. These are two different stores for me.” So what did we do? We launched a unified loyalty program. Then the store owner said, “Hey, my customers don’t like the same offers that you do nationally.” So what did we do? We created both personalized offers and build-your-own offers for the store owner. 

Finally, to be even more customer-obsessed, we said that being customer-obsessed doesn’t just happen. We have to measure it. We are constantly measuring how the consumers are rating the offers in our app and how the consumers are rating that experience. And we made a dramatic shift. The consumers, if you go to the Earnify app in the app store, they’re rating it as 4.9. 

We have 68% more loyal consumers. We are also measuring these loyal consumers, how often they are coming and what they are buying. Then we said, “Okay, from a store owner perspective, their satisfaction is important.” We are constantly measuring the satisfaction of these store operators and the frontline employees who are operating the systems. Customer satisfaction used to be three out of 10 when we first started, and now, it has reached an 8.7 out of 10, and we are constantly monitoring. Some stores go down because we haven’t paid enough attention. We learn from it and we apply.

Finally, what we’ve also done is with this Earnify app, instead of a local store operator having their own loyalty program with a few hundred customers, how many people are going to download that app? We’ve given them a network of millions of consumers nationwide that can be part of the ecosystem. The technologies that we are using are helping the stores delight the consumers, helping the stores providing the value to the consumers that they see, helping the stores provide the experience to the consumers that they see, and also helping bp to provide the seamless experience to the frontline employees.

Megan: Fantastic. There are some incredible results there in terms of customer satisfaction. Are there any other metrics of success that you’re tracking along the way? Any other kind of wins that you can share so far in the implementation of all of this?

Tarang: We are tracking a very important deeper metric so that we can hold ourselves accountable, the uptime of the store. The meantime to resolve the issues, the sales uplift of the stores, the transaction uplift of the stores. Are the consumers buying more? Are the consumers rating their consumer experience higher? Are they engaging in different offers? Because we may do hundreds of offers. If consumers don’t like it, then they are just offers.

On this journey, we are measuring every metric, and we are making it transparent. That entire team is on the same scorecard of metrics that the customers or the store owners have for the performance of their business. Their performance and the consumer delight are embedded into the metrics on how all of us digital employees are measured.

Megan: Yes, absolutely. It sounds like you’re measuring success through several different lenses, so it’s really interesting to hear about that approach. Given where you are in your journey, as many companies struggle to adopt and implement AI and other emerging technologies, is there any advice that you’d offer, given the lessons you’ve learned so far?

Tarang: On AI, we have to keep it very, very simple. Instead of saying that, “Hey, we are going to create, we are going to use AI technology for the sake of it,” we have to tie the usage of AI technology to the impact it has on the customers. I’ll use four examples on how we are doing that. 

When we say we are leveraging AI to personalize the offers, leveraging data for consumers, what are we measuring, and what are we applying? We are looking at the data of consumer behavior and applying AI models to see, based on the current transactions, how would they react, what would they buy? People living in Frisco, Texas, age, whatever, what do they buy, when do they come, and what are they buying other places?

So let’s personalize offers so that they make that left turn. And we are measuring, whether personalization is driving the delight enough that the consumers come back to the store and don’t go back to their old ways, number one. Number two, what we are also doing is, like I mentioned earlier, we are leveraging data and AI technologies to constantly monitor the trends right in the marketplace, and we’ve created some automation to leverage those trends and act quickly, which also leads to some level of personalization. It’s more regionalization. 

Now, as we do that, we also look at the patterns of what equipment or what transactions are slowing down and we proactively monitor and resolve them. So if the store has issues and if payment has issue, loyalty has issue, or POS has issue, back office has issue, we proactively work on it to resolve that.

Number three that we are doing is, we are looking at the convenience market and we are looking at what is selling and what is in stock, so we are optimizing our supply chain inventory, pricing, and inventory, so that we could enable the store owners to cater to their consumers who come to the stores. This is actually really helping us have the product in the store that the customer actually came for.

Megan: Absolutely. Looking ahead, when you think about the path to generative AI and other emerging technologies? Is there something that excites you the most, kind of looking ahead in the years to come as well?

Tarang: That’s a great question, Megan. I’m going to answer that question a little bit philosophically because as technologists, our tendency is, whenever there is a new technology like generative AI, to create a lot of toys with it, right? But I’ve learned through this experience that whatever technology we use, like generative AI, we need to tie it to the objectives and key results for the consumer and the store. 

As an example, if we are going to leverage generative AI to do personalized offers, to do personalized creative, then we need to be able to create frameworks to measure the impact on the store, to measure the impact on the consumer, and tie that directly to the use of the technology. Are we making the consumers more loyal? Are they coming more often? Are they buying more? Because only then, we will have adopters of that technology, both the store and stores driving the consumers to adopt.

Number two, AI and other technologies should help us create an ecosystem that does not replace humans, but actually augments their ability to serve consumers and to serve the consumers so well that the consumers don’t go back to their old ways. That’s where we have to stay very, very customer-obsessed instead of just business-obsessed.

When I say ecosystem, what excites me the most is, think about it. These small mom-and-pop store operators, these generational businesses, which are the core of the American dream or entrepreneurialism, we are going to enable them with an ecosystem like an Airbnb of mobility and convenience, where they get a loyalty program with personalization, where they can delight their guests. They get technology to run their stores very, very efficiently and reduce their cost by 20%.

Number three, and very important, their frontline employees look like heroes to the guests that are walking into the store. If we achieve these three things and create an ecosystem, then that will drive prosperity leveraging technology. And bp, as a company, we would love to be part of that.

Megan: I think that’s fantastic advice. Thank you so much, Tarang, for that.

Tarang: Thank you.

Megan: That was Tarang Sethia, the GM of digital products, mobility and convenience for the Americas at bp, whom I spoke with from Brighton, England. 

That’s it for this episode of Business Lab. I’m your host, Megan Tatum. I’m a contributing editor and host for Insights, the custom publishing division of MIT Technology Review. We were founded in 1899 at the Massachusetts Institute of Technology, and you can find us in print on the web and at events each year around the world. For more information about us and the show, please check out our website at technologyreview.com.

This show is available wherever you get your podcasts, and if you enjoy this episode, we hope you’ll take a moment to rate and review us. Business Lab is a production of MIT Technology Review. This episode was produced by Giro Studios. Thanks ever so much for listening.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

This content was researched, designed, and written entirely by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

DOE Announces New Supercomputer Powered by Dell and NVIDIA to Speed Scientific Discovery

BERKELEY— During a visit to Lawrence Berkeley National Laboratory (Berkeley Lab), U.S. Secretary of Energy Chris Wright today announced a new contract with Dell Technologies to develop NERSC-10, the next flagship supercomputer at the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy (DOE) user facility at Berkeley Lab. The new system, due in 2026, will be named after Jennifer Doudna, the Berkeley Lab-based biochemist who was awarded the 2020 Nobel Prize for Chemistry in recognition of her work on the gene-editing technology CRISPR. The new supercomputer, a Dell Technologies system powered by NVIDIA’s next-generation Vera Rubin platform, will be engineered to support large-scale high-performance computing (HPC) workloads like those in molecular dynamics, high-energy physics, and AI training and inference—and provide a robust environment for the workflows that make cutting-edge science possible.   This announcement reflects the Trump Administration’s commitment to restoring the gold standard of American science and unleashing the next great wave of innovation. Doudna will be one of the most advanced supercomputers ever deployed by the Department, advancing U.S. leadership in the global race for AI. “The Doudna system represents DOE’s commitment to advancing American leadership in science, AI, and high-performance computing,” said U.S. Secretary of Energy Chris Wright. “It will be a powerhouse for rapid innovation that will transform our efforts to develop abundant, affordable energy supplies and advance breakthroughs in quantum computing. AI is the Manhattan Project of our time, and Doudna will help ensure America’s scientists have the tools they need to win the global race for AI dominance.” “At Dell Technologies, we are empowering researchers worldwide by seamlessly integrating simulation, data, and AI to address the world’s most complex challenges,” said Michael Dell, Chairman and CEO, Dell Technologies. “Our collaboration with the Department of Energy on Doudna underscores a shared vision to redefine

Read More »

DOE Issues LNG Export Authorization for Port Arthur Phase II, Advancing President Trump’s Commitment to Unleash American Energy

WASHINGTON— U.S. Secretary of Energy Chris Wright today approved a final authorization for liquefied natural gas (LNG) exports to non-free trade agreement (non-FTA) countries from Port Arthur LNG Phase II in Jefferson County, Texas, following the Response to Comments on the 2024 LNG Export Study issued on May 19. This is the first final LNG export approval under President Trump’s leadership and marks another step in restoring regular order to LNG export permitting–reversing the previous administration’s pause and delivering on the President’s pledge to unleash American energy.  “Port Arthur LNG Phase II marks a significant expansion of the first phase already under construction– turning more of the liquid gold beneath our feet into energy security for the American people,” said Secretary Wright. “With President Trump’s leadership, the Energy Department is restoring America’s role as the world’s most reliable energy supplier.”   “U.S. LNG exports continue to gain momentum, and I am glad DOE is able to do its part to answer the call for more reliable and affordable energy, at home and abroad,” said Tala Goudarzi, Principal Deputy Assistant Secretary of the Office of Fossil Energy and Carbon Management.  Port Arthur LNG Phase II, owned by Sempra Energy, is projected to export 1.91 billion cubic feet per day (Bcf/d) once completed. In addition to Port Arthur Phase I—which is currently under construction and expected to begin exporting LNG in 2027—Sempra also operates the Cameron LNG export terminal in Louisiana, which has been exporting LNG since 2019, and is currently constructing the Energia Costa Azul terminal in Mexico, which will begin commercial export operations of U.S.-sourced gas as LNG beginning in 2026.  Today’s action marks the fifth LNG export authorization issued by Secretary Wright, bringing the total volume of exports associated with approvals under President Trump’s leadership to 11.45 Bcf/d.      

Read More »

Oil Falls on Weak US Data and OPEC Output Fears

Oil declined as soft US economic data and concerns about rising supplies eroded the risk-on sentiment from a court ruling that blocked a swath of the Trump administration’s tariffs. West Texas Intermediate fell 1.5% to settle near $61 a barrel after Interfax cited Kazakhstan as saying that OPEC+ is set to hike output at a meeting on Saturday, with the size of the increase still to be decided. Broader markets eased off of earlier highs on data showing the US economy shrank at the start of the year, further pressuring the commodity. Crude had earlier rallied after a trade court blocked a vast range of President Donald Trump’s trade levies, including elevated rates on China — the world’s top importer of crude. “The path to sustainably higher prices remains extremely narrow,” with the market likely to struggle to absorb additional barrels from OPEC+ over the coming months, said Daniel Ghali, a commodity strategist at TD Securities. In the near term, algorithmic selling activity will weigh on prices into the weekend meeting, he added. Oil has trended lower since mid-January on concerns about the fallout from Trump’s tariff war, with the revival of idled production by OPEC+ adding to headwinds. The trade measures have rattled global markets, raising concerns over economic growth and demand for commodities. Meanwhile, wildfires are threatening about 5% of Canada’s crude output as a blaze in Alberta’s oil sands region spreads. Oil Prices WTI for July delivery slipped 1.5% to settle at $60.94 a barrel in New York. Brent for July settlement dipped 1.2% to settle at $64.15 a barrel. What do you think? We’d love to hear from you, join the conversation on the Rigzone Energy Network. The Rigzone Energy Network is a new social experience created for you and all energy professionals to Speak Up

Read More »

Goldman, Morgan Stanley Say Trump Can Deploy Other Tariff Tools

Two of Wall Street’s top investment banks cautioned that the impact of a court ruling striking down many of President Donald Trump’s tariff measures may prove limited, given that the administration has other avenues to impose import duties. “The tariff levels that we had yesterday are probably going to be the tariff levels that we have tomorrow, because there are so many different authorities the administration can reach into to put it back together,” Michael Zezas, Morgan Stanley’s global head of fixed income and thematic research, said on Bloomberg TV Thursday. Goldman Sachs Group Inc.’s Alec Phillips wrote in a note to clients late Wednesday that “this ruling represents a setback for the administration’s tariff plans and increases uncertainty but might not change the final outcome for most major US trading partners.”  The judgment by the US Court of International Trade halts 6.7 percentage points of levies announced this year and the White House could use other tariff tools to make up for that, wrote Phillips, Goldman’s chief US political economist. “For now, we expect the Trump administration will find other ways to impose tariffs.” Zezas had a similar assessment. Trump’s power to “raise and escalate — it might be a little bit slower moving, but it is still there.” Talks with countries such as Japan were always likely to take time, he said. And while they proceed, the administration would be able to “stitch together that authority on the other tariffs that went away — so all the same leverage is effectively there during the negotiation.” For now, the White House is signaling it’s not planning to proceed with other tools. “There are different approaches that would take a couple of months” to put in place, Kevin Hassett, director of the National Economic Council, said on Fox Business Thursday.

Read More »

IRA tax credits spur construction, manufacturing in red and blue states

Emmanuel Martin-Lauzer is director of business development and public affairs at Nexans. The jury is still out on whether the Inflation Reduction Act (IRA) has helped contain or reduce inflation. Nevertheless, certain provisions have delivered tangible benefits that deserve closer examination before any potential repeal. While some provisions may not have broad appeal, one success of the IRA has been its impact on strengthening U.S. energy production. The bill speaks more to renewable energy innovation and increase in energy independence to support U.S. economic growth than to direct economic impact. Repealing it wholesale risks far more than we might anticipate. At its core, the IRA tax credits for energy generation are driving significant investment in innovative energy production. Because renewable energy makes up around 21.4% of the energy mix, these incentives have been passed down the chain to the benefits of the ratepayer, while simultaneously sustaining the creation of entire industries. These investments have sparked construction and manufacturing jobs across both red and blue states, proving that clean energy isn’t just an environmental initiative. These tax credits have also bolstered America’s energy independence. Renewables like solar, onshore wind and offshore wind are integral to our domestic energy supply chain, reducing reliance on foreign sources, and making our own infrastructure more resilient. They’ve also driven initiatives to improve long-term cost competitiveness, incentivizing developers to innovate to reduce costs.   Our current grid infrastructure and energy generation systems are nearing obsolescence and over the next decade the demand on these systems is expected to skyrocket. Data centers alone are expected to double their electricity demand, and by 2035, over 71 million electric vehicles will require around 400 kWh to charge per month. Urbanization trends are compounding this demand as more people move to cities. Without the IRA tax credits, we risk slowing down our

Read More »

FERC ALJ order threatens competitive transmission cost caps: CAISO

An order by a Federal Energy Regulatory Commission administrative law judge threatens cost caps included in competitive transmission solicitations across the United States, according to the California Independent System Operator. A May 22 ruling by FERC ALJ Joel deJesus could also upend FERC’s framework for providing refunds to electricity customers when the agency finds a company has been overcollecting revenue, CAISO said in a filing with the commission on Tuesday. The California grid operator urged FERC to overturn deJesus’ findings, saying they “will harm ratepayers, undercut the consumer protections afforded by the Federal Power Act …, and cast doubt on the CAISO’s and customers’ ability to rely on voluntary, binding cost caps proposed and agreed to by project sponsors in competitive transmission planning processes.” The issue centers on a dispute over a proposal by a Lotus Infrastructure Partners affiliate to recover more than double a cost cap for the 500-kV Ten West Link transmission project between California and Arizona. CAISO selected the DCR Transmission project in 2014 following a solicitation that grew out of its transmission planning process. The transmission line started operating a year ago. DCR in June 2023 asked FERC to approve a transmission tariff based on a $553.3 million estimated project cost compared to a $259 million binding cost cap. Three months later, FERC accepted DCR’s proposal, subject to refund, but ordered hearings and settlement procedures, according to CAISO. The proceeding was moving under the Federal Power Act’s section 205, according to CAISO. However, deJesus said FERC’s initial order was “ambiguous” as to what FPA section the case should advance under. He contends FERC should have determined that the DCR rate filing was an “initial rate filing” to be handled under section 206 of the FPA and that FERC should have established a refund date under that

Read More »

Cisco bolsters DNS security package

The software can block domains associated with phishing, malware, botnets, and other high-risk categories such as cryptomining or new domains that haven’t been reported previously. It can also create custom block and allow lists and offers the ability to pinpoint compromised systems using real-time security activity reports, Brunetto wrote. According to Cisco, many organizations leave DNS resolution to their ISP. “But the growth of direct enterprise internet connections and remote work make DNS optimization for threat defense, privacy, compliance, and performance ever more important,” Cisco stated. “Along with core security hygiene, like a patching program, strong DNS-layer security is the leading cost-effective way to improve security posture. It blocks threats before they even reach your firewall, dramatically reducing the alert pressure your security team manages.” “Unlike other Secure Service Edge (SSE) solutions that have added basic DNS security in a ‘checkbox’ attempt to meet market demand, Cisco Secure Access – DNS Defense embeds strong security into its global network of 50+ DNS data centers,” Brunetto wrote. “Among all SSE solutions, only Cisco’s features a recursive DNS architecture that ensures low-latency, fast DNS resolution, and seamless failover.”

Read More »

HPE Aruba unveils raft of new switches for data center, campus modernization

And in large-scale enterprise environments embracing collapsed-core designs, the switch acts as a high-performance aggregation layer. It consolidates services, simplifies network architecture, and enforces security policies natively, reducing complexity and operational cost, Gray said. In addition, the switch offers the agility and security required at colocation facilities and edge sites. Its integrated Layer 4 stateful security and automation-ready platform enable rapid deployment while maintaining robust control and visibility over distributed infrastructure, Gray said. The CX 10040 significantly expands the capacity it can provide and the roles it can serve for enterprise customers, according to one industry analyst. “From the enterprise side, this expands on the feature set and capabilities of the original 10000, giving customers the ability to run additional services directly in the network,” said Alan Weckel, co-founder and analyst with The 650 Group. “It helps drive a lower TCO and provide a more secure network.”  Aimed as a VMware alternative Gray noted that HPE Aruba is combining its recently announced Morpheus VM Essentials plug-in package, which offers a hypervisor-based package aimed at hybrid cloud virtualization environments, with the CX 10040 to deliver a meaningful alternative to Broadcom’s VMware package. “If customers want to get out of the business of having to buy VM cloud or Cloud Foundation stuff and all of that, they can replace the distributed firewall, microsegmentation and lots of the capabilities found in the old VMware NSX [networking software] and the CX 10k, and Morpheus can easily replace that functionality [such as VM orchestration, automation and policy management],” Gray said. The 650 Group’s Weckel weighed in on the idea of the CX 10040 as a VMware alternative:

Read More »

Indian startup Refroid launches India’s first data center CDUs

They use heat exchangers and pumps to regulate the flow and temperature of fluid delivered to equipment for cooling, while isolating the technology cooling system loop from facility systems. The technology addresses limitations of traditional air cooling, which industry experts say cannot adequately handle the heat generated by modern AI processors and high-density computing applications. Strategic significance for India Industry analysts view the development as a critical milestone for India’s data center ecosystem. “India generates 20% of global data, yet contributes only 3% to global data center capacity. This imbalance is not merely spatial — it’s systemic,” said Sanchit Vir Gogia, chief analyst and CEO at Greyhound Research. “The emergence of indigenously developed CDUs signals a strategic pivot. Domestic CDU innovation is a defining moment in India’s transition from data centre host to technology co-creator.” Neil Shah, VP for research and partner at Counterpoint Research, noted that major international players like Schneider, Vertiv, Asetek, Liquidstack, and Zutacore have been driving most CDU deployments in Indian enterprises and data centers. “Having a local indigenous CDU tech and supplier designed with Indian weather, infrastructure and costs in mind expands options for domestic data center demand,” he said. AI driving data center cooling revolution India’s data center capacity reached approximately 1,255 MW between January and September 2024 and was projected to expand to around 1,600 MW by the end of 2024, according to CBRE India’s 2024 Data Center Market Update. Multiple market research firms have projected the India data center market to grow from about $5.7 billion in 2024 to $12 billion by 2030. Bhavaraju cited aggressive projections for the sector’s expansion, with AI workloads expected to account for 30% of total workloads by 2030. “All of them need liquid cooling,” he said, noting that “today’s latest GPU servers – GB200 from Nvidia

Read More »

Platform approach gains steam among network teams

Revisting the platform vs. point solutions debate The dilemma of whether to deploy an assortment of best-of-breed products from multiple vendors or go with a unified platform of “good enough” tools from a single vendor has vexed IT execs forever. Today, the pendulum is swinging toward the platform approach for three key reasons. First, complexity, driven by the increasingly distributed nature of enterprise networks, has emerged as a top challenge facing IT execs. Second, the lines between networking and security are blurring, particularly as organizations deploy zero trust network access (ZTNA). And third, to reap the benefits of AIOps, generative AI and agentic AI, organizations need a unified data store. “The era of enterprise connectivity platforms is upon us,” says IDC analyst Brandon Butler. “Organizations are increasingly adopting platform-based approaches to their enterprise connectivity infrastructure to overcome complexity and unlock new business value. When enhanced by AI, enterprise platforms can increase productivity, enrich end-user experiences, enhance security, and ultimately drive new opportunities for innovation.” In IDC’s Worldwide AI in Networking Special Report, 78% of survey respondents agreed or strongly agreed with the statement: “I am moving to an AI-powered platform approach for networking.” Gartner predicts that 70% of enterprises will select a broad platform for new multi-cloud networking software deployments by 2027, an increase from 10% in early 2024. The breakdown of silos between network and security operations will be driven by organizations implementing zero-trust principles as well as the adoption of AI and AIOps. “In the future, enterprise networks will be increasingly automated, AI-assisted and more tightly integrated with security across LAN, data center and WAN domains,” according to Gartner’s 2025 Strategic Roadmap for Enterprise Networking. While all of the major networking vendors have announced cloud-based platforms, it’s still relatively early days. For example, Cisco announced a general framework for Cisco

Read More »

Oracle to spend $40B on Nvidia chips for OpenAI data center in Texas

OpenAI has also expanded Stargate internationally, with plans for a UAE data center announced during Trump’s recent Gulf tour. The Abu Dhabi facility is planned as a 10-square-mile campus with 5 gigawatts of power. Gogia said OpenAI’s selection of Oracle “is not just about raw compute, but about access to geographically distributed, enterprise-grade infrastructure that complements its ambition to serve diverse regulatory environments and availability zones.” Power demands create infrastructure dilemma The facility’s power requirements raise serious questions about AI’s sustainability. Gogia noted that the 1.2-gigawatt demand — “on par with a nuclear facility” — highlights “the energy unsustainability of today’s hyperscale AI ambitions.” Shah warned that the power envelope keeps expanding. “As AI scales up and so does the necessary compute infrastructure needs exponentially, the power envelope is also consistently rising,” he said. “The key question is how much is enough? Today it’s 1.2GW, tomorrow it would need even more.” This escalating demand could burden Texas’s infrastructure, potentially requiring billions in new power grid investments that “will eventually put burden on the tax-paying residents,” Shah noted. Alternatively, projects like Stargate may need to “build their own separate scalable power plant.” What this means for enterprises The scale of these facilities explains why many organizations are shifting toward leased AI computing rather than building their own capabilities. The capital requirements and operational complexity are beyond what most enterprises can handle independently.

Read More »

New Intel Xeon 6 CPUs unveiled; one powers rival Nvidia’s DGX B300

He added that his read is that “Intel recognizes that Nvidia is far and away the leader in the market for AI GPUs and is seeking to hitch itself to that wagon.” Roberts said, “basically, Intel, which has struggled tremendously and has turned over its CEO amidst a stock slide, needs to refocus to where it thinks it can win. That’s not competing directly with Nvidia but trying to use this partnership to re-secure its foothold in the data center and squeeze out rivals like AMD for the data center x86 market. In other words, I see this announcement as confirmation that Intel is looking to regroup, and pick fights it thinks it can win. “ He also predicted, “we can expect competition to heat up in this space as Intel takes on AMD’s Epyc lineup in a push to simplify and get back to basics.” Matt Kimball, vice president and principal analyst, who focuses on datacenter compute and storage at Moor Insights & Strategy, had a much different view about the announcement. The selection of the Intel sixth generation Xeon CPU, the 6776P, to support Nvidia’s DGX B300 is, he said, “important, as it validates Intel as a strong choice for the AI market. In the big picture, this isn’t about volumes or revenue, rather it’s about validating a strategy Intel has had for the last couple of generations — delivering accelerated performance across critical workloads.”  Kimball said that, In particular, there are a “couple things that I would think helped make Xeon the chosen CPU.”

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »