Stay Ahead, Stay ONMINE

A new Microsoft chip could lead to more stable quantum computers

Microsoft announced today that it has made significant progress in its 20-year quest to make topological quantum bits, or qubits—a special approach to building quantum computers that could make them more stable and easier to scale up.  Researchers and companies have been working for years to build quantum computers, which could unlock dramatic new abilities to simulate complex materials and discover new ones, among many other possible applications.  To achieve that potential, though, we must build big enough systems that are stable enough to perform computations. Many of the technologies being explored today, such as the superconducting qubits pursued by Google and IBM, are so delicate that the resulting systems need to have many extra qubits to correct errors.  Microsoft has long been working on an alternative that could cut down on the overhead by using components that are far more stable. These components, called Majorana quasiparticles, are not real particles. Instead, they are special patterns of behavior that may arise inside certain physical systems and under certain conditions. The pursuit has not been without setbacks, including a high-profile paper retraction by researchers associated with the company in 2018. But the Microsoft team, which has since pulled this research effort in house, claims it is now on track to build a fault-tolerant quantum computer containing a few thousand qubits in a matter of years and that it has a blueprint for building out chips that each contain a million qubits or so, a rough target that could be the point at which these computers really begin to show their power. This week the company announced a few early successes on that path: piggybacking on a Nature paper published today that describes a fundamental validation of the system, the company says it has been testing a topological qubit, and that it has wired up a chip containing eight of them.  “You don’t get to a million qubits without a lot of blood, sweat, and tears and solving a lot of really difficult technical challenges along the way. And I do not want to understate any of that,” says Chetan Nayak, a Microsoft technical fellow and leader of the team pioneering this approach. That said, he says, “I think that we have a path that we very much believe in, and we see a line of sight.”  Researchers outside the company are cautiously optimistic. “I’m very glad that [this research] seems to have hit a very important milestone,” says computer scientist Scott Aaronson, who heads the ​​Quantum Information Center at the University of Texas at Austin. “I hope that this stands, and I hope that it’s built up.” Even and odd The first step in building a quantum computer is constructing qubits that can exist in fragile quantum states—not 0s and 1s like the bits in classical computers, but rather a mixture of the two. Maintaining qubits in these states and linking them up with one another is delicate work, and over the years a significant amount of research has gone into refining error correction schemes to make up for noisy hardware.  For many years, theorists and experimentalists alike have been intrigued by the idea of creating topological qubits, which are constructed through mathematical twists and turns and have protection from errors essentially baked into their physics. “It’s been such an appealing idea to people since the early 2000s,” says Aaronson. “The only problem with it is that it requires, in a sense, creating a new state of matter that’s never been seen in nature.” Microsoft has been on a quest to synthesize this state, called a Majorana fermion, in the form of quasiparticles. The Majorana was first proposed nearly 90 years ago as a particle that is its own antiparticle, which means two Majoranas will annihilate when they encounter one another. With the right conditions and physical setup, the company has been hoping to get behavior matching that of the Majorana fermion within materials. In the last few years, Microsoft’s approach has centered on creating a very thin wire or “nanowire” from indium arsenide, a semiconductor. This material is placed in close proximity to aluminum, which becomes a superconductor close to absolute zero, and can be used to create superconductivity in the nanowire. Ordinarily you’re not likely to find any unpaired electrons skittering about in a superconductor—electrons like to pair up. But under the right conditions in the nanowire, it’s theoretically possible for an electron to hide itself, with each half hiding at either end of the wire. If these complex entities, called Majorana zero modes, can be coaxed into existence, they will be difficult to destroy, making them intrinsically stable.  ”Now you can see the advantage,” says Sankar Das Sarma, a theoretical physicist at the University of Maryland, College Park, who did early work on this concept. “You cannot destroy a half electron, right? If you try to destroy a half electron, that means only a half electron is left. That’s not allowed.” In 2023, the Microsoft team published a paper in the journal Physical Review B claiming that this system had passed a specific protocol designed to assess the presence of Majorana zero modes. This week in Nature, the researchers reported that they can “read out” the information in these nanowires—specifically, whether there are Majorana zero modes hiding at the wires’ ends. If there are, that means the wire has an extra, unpaired electron. “What we did in the Nature paper is we showed how to measure the even or oddness,” says Nayak. “To be able to tell whether there’s 10 million or 10 million and one electrons in one of these wires.” That’s an important step by itself, because the company aims to use those two states—an even or odd number of electrons in the nanowire—as the 0s and 1s in its qubits.  If these quasiparticles exist, it should be possible to “braid” the four Majorana zero modes in a pair of nanowires around one another by making specific measurements in a specific order. The result would be a qubit with a mix of these two states, even and odd. Nayak says the team has done just that, creating a two-level quantum system, and that it is currently working on a paper on the results. Researchers outside the company say they cannot comment on the qubit results, since that paper is not yet available. But some have hopeful things to say about the findings published so far. “I find it very encouraging,” says Travis Humble, director of the Quantum Science Center at Oak Ridge National Laboratory in Tennessee. “It is not yet enough to claim that they have created topological qubits. There’s still more work to be done there,” he says. But “this is a good first step toward validating the type of protection that they hope to create.”  Others are more skeptical. Physicist Henry Legg of the University of St Andrews in Scotland, who previously criticized Physical Review B for publishing the 2023 paper without enough data for the results to be independently reproduced, is not convinced that the team is seeing evidence of Majorana zero modes in its Nature paper. He says that the company’s early tests did not put it on solid footing to make such claims. “The optimism is definitely there, but the science isn’t there,” he says. One potential complication is impurities in the device, which can create conditions that look like Majorana particles. But Nayak says the evidence has only grown stronger as the research has proceeded. “This gives us confidence: We are manipulating sophisticated devices and seeing results consistent with a Majorana interpretation,” he says. “They have satisfied many of the necessary conditions for a Majorana qubit, but there are still a few more boxes to check,” Das Sarma said after seeing preliminary results on the qubit. “The progress has been impressive and concrete.” Scaling up On the face of it, Microsoft’s topological efforts seem woefully behind in the world of quantum computing—the company is just now working to combine qubits in the single digits while others have tied together more than 1,000. But both Nayak and Das Sarma say other efforts had a strong head start because they involved systems that already had a solid grounding in physics. Work on the topological qubit, on the other hand, has meant starting from scratch.  “We really were reinventing the wheel,” Nayak says, likening the team’s efforts to the early days of semiconductors, when there was so much to sort out about electron behavior and materials, and transistors and integrated circuits still had to be invented. That’s why this research path has taken almost 20 years, he says: “It’s the longest-running R&D program in Microsoft history.” Some support from the US Defense Advanced Research Projects Agency could help the company catch up. Early this month, Microsoft was selected as one of two companies to continue work on the design of a scaled-up system, through a program focused on underexplored approaches that could lead to utility-scale quantum computers—those whose benefits exceed their costs. The other company selected is PsiQuantum, a startup that is aiming to build a quantum computer containing up to a million qubits using photons. Many of the researchers MIT Technology Review spoke with would still like to see how this work plays out in scientific publications, but they were hopeful. “The biggest disadvantage of the topological qubit is that it’s still kind of a physics problem,” says Das Sarma. “If everything Microsoft is claiming today is correct … then maybe right now the physics is coming to an end, and engineering could begin.”  This story was updated with Henry Legg’s current institutional affiliation.

Microsoft announced today that it has made significant progress in its 20-year quest to make topological quantum bits, or qubits—a special approach to building quantum computers that could make them more stable and easier to scale up. 

Researchers and companies have been working for years to build quantum computers, which could unlock dramatic new abilities to simulate complex materials and discover new ones, among many other possible applications. 

To achieve that potential, though, we must build big enough systems that are stable enough to perform computations. Many of the technologies being explored today, such as the superconducting qubits pursued by Google and IBM, are so delicate that the resulting systems need to have many extra qubits to correct errors. 

Microsoft has long been working on an alternative that could cut down on the overhead by using components that are far more stable. These components, called Majorana quasiparticles, are not real particles. Instead, they are special patterns of behavior that may arise inside certain physical systems and under certain conditions.

The pursuit has not been without setbacks, including a high-profile paper retraction by researchers associated with the company in 2018. But the Microsoft team, which has since pulled this research effort in house, claims it is now on track to build a fault-tolerant quantum computer containing a few thousand qubits in a matter of years and that it has a blueprint for building out chips that each contain a million qubits or so, a rough target that could be the point at which these computers really begin to show their power.

This week the company announced a few early successes on that path: piggybacking on a Nature paper published today that describes a fundamental validation of the system, the company says it has been testing a topological qubit, and that it has wired up a chip containing eight of them. 

“You don’t get to a million qubits without a lot of blood, sweat, and tears and solving a lot of really difficult technical challenges along the way. And I do not want to understate any of that,” says Chetan Nayak, a Microsoft technical fellow and leader of the team pioneering this approach. That said, he says, “I think that we have a path that we very much believe in, and we see a line of sight.” 

Researchers outside the company are cautiously optimistic. “I’m very glad that [this research] seems to have hit a very important milestone,” says computer scientist Scott Aaronson, who heads the ​​Quantum Information Center at the University of Texas at Austin. “I hope that this stands, and I hope that it’s built up.”

Even and odd

The first step in building a quantum computer is constructing qubits that can exist in fragile quantum states—not 0s and 1s like the bits in classical computers, but rather a mixture of the two. Maintaining qubits in these states and linking them up with one another is delicate work, and over the years a significant amount of research has gone into refining error correction schemes to make up for noisy hardware. 

For many years, theorists and experimentalists alike have been intrigued by the idea of creating topological qubits, which are constructed through mathematical twists and turns and have protection from errors essentially baked into their physics. “It’s been such an appealing idea to people since the early 2000s,” says Aaronson. “The only problem with it is that it requires, in a sense, creating a new state of matter that’s never been seen in nature.”

Microsoft has been on a quest to synthesize this state, called a Majorana fermion, in the form of quasiparticles. The Majorana was first proposed nearly 90 years ago as a particle that is its own antiparticle, which means two Majoranas will annihilate when they encounter one another. With the right conditions and physical setup, the company has been hoping to get behavior matching that of the Majorana fermion within materials.

In the last few years, Microsoft’s approach has centered on creating a very thin wire or “nanowire” from indium arsenide, a semiconductor. This material is placed in close proximity to aluminum, which becomes a superconductor close to absolute zero, and can be used to create superconductivity in the nanowire.

Ordinarily you’re not likely to find any unpaired electrons skittering about in a superconductor—electrons like to pair up. But under the right conditions in the nanowire, it’s theoretically possible for an electron to hide itself, with each half hiding at either end of the wire. If these complex entities, called Majorana zero modes, can be coaxed into existence, they will be difficult to destroy, making them intrinsically stable. 

”Now you can see the advantage,” says Sankar Das Sarma, a theoretical physicist at the University of Maryland, College Park, who did early work on this concept. “You cannot destroy a half electron, right? If you try to destroy a half electron, that means only a half electron is left. That’s not allowed.”

In 2023, the Microsoft team published a paper in the journal Physical Review B claiming that this system had passed a specific protocol designed to assess the presence of Majorana zero modes. This week in Nature, the researchers reported that they can “read out” the information in these nanowires—specifically, whether there are Majorana zero modes hiding at the wires’ ends. If there are, that means the wire has an extra, unpaired electron.

“What we did in the Nature paper is we showed how to measure the even or oddness,” says Nayak. “To be able to tell whether there’s 10 million or 10 million and one electrons in one of these wires.” That’s an important step by itself, because the company aims to use those two states—an even or odd number of electrons in the nanowire—as the 0s and 1s in its qubits. 

If these quasiparticles exist, it should be possible to “braid” the four Majorana zero modes in a pair of nanowires around one another by making specific measurements in a specific order. The result would be a qubit with a mix of these two states, even and odd. Nayak says the team has done just that, creating a two-level quantum system, and that it is currently working on a paper on the results.

Researchers outside the company say they cannot comment on the qubit results, since that paper is not yet available. But some have hopeful things to say about the findings published so far. “I find it very encouraging,” says Travis Humble, director of the Quantum Science Center at Oak Ridge National Laboratory in Tennessee. “It is not yet enough to claim that they have created topological qubits. There’s still more work to be done there,” he says. But “this is a good first step toward validating the type of protection that they hope to create.” 

Others are more skeptical. Physicist Henry Legg of the University of St Andrews in Scotland, who previously criticized Physical Review B for publishing the 2023 paper without enough data for the results to be independently reproduced, is not convinced that the team is seeing evidence of Majorana zero modes in its Nature paper. He says that the company’s early tests did not put it on solid footing to make such claims. “The optimism is definitely there, but the science isn’t there,” he says.

One potential complication is impurities in the device, which can create conditions that look like Majorana particles. But Nayak says the evidence has only grown stronger as the research has proceeded. “This gives us confidence: We are manipulating sophisticated devices and seeing results consistent with a Majorana interpretation,” he says.

“They have satisfied many of the necessary conditions for a Majorana qubit, but there are still a few more boxes to check,” Das Sarma said after seeing preliminary results on the qubit. “The progress has been impressive and concrete.”

Scaling up

On the face of it, Microsoft’s topological efforts seem woefully behind in the world of quantum computing—the company is just now working to combine qubits in the single digits while others have tied together more than 1,000. But both Nayak and Das Sarma say other efforts had a strong head start because they involved systems that already had a solid grounding in physics. Work on the topological qubit, on the other hand, has meant starting from scratch. 

“We really were reinventing the wheel,” Nayak says, likening the team’s efforts to the early days of semiconductors, when there was so much to sort out about electron behavior and materials, and transistors and integrated circuits still had to be invented. That’s why this research path has taken almost 20 years, he says: “It’s the longest-running R&D program in Microsoft history.”

Some support from the US Defense Advanced Research Projects Agency could help the company catch up. Early this month, Microsoft was selected as one of two companies to continue work on the design of a scaled-up system, through a program focused on underexplored approaches that could lead to utility-scale quantum computers—those whose benefits exceed their costs. The other company selected is PsiQuantum, a startup that is aiming to build a quantum computer containing up to a million qubits using photons.

Many of the researchers MIT Technology Review spoke with would still like to see how this work plays out in scientific publications, but they were hopeful. “The biggest disadvantage of the topological qubit is that it’s still kind of a physics problem,” says Das Sarma. “If everything Microsoft is claiming today is correct … then maybe right now the physics is coming to an end, and engineering could begin.” 

This story was updated with Henry Legg’s current institutional affiliation.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Western Digital wants to ramp-up hard disk drive speeds

Most enterprises are not using SATA drives, at least not with hot data. Perhaps cold storage but not frequently accessed data. They are using PCI Express based drives and those are considerably faster than anything Western Digital can engineer in a hard disk. Capacity aside, Western Digital is also aiming

Read More »

LoRaWAN reaches 125 million devices as industrial IoT expands

Satellite integration is set to grow Terrestrial LoRaWAN networks cannot achieve complete geographic coverage. Yegin cited Swisscom’s nationwide Switzerland deployment, which covers 97.2% of the population but cannot reach remote alpine terrain. Two LoRa Alliance members, Lacuna Space and Plan-S, already operate commercial LoRaWAN services from low Earth orbit. Standard

Read More »

Data stored in glass could last over 10,000 years, Microsoft says

Magnetic tape, the most widely deployed archival medium today, reflects those constraints. An LTO-10 (Linear Tape-Open) cartridge, the current enterprise benchmark, holds 30TB to 40TB native at 400MB/s, but its rated shelf life is just 30 years. It requires climate-controlled storage between 16°C and 25°C and migration roughly every five

Read More »

Arista hints at in-the-works telemetry tools to manage AI fabrics

“This greatly aids our customers in building an overall working solution, because the interactions between the network and the host can be complicated and difficult to debug when it’s different systems collecting them,” Duda said. Analysts react to telemetry preview Arista declined to share more details about its forthcoming AI

Read More »

Energy Secretary Prevents Closure of Coal Plant That Provided Essential Power During Winter Storm

WASHINGTON—U.S. Secretary of Energy Chris Wright renewed an emergency order to address critical grid reliability issues facing the Midwestern region of the United States. The emergency order directs the Midcontinent Independent System Operator (MISO), in coordination with Consumers Energy, to ensure that the J.H. Campbell coal-fired power plant (Campbell Plant) in West Olive, Michigan shall take all steps necessary to remain available to operate and to employ economic dispatch to minimize costs for the American people. The Campbell Plant was originally scheduled to shut down on May 31, 2025 — 15 years before the end of its scheduled design life. “The energy sources that perform when you need them most are inherently the most valuable—that’s why beautiful, clean coal was the MVP of recent winter storms,” Secretary Wright said. “Hundreds of American lives have likely been saved because of President Trump’s actions saving America’s coal plants, including this Michigan coal plant which ran daily during Winter Storm Fern. This emergency order will mitigate the risk of blackouts and maintain affordable, reliable, and secure electricity access across the region.” The Campbell Plant was integral in stabilizing the grid during the recent winter storms. The plant operated at over 650 megawatts every day before and during Winter Storm Fern, January 21-February 1, proving that allowing it to cease operations would needlessly contribute to grid fragility. Thanks to President Trump’s leadership, coal plants across the country are reversing plans to shut down. In 2025, more than 17 gigawatts of coal-powered electricity generation were saved ahead of Winter Storm Fern. Since the Department of Energy’s (DOE) original order issued on May 23, the Campbell Plant has proven critical to MISO’s operations, operating regularly during periods of high energy demand and low levels of intermittent energy production. Subsequent orders were issued on August 20, 2025 and November 18, 2025. As outlined in DOE’s Resource

Read More »

EBW Warned of Faltering Gas Demand Heading into Holiday Weekend

In a U.S. natural gas focused EBW Analytics Group report sent to Rigzone by the EBW team on Friday, Eli Rubin, an energy analyst at the company, warned of “faltering demand” heading into the President’s Day holiday weekend. “The March contract tested as high as $3.316 yesterday before selling off after a bearish EIA [U.S. Energy Information Administration] storage surprise, and ahead of deteriorating heating demand into President’s Day holiday weekend and an 11 billion cubic foot per day drop into next Wednesday,” Rubin said in Friday’s report. “The threat of cold air in Western Canada and the Pacific Northwest moving into the U.S. remains a primary source of support,” he added. “If the market returns from the holiday weekend without this threat materializing, however, sub-$3.00 per million British thermal units may be in play as the year over year storage deficit flips to a 170 billion cubic foot surplus by late February,” he continued. In the report, Rubin went on to state that “steep storage refill demand east of the Rockies and loose supply/demand fundamentals during recent Marches may offer some medium-term support”. He added, however, that “storage exiting March near 1,800 billion cubic feet, with gathering production tailwinds and decelerating year over year LNG growth into mid to late 2026, suggest a bearish outlook for NYMEX gas futures”. In its latest weekly natural gas storage report, which was released on February 12 and included data for the week ending February 6, the EIA revealed that, according to its estimates, working gas in storage was 2,214 billion cubic feet as of February 6. “This represents a net decrease of 249 billion cubic feet from the previous week,” the EIA highlighted in the report. “Stocks were 97 billion cubic feet less than last year at this time and 130 billion

Read More »

North America Drops 6 Rigs Week on Week

North America dropped six rigs week on week, according to Baker Hughes’ latest North America rotary rig count, which was published on February 13. The total U.S. rig count remained unchanged week on week and the total Canada rig count dropped by six during the same period, pushing the total North America rig count down to 773, comprising 551 rigs from the U.S. and 222 rigs from Canada, the count outlined. Of the total U.S. rig count of 551, 531 rigs are categorized as land rigs, 17 are categorized as offshore rigs, and three are categorized as inland water rigs. The total U.S. rig count is made up of 409 oil rigs, 133 gas rigs, and nine miscellaneous rigs, according to Baker Hughes’ count, which revealed that the U.S. total comprises 481 horizontal rigs, 57 directional rigs, and 13 vertical rigs. Week on week, the U.S. land rig count dropped by one, its offshore rig count rose by one, and its inland water rig count remained unchanged, Baker Hughes highlighted. The U.S. oil rig count decreased by three week on week, while its gas rig count increased by three and its miscellaneous rig count remained unchanged, the count showed. The U.S. horizontal rig count dropped by two week on week, its directional rig count rose by two week on week, and its vertical rig count remained flat during the same period, the count revealed. A major state variances subcategory included in the rig count showed that, week on week, Texas dropped three rigs, Oklahoma and North Dakota each dropped one rig, Louisiana added two rigs, and New Mexico, Pennsylvania, and Wyoming each added one rig. A major basin variances subcategory included in the rig count showed that, week on week, the Permian basin dropped three rigs, the Williston basin dropped

Read More »

Aramco Commits to 1 MMtpa for 20 Years from Commonwealth LNG

Saudi Arabian Oil Co (Aramco) has signed a 20-year agreement to buy one million metric tons per annum (MMtpa) of liquefied natural gas from the under-development Commonwealth LNG in Cameron Parish, Louisiana. “Commonwealth is advancing toward a final investment decision with line of sight to secure its remaining capacity”, said a joint statement by the offtake parties. “Aramco Trading joins Glencore, JERA, PETRONAS, Mercuria and EQT among international energy companies entering into long-term offtake contracts with the platform”. Early this month Commonwealth announced a 20-year deal to supply one MMtpa to Geneva, Switzerland-based energy and commodities trader Mercuria. Commonwealth LNG is a project of Kimmeridge Energy Management Co LLC and Mubadala Investment Co through their joint venture Caturus HoldCo LLC. Expected to start operation 2030, Commonwealth LNG is designed to produce up to 9.5 million metric tons a year of LNG. “This agreement highlights the strong international demand for U.S. LNG and underscores how our longstanding relationships and capabilities position Caturus to serve global markets”, said Caturus chief executive David Lawler. “Our contract with Aramco Trading underscores the differentiated value Caturus can bring through our global reach in offering wellhead to water services”, Lawler added. Mohammed K. Al Mulhim, Aramco Trading president and CEO, said, “This agreement reflects Aramco Trading’s efforts to secure a reliable, long-term energy supply for global markets while strengthening our presence in the LNG sector”. The Gulf Coast project is permitted to ship up to 9.5 MMtpa of LNG, equivalent to around 1.21 billion cubic feet per day of gas according to Kimmeridge. The United States Energy Department granted the project authorization to export to countries without a free trade agreement (FTA) with the U.S. in August 2025 and FTA authorization in April 2020. The developers expect the first phase of the project to generate around

Read More »

Enbridge Q4 Profit Up YoY

Enbridge Inc has reported CAD 1.95 billion ($1.43 billion) in earnings and CAD 1.92 billion in adjusted earnings for the fourth quarter of 2025, up from CAD 493 million and CAD 1.64 billion for the same three-month period in 2024 respectively. Q4 2025 income per share of CAD 0.88 ($0.63), adjusted for extraordinary items, beat the Zacks Consensus Estimate of $0.6. Calgary-based Enbridge, which operates oil and gas pipelines in Canada and the United States, earlier bumped up its quarterly dividend by three percent against the prior rate to CAD 0.97. The annualized rate for 2026 is CAD 3.88 per share. Q4 2025 adjusted EBITDA rose 1.62 percent year-on-year to CAD 5.21 billion “due primarily to favorable gas transmission contracting and Venice Extension entering service, colder weather and higher rates and customer growth at Enbridge Gas Ontario, partially offset by the absence in 2025 of equity earnings related to investment tax credits from our investment in Fox Squirrel Solar”, Enbridge said in an online statement. United States gas transmission contributed CAD 997 million to segment adjusted EBITDA, down from CAD 1 billion for Q4 2024. The U.S. figure benefited from the startup of the Venice Extension Project, which expands the Texas Eastern system’s capacity to deliver gas to Gulf Coast markets, and Enbridge’s acquisition of a stake in the Matterhorn Express Pipeline. Enbridge also recognized “favorable contracting and successful rate case settlements on our U.S. Gas Transmission assets”, partially offset by the timing of operating costs. Adjusted EBITDA from Canadian gas transmission increased from CAD 157 million for Q4 2024 to CAD 190 million for Q4 2025, helped by “higher revenues at Aitken Creek due to favorable storage spreads”. Liquid pipelines logged CAD 2.45 billion in adjusted EBITDA, up from CAD 2.4 billion for Q4 2024. The Mainline System, which carries

Read More »

Analyst Highlights Focus of IEW Event

Focus at the London International Energy Week (IEW) last week was the balancing of geopolitics versus assessed surplus of oil globally in 2026. That’s what Skandinaviska Enskilda Banken AB (SEB) Chief Commodities Analyst Bjarne Schieldrop noted in a SEB report sent to Rigzone on Monday morning, adding that one delegate at the event stated that “if OPEC doesn’t cut, we’ll have $45 per barrel in June”. “That may be true,” Schieldrop said in the report. “But OPEC+ is meeting every month, taking a measure of the state of the global oil market and then decides what to do on the back of that. The group has been very explicit that they may cut, increase, or keep production steady depending on their findings,” he added. “We believe they will and thus we do not buy into $45 per barrel by June because, if need-be, they will trim production as they say they will,” he continued, pointing out that OPEC+ is next scheduled to meet on March 1 “to discuss production for April”. Schieldrop highlighted in the report that, in its February oil market report, the International Energy Agency (IEA) “restated its view that the world will only need 25.7 million barrels per day of crude from OPEC in 2026 versus a recent production by the group of 28.8 million barrels per day”. “I.e. that to keep the market balanced the group will need to cut production by some three million barrels per day,” he said. “Though strategic stock building around the world needs to be deducted from that. And the appetite for such stock building could be solid given elevated geopolitical risks. Thus what will flow to commercial stocks in the end remains to be seen,” he stated. Schieldrop went on to note in the report that increased Iranian tension could drive Brent

Read More »

ECL targets AI data centers with fuel-agnostic power platform

Power availability has become a gating factor for many data center projects, particularly where developers need larger connections or rapid delivery. Grid constraints can also influence where operators place compute for low-latency AI workloads. “Inference has to live close to people, data and applications, in and around major cities, smaller metros and industrial hubs where there is rarely a spare 50 or 100 megawatts sitting on the grid, and almost never a mature hydrogen ecosystem,” said Bachar. In typical data center design, the facilities are planned around 1 energy source, be it electrical grid, solar and other renewables, or diesel generated. All require different layouts and designs. One design does not fit all power sources. FlexGrid lets the data center use any power source it wants and switch to a new source without requiring a redesign of the facilities.

Read More »

AI likely to put a major strain on global networks—are enterprises ready?

“When AI pipelines slow down or traffic overloads common infrastructure, business processes slow down, and customer experience degrades,” Kale says. “Since many organizations are using AI to enable their teams to make critical decisions, disruptions caused by AI-related failures will be experienced instantly by both internal teams and external customers.” A single bottleneck can quickly cascade through an organization, Kales says, “reducing the overall value of the broader digital ecosystem.” In 2026, “we will see significant disruption from accelerated appetite for all things AI,” research firm Forrester noted in a late-year predictions post. “Business demands of AI systems, network connectivity, AI for IT operations, the conversational AI-powered service desk, and more are driving substantial changes that tech leaders must enable within their organizations.” And in a 2025 study of about 1,300 networking, operations, cloud, and architecture professionals worldwide, Broadcom noted a “readiness gap” between the desire for AI and network preparedness. While 99% of organizations have cloud strategies and are adopting AI, only 49% say their networks can support the bandwidth and low latency that AI requires, according to Broadcom’s  2026 State of Network Operations report. “AI is shifting Internet traffic from human-paced to machine-paced, and machines generate 100 times more requests with zero off-hours,” says Ed Barrow, CEO of Cloud Capital, an investment management firm focused on acquiring, managing, and operating data centers. “Inference workloads in particular create continuous, high-intensity, globally distributed traffic patterns,” Barrow says. “A single AI feature can trigger millions of additional requests per hour, and those requests are heavier—higher bandwidth, higher concurrency, and GPU-accelerated compute on the other side of the network.”

Read More »

Adani bets $100 billion on AI data centers as India eyes global hub status

The sovereignty question Adani framed the investment as a matter of national digital sovereignty, saying it would reserve a significant portion of GPU capacity for Indian AI startups and research institutions. Analysts were not convinced the structure supported the claim. “I believe it is too distant from digital sovereignty if the majority of the projects are being built to serve leading MNC AI hyperscalers,” said Shah. “Equal investments have to happen for public AI infrastructure, and the data of billions of users — from commerce to content to health — must remain sovereign.” Gogia framed the gap in operational terms. “Ownership alone does not define sovereignty,” he said. “The practical determinants are who controls privileged access during incidents, where critical workloads fail over when grids are stressed, and what regulatory oversight mechanisms are contractually enforceable.” Those are questions Adani has not yet answered and the market, analysts say, will be watching for more than just construction progress. But Banerjee said the market would not wait nine years to judge the announcement. “In practice, I think the market will judge this on near-term proof points, grid capacity secured, power contracting in place, and anchor tenants signed, rather than the headline capex or long-dated targets,” he said.

Read More »

Arista laments ‘horrendous’ memory situation

Digging in on campus Arista has been clear about its plans to grow its presence campus networking environments. Last Fall, Ullal said she expects Arista’s campus and WAN business would grow from the current $750 million-$800 million run rate to $1.25 billion, representing a 60% growth opportunity for the company. “We are committed to our aggressive goal of $1.25 billion for ’26 for the cognitive campus and branch. We have also successfully deployed in many routing edge, core spine and peering use cases,” Ullal said. “In Q4 2025, Arista launched our flagship 7800 R4 spine for many routing use cases, including DCI, AI spines with that massive 460 terabits of capacity to meet the demanding needs of multiservice routing, AI workloads and switching use cases. The combined campus and routing adjacencies together contribute approximately 18% of revenue.” Ethernet leads the way “In terms of annual 2025 product lines, our core cloud, AI and data center products built upon our highly differentiated Arista EOS stack is successfully deployed across 10 gig to 800 gigabit Ethernet speeds with 1.6 terabit migration imminent,” Ullal said. “This includes our portfolio of EtherLink AI and our 7000 series platforms for best-in-class performance, power efficiency, high availability, automation, agility for both the front and back-end compute, storage and all of the interconnect zones.” Ullal said she expects Ethernet will get even more of a boost later this year when the multivendor Ethernet for Scale-Up Networking (ESUN) specification is released.  “We have consistently described that today’s configurations are mostly a combination of scale out and scale up were largely based on 800G and smaller ratings. Now that the ESUN specification is well underway, we need a good solid spec. Otherwise, we’ll be shipping proprietary products like some people in the world do today. And so we will tie our

Read More »

From NIMBY to YIMBY: A Playbook for Data Center Community Acceptance

Across many conversations at the start of this year, at PTC and other conferences alike, the word on everyone’s lips seems to be “community.” For the data center industry, that single word now captures a turning point from just a few short years ago: we are no longer a niche, back‑of‑house utility, but a front‑page presence in local politics, school board budgets, and town hall debates. That visibility is forcing a choice in how we tell our story—either accept a permanent NIMBY-reactive framework, or actively build a YIMBY narrative that portrays the real value digital infrastructure brings to the markets and surrounding communities that host it. Speaking regularly with Ilissa Miller, CEO of iMiller Public Relations about this topic, there is work to be done across the ecosystem to build communications. Miller recently reflected: “What we’re seeing in communities isn’t a rejection of digital infrastructure, it’s a rejection of uncertainty driven by anxiety and fear. Most local leaders have never been given a framework to evaluate digital infrastructure developments the way they evaluate roads, water systems, or industrial parks. When there’s no shared planning language, ‘no’ becomes the safest answer.” A Brief History of “No” Community pushback against data centers is no longer episodic; it has become organized, media‑savvy, and politically influential in key markets. In Northern Virginia, resident groups and environmental organizations have mobilized against large‑scale campuses, pressing counties like Loudoun and Prince William to tighten zoning, question incentives, and delay or reshape projects.1 Loudoun County’s move in 2025 to end by‑right approvals for new facilities, requiring public hearings and board votes, marked a watershed moment as the world’s densest data center market signaled that communities now expect more say over where and how these campuses are built. Prince William County’s decision to sharply increase its tax rate on

Read More »

Nomads at the Frontier: PTC 2026 Signals the Digital Infrastructure Industry’s Moment of Execution

Each January, the Pacific Telecommunications Council conference serves as a barometer for where digital infrastructure is headed next. And according to Nomad Futurist founders Nabeel Mahmood and Phillip Koblence, the message from PTC 2026 was unmistakable: The industry has moved beyond hype. The hard work has begun. In the latest episode of The DCF Show Podcast, part of our ongoing ‘Nomads at the Frontier’ series, Mahmood and Koblence joined Data Center Frontier to unpack the tone shift emerging across the AI and data center ecosystem. Attendance continues to grow year over year. Conversations remain energetic. But the character of those conversations has changed. As Mahmood put it: “The hype that the market started to see is actually resulting a bit more into actions now, and those conversations are resulting into some good progress.” The difference from prior years? Less speculation. More execution. From Data Center Cowboys to Real Deployments Koblence offered perhaps the sharpest contrast between PTC conversations in 2024 and those in 2026. Two years ago, many projects felt speculative. Today, developers are arriving with secured power, customers, and construction underway. “If 2024’s PTC was data center cowboys — sites that in someone’s mind could be a data center — this year was: show me the money, show me the power, give me accurate timelines.” In other words, the market is no longer rewarding hypothetical capacity. It is demanding delivered capacity. Operators now speak in terms of deployments already underway, not aspirational campuses still waiting on permits and power commitments. And behind nearly every conversation sits the same gating factor. Power. Power Has Become the Industry’s Defining Constraint Whether discussions centered on AI factories, investment capital, or campus expansion, Mahmood and Koblence noted that every conversation eventually returned to energy availability. “All of those questions are power,” Koblence said.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »