Stay Ahead, Stay ONMINE

AI, Data Centers, and the Next Big Correction: Will Growth Outpace Market Reality?

AI is being readily embraced by organizations, government, and individual enthusiasts for data aggregation, pattern recognition, data visualization, and co-creation of content. Given the headlines lately, AI is set to take over the world. And as an emerging, revolutionary technology with large potential impact and newfound user-friendliness, both large tech companies and small startups alike […]

AI is being readily embraced by organizations, government, and individual enthusiasts for data aggregation, pattern recognition, data visualization, and co-creation of content. Given the headlines lately, AI is set to take over the world. And as an emerging, revolutionary technology with large potential impact and newfound user-friendliness, both large tech companies and small startups alike have raced to capitalize on potential growth. Hands down, this transformative technology has caused a wave of adoption, investment, and innovation around the world and across industries.

Naturally, when a technology or application accelerates quickly, the more risk-averse will be cautious and when it accelerates this quickly, a bubble might be forming. Even more bullish investors have ridden through too much tumult in the past few decades for their bank accounts to withstand another cataclysmic loss. More investment is pouring in (including at a federal level), stock valuations are all over the charts and not necessarily true to a ticker’s earnings, and the recent market fluctuations leave the entire ecosystem a little hesitant about buying into the hype too much.

The Nature of Bubbles and Some Potential Signals to Watch For

Economic bubbles occur when asset prices significantly exceed their intrinsic value, often fueled by speculative demand and irrational investment, leading to unsustainable market conditions. A bigger concern than just to digital infrastructure, bubbles can have far-reaching impacts on the entire market, as the initial distorted financial metrics encourage excessive lending and create systemic risk. The collapse of a bubble can trigger a chain reaction of financial distress, causing widespread economic instability and potentially leading to recessions, as seen in historical examples like the dot-com and housing bubbles.

Reasonable bubble indicators that have the market concerned include:

  • Overvaluation and Lack of Profit Generation: Tech giants are heavily invested in AI despite limited returns from the associated products. Likewise, many AI startups have achieved valuations far exceeding their earnings. This discrepancy between valuation and profitability is a classic sign of a bubble.
  • Hype vs. Reality: The AI hype cycle throughout the news has led to significant investments, with society torn about the potential and ethical claims regarding AI capabilities. Overstatements in the media often must be tempered with corrections in later expectation, but when hundreds of billions of dollars are at stake, it’s no small adjustment.
  • Diminishing Returns: Some experts suggest that large language models (LLMs) may not be as scalable as previously thought, leading to diminishing returns on investment in these technologies.

The Dot-Com Burst Saw Precisely This Happen

The dot-com bubble emerged in the late 1990s, fueled by the rapid growth of the internet and the establishment of numerous tech startups. This period saw a surge in demand for internet-based stocks, leading to high valuations that often exceeded the companies’ intrinsic value. The NASDAQ Composite index rose dramatically, increasing by 582% from January 1995 to March 2000, only to fall by 75% from March 2000 to October 2002.

The frenzy of buying internet-based stocks was overwhelming, with many companies lacking viable business models and focusing instead on metrics like website traffic. Venture capitalists and other investors poured money into these startups, often ignoring traditional financial metrics in favor of speculative growth potential. The media played a significant role in fueling this hype, encouraging investors to overlook caution and invest in risky tech stocks.

The bubble burst when capital began to dry up, leading to a market crash. By 2002, investor losses were estimated at around $5 trillion. Many tech companies that conducted IPOs during this era declared bankruptcy or were acquired by other companies. The collapse of the dotcom bubble resulted in massive layoffs in the technology sector and served as a cautionary tale about the dangers of speculative investing and overvaluation.

The aftermath of the dotcom bubble led to a more cautious approach to investing, with a renewed focus on fundamental analysis rather than speculative hype. Despite the devastating impact, it laid the groundwork for the modern tech industry, with companies like Amazon and Google surviving and thriving to become leaders in their fields.

Growth and Profitability

While AI as a technology has been around for decades, the advent of generative AI built on neural networks resulted in the release of ChatGPT. This launched a user-friendly chatbot that could interpret and then generate responses in milli-seconds that were more than just coherent, but informative, insightful, and intuitive. The potential of AI was on display for all the world to see and users of OpenAI’s system grew to 1 million users in five days and 100 million users in 2 months, the fastest adoption of a platform the world has ever seen. They recently have reached 400 million weekly active users.

The societal adoption makes sense, but what about the business application, where there is real money to be made? Other than for the reputed college kids writing term papers, AI’s value to an organization is its ability to analyze vast amounts of disorganized data, aggregate it all, and make complex decisions from it. Key industries like healthcare, computer science, cybersecurity, logistics, manufacturing, and content creation are all leading the shift and embracing the benefits of AI technology and there is no end in sight to the innovation available.

The efficiency gains and reduced operational costs to an organization are limited only by a user’s imagination for what queries to put to the test. But speaking openly, as someone who grew up in the power distribution world, peddling equipment that made utilities and industries more efficient and reduced OpEx as our core product benefits, I can tell you this isn’t an easy value proposition to market your products on, even when it is so tangibly evident as it is with AI, and the enterprise and B2B adoption is rolling out slower than the headlines might have us believing.

Simply stated, this technology is only profitable if there are paying customers and revenue growth that follow. Serious startup capital is being spent on applications of this technology that the market may not be ready to support. This does have the markings of a crash, but whether that crash will be a true bubble will depend on the speed, reach, and broader impact of that decline.

Economic Considerations

Herd mentality plays a significant role in the adoption of AI technologies. This phenomenon involves individuals following the crowd and making decisions based on the actions of others, rather than their own beliefs or analysis. In the context of AI, herd behavior is amplified by the widespread adoption of AI tools and the fear of missing out (FOMO) on potential benefits.

AI algorithms, trained on extensive datasets, can perpetuate this mentality by replicating existing trends and strategies, making them more appealing to a broader audience. As a result, the rapid adoption of AI technologies can lead to inflated expectations and valuations, similar to what was observed during the dotcom bubble, where speculative demand drove prices far beyond their intrinsic value.

The prices of hardware necessary for AI development and deployment are being driven up by several factors, including scarcity and increased demand. The rapid growth of AI applications has led to a surge in demand for GPUs and TPUs necessary for training models. This increased demand, coupled with supply chain constraints and geopolitical tensions affecting semiconductor production, has resulted in higher prices for these critical components.

Additionally, the concentration of manufacturing in a few regions exacerbates these supply chain issues, further contributing to price increases. As AI continues to expand across industries, the strain on hardware resources is likely to persist, maintaining upward pressure on prices.

Right now, investors and data center operators, alike, are attempting to chart the viability of the many parties and the likely winners of the AI arms race, and charting those sort of outcomes always brings different economic tools such as game theory to mind, where we have many players all vying for the same opportunities. The considerations of approaching this like a game are that we can complement our decisions by modeling interdependencies, ensuring strategies that achieve the most desirable outcomes.

This mathematical framework is frequently used for understanding interactions within an ecosystem, but is much more complicated than the well-known Nash equilibrium, whereby each participant strives to maximize their outcome, and equilibrium is achieved only when all players have reached this maximum, which is interdependent on the behaviors and actions of the other players. The Prisoner’s Dilemma is the well-known classic, but as applied in this sense, other studied “games” to consider are more applicable, especially those that result in a “winner takes all” outcome.

One of the challenges, however, is that new neocloud players are joining amidst an ongoing game, making this extremely difficult to mathematically chart. Nevertheless, it can be useful framework for isolated scenario modeling of strategies, predictive analytics, and decision mapping to anticipate outcomes.

For example, many AI startup companies may be bidding for the same hyperscale AI projects. As with a Prisoner’s Dilemma, there may be a first-mover advantage, but this is actually more like a game of Chicken. The first to pull out of the competition loses the crown title, but keeps their life; the one to stay in the match (if the other pulls out) earns both; or they defeat each other through psychological tactics whereby 1) neither succeed or 2) the result is mutually assured destruction when neither gives in.

The resulting sentiment is that in this arms race, one year from now only a handful of companies will have survived.

Therefore, investment is slowing down as investors are digging deeper into the cost of the technology, the feasibility of finding customers, and the timeline to revenue. “Show me the money,” is being heard across digital infrastructure, or rather, show me the path to monetization, the business case for your unique application of the technology and prospective customer. With limited winners and an excess of losers, it is hard to see investors placing financial bets across the board; they will be much more strategically selected than we saw in the dot-com days.

Ripples in the Ecosystem

Countering the bubble fear-mongers, it must be argued that the long-term outlook of AI and the underlying technology that fosters this innovation will have a lasting-impact. From the 40,000-foot view, I can’t imagine a fundamentally revolutionary technology causing a complete market burst, while businesses and individuals have already come to rely on various AI applications as essential tools for business.

Rather than a crash, natural economic adjustment may be more likely, though it must be said that market fluctuations have had greater swings of late and may be established as a norm that day tradesmen have to account for in their strategies, while longer-term investors are willing to ride these waves out. That is, if they ever lock in on a winner they choose to financially back. Readjustments are just part of the game.

As an asset category, we need to consider the full ecosystem and consider the market corrections we’ve begun to see play out:

  • Competitive Market Growth:  An example of this is easily seen when we consider the DeepSeek launch recently, a Chinese product competitive to ChatGPT that supposedly boasted lower costs and energy usage. The U.S. tech index lost $1 trillion in value that day. Much of that was quickly recovered. Additionally, individual stocks may contribute to some fluctuations, but there was some concern about a burst looming, because a single announcement should never have seen the swing that resulted from this announcement. In general, we need to stop letting short-term sentiment and fear impact us to this extent and trust what we know to be true about the technology adoption. The wake-up call was heard nonetheless across the market, and we should expect to see much more reticence to large investments that present a high risk profile.
  • Lease Terms: The data center market has been a bit of a seller’s market for a few years now; those with land and power need simply say the word and they could lock in 15 year lease terms. That’s changing a bit of late and as we’ve seen, some hyperscalers are even pulling back lease terms to under 10 years, some around 7-8 years. AI leases are even less secure with many neocloud startups aiming for 5-7 year lease terms. This doesn’t offer the same confidence to an investor or to a data center provider compared to a longer-term commit and let’s not forget, these cash constrained startups cannot afford to give this perception. As we learned from the real estate bubble, inability to pay the rent quite literally could become a trigger for another burst.
  • Equipment Obsolescence:  Another factor to consider is the high cost of investment in hardware. Ultimately with growth, price per unit will come down. Then as new models are released by the various manufacturers, the previous renditions will become obsolete, and suddenly entire generations of hardware may lose value. As long as the neocloud provider has established a decent customer base to generate revenue, or a hyperscaler has deep enough pockets to fund an equipment refresh, this is no concern. But it’s a bitter pill to swallow when it happens and is not always a blow that can be recovered from, since it hinges on the model already demonstrating success. Some question has arisen whether there will be a second-hand market for GPUs. With the investment that goes into the purchase up front, it would be a struggle to imagine that there won’t be, but a viable use case has yet to emerge; it’s simply too new to discern. It would likely be pennies on the dollar, but better than nothing. Perhaps by being repurposed for smaller outfits that lease  to single-use enterprises will provide a niche market where equipment finds new utility, even if not as lucrative as the initial use.
  • Equipment Failure:  Beginning to be discussed openly, GPUs have a high failure rate due to component failures, memory issues, and driver problems. This unreliability can lead to costly downtime and data loss, impacting the efficiency and reliability of AI operations. As AI applications become more complex and widespread, the need for robust and reliable GPU infrastructure grows. The consequences of these failures ripple through the market, affecting not only the deployment timelines and operational costs but will also make companies more hesitant to adopt and scale their use of the technology. Moreover, the scarcity of GPUs, exacerbated by supply chain disruptions and export restrictions, further complicates the situation, pushing companies to explore alternative solutions like GPU-as-a-Service (GPUaaS) to mitigate these risks.
  • Stock Valuations:  Nvidia, the leading supplier of GPUs essential for training AI models, has become one of the most valuable publicly listed companies, with a valuation exceeding $3 trillion. As the gold standard for GPUs, Nvidia’s stock performance significantly influences the broader market, particularly tech-heavy indices like the S&P 500. Given its substantial market capitalization, Nvidia’s stock makes up a considerable portion of major indexes, meaning that any large market adjustment could have far-reaching effects on the entire tech sector. This concentration of market influence in a few key stocks, including Nvidia, leaves investors vulnerable unless they are well diversified. The valuation of AI-related stocks, such as OpenAI potentially reaching a $300 billion valuation despite never being profitable, raises questions about sustainability. The recent stock market surge has been largely driven by the “Magnificent Seven” companies—Alphabet, Amazon, Apple, Meta, Microsoft, Nvidia, and Tesla—which are heavily invested in AI and have collectively seen significant growth. These companies account for over half of the S&P 500’s total return in 2024, with annualized appreciation rates exceeding 20% over the past five years, and Nvidia leading with over 90% growth. The sustainability of such high valuations and growth rates is uncertain, and any correction could have profound implications for the entire market.
  • Colocation Markets:  The Magnificent Seven mentioned include the hyperscale market, which naturally leads the majority of AI investment, but we must consider impacts to other operators. Over the past two years, many hyperscalers paused to reevaluate their facility designs, then turned to colocation providers for extended support. We have now seen this infrastructure begin to crumble, with Microsoft cancelling leases based on concerns of oversupply and reduced capacity needs for AI. Those contracted deployments will have caused a financial loss for the colocation providers who planned to construct them. This may have been our biggest market test yet, as it eerily echoes the dot-com triggers that began the burst. The market did react and it’s unclear whether we’re out of the woods just yet. Aside from hyperscale AI deployments inside a colocation data center, neocloud companies present another viable AI tenant opportunity, but even they are all bidding for the same hyperscale contracts. When the hyperscalers get nervous, this puts the entire industry at great concern about long-term viability.
Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Fluent Bit vulnerabilities could enable full cloud takeover

Attackers could flood monitoring systems with false or misleading events, hide alerts in the noise, or even hijack the telemetry stream entirely, Katz said. The issue is now tracked as CVE-2025-12969 and awaits a severity valuation. Almost equally troubling are other flaws in the “tag” mechanism, which determines how the records are

Read More »

Two Oil Tankers Suffer Mystery Blasts While in Black Sea

(Update) November 28, 2025, 6:14 PM GMT: Article updated. Two ocean-going tankers that are heavily sanctioned for carrying Russian oil suffered near-simultaneous blasts off Turkey’s Black Sea coast. The first, the 900-foot Kairos, was taking on water after an explosion, according to a local port agent report. Turkey’s Directorate General for Maritime Affairs confirmed the incident and said a second ship, the Virat, had also been struck near its coastline and was billowing smoke. The causes are unclear and a rescue operation for both ships was underway.  The pair are two of hundreds of vessels that were amassed to help keep Russia’s oil moving after it invaded Ukraine. Kairos is sanctioned by the UK and European Union, while Virat was designated by the US and EU.  DENİZCİLİK GENEL MÜDÜRLÜĞÜ@denizcilikgm  VIRAT isimli tanker, Karadeniz’de takribi 35 deniz mili açıkta isabet aldığını bildirmiş, olay yerine kurtarma unsurları ve ticari gemi yönlendirilmiştir. Gemideki 20 personelin durumu iyi olup makine dairesinde yoğun duman tespit edilmiştir. Süreç takip edilmektedir. Sent via Twitter for Android. View original tweet. It’s not the first time that ships linked to Moscow have suffered explosions this year. There was also a spate of blasts in the early months of 2025 that hit merchant ships with a history of calling at Russian ports.  It’s not yet known what happened to these vessels and, if they were attacked, who was responsible. Spain’s navy, which issues navigational warnings in the region, says there’s also a significant risk posed by floating mines in parts of the Black Sea since the conflict began. Kairos is a Suezmax-class vessel whose previous voyage was from the Russian port of Novorossiysk to Paradip in India, hauling Moscow’s flagship crude grade Urals. It was heading back to the Russian port to load its next cargo at the time of the incident,

Read More »

Oil Notches Fourth Monthly Drop

Oil posted a fourth monthly loss as traders looked ahead to an OPEC+ meeting this weekend and assessed how the potential of easing geopolitical tensions from Kyiv to Caracas may impact an oversupplied market. West Texas Intermediate edged down to settle below $59 a barrel, after earlier gaining as much as 1.7%, to close out the longest streak of monthly drops since March 2023. The commodity slid to intra-day lows minutes before settlement as The New York Times reported that US President Donald Trump and Venezuelan counterpart Nicolás Maduro discussed a potential meeting in a call last week. A de-escalation between the Trump administration and the oil-rich South American country would sap a major risk premium out of oil prices.  The late-day dip capped off a choppy trading session, marked by thin holiday volumes and an hours-long outage on Chicago Mercantile Exchange’s trading platform that roiled global markets. The halt — which the company said was a result of a cooling issue in a data center — also impacted gasoline and diesel futures that are due to expire on Friday.  OPEC+ nations are set to meet virtually on Sunday and will probably stick with a plan to pause output increases in early 2026, delegates said. With that decision locked in, a key focus may be a long-term review of members’ capacity. US oil has fallen 18% this year, with prices hurt by expectations for a global glut after OPEC+ restarted capacity, while drillers outside the alliance also added supplies.  On Ukraine, Russian President Vladimir Putin said that US President Donald Trump’s proposals for ending Moscow’s war could be the basis for future agreements and expressed an openness to talks, though sticking points that led to stalemates in previous rounds remain. US presidential envoy Steve Witkoff is expected to visit Moscow next week.  The

Read More »

CME Futures Outage Disrupts Trading

(Update) November 28, 2025, 11:00 AM GMT: Article updated. Trading of futures and options on the Chicago Mercantile Exchange was halted by a data-center fault, causing hours of disruption to markets across equities, foreign exchange, bonds and commodities. The malfunction was caused by cooling system problems at a data center in the Chicago area, according to facility operator CyrusOne. Engineering teams have restarted several chillers and deployed temporary cooling equipment, a spokesperson said, without giving a time for the resumption of normal operations.  The halt is already longer than a similar, hours-long outage due to a technical error back in 2019 and underscores the reach of CME Group Inc. and its Globex electronic trading platform. It triggered widespread frustration as market participants contemplated the prospect of a lost trading session. Millions of contracts tracking the S&P 500, Dow Jones Industrial Average and Nasdaq 100 trade every weekday virtually around the clock on the CME, one of the world’s largest derivatives exchanges. “It’s a bit like flying dark,” said Thomas Helaine, head of equity sales at TP ICAP Europe in Paris. “When you’re trading cash equity like us, US futures give you an indication of where the market is going before the open. I can only imagine how complicated it must be for derivatives desks.” The outage halted trading of US Treasury futures, while European and UK bond markets that trade on a different exchange were unaffected. EBS, a platform used in foreign exchange, was impacted, hurting price discovery in the market. For some traders, the timing of the disruption on Friday could cause particular inconvenience if it lasts, due to the need to roll positions from one monthly contract to another.  “Traders sitting with a position are certainly quite angry,” said Gnanasekar Thiagarajan, head of trading and hedging strategies at Kaleesuwari Intercontinental. Gold saw

Read More »

Petrobras Slumps After Unveiling $109B Spending Plan

Brazilian oil major Petrobras announced a 2% decrease in its next five-year investment plan to $109 billion, putting dividend payments in doubt at a time of lower oil prices. Shares fell. The state-controlled oil producer is caught between the government’s desire to grow the economy – especially ahead of a 2026 presidential election – and investors who demand high dividends and low debt. While Petrobras announced a regular dividend payout of at least $45 billion for the 2026-2030 period, similar to the previous plan, it didn’t commit to pay any extraordinary payouts to shareholders.  Petrobras shares slid as much as 3.4% in Sao Paulo on Friday, the largest intraday drop since August, while Brent prices were are slightly lower. “The absence of short-term capex optimization could result in single-digit dividend yields ,” Itau Unibanco Holding SA said in a note to clients. “This could be perceived as disappointing by investors.” Petroleo Brasileiro SA, as it is formally known, will direct $91 billion of the total capital expenditure to projects under implementation, of which $10 billion will still need budget confirmation subject to a financing analysis. The rest is still under analysis “with a lower degree of maturity,” it said in a filing on Thursday. The spending plan is being closely watched by investors as it has an important political dimension in Brazil. The company is a major source of cash for the federal budget. It is the first time Petrobras has reduced its five-year budget after President Luiz Inacio Lula da Silva took office in 2023.  The previous plan was based on an oil price assumption of $83 a barrel, while Brent crude is currently trading near $63.  Petrobras earmarked 71.6% of the 2026-2030 plan, or $78 billion, for exploration and production. That includes boosting output at its deep-water fields

Read More »

Sanctioned Tanker at Risk of Sinking After Blast

An oil tanker from Russia’s shadow fleet reportedly hit a mine and was at risk of sinking north of Turkey’s coastline, a local port agent said.  The vessel, called Kairos, suffered an explosion and a fire broke out on board. Turkey’s Directorate General for Maritime Affairs said an external impact caused the blaze aboard the 900-foot ship, and vessels have been dispatched to evacuate the 25 crew on board. It wasn’t carrying a cargo at the time.  The port agent report said the vessel could have hit a mine. Kairos is a Suezmax tanker that has been sanctioned by the UK and the EU for carrying Russian oil, but not by the US. Its previous voyage was from the Russian port of Novorossiysk to Paradip in India, hauling Urals crude. It was heading back to the Russian port to load its next cargo, according to vessel tracking data compiled by Bloomberg. There has been a persistent risk of vessels being hit by mines in the region since Russia’s war in Ukraine began, with a handful of ships suffering explosions as a result. Earlier this year, there were also a series of mystery explosions on board ships that have carried oil for Russia outside of the Black Sea. An email address and phone number listed on a maritime database as the vessel’s manager didn’t respond to requests for comment outside of normal business hours. The Bosphorus, a key trade artery for commodities including Russian oil from ports in the Black Sea, remains open. The Kairos sails under the flag of Gambia, the agent said. Rusya’nın Novoroski limanına seyreden boş KAIROS tankeri, kıyılarımızdan 28 mil açıkta, dışarıdan bir etkiyle yangın çıktığı ihbarı alınmış olup gemideki 25 personelin durumu iyidir, denizcilerin tahliyesi için bölgeye kurtarma unsurlarımız sevk edilmiş, süreç takip edilmektedir. pic.twitter.com/rVcHPXL4YC — DENİZCİLİK

Read More »

Pions Takes ‘Big Step on Path Toward AEI’

In a statement sent to Rigzone by Pions’ Chief Transformation Officer (CTO) Toni Fadnes recently, Pions, previously named eDrilling, announced that it was “taking another big step on the path toward Artificial Engineering Intelligence (AEI)” and releasing Ida 2.0. The company described Ida 2.0 as its most capable AI Engineering Agent to date in the statement, noting that it delivers “significant improvements in speed, reliability, and quality across all objectives and task types”. Pions outlined that Ida 2.0 works across autonomous drilling operations, intelligent well design and engineering, drilling engineer productivity and data management, and drilling engineering large language models (LLM). “More intelligent, better at following your instructions, more perceptive to nuanced intent, detailed and information-dense visualizations, deeper interactivity, and with augmented enterprise-level customization,” Pions said in the statement. “From a system standpoint, the Ida 2.0 architecture offers much improved stability, fault tolerance, and security, making the system way more trustworthy also for production workloads,” it added. “Expanded operational control and customization provides deep observability into agent behavior, a requisite for agents to build trust with human engineers and other users,” it continued. Pions revealed in the statement that, in its internal benchmarks, Ida 2.0 “achieved significant improvement in task quality compared with previous models”.  “Testers highlighted the model’s improved relevance, and structure in its responses, and reported she was easier to understand,” Pions added. In a statement sent to Rigzone by Fadnes back in June, Pions introduced “the next generation of Ida”.  At the time, Pions outlined that the updated version “set… new standards for advanced reasoning and inference capabilities, as well as enhance[ed]… complex task management”. “Also, a new powerful feature extractor significantly boosts Ida’s adaptability and generalization, allowing her to tackle complex, real-world environments with increased confidence and efficiency,” it added, touting the update as “the most

Read More »

Microsoft loses two senior AI infrastructure leaders as data center pressures mount

Microsoft did not immediately respond to a request for comment. Microsoft’s constraints Analysts say the twin departures mark a significant setback for Microsoft at a critical moment in the AI data center race, with pressure mounting from both OpenAI’s model demands and Google’s infrastructure scale. “Losing some of the best professionals working on this challenge could set Microsoft back,” said Neil Shah, partner and co-founder at Counterpoint Research. “Solving the energy wall is not trivial, and there may have been friction or strategic differences that contributed to their decision to move on, especially if they saw an opportunity to make a broader impact and do so more lucratively at a company like Nvidia.” Even so, Microsoft has the depth and ecosystem strength to continue doubling down on AI data centers, said Prabhu Ram, VP for industry research at Cybermedia Research. According to Sanchit Gogia, chief analyst at Greyhound Research, the departures come at a sensitive moment because Microsoft is trying to expand its AI infrastructure faster than physical constraints allow. “The executives who have left were central to GPU cluster design, data center engineering, energy procurement, and the experimental power and cooling approaches Microsoft has been pursuing to support dense AI workloads,” Gogia said. “Their exit coincides with pressures the company has already acknowledged publicly. GPUs are arriving faster than the company can energize the facilities that will house them, and power availability has overtaken chip availability as the real bottleneck.”

Read More »

What is Edge AI? When the cloud isn’t close enough

Many edge devices can periodically send summarized or selected inference output data back to a central system for model retraining or refinement. That feedback loop helps the model improve over time while still keeping most decisions local. And to run efficiently on constrained edge hardware, the AI model is often pre-processed by techniques such as quantization (which reduces precision), pruning (which removes redundant parameters), or knowledge distillation (which trains a smaller model to mimic a larger one). These optimizations reduce the model’s memory, compute, and power demands so it can run more easily on an edge device. What technologies make edge AI possible? The concept of the “edge” always assumes that edge devices are less computationally powerful than data centers and cloud platforms. While that remains true, overall improvements in computational hardware have made today’s edge devices much more capable than those designed just a few years ago. In fact, a whole host of technological developments have come together to make edge AI a reality. Specialized hardware acceleration. Edge devices now ship with dedicated AI-accelerators (NPUs, TPUs, GPU cores) and system-on-chip units tailored for on-device inference. For example, companies like Arm have integrated AI-acceleration libraries into standard frameworks so models can run efficiently on Arm-based CPUs. Connectivity and data architecture. Edge AI often depends on durable, low-latency links (e.g., 5G, WiFi 6, LPWAN) and architectures that move compute closer to data. Merging edge nodes, gateways, and local servers means less reliance on distant clouds. And technologies like Kubernetes can provide a consistent management plane from the data center to remote locations. Deployment, orchestration, and model lifecycle tooling. Edge AI deployments must support model-update delivery, device and fleet monitoring, versioning, rollback and secure inference — especially when orchestrated across hundreds or thousands of locations. VMware, for instance, is offering traffic management

Read More »

Networks, AI, and metaversing

Our first, conservative, view says that AI’s network impact is largely confined to the data center, to connect clusters of GPU servers and the data they use as they crunch large language models. It’s all “horizontal” traffic; one TikTok challenge would generate way more traffic in the wide area. WAN costs won’t rise for you as an enterprise, and if you’re a carrier you won’t be carrying much new, so you don’t have much service revenue upside. If you don’t host AI on premises, you can pretty much dismiss its impact on your network. Contrast that with the radical metaverse view, our third view. Metaverses and AR/VR transform AI missions, and network services, from transaction processing to event processing, because the real world is a bunch of events pushing on you. They also let you visualize the way that process control models (digital twins) relate to the real world, which is critical if the processes you’re modeling involve human workers who rely on their visual sense. Could it be that the reason Meta is willing to spend on AI, is that the most credible application of AI, and the most impactful for networks, is the metaverse concept? In any event, this model of AI, by driving the users’ experiences and activities directly, demands significant edge connectivity, so you could expect it to have a major impact on network requirements. In fact, just dipping your toes into a metaverse could require a major up-front network upgrade. Networks carry traffic. Traffic is messages. More messages, more traffic, more infrastructure, more service revenue…you get the picture. Door number one, to the AI giant future, leads to nothing much in terms of messages. Door number three, metaverses and AR/VR, leads to a message, traffic, and network revolution. I’ll bet that most enterprises would doubt

Read More »

Microsoft’s Fairwater Atlanta and the Rise of the Distributed AI Supercomputer

Microsoft’s second Fairwater data center in Atlanta isn’t just “another big GPU shed.” It represents the other half of a deliberate architectural experiment: proving that two massive AI campuses, separated by roughly 700 miles, can operate as one coherent, distributed supercomputer. The Atlanta installation is the latest expression of Microsoft’s AI-first data center design: purpose-built for training and serving frontier models rather than supporting mixed cloud workloads. It links directly to the original Fairwater campus in Wisconsin, as well as to earlier generations of Azure AI supercomputers, through a dedicated AI WAN backbone that Microsoft describes as the foundation of a “planet-scale AI superfactory.” Inside a Fairwater Site: Preparing for Multi-Site Distribution Efficient multi-site training only works if each individual site behaves as a clean, well-structured unit. Microsoft’s intra-site design is deliberately simplified so that cross-site coordination has a predictable abstraction boundary—essential for treating multiple campuses as one distributed AI system. Each Fairwater installation presents itself as a single, flat, high-regularity cluster: Up to 72 NVIDIA Blackwell GPUs per rack, using GB200 NVL72 rack-scale systems. NVLink provides the ultra-low-latency, high-bandwidth scale-up fabric within the rack, while the Spectrum-X Ethernet stack handles scale-out. Each rack delivers roughly 1.8 TB/s of GPU-to-GPU bandwidth and exposes a multi-terabyte pooled memory space addressable via NVLink—critical for large-model sharding, activation checkpointing, and parallelism strategies. Racks feed into a two-tier Ethernet scale-out network offering 800 Gbps GPU-to-GPU connectivity with very low hop counts, engineered to scale to hundreds of thousands of GPUs without encountering the classic port-count and topology constraints of traditional Clos fabrics. Microsoft confirms that the fabric relies heavily on: SONiC-based switching and a broad commodity Ethernet ecosystem to avoid vendor lock-in and accelerate architectural iteration. Custom network optimizations, such as packet trimming, packet spray, high-frequency telemetry, and advanced congestion-control mechanisms, to prevent collective

Read More »

Land & Expand: Hyperscale, AI Factory, Megascale

Land & Expand is Data Center Frontier’s periodic roundup of notable North American data center development activity, tracking the newest sites, land plays, retrofits, and hyperscale campus expansions shaping the industry’s build cycle. October delivered a steady cadence of announcements, with several megascale projects advancing from concept to commitment. The month was defined by continued momentum in OpenAI and Oracle’s Stargate initiative (now spanning multiple U.S. regions) as well as major new investments from Google, Meta, DataBank, and emerging AI cloud players accelerating high-density reuse strategies. The result is a clearer picture of how the next wave of AI-first infrastructure is taking shape across the country. Google Begins $4B West Memphis Hyperscale Buildout Google formally broke ground on its $4 billion hyperscale campus in West Memphis, Arkansas, marking the company’s first data center in the state and the anchor for a new Mid-South operational hub. The project spans just over 1,000 acres, with initial site preparation and utility coordination already underway. Google and Entergy Arkansas confirmed a 600 MW solar generation partnership, structured to add dedicated renewable supply to the regional grid. As part of the launch, Google announced a $25 million Energy Impact Fund for local community affordability programs and energy-resilience improvements—an unusually early community-benefit commitment for a first-phase hyperscale project. Cooling specifics have not yet been made public. Water sourcing—whether reclaimed, potable, or hybrid seasonal mode—remains under review, as the company finalizes environmental permits. Public filings reference a large-scale onsite water treatment facility, similar to Google’s deployments in The Dalles and Council Bluffs. Local governance documents show that prior to the October announcement, West Memphis approved a 30-year PILOT via Groot LLC (Google’s land assembly entity), with early filings referencing a typical placeholder of ~50 direct jobs. At launch, officials emphasized hundreds of full-time operations roles and thousands

Read More »

The New Digital Infrastructure Geography: Green Street’s David Guarino on AI Demand, Power Scarcity, and the Next Phase of Data Center Growth

As the global data center industry races through its most frenetic build cycle in history, one question continues to define the market’s mood: is this the peak of an AI-fueled supercycle, or the beginning of a structurally different era for digital infrastructure? For Green Street Managing Director and Head of Global Data Center and Tower Research David Guarino, the answer—based firmly on observable fundamentals—is increasingly clear. Demand remains blisteringly strong. Capital appetite is deepening. And the very definition of a “data center market” is shifting beneath the industry’s feet. In a wide-ranging discussion with Data Center Frontier, Guarino outlined why data centers continue to stand out in the commercial real estate landscape, how AI is reshaping underwriting and development models, why behind-the-meter power is quietly reorganizing the U.S. map, and what Green Street sees ahead for rents, REITs, and the next wave of hyperscale expansion. A ‘Safe’ Asset in an Uncertain CRE Landscape Among institutional investors, the post-COVID era was the moment data centers stepped decisively out of “niche” territory. Guarino notes that pandemic-era reliance on digital services crystallized a structural recognition: data centers deliver stable, predictable cash flows, anchored by the highest-credit tenants in global real estate. Hyperscalers today dominate new leasing and routinely sign 15-year (or longer) contracts, a duration largely unmatched across CRE categories. When compared with one-year apartment leases, five-year office leases, or mall anchor terms, the stability story becomes plain. “These are AAA-caliber companies signing the longest leases in the sector’s history,” Guarino said. “From a real estate point of view, that combination of tenant quality and lease duration continues to position the asset class as uniquely durable.” And development returns remain exceptional. Even without assuming endless AI growth, the math works: strong demand, rising rents, and high-credit tenants create unusually predictable performance relative to

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »