Stay Ahead, Stay ONMINE

AI, Data Centers, and the Next Big Correction: Will Growth Outpace Market Reality?

AI is being readily embraced by organizations, government, and individual enthusiasts for data aggregation, pattern recognition, data visualization, and co-creation of content. Given the headlines lately, AI is set to take over the world. And as an emerging, revolutionary technology with large potential impact and newfound user-friendliness, both large tech companies and small startups alike […]

AI is being readily embraced by organizations, government, and individual enthusiasts for data aggregation, pattern recognition, data visualization, and co-creation of content. Given the headlines lately, AI is set to take over the world. And as an emerging, revolutionary technology with large potential impact and newfound user-friendliness, both large tech companies and small startups alike have raced to capitalize on potential growth. Hands down, this transformative technology has caused a wave of adoption, investment, and innovation around the world and across industries.

Naturally, when a technology or application accelerates quickly, the more risk-averse will be cautious and when it accelerates this quickly, a bubble might be forming. Even more bullish investors have ridden through too much tumult in the past few decades for their bank accounts to withstand another cataclysmic loss. More investment is pouring in (including at a federal level), stock valuations are all over the charts and not necessarily true to a ticker’s earnings, and the recent market fluctuations leave the entire ecosystem a little hesitant about buying into the hype too much.

The Nature of Bubbles and Some Potential Signals to Watch For

Economic bubbles occur when asset prices significantly exceed their intrinsic value, often fueled by speculative demand and irrational investment, leading to unsustainable market conditions. A bigger concern than just to digital infrastructure, bubbles can have far-reaching impacts on the entire market, as the initial distorted financial metrics encourage excessive lending and create systemic risk. The collapse of a bubble can trigger a chain reaction of financial distress, causing widespread economic instability and potentially leading to recessions, as seen in historical examples like the dot-com and housing bubbles.

Reasonable bubble indicators that have the market concerned include:

  • Overvaluation and Lack of Profit Generation: Tech giants are heavily invested in AI despite limited returns from the associated products. Likewise, many AI startups have achieved valuations far exceeding their earnings. This discrepancy between valuation and profitability is a classic sign of a bubble.
  • Hype vs. Reality: The AI hype cycle throughout the news has led to significant investments, with society torn about the potential and ethical claims regarding AI capabilities. Overstatements in the media often must be tempered with corrections in later expectation, but when hundreds of billions of dollars are at stake, it’s no small adjustment.
  • Diminishing Returns: Some experts suggest that large language models (LLMs) may not be as scalable as previously thought, leading to diminishing returns on investment in these technologies.

The Dot-Com Burst Saw Precisely This Happen

The dot-com bubble emerged in the late 1990s, fueled by the rapid growth of the internet and the establishment of numerous tech startups. This period saw a surge in demand for internet-based stocks, leading to high valuations that often exceeded the companies’ intrinsic value. The NASDAQ Composite index rose dramatically, increasing by 582% from January 1995 to March 2000, only to fall by 75% from March 2000 to October 2002.

The frenzy of buying internet-based stocks was overwhelming, with many companies lacking viable business models and focusing instead on metrics like website traffic. Venture capitalists and other investors poured money into these startups, often ignoring traditional financial metrics in favor of speculative growth potential. The media played a significant role in fueling this hype, encouraging investors to overlook caution and invest in risky tech stocks.

The bubble burst when capital began to dry up, leading to a market crash. By 2002, investor losses were estimated at around $5 trillion. Many tech companies that conducted IPOs during this era declared bankruptcy or were acquired by other companies. The collapse of the dotcom bubble resulted in massive layoffs in the technology sector and served as a cautionary tale about the dangers of speculative investing and overvaluation.

The aftermath of the dotcom bubble led to a more cautious approach to investing, with a renewed focus on fundamental analysis rather than speculative hype. Despite the devastating impact, it laid the groundwork for the modern tech industry, with companies like Amazon and Google surviving and thriving to become leaders in their fields.

Growth and Profitability

While AI as a technology has been around for decades, the advent of generative AI built on neural networks resulted in the release of ChatGPT. This launched a user-friendly chatbot that could interpret and then generate responses in milli-seconds that were more than just coherent, but informative, insightful, and intuitive. The potential of AI was on display for all the world to see and users of OpenAI’s system grew to 1 million users in five days and 100 million users in 2 months, the fastest adoption of a platform the world has ever seen. They recently have reached 400 million weekly active users.

The societal adoption makes sense, but what about the business application, where there is real money to be made? Other than for the reputed college kids writing term papers, AI’s value to an organization is its ability to analyze vast amounts of disorganized data, aggregate it all, and make complex decisions from it. Key industries like healthcare, computer science, cybersecurity, logistics, manufacturing, and content creation are all leading the shift and embracing the benefits of AI technology and there is no end in sight to the innovation available.

The efficiency gains and reduced operational costs to an organization are limited only by a user’s imagination for what queries to put to the test. But speaking openly, as someone who grew up in the power distribution world, peddling equipment that made utilities and industries more efficient and reduced OpEx as our core product benefits, I can tell you this isn’t an easy value proposition to market your products on, even when it is so tangibly evident as it is with AI, and the enterprise and B2B adoption is rolling out slower than the headlines might have us believing.

Simply stated, this technology is only profitable if there are paying customers and revenue growth that follow. Serious startup capital is being spent on applications of this technology that the market may not be ready to support. This does have the markings of a crash, but whether that crash will be a true bubble will depend on the speed, reach, and broader impact of that decline.

Economic Considerations

Herd mentality plays a significant role in the adoption of AI technologies. This phenomenon involves individuals following the crowd and making decisions based on the actions of others, rather than their own beliefs or analysis. In the context of AI, herd behavior is amplified by the widespread adoption of AI tools and the fear of missing out (FOMO) on potential benefits.

AI algorithms, trained on extensive datasets, can perpetuate this mentality by replicating existing trends and strategies, making them more appealing to a broader audience. As a result, the rapid adoption of AI technologies can lead to inflated expectations and valuations, similar to what was observed during the dotcom bubble, where speculative demand drove prices far beyond their intrinsic value.

The prices of hardware necessary for AI development and deployment are being driven up by several factors, including scarcity and increased demand. The rapid growth of AI applications has led to a surge in demand for GPUs and TPUs necessary for training models. This increased demand, coupled with supply chain constraints and geopolitical tensions affecting semiconductor production, has resulted in higher prices for these critical components.

Additionally, the concentration of manufacturing in a few regions exacerbates these supply chain issues, further contributing to price increases. As AI continues to expand across industries, the strain on hardware resources is likely to persist, maintaining upward pressure on prices.

Right now, investors and data center operators, alike, are attempting to chart the viability of the many parties and the likely winners of the AI arms race, and charting those sort of outcomes always brings different economic tools such as game theory to mind, where we have many players all vying for the same opportunities. The considerations of approaching this like a game are that we can complement our decisions by modeling interdependencies, ensuring strategies that achieve the most desirable outcomes.

This mathematical framework is frequently used for understanding interactions within an ecosystem, but is much more complicated than the well-known Nash equilibrium, whereby each participant strives to maximize their outcome, and equilibrium is achieved only when all players have reached this maximum, which is interdependent on the behaviors and actions of the other players. The Prisoner’s Dilemma is the well-known classic, but as applied in this sense, other studied “games” to consider are more applicable, especially those that result in a “winner takes all” outcome.

One of the challenges, however, is that new neocloud players are joining amidst an ongoing game, making this extremely difficult to mathematically chart. Nevertheless, it can be useful framework for isolated scenario modeling of strategies, predictive analytics, and decision mapping to anticipate outcomes.

For example, many AI startup companies may be bidding for the same hyperscale AI projects. As with a Prisoner’s Dilemma, there may be a first-mover advantage, but this is actually more like a game of Chicken. The first to pull out of the competition loses the crown title, but keeps their life; the one to stay in the match (if the other pulls out) earns both; or they defeat each other through psychological tactics whereby 1) neither succeed or 2) the result is mutually assured destruction when neither gives in.

The resulting sentiment is that in this arms race, one year from now only a handful of companies will have survived.

Therefore, investment is slowing down as investors are digging deeper into the cost of the technology, the feasibility of finding customers, and the timeline to revenue. “Show me the money,” is being heard across digital infrastructure, or rather, show me the path to monetization, the business case for your unique application of the technology and prospective customer. With limited winners and an excess of losers, it is hard to see investors placing financial bets across the board; they will be much more strategically selected than we saw in the dot-com days.

Ripples in the Ecosystem

Countering the bubble fear-mongers, it must be argued that the long-term outlook of AI and the underlying technology that fosters this innovation will have a lasting-impact. From the 40,000-foot view, I can’t imagine a fundamentally revolutionary technology causing a complete market burst, while businesses and individuals have already come to rely on various AI applications as essential tools for business.

Rather than a crash, natural economic adjustment may be more likely, though it must be said that market fluctuations have had greater swings of late and may be established as a norm that day tradesmen have to account for in their strategies, while longer-term investors are willing to ride these waves out. That is, if they ever lock in on a winner they choose to financially back. Readjustments are just part of the game.

As an asset category, we need to consider the full ecosystem and consider the market corrections we’ve begun to see play out:

  • Competitive Market Growth:  An example of this is easily seen when we consider the DeepSeek launch recently, a Chinese product competitive to ChatGPT that supposedly boasted lower costs and energy usage. The U.S. tech index lost $1 trillion in value that day. Much of that was quickly recovered. Additionally, individual stocks may contribute to some fluctuations, but there was some concern about a burst looming, because a single announcement should never have seen the swing that resulted from this announcement. In general, we need to stop letting short-term sentiment and fear impact us to this extent and trust what we know to be true about the technology adoption. The wake-up call was heard nonetheless across the market, and we should expect to see much more reticence to large investments that present a high risk profile.
  • Lease Terms: The data center market has been a bit of a seller’s market for a few years now; those with land and power need simply say the word and they could lock in 15 year lease terms. That’s changing a bit of late and as we’ve seen, some hyperscalers are even pulling back lease terms to under 10 years, some around 7-8 years. AI leases are even less secure with many neocloud startups aiming for 5-7 year lease terms. This doesn’t offer the same confidence to an investor or to a data center provider compared to a longer-term commit and let’s not forget, these cash constrained startups cannot afford to give this perception. As we learned from the real estate bubble, inability to pay the rent quite literally could become a trigger for another burst.
  • Equipment Obsolescence:  Another factor to consider is the high cost of investment in hardware. Ultimately with growth, price per unit will come down. Then as new models are released by the various manufacturers, the previous renditions will become obsolete, and suddenly entire generations of hardware may lose value. As long as the neocloud provider has established a decent customer base to generate revenue, or a hyperscaler has deep enough pockets to fund an equipment refresh, this is no concern. But it’s a bitter pill to swallow when it happens and is not always a blow that can be recovered from, since it hinges on the model already demonstrating success. Some question has arisen whether there will be a second-hand market for GPUs. With the investment that goes into the purchase up front, it would be a struggle to imagine that there won’t be, but a viable use case has yet to emerge; it’s simply too new to discern. It would likely be pennies on the dollar, but better than nothing. Perhaps by being repurposed for smaller outfits that lease  to single-use enterprises will provide a niche market where equipment finds new utility, even if not as lucrative as the initial use.
  • Equipment Failure:  Beginning to be discussed openly, GPUs have a high failure rate due to component failures, memory issues, and driver problems. This unreliability can lead to costly downtime and data loss, impacting the efficiency and reliability of AI operations. As AI applications become more complex and widespread, the need for robust and reliable GPU infrastructure grows. The consequences of these failures ripple through the market, affecting not only the deployment timelines and operational costs but will also make companies more hesitant to adopt and scale their use of the technology. Moreover, the scarcity of GPUs, exacerbated by supply chain disruptions and export restrictions, further complicates the situation, pushing companies to explore alternative solutions like GPU-as-a-Service (GPUaaS) to mitigate these risks.
  • Stock Valuations:  Nvidia, the leading supplier of GPUs essential for training AI models, has become one of the most valuable publicly listed companies, with a valuation exceeding $3 trillion. As the gold standard for GPUs, Nvidia’s stock performance significantly influences the broader market, particularly tech-heavy indices like the S&P 500. Given its substantial market capitalization, Nvidia’s stock makes up a considerable portion of major indexes, meaning that any large market adjustment could have far-reaching effects on the entire tech sector. This concentration of market influence in a few key stocks, including Nvidia, leaves investors vulnerable unless they are well diversified. The valuation of AI-related stocks, such as OpenAI potentially reaching a $300 billion valuation despite never being profitable, raises questions about sustainability. The recent stock market surge has been largely driven by the “Magnificent Seven” companies—Alphabet, Amazon, Apple, Meta, Microsoft, Nvidia, and Tesla—which are heavily invested in AI and have collectively seen significant growth. These companies account for over half of the S&P 500’s total return in 2024, with annualized appreciation rates exceeding 20% over the past five years, and Nvidia leading with over 90% growth. The sustainability of such high valuations and growth rates is uncertain, and any correction could have profound implications for the entire market.
  • Colocation Markets:  The Magnificent Seven mentioned include the hyperscale market, which naturally leads the majority of AI investment, but we must consider impacts to other operators. Over the past two years, many hyperscalers paused to reevaluate their facility designs, then turned to colocation providers for extended support. We have now seen this infrastructure begin to crumble, with Microsoft cancelling leases based on concerns of oversupply and reduced capacity needs for AI. Those contracted deployments will have caused a financial loss for the colocation providers who planned to construct them. This may have been our biggest market test yet, as it eerily echoes the dot-com triggers that began the burst. The market did react and it’s unclear whether we’re out of the woods just yet. Aside from hyperscale AI deployments inside a colocation data center, neocloud companies present another viable AI tenant opportunity, but even they are all bidding for the same hyperscale contracts. When the hyperscalers get nervous, this puts the entire industry at great concern about long-term viability.
Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Fluent Bit vulnerabilities could enable full cloud takeover

Attackers could flood monitoring systems with false or misleading events, hide alerts in the noise, or even hijack the telemetry stream entirely, Katz said. The issue is now tracked as CVE-2025-12969 and awaits a severity valuation. Almost equally troubling are other flaws in the “tag” mechanism, which determines how the records are

Read More »

NFL, AWS drive football modernization with cloud, AI

AWS Next Gen Stats: Initially used for player participation tracking (replacing manual photo-taking), Next Gen Stats uses sensors to capture center-of-mass and contact information, which is then used to generate performance insights. Computer vision: Computer vision was initially insufficient, but the technology has improved greatly over the past few years.

Read More »

Apstra founder launches Aria to tackle AI networking performance

Aria’s technical approach differs from incumbent vendors in its focus on end-to-end path optimization rather than individual switch performance. Karam argues that traditional networking vendors think of themselves primarily as switch companies, with software efforts concentrated on switch operating systems rather than cluster-wide operational models. “It’s no longer just about

Read More »

Energy Secretary Secures Grid Reliability in Mid-Atlantic Ahead of Winter

Emergency order increases grid stability, lowers energy costs, and minimizes the risk of energy shortfalls in the Mid-Atlantic region of the United States ahead of cold winter months.   WASHINGTON—U.S. Secretary of Energy Chris Wright today issued an emergency order to minimize the risk of blackouts in the Mid-Atlantic region of the United States. Secretary Wright’s order directs PJM Interconnection (PJM), in coordination with Constellation Energy, to ensure Units 3 and 4 of the Eddystone Generating Station in Pennsylvania remain available for operation and to take every step to minimize costs for the American people. The production of electricity from the units will continue to be critical to maintaining reliability in PJM over the coming winter months.    “Thanks to President Trump’s leadership, the Department of Energy is using all tools available to keep the lights on and heat running for the American people,” said Energy Secretary Wright. “This emergency order is needed to strengthen grid reliability and will help provide affordable, reliable, and secure power when Americans need it most.” As outlined in DOE’s Resource Adequacy Report, power outages could increase by 100 times in 2030 if the U.S. continues to take reliable power offline. Secretary Wright ordered that the two Eddystone Generating Station units remain online past their planned retirement date in a May 30, 2025 emergency order. Keeping these units operational over the summer strengthened energy security in the PJM region, as demonstrated when PJM called on the Eddystone Units to generate electricity during heat waves that hit the region in June and July.  A subsequent order was issued on August 28, 2025. PJM’s service area will continue to face emergency conditions both in the near and long term. In January 2025, PJM reached a new record peak for winter demand, exceeding the previous winter peak set in 2015. This order is in effect

Read More »

Oil Closes the Day Near Month Low

Oil fell as signs of progress in peace talks between Ukraine and Russia buoyed expectations that Moscow’s supply will stay online. West Texas Intermediate futures fell 1.5% to settle near $58 a barrel, the lowest in a month, as talks to end the war in Ukraine show signs of progress. Crude had dropped sharply earlier in the session after ABC News reported Kyiv agreed to the terms of a revised peace deal aimed at ending Russia’s nearly four-year war. Ukraine’s President Volodymyr Zelenskiy said talks on a peace plan are continuing with the US. There are key points still to be resolved between US and Ukraine, including the thorniest issues, according to a person familiar with the matter. A White House spokesperson signaled optimism around the efforts while warning some details still need to be sorted as Russia’s position on the plan remains unclear. Moscow and Ukraine carried out airstrikes overnight. “Flat crude prices got hammered on news that Ukraine appeared open to the broad contours of the US-proposed peace plan,” said Rory Johnston of Commodity Context. The physical market tells a different story, with “prompt Brent timespreads continuing to strengthen, indicating continued tightness” in near-term supply. An end to the war would have significant ramifications for the oil market. Russia is one of the world’s top producers and its flows are heavily sanctioned by the US, European Union and UK. In October the US announced new sanctions on its two major producers. It’s still far from certain, though, that Russia will accept a revised peace plan that cut several points from an initial proposal following input from European officials. “For energy markets, this means volatility is far from over,” said Jorge Leon, head of geopolitical analysis at Rystad Energy A/S. “Prices reacted swiftly to the initial optimism for an

Read More »

OPEC+ Again Faces Thorny Issue of How Much It Can Pump

OPEC+ nations gathering this weekend are once again grappling with the thorny question of how much oil they’re physically able to pump. In May, the Organization of the Petroleum Exporting Countries and its allies launched a new assessment of members’ “maximum sustainable capacity” to help set production quotas in 2027. With output levels for the months ahead already set, delegates say this longer-term review will likely be one area of focus at Sunday’s meeting. The process looks increasingly necessary, as the struggle by some OPEC+ members to increase supplies as much as agreed this year indicates they may be nearing output limits. Clarifying their full capacity would help align quotas more closely with reality — and make any future cutbacks more credible. OPEC’s readiness to make new curbs could be tested in 2026 amid signs of a swelling global oil surplus and downward pressure on crude prices, which have slumped to near $60 a barrel in London. In a report on Monday, JPMorgan Chase & Co. indicated that the alliance may need to slash output next year to avert a plunge into the $40s. But the capacity assessment also poses an area of friction for the organization, as some countries push for a higher estimate of their abilities and others refuse to admit they can’t produce as much as claimed. In 2023, discord over the process led to the exit of long-term OPEC member Angola. While group leader Saudi Arabia is capable of boosting output significantly, the outlook for other nations is less clear-cut. The United Arab Emirates and Iraq have been eager to expand capacity, but some members like Russia are challenged by international sanctions.  The review will be conducted with the assistance of several energy consulting firms, which in the past have included Wood Mackenzie and IHS, which is

Read More »

NatGas Immediate Term Volatility Risks Remain High

In an EBW Analytics Group report sent to Rigzone by the EBW team on Tuesday, Eli Rubin, an energy analyst at the company, warned that, for the U.S. natural gas price, “immediate-term volatility risks remain high into December expiration”. Rubin highlighted in the report that yesterday’s December options expiry “saw the front-month falter 13.6 cents before recovering 10.5 cents into the close”. “While daily fundamental signals appear supportive, downside offers confirmation of last week’s January contract bearish triple-top technical pattern at $4.80 [per million British thermal units (MMBtu)],” he said. “DTN’s outsized day over day weather gain is partially catching up to other meteorologists previously anticipating a colder early December,” Rubin added. “Further, while more expansive cold to open the month, Week 3 became milder (particularly across the South) amid shifts in the Pacific North America (PNA) teleconnection – and early-morning price action seems to be reacting to a possibility of ‘seeing beyond’ the early-December cold,” Rubin continued. Rubin went on to state in the report that daily LNG feedgas “may be touching another all-time high this morning as gas production continues to show strength”. “We repeat our analysis that while immediate-term pricing appears to have run ahead of fundamentals, the medium to longer term outlook could see narrowing storage surpluses to lead renewed mid-winter upside potential,” he added. The EBW report pointed out that the December natural gas contract closed at $4.549 per MMBtu on Monday. This marked a 3.1 cent, or 0.7 percent drop from Friday’s close, the report outlined. In the report, EBW predicted a “volatility risks elevated” trend for the NYMEX front-month natural gas contract price over the next 7-10 days and a “jagged path higher” trend over the next 30-45 days. In a separate report sent to Rigzone by the EBW team on Monday, Rubin

Read More »

Aramco Weighs Raising Billions From Its Biggest Disposals Yet

Saudi Aramco is considering plans to raise billions of dollars by selling a range of assets, people familiar with the matter said, deals that could rank as its most significant disposals ever. The firm is weighing the sale of a stake in its oil export and storage terminals as part of the plans, the people said, declining to be identified as the information is confidential. Banks have been asked to pitch for roles on feasibility studies for the disposals, which could fetch more than $10 billion, they said.  Aramco is eying options including raising fresh equity from the deal, the people said. It could also pursue a structure similar to the recent $11 billion lease transaction with a group led by BlackRock Inc.’s Global Infrastructure Partners for assets linked to the Jafurah gas project, they said. That sale drew interest from firms around the world and bankers have since pitched several asset disposal plans given increasing demand from investors, one of the people said. Aramco’s terminals business is seen as a lucrative asset and the company could kick off a formal sales process as soon as early next year, the person said. At the same time, the oil giant is considering selling part of its real estate portfolio, some of the people said. Those assets will also likely be worth billions of dollars and will be seen as attractive at a time when the kingdom is advancing plans to allow foreign ownership. Discussions are at an early stage and no final decisions have been made. Aramco declined to comment. Aramco’s main oil storage and export infrastructure is located at Ras Tanura on the Persian Gulf and the company has similar terminals on the Red Sea. Internationally, the firm owns stakes in product terminals in the Netherlands and leases crude as well as product

Read More »

Natural gas sees ‘largest year-over-year drop’ in California as solar surges

Listen to the article 2 min This audio is auto-generated. Please let us know if you have feedback. California’s natural gas generation has continued a several-year decline in 2025, while the state’s utility-scale solar keeps rising, according to a new report from the Energy Information Administration. Natural gas is still the dominant energy source in the state overall, but solar is starting to close the gap. For the first eight months of this year, utility-scale solar generation totaled 40.3 billion kilowatt hours in California, and natural gas accounted for 45.5 BkWh. As of the second quarter of this year, California had a total of 49 GW of solar capacity installed, according to the Solar Energy Industries Association.  Optional Caption Courtesy of Energy Information Administration While solar’s performance from January to August 2025 was nearly double its generation for the same period in 2020, natural gas supplied 18% less than it did in the same period in 2020, EIA said. California’s natural gas generation peaked above 2020 levels in 2021 “due to drought-spurred reduced hydroelectric output, but natural gas generation has fallen since then,” EIA said. “The largest year-over-year drop occurred this year, when natural gas generation declined 9.5 BkWh, or 17%, compared with 2024.” In the midday hours between noon and 5 p.m., when solar generation is highest, natural gas generation decreases, EIA said. In the midday hours of May and June this year, solar generation accounted for 18.8 GW, compared to 10.2 GW in 2020, according to data from the California Independent System Operator. “During peak evening hours between 5:00 p.m. and 9:00 p.m., generation from batteries charged by excess solar generation during midday rose from an average of less than 1 GW in May and June 2022 to 4.9 GW in 2025, displacing natural gas generation during that period,”

Read More »

What is Edge AI? When the cloud isn’t close enough

Many edge devices can periodically send summarized or selected inference output data back to a central system for model retraining or refinement. That feedback loop helps the model improve over time while still keeping most decisions local. And to run efficiently on constrained edge hardware, the AI model is often pre-processed by techniques such as quantization (which reduces precision), pruning (which removes redundant parameters), or knowledge distillation (which trains a smaller model to mimic a larger one). These optimizations reduce the model’s memory, compute, and power demands so it can run more easily on an edge device. What technologies make edge AI possible? The concept of the “edge” always assumes that edge devices are less computationally powerful than data centers and cloud platforms. While that remains true, overall improvements in computational hardware have made today’s edge devices much more capable than those designed just a few years ago. In fact, a whole host of technological developments have come together to make edge AI a reality. Specialized hardware acceleration. Edge devices now ship with dedicated AI-accelerators (NPUs, TPUs, GPU cores) and system-on-chip units tailored for on-device inference. For example, companies like Arm have integrated AI-acceleration libraries into standard frameworks so models can run efficiently on Arm-based CPUs. Connectivity and data architecture. Edge AI often depends on durable, low-latency links (e.g., 5G, WiFi 6, LPWAN) and architectures that move compute closer to data. Merging edge nodes, gateways, and local servers means less reliance on distant clouds. And technologies like Kubernetes can provide a consistent management plane from the data center to remote locations. Deployment, orchestration, and model lifecycle tooling. Edge AI deployments must support model-update delivery, device and fleet monitoring, versioning, rollback and secure inference — especially when orchestrated across hundreds or thousands of locations. VMware, for instance, is offering traffic management

Read More »

Networks, AI, and metaversing

Our first, conservative, view says that AI’s network impact is largely confined to the data center, to connect clusters of GPU servers and the data they use as they crunch large language models. It’s all “horizontal” traffic; one TikTok challenge would generate way more traffic in the wide area. WAN costs won’t rise for you as an enterprise, and if you’re a carrier you won’t be carrying much new, so you don’t have much service revenue upside. If you don’t host AI on premises, you can pretty much dismiss its impact on your network. Contrast that with the radical metaverse view, our third view. Metaverses and AR/VR transform AI missions, and network services, from transaction processing to event processing, because the real world is a bunch of events pushing on you. They also let you visualize the way that process control models (digital twins) relate to the real world, which is critical if the processes you’re modeling involve human workers who rely on their visual sense. Could it be that the reason Meta is willing to spend on AI, is that the most credible application of AI, and the most impactful for networks, is the metaverse concept? In any event, this model of AI, by driving the users’ experiences and activities directly, demands significant edge connectivity, so you could expect it to have a major impact on network requirements. In fact, just dipping your toes into a metaverse could require a major up-front network upgrade. Networks carry traffic. Traffic is messages. More messages, more traffic, more infrastructure, more service revenue…you get the picture. Door number one, to the AI giant future, leads to nothing much in terms of messages. Door number three, metaverses and AR/VR, leads to a message, traffic, and network revolution. I’ll bet that most enterprises would doubt

Read More »

Microsoft’s Fairwater Atlanta and the Rise of the Distributed AI Supercomputer

Microsoft’s second Fairwater data center in Atlanta isn’t just “another big GPU shed.” It represents the other half of a deliberate architectural experiment: proving that two massive AI campuses, separated by roughly 700 miles, can operate as one coherent, distributed supercomputer. The Atlanta installation is the latest expression of Microsoft’s AI-first data center design: purpose-built for training and serving frontier models rather than supporting mixed cloud workloads. It links directly to the original Fairwater campus in Wisconsin, as well as to earlier generations of Azure AI supercomputers, through a dedicated AI WAN backbone that Microsoft describes as the foundation of a “planet-scale AI superfactory.” Inside a Fairwater Site: Preparing for Multi-Site Distribution Efficient multi-site training only works if each individual site behaves as a clean, well-structured unit. Microsoft’s intra-site design is deliberately simplified so that cross-site coordination has a predictable abstraction boundary—essential for treating multiple campuses as one distributed AI system. Each Fairwater installation presents itself as a single, flat, high-regularity cluster: Up to 72 NVIDIA Blackwell GPUs per rack, using GB200 NVL72 rack-scale systems. NVLink provides the ultra-low-latency, high-bandwidth scale-up fabric within the rack, while the Spectrum-X Ethernet stack handles scale-out. Each rack delivers roughly 1.8 TB/s of GPU-to-GPU bandwidth and exposes a multi-terabyte pooled memory space addressable via NVLink—critical for large-model sharding, activation checkpointing, and parallelism strategies. Racks feed into a two-tier Ethernet scale-out network offering 800 Gbps GPU-to-GPU connectivity with very low hop counts, engineered to scale to hundreds of thousands of GPUs without encountering the classic port-count and topology constraints of traditional Clos fabrics. Microsoft confirms that the fabric relies heavily on: SONiC-based switching and a broad commodity Ethernet ecosystem to avoid vendor lock-in and accelerate architectural iteration. Custom network optimizations, such as packet trimming, packet spray, high-frequency telemetry, and advanced congestion-control mechanisms, to prevent collective

Read More »

Land & Expand: Hyperscale, AI Factory, Megascale

Land & Expand is Data Center Frontier’s periodic roundup of notable North American data center development activity, tracking the newest sites, land plays, retrofits, and hyperscale campus expansions shaping the industry’s build cycle. October delivered a steady cadence of announcements, with several megascale projects advancing from concept to commitment. The month was defined by continued momentum in OpenAI and Oracle’s Stargate initiative (now spanning multiple U.S. regions) as well as major new investments from Google, Meta, DataBank, and emerging AI cloud players accelerating high-density reuse strategies. The result is a clearer picture of how the next wave of AI-first infrastructure is taking shape across the country. Google Begins $4B West Memphis Hyperscale Buildout Google formally broke ground on its $4 billion hyperscale campus in West Memphis, Arkansas, marking the company’s first data center in the state and the anchor for a new Mid-South operational hub. The project spans just over 1,000 acres, with initial site preparation and utility coordination already underway. Google and Entergy Arkansas confirmed a 600 MW solar generation partnership, structured to add dedicated renewable supply to the regional grid. As part of the launch, Google announced a $25 million Energy Impact Fund for local community affordability programs and energy-resilience improvements—an unusually early community-benefit commitment for a first-phase hyperscale project. Cooling specifics have not yet been made public. Water sourcing—whether reclaimed, potable, or hybrid seasonal mode—remains under review, as the company finalizes environmental permits. Public filings reference a large-scale onsite water treatment facility, similar to Google’s deployments in The Dalles and Council Bluffs. Local governance documents show that prior to the October announcement, West Memphis approved a 30-year PILOT via Groot LLC (Google’s land assembly entity), with early filings referencing a typical placeholder of ~50 direct jobs. At launch, officials emphasized hundreds of full-time operations roles and thousands

Read More »

The New Digital Infrastructure Geography: Green Street’s David Guarino on AI Demand, Power Scarcity, and the Next Phase of Data Center Growth

As the global data center industry races through its most frenetic build cycle in history, one question continues to define the market’s mood: is this the peak of an AI-fueled supercycle, or the beginning of a structurally different era for digital infrastructure? For Green Street Managing Director and Head of Global Data Center and Tower Research David Guarino, the answer—based firmly on observable fundamentals—is increasingly clear. Demand remains blisteringly strong. Capital appetite is deepening. And the very definition of a “data center market” is shifting beneath the industry’s feet. In a wide-ranging discussion with Data Center Frontier, Guarino outlined why data centers continue to stand out in the commercial real estate landscape, how AI is reshaping underwriting and development models, why behind-the-meter power is quietly reorganizing the U.S. map, and what Green Street sees ahead for rents, REITs, and the next wave of hyperscale expansion. A ‘Safe’ Asset in an Uncertain CRE Landscape Among institutional investors, the post-COVID era was the moment data centers stepped decisively out of “niche” territory. Guarino notes that pandemic-era reliance on digital services crystallized a structural recognition: data centers deliver stable, predictable cash flows, anchored by the highest-credit tenants in global real estate. Hyperscalers today dominate new leasing and routinely sign 15-year (or longer) contracts, a duration largely unmatched across CRE categories. When compared with one-year apartment leases, five-year office leases, or mall anchor terms, the stability story becomes plain. “These are AAA-caliber companies signing the longest leases in the sector’s history,” Guarino said. “From a real estate point of view, that combination of tenant quality and lease duration continues to position the asset class as uniquely durable.” And development returns remain exceptional. Even without assuming endless AI growth, the math works: strong demand, rising rents, and high-credit tenants create unusually predictable performance relative to

Read More »

The Flexential Blueprint: New CEO Ryan Mallory on Power, AI, and Bending the Physics Curve

In a coordinated leadership transition this fall, Ryan Mallory has stepped into the role of CEO at Flexential, succeeding Chris Downie. The move, described as thoughtful and planned, signals not a shift in direction, but a reinforcement of the company’s core strategy, with a sharpened focus on the unprecedented opportunities presented by the artificial intelligence revolution. In an exclusive interview on the Data Center Frontier Show Podcast, Mallory outlined a confident vision for Flexential, positioning the company at the critical intersection of enterprise IT and next-generation AI infrastructure. “Flexential will continue to focus on being an industry and market leader in wholesale, multi-tenant, and interconnection capabilities,” Mallory stated, affirming the company’s foundational strengths. His central thesis is that the AI infrastructure boom is not a monolithic wave, but a multi-stage evolution where Flexential’s model is uniquely suited for the emerging “inference edge.” The AI Build Cycle: A Three-Act Play Mallory frames the AI infrastructure market as a three-stage process, each lasting roughly four years. We are currently at the tail end of Stage 1, which began with the ChatGPT explosion three years ago. This phase, characterized by a frantic rush for capacity, has led to elongated lead times for critical infrastructure like generators, switchgear, and GPUs. The capacity from this initial build-out is expected to come online between late 2025 and late 2026. Stage 2, beginning around 2026 and stretching to 2030, will see the next wave of builds, with significant capacity hitting the market in 2028-2029. “This stage will reveal the viability of AI and actual consumption models,” Mallory notes, adding that air-cooled infrastructure will still dominate during this period. Stage 3, looking ahead to the early 2030s, will focus on long-term scale, mirroring the evolution of the public cloud. For Mallory, the enduring nature of this build cycle—contrasted

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »