Stay Ahead, Stay ONMINE

Why the AI era is forcing a redesign of the entire compute backbone

The past few decades have seen almost unimaginable advances in compute performance and efficiency, enabled by Moore’s Law and underpinned by scale-out commodity hardware and loosely coupled software. This architecture has delivered online services to billions globally and put virtually all of human knowledge at our fingertips.But the next computing revolution will demand much more. Fulfilling the promise of AI requires a step-change in capabilities far exceeding the advancements of the internet era. To achieve this, we as an industry must revisit some of the foundations that drove the previous transformation and innovate collectively to rethink the entire technology stack. Let’s explore the forces driving this upheaval and lay out what this architecture must look like.For decades, the dominant trend in computing has been the democratization of compute through scale-out architectures built on nearly identical, commodity servers. This uniformity allowed for flexible workload placement and efficient resource utilization. The demands of gen AI, heavily reliant on predictable mathematical operations on massive datasets, are reversing this trend. We are now witnessing a decisive shift towards specialized hardware — including ASICs, GPUs, and tensor processing units (TPUs) — that deliver orders of magnitude improvements in performance per dollar and per watt compared to general-purpose CPUs. This proliferation of domain-specific compute units, optimized for narrower tasks, will be critical to driving the continued rapid advances in AI.

The past few decades have seen almost unimaginable advances in compute performance and efficiency, enabled by Moore’s Law and underpinned by scale-out commodity hardware and loosely coupled software. This architecture has delivered online services to billions globally and put virtually all of human knowledge at our fingertips.

But the next computing revolution will demand much more. Fulfilling the promise of AI requires a step-change in capabilities far exceeding the advancements of the internet era. To achieve this, we as an industry must revisit some of the foundations that drove the previous transformation and innovate collectively to rethink the entire technology stack. Let’s explore the forces driving this upheaval and lay out what this architecture must look like.

For decades, the dominant trend in computing has been the democratization of compute through scale-out architectures built on nearly identical, commodity servers. This uniformity allowed for flexible workload placement and efficient resource utilization. The demands of gen AI, heavily reliant on predictable mathematical operations on massive datasets, are reversing this trend. 

We are now witnessing a decisive shift towards specialized hardware — including ASICs, GPUs, and tensor processing units (TPUs) — that deliver orders of magnitude improvements in performance per dollar and per watt compared to general-purpose CPUs. This proliferation of domain-specific compute units, optimized for narrower tasks, will be critical to driving the continued rapid advances in AI.


The AI Impact Series Returns to San Francisco – August 5

The next phase of AI is here – are you ready? Join leaders from Block, GSK, and SAP for an exclusive look at how autonomous agents are reshaping enterprise workflows – from real-time decision-making to end-to-end automation.

Secure your spot now – space is limited: https://bit.ly/3GuuPLF


Beyond ethernet: The rise of specialized interconnects

These specialized systems will often require “all-to-all” communication, with terabit-per-second bandwidth and nanosecond latencies that approach local memory speeds. Today’s networks, largely based on commodity Ethernet switches and TCP/IP protocols, are ill-equipped to handle these extreme demands. 

As a result, to scale gen AI workloads across vast clusters of specialized accelerators, we are seeing the rise of specialized interconnects, such as ICI for TPUs and NVLink for GPUs. These purpose-built networks prioritize direct memory-to-memory transfers and use dedicated hardware to speed information sharing among processors, effectively bypassing the overhead of traditional, layered networking stacks. 

This move towards tightly integrated, compute-centric networking will be essential to overcoming communication bottlenecks and scaling the next generation of AI efficiently.

Breaking the memory wall

For decades, the performance gains in computation have outpaced the growth in memory bandwidth. While techniques like caching and stacked SRAM have partially mitigated this, the data-intensive nature of AI is only exacerbating the problem. 

The insatiable need to feed increasingly powerful compute units has led to high bandwidth memory (HBM), which stacks DRAM directly on the processor package to boost bandwidth and reduce latency. However, even HBM faces fundamental limitations: The physical chip perimeter restricts total dataflow, and moving massive datasets at terabit speeds creates significant energy constraints.  

These limitations highlight the critical need for higher-bandwidth connectivity and underscore the urgency for breakthroughs in processing and memory architecture. Without these innovations, our powerful compute resources will sit idle waiting for data, dramatically limiting efficiency and scale.

From server farms to high-density systems

Today’s advanced machine learning (ML) models often rely on carefully orchestrated calculations across tens to hundreds of thousands of identical compute elements, consuming immense power. This tight coupling and fine-grained synchronization at the microsecond level imposes new demands. Unlike systems that embrace heterogeneity, ML computations require homogeneous elements; mixing generations would bottleneck faster units. Communication pathways must also be pre-planned and highly efficient, since delays in a single element can stall an entire process.

These extreme demands for coordination and power are driving the need for unprecedented compute density. Minimizing the physical distance between processors becomes essential to reduce latency and power consumption, paving the way for a new class of ultra-dense AI systems.

This drive for extreme density and tightly coordinated computation fundamentally alters the optimal design for infrastructure, demanding a radical rethinking of physical layouts and dynamic power management to prevent performance bottlenecks and maximize efficiency.

A new approach to fault tolerance

Traditional fault tolerance relies on redundancy among loosely connected systems to achieve high uptime. ML computing demands a different approach. 

First, the sheer scale of computation makes over-provisioning too costly. Second, model training is a tightly synchronized process, where a single failure can cascade to thousands of processors. Finally, advanced ML hardware often pushes to the boundary of current technology, potentially leading to higher failure rates.

Instead, the emerging strategy involves frequent checkpointing — saving computation state — coupled with real-time monitoring, rapid allocation of spare resources and quick restarts. The underlying hardware and network design must enable swift failure detection and seamless component replacement to maintain performance.

A more sustainable approach to power

Today and looking forward, access to power is a key bottleneck for scaling AI compute. While traditional system design focuses on maximum performance per chip, we must shift to an end-to-end design focused on delivered, at-scale performance per watt. This approach is vital because it considers all system components — compute, network, memory, power delivery, cooling and fault tolerance — working together seamlessly to sustain performance. Optimizing components in isolation severely limits overall system efficiency.

As we push for greater performance, individual chips require more power, often exceeding the cooling capacity of traditional air-cooled data centers. This necessitates a shift towards more energy-intensive, but ultimately more efficient, liquid cooling solutions, and a fundamental redesign of data center cooling infrastructure. 

Beyond cooling, conventional redundant power sources, like dual utility feeds and diesel generators, create substantial financial costs and slow capacity delivery. Instead, we must combine diverse power sources and storage at multi-gigawatt scale, managed by real-time microgrid controllers. By leveraging AI workload flexibility and geographic distribution, we can deliver more capability without expensive backup systems needed only a few hours per year. 

This evolving power model enables real-time response to power availability — from shutting down computations during shortages to advanced techniques like frequency scaling for workloads that can tolerate reduced performance. All of this requires real-time telemetry and actuation at levels not currently available.

Security and privacy: Baked in, not bolted on

A critical lesson from the internet era is that security and privacy cannot be effectively bolted onto an existing architecture. Threats from bad actors will only grow more sophisticated, requiring protections for user data and proprietary intellectual property to be built into the fabric of the ML infrastructure. One important observation is that AI will, in the end, enhance attacker capabilities. This, in turn, means that we must ensure that AI simultaneously supercharges our defenses.

This includes end-to-end data encryption, robust data lineage tracking with verifiable access logs, hardware-enforced security boundaries to protect sensitive computations and sophisticated key management systems. Integrating these safeguards from the ground up will be essential for protecting users and maintaining their trust. Real-time monitoring of what will likely be petabits/sec of telemetry and logging will be key to identifying and neutralizing needle-in-the-haystack attack vectors, including those coming from insider threats.

Speed as a strategic imperative

The rhythm of hardware upgrades has shifted dramatically. Unlike the incremental rack-by-rack evolution of traditional infrastructure, deploying ML supercomputers requires a fundamentally different approach. This is because ML compute does not easily run on heterogeneous deployments; the compute code, algorithms and compiler must be specifically tuned to each new hardware generation to fully leverage its capabilities. The rate of innovation is also unprecedented, often delivering a factor of two or more in performance year over year from new hardware. 

Therefore, instead of incremental upgrades, a massive and simultaneous rollout of homogeneous hardware, often across entire data centers, is now required. With annual hardware refreshes delivering integer-factor performance improvements, the ability to rapidly stand up these colossal AI engines is paramount.

The goal must be to compress timelines from design to fully operational 100,000-plus chip deployments, enabling efficiency improvements while supporting algorithmic breakthroughs. This necessitates radical acceleration and automation of every stage, demanding a manufacturing-like model for these infrastructures. From architecture to monitoring and repair, every step must be streamlined and automated to leverage each hardware generation at unprecedented scale.

Meeting the moment: A collective effort for next-gen AI infrastructure

The rise of gen AI marks not just an evolution, but a revolution that requires a radical reimagining of our computing infrastructure. The challenges ahead — in specialized hardware, interconnected networks and sustainable operations — are significant, but so too is the transformative potential of the AI it will enable. 

It is easy to see that our resulting compute infrastructure will be unrecognizable in the few years ahead, meaning that we cannot simply improve on the blueprints we have already designed. Instead, we must collectively, from research to industry, embark on an effort to re-examine the requirements of AI compute from first principles, building a new blueprint for the underlying global infrastructure. This in turn will result in fundamentally new capabilities, from medicine to education to business, at unprecedented scale and efficiency.

Amin Vahdat is VP and GM for machine learning, systems and cloud AI at Google Cloud.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

The US will install these country-specific tariffs Aug. 7

The U.S. plans to lift its pause on country-specific tariffs while implementing a range of new rates for specific trading partners on Aug. 7, per an executive order President Donald Trump signed Thursday.  The order lists rates for over 60 trading partners, ranging from 10% to 41%. The list includes

Read More »

Spotlight report: How AI is reshaping IT

The emergence of AI as the next big game changer has IT leaders rethinking not just how IT is staffed, organized, and funded, but also how the IT team works with the business to capture the value and promise of AI. Learn more in this Spotlight Report from the editors

Read More »

EU Commission Extends Foreign Subsidies Probe into ADNOC’s Buy of Covestro

The European Commission has launched an “in-depth” investigation into Abu Dhabi National Oil Co. PJSC’s pending takeover of Covestro AG under the Foreign Subsidies Regulation to protect competition in the European Union market. “The preliminary investigation indicates that ADNOC and Covestro may receive foreign subsidies distorting the EU internal market”, the Commission said in a statement online. “The possible foreign subsidies notably include an unlimited guarantee from the UAE, as well as a committed capital increase by ADNOC into Covestro. “The Commission has preliminary concerns that the foreign subsidies may have enabled ADNOC to acquire Covestro at a valuation and financial terms that would not be in line with market conditions, and which could not have been matched by unsubsidized investors. “The Commission also has preliminary concerns that the transaction could allow ADNOC to adopt investment strategies that would impact competitive conditions in the internal market”. ADNOC, through its global investment arm XRG PJSC, is in the process of completing its takeover of German chemicals producer Covestro with a share acquisition offer of about EUR 11.7 billion ($13.53 billion) or EUR 62 per Covestro share. As of the end of 2024, 91.58 percent of Covestro shares were included in ADNOC’s takeover offer, exceeding the acceptance threshold of 50 percent plus one share, according to a Covestro statement February 26, 2025. “The takeover offer is subject to the usual conditions of completion with regard to antitrust and foreign trade clearance and clearance under EU law on foreign subsidies”, Covestro said then. On April 17, 2025, Covestro affirmed, “The transaction is expected to be closed in the second half of 2025”. In announcing its in-depth probe last week, the European Commission said it had 90 working days until December 2, 2025, to make a decision. The Commission will probe “whether the foreign subsidies that

Read More »

Oil Drops on Weak U.S. Data

Oil sank as the outlook for the world’s largest economy darkened after a barrage of poor US data and tariff announcements, weighing on the prospects for energy demand growth. West Texas Intermediate crude fell 2.8% to settle near $67 a barrel on Friday, the biggest plunge in a single day since June 24. Prices also came under pressure as investors widely anticipate that OPEC and its allies will decide to add more supplies to the market during an upcoming weekend meeting. US jobs growth cooled sharply over the past three months, while factory activity contracted in July at the fastest clip in nine months, in a sign the economy is shifting into a lower gear amid widespread uncertainty. The swath of bearish data increased investor concerns that the impact of US President Donald Trump’s ever-changing tariff rates — which had so far been muted — has finally begun to weigh on economic growth. The weaker data come as Trump finalized plans for tariffs on several countries, including a higher rate on neighbor Canada, though oil is exempt. “Tariffs are now officially a part of daily life. With the catalyst in the rearview, focus must shift to the fallout,” said Daniel Ghali, a commodity strategist at TD Securities. Oil traders had been forced to the sidelines in recent weeks as numerous wild cards surrounding US trade policy and OPEC+ production confounded supply-and-demand outlooks. The unpredictable environment, which initially caused wild price swings earlier in the year, has dampened risk-on sentiment and sapped volatility from the market. The potential onset of an economic slowdown threatens to coincide with a period for oversupply widely expected for later this year. Second-quarter earnings for oil industry giants blew out expectations, with record oil production blunting the impact of lower crude prices. Exxon Mobil Corp. pumped

Read More »

Xcel Energy ‘prepared to go to trial’ to fight Marshall Fire liability

Dive Brief: Xcel Energy has emerged from court-ordered mediation without a settlement and will go to trial for its role in the 2021 Marshall Fire in Colorado, company executives said during a Thursday earnings call. A 2023 investigation by the Boulder County Sheriff attributed the fire to the merging of two independent ignitions: kindling from an old fire on a property owned by the Twelve Tribes, a religious organization, and sparks from an Xcel Energy power line. President and CEO Bob Frenzel said the company believes it can prove its equipment did not start the fire. The company is already paying claims on another fire, the 2024 Smokehouse Creek Fire in the Texas panhandle, on which it faces an estimated $290 million in liability. Dive Insight: Xcel Energy remains open to settling with the more than 500 parties suing the utility for the Marshall Fire. But any settlement, Frenzel said Thursday, must “start with the idea that our equipment didn’t cause that second” ignition. Hearings are set to begin on Sept. 25 and will likely continue through November now that the July 31 deadline for court-ordered mediation has passed, Frenzel said. When the fire started, he said, the embers on the Twelve Tribes property were fanned by 100 miles per hour winds for over an hour and 20 minutes, allowing it to spread into nearby towns long before the second ignition at Xcel Energy’s power line is alleged to have taken place, he said. “As we step back and think about the trial broadly and the fire broadly, we continue to maintain that our equipment didn’t start the second ignition in the wildfire, and we’re prepared to go to court,” Frenzel said, later adding that “we feel very good about the facts and circumstances of our trial.” Insurance data suggest the

Read More »

PPL Electric ‘advanced-stage’ data center pipeline grows 32%, to 14 GW

Dive Brief: PPL Electric Utilities has advanced-stage agreements to interconnect about 14 GW of data centers in its Pennsylvania service territory, up 32% from three months ago, Vincent Sorgi, president and CEO of PPL Corp., said Thursday during an earnings conference call. Under signed agreements, PPL Electric Utilities’ data center load could grow from 800 MW in 2026 to 14.4 GW in 2034, according to a second-quarter earnings presentation. PPL Electric Utilities has a 60-GW data center interconnection queue, according to Sorgi. PPL’s data center strategy includes an unregulated joint venture with Blackstone Infrastructure to build power plants in Pennsylvania to directly serve data centers. “The joint venture is actively engaged with hyperscalers, landowners, natural gas pipeline companies and turbine manufacturers and has secured multiple land parcels to enable this new generation buildout,” Sorgi said. Dive Insight: However, discussions on potential electricity service agreements aren’t far enough along for the joint venture to commit to buying turbines and it is unclear when it would be able to announce any news, according to Sorgi. “We’ve made no material financial commitments to date as it relates to the joint venture,” he said. PPL intends to make sure that the joint venture’s deals don’t change the company’s credit risk profile, Sorgi said. PPL supports pending legislation in Pennsylvania — H.B. 1272 and S.B. 897 — that would allow regulated utilities like PPL Electric Utilities to build and own generation to address a resource adequacy need, Sorgi said. The bills would also encourage utilities to enter into agreements with independent power producers to help “derisk” their new generation investments, according to Sorgi.  “We are primed to act quickly once this proposed legislation becomes law,” he said. PPL Electric Utilities estimates it will need about 7.5 GW of new generation in the next five to seven

Read More »

Indian Refiner Snaps Up USA Oil

India’s largest oil refiner has snapped up millions of barrels of crude from the US and United Arab Emirates, with the South Asian nation facing mounting pressure from Washington and Europe over its purchases from Russia. State-owned Indian Oil Corp. bought at least 5 million barrels US crude, on top of 2 million barrels of supplies from Abu Dhabi, according to traders who asked not to be identified as they aren’t authorized to speak publicly. The purchases were both large and for relatively immediate delivery by the company’s usual standards. State-owned processors were told to come up with plans for buying non-Russian crude earlier this week.  An Indian Oil spokesman didn’t respond to a request for comment. India’s refiners have been in the spotlight over the past two weeks, after being singled out by the European Union and the US for supporting Moscow during its war in Ukraine by buying Russian oil. US President Donald Trump has repeatedly threatened to impose secondary tariffs on buyers of Russian oil, and in a post earlier this week singled out India for criticism, saying that it would pay an additional economic penalty for its ongoing purchases.  “We are interpreting the increased buying activity from India as a sign of diversification away from Russian supply,” said Livia Gallarati, global crude lead at consultant Energy Aspects. “Physical players are unlikely to gamble on buying Russian barrels, especially at current high prices, even if skepticism remains over whether US President Donald Trump will follow through with these threats.” This week, IOC sought crude supplies in multiple back-to-back purchase tenders, which traders said was unusual for the company and pointed to relatively urgent demand for crude. Earlier in the week, it also purchased 4 million barrels of West African barrels, as well as the UAE’s Murban crude for delivery

Read More »

Reliance to explore offshore India under new agreement

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: #c19a06; } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #c19a06 !important; border-color: #c19a06 !important; background-color: undefined !important; } Reliance Industries Ltd. entered into a joint operating agreement with Oil and Natural Gas Corp. (ONGC) and BP Exploration (Alpha) Ltd. to explore Block GS-OSHP-2022/2 off the western coast of India in Saurashtra basin. The three firms jointly bid for the block in the 9th bid round of Open Acreage Licensing Policy (OALP) last year. The block spans an area of 5,454 sq km and is classified under Category-II basins. The consortium will explore the block to assess its hydrocarbon potential. ONGC will be operator of the block.

Read More »

DOE announces site selection for AI data centers

“The DOE is positioned to lead on advanced AI infrastructure due to its historical mandate and decades of expertise in extreme-scale computing for mission-critical science and national security challenges,” he said. “National labs are central hubs for advancing AI by providing researchers with unparalleled access to exascale supercomputers and a vast, interdisciplinary technical workforce.” “The Department of Energy is actually a very logical choice to lead on advanced AI data centers in my opinion,” said Wyatt Mayham, lead consultant at Northwest AI, which specializes in enterprise AI integration. “They already operate the country’s most powerful supercomputers. Frontier at Oak Ridge and Sierra at Lawrence Livermore are not experimental machines, they are active systems that the DOE built and continues to manage.” These labs have the physical and technical capacity to handle the demands of modern AI. Running large AI data centers takes enormous electrical capacity, sophisticated cooling systems, and the ability to manage high and variable power loads. DOE labs have been handling that kind of infrastructure for decades, says Mayham. “DOE has already built much of the surrounding ecosystem,” he says. “These national labs don’t just house big machines. They also maintain the software, data pipelines, and research partnerships that keep those machines useful. NSF and Commerce play important roles in the innovation system, but they don’t have the hands-on operational footprint the DOE has.” And Tanmay Patange, founder of AI R&D firm Fourslash, says the DOE’s longstanding expertise in high-performance computing and energy infrastructure directly overlap with the demands we have seen from AI development in places. “And the foundation the DOE has built is essentially the precursor to modern AI workloads that often require gigawatts of reliable energy,” he said. “I think it’s a strategic play, and I won’t be surprised to see the DOE pair their

Read More »

Data center survey: AI gains ground but trust concerns persist

Cost issues: 76% Forecasting future data center capacity requirements: 71% Improving energy performance for facilities equipment: 67% Power availability: 63% Supply chain disruptions: 65% A lack of qualified staff: 67% With respect to capacity planning, there’s been a notable increase in the number of operators who describe themselves as “very concerned” about forecasting future data center capacity requirements. Andy Lawrence, Uptime’s executive director of research, said two factors are contributing to this concern: ongoing strong growth for IT demand, and the often-unpredictable demand that AI workloads are creating. “There’s great uncertainty about … what the impact of AI is going to be, where it’s going to be located, how much of the power is going to be required, and even for things like space and cooling, how much of the infrastructure is going to be sucked up to support AI, whether it’s in a colocation, whether it’s in an enterprise or even in a hyperscale facility,” Lawrence said during a webinar sharing the survey results. The survey found that roughly one-third of data center owners and operators currently perform some AI training or inference, with significantly more planning to do so in the future. As the number of AI-based software deployments increases, information about the capabilities and limitations of AI in the workplace is becoming available. The awareness is also revealing AI’s suitability for certain tasks. According to the report, “the data center industry is entering a period of careful adoption, testing, and validation. Data centers are slow and careful in adopting new technologies, and AI will not be an exception.”

Read More »

Micron unveils PCIe Gen6 SSD to power AI data center workloads

Competitive positioning With the launch of the 9650 SSD PCIe Gen 6, Micron competes with Samsung and SK Hynix enterprise SSD offerings, which are the dominant players in the SSD market. In December last year, SK Hynix announced the development of PS1012 U.2 Gen5 PCIe SSD, for massive high-capacity storage for AI data centers.  The PM1743 is Samsung’s PCIe Gen5 offering in the market, with 14,000 MBps sequential read, designed for high-performance enterprise workloads. According to Faruqui, PCIe Gen6 data center SSDs are best suited for AI inference performance enhancement. However, we’re still months away from large-scale adoption as no current CPU platforms are available with PCIe 6.0 support. Only Nvidia’s Blackwell-based GPUs have native PCIe 6.0 x16 support with interoperability tests in progress. He added that PCIe Gen 6 SSDs will see very delayed adoption in the PC segment and imminent 2025 2H adoption in AI, data centers, high-performance computing (HPC), and enterprise storage solutions. Micron has also introduced two additional SSDs alongside the 9650. The 6600 ION SSD delivers 122TB in an E3.S form factor and is targeted at hyperscale and enterprise data centers looking to consolidate server infrastructure and build large AI data lakes. A 245TB variant is on the roadmap. The 7600 PCIe Gen5 SSD, meanwhile, is aimed at mixed workloads that require lower latency.

Read More »

AI Deployments are Reshaping Intra-Data Center Fiber and Communications

Artificial Intelligence is fundamentally changing the way data centers are architected, with a particular focus on the demands placed on internal fiber and communications infrastructure. While much attention is paid to the fiber connections between data centers or to end-users, the real transformation is happening inside the data center itself, where AI workloads are driving unprecedented requirements for bandwidth, low latency, and scalable networking. Network Segmentation and Specialization Inside the modern AI data center, the once-uniform network is giving way to a carefully divided architecture that reflects the growing divergence between conventional cloud services and the voracious needs of AI. Where a single, all-purpose network once sufficed, operators now deploy two distinct fabrics, each engineered for its own unique mission. The front-end network remains the familiar backbone for external user interactions and traditional cloud applications. Here, Ethernet still reigns, with server-to-leaf links running at 25 to 50 gigabits per second and spine connections scaling to 100 Gbps. Traffic is primarily north-south, moving data between users and the servers that power web services, storage, and enterprise applications. This is the network most people still imagine when they think of a data center: robust, versatile, and built for the demands of the internet age. But behind this familiar façade, a new, far more specialized network has emerged, dedicated entirely to the demands of GPU-driven AI workloads. In this backend, the rules are rewritten. Port speeds soar to 400 or even 800 gigabits per second per GPU, and latency is measured in sub-microseconds. The traffic pattern shifts decisively east-west, as servers and GPUs communicate in parallel, exchanging vast datasets at blistering speeds to train and run sophisticated AI models. The design of this network is anything but conventional: fat-tree or hypercube topologies ensure that no single link becomes a bottleneck, allowing thousands of

Read More »

ABB and Applied Digital Build a Template for AI-Ready Data Centers

Toward the Future of AI Factories The ABB–Applied Digital partnership signals a shift in the fundamentals of data center development, where electrification strategy, hyperscale design and readiness, and long-term financial structuring are no longer separate tracks but part of a unified build philosophy. As Applied Digital pushes toward REIT status, the Ellendale campus becomes not just a development milestone but a cornerstone asset: a long-term, revenue-generating, AI-optimized property underpinned by industrial-grade power architecture. The 250 MW CoreWeave lease, with the option to expand to 400 MW, establishes a robust revenue base and validates the site’s design as AI-first, not cloud-retrofitted. At the same time, ABB is positioning itself as a leader in AI data center power architecture, setting a new benchmark for scalable, high-density infrastructure. Its HiPerGuard Medium Voltage UPS, backed by deep global manufacturing and engineering capabilities, reimagines power delivery for the AI era, bypassing the limitations of legacy low-voltage systems. More than a component provider, ABB is now architecting full-stack electrification strategies at the campus level, aiming to make this medium-voltage model the global standard for AI factories. What’s unfolding in North Dakota is a preview of what’s coming elsewhere: AI-ready campuses that marry investment-grade real estate with next-generation power infrastructure, built for a future measured in megawatts per rack, not just racks per row. As AI continues to reshape what data centers are and how they’re built, Ellendale may prove to be one of the key locations where the new standard was set.

Read More »

Amazon’s Project Rainier Sets New Standard for AI Supercomputing at Scale

Supersized Infrastructure for the AI Era As AWS deploys Project Rainier, it is scaling AI compute to unprecedented heights, while also laying down a decisive marker in the escalating arms race for hyperscale dominance. With custom Trainium2 silicon, proprietary interconnects, and vertically integrated data center architecture, Amazon joins a trio of tech giants, alongside Microsoft’s Project Stargate and Google’s TPUv5 clusters, who are rapidly redefining the future of AI infrastructure. But Rainier represents more than just another high-performance cluster. It arrives in a moment where the size, speed, and ambition of AI infrastructure projects have entered uncharted territory. Consider the past several weeks alone: On June 24, AWS detailed Project Rainier, calling it “a massive, one-of-its-kind machine” and noting that “the sheer size of the project is unlike anything AWS has ever attempted.” The New York Times reports that the primary Rainier campus in Indiana could include up to 30 data center buildings. Just two days later, Fermi America unveiled plans for the HyperGrid AI campus in Amarillo, Texas on a sprawling 5,769-acre site with potential for 11 gigawatts of power and 18 million square feet of AI data center capacity. And on July 1, Oracle projected $30 billion in annual revenue from a single OpenAI cloud deal, tied to the Project Stargate campus in Abilene, Texas. As Data Center Frontier founder Rich Miller has observed, the dial on data center development has officially been turned to 11. Once an aspirational concept, the gigawatt-scale campus is now materializing—15 months after Miller forecasted its arrival. “It’s hard to imagine data center projects getting any bigger,” he notes. “But there’s probably someone out there wondering if they can adjust the dial so it goes to 12.” Against this backdrop, Project Rainier represents not just financial investment but architectural intent. Like Microsoft’s Stargate buildout in

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »