Stay Ahead, Stay ONMINE

AI is already making online swindles easier. It could get much worse.

Anton Cherepanov is always on the lookout for something interesting. And in late August last year, he spotted just that. It was a file uploaded to VirusTotal, a site cybersecurity researchers like him use to analyze submissions for potential viruses and other types of malicious software, often known as malware. On the surface it seemed innocuous, but it triggered Cherepanov’s custom malware-detecting measures. Over the next few hours, he and his colleague Peter Strýček inspected the sample and realized they’d never come across anything like it before. The file contained ransomware, a nasty strain of malware that encrypts the files it comes across on a victim’s system, rendering them unusable until a ransom is paid to the attackers behind it. But what set this example apart was that it employed large language models (LLMs). Not just incidentally, but across every stage of an attack. Once it was installed, it could tap into an LLM to generate customized code in real time, rapidly map a computer to identify sensitive data to copy or encrypt, and write personalized ransom notes based on the files’ content. The software could do this autonomously, without any human intervention. And every time it ran, it would act differently, making it harder to detect. Cherepanov and Strýček were confident that their discovery, which they dubbed PromptLock, marked a turning point in generative AI, showing how the technology could be exploited to create highly flexible malware attacks. They published a blog post declaring that they’d uncovered the first example of AI-powered ransomware, which quickly became the object of widespread global media attention. But the threat wasn’t quite as dramatic as it first appeared. The day after the blog post went live, a team of researchers from New York University claimed responsibility, explaining that the malware was not, in fact, a full attack let loose in the wild but a research project, merely designed to prove it was possible to automate each step of a ransomware campaign—which, they said, they had.  PromptLock may have turned out to be an academic project, but the real bad guys are using the latest AI tools. Just as software engineers are using artificial intelligence to help write code and check for bugs, hackers are using these tools to reduce the time and effort required to orchestrate an attack, lowering the barriers for less experienced attackers to try something out.  The likelihood that cyberattacks will now become more common and more effective over time is not a remote possibility but “a sheer reality,” says Lorenzo Cavallaro, a professor of computer science at University College London.  Some in Silicon Valley warn that AI is on the brink of being able to carry out fully automated attacks. But most security researchers say this claim is overblown. “For some reason, everyone is just focused on this malware idea of, like, AI superhackers, which is just absurd,” says Marcus Hutchins, who is principal threat researcher at the security company Expel and famous in the security world for ending a giant global ransomware attack called WannaCry in 2017.  Instead, experts argue, we should be paying closer attention to the much more immediate risks posed by AI, which is already speeding up and increasing the volume of scams. Criminals are increasingly exploiting the latest deepfake technologies to impersonate people and swindle victims out of vast sums of money. These AI-enhanced cyberattacks are only set to get more frequent and more destructive, and we need to be ready.  Spam and beyond Attackers started adopting generative AI tools almost immediately after ChatGPT exploded on the scene at the end of 2022. These efforts began, as you might imagine, with the creation of spam—and a lot of it. Last year, a report from Microsoft said that in the year leading up to April 2025, the company had blocked $4 billion worth of scams and fraudulent transactions, “many likely aided by AI content.”  At least half of spam email is now generated using LLMs, according to estimates by researchers at Columbia University, the University of Chicago, and Barracuda Networks, who analyzed nearly 500,000 malicious messages collected before and after the launch of ChatGPT. They also found evidence that AI is increasingly being deployed in more sophisticated schemes. They looked at targeted email attacks, which impersonate a trusted figure in order to trick a worker within an organization out of funds or sensitive information. By April 2025, they found, at least 14% of those sorts of focused email attacks were generated using LLMs, up from 7.6% in April 2024. In one high-profile case, a worker was tricked into transferring $25 million to criminals via a video call with digital versions of the company’s chief financial officer and other employees. And the generative AI boom has made it easier and cheaper than ever before to generate not only emails but highly convincing images, videos, and audio. The results are much more realistic than even just a few short years ago, and it takes much less data to generate a fake version of someone’s likeness or voice than it used to. Criminals aren’t deploying these sorts of deepfakes to prank people or to simply mess around—they’re doing it because it works and because they’re making money out of it, says Henry Ajder, a generative AI expert. “If there’s money to be made and people continue to be fooled by it, they’ll continue to do it,” he says. In one high-­profile case reported in 2024, a worker at the British engineering firm Arup was tricked into transferring $25 million to criminals via a video call with digital versions of the company’s chief financial officer and other employees. That’s likely only the tip of the iceberg, and the problem posed by convincing deepfakes is only likely to get worse as the technology improves and is more widely adopted.  BRIAN STAUFFER Criminals’ tactics evolve all the time, and as AI’s capabilities improve, such people are constantly probing how those new capabilities can help them gain an advantage over victims. Billy Leonard, tech leader of Google’s Threat Analysis Group, has been keeping a close eye on changes in the use of AI by potential bad actors (a widely used term in the industry for hackers and others attempting to use computers for criminal purposes). In the latter half of 2024, he and his team noticed prospective criminals using tools like Google Gemini the same way everyday users do—to debug code and automate bits and pieces of their work—as well as tasking it with writing the odd phishing email. By 2025, they had progressed to using AI to help create new pieces of malware and release them into the wild, he says. The big question now is how far this kind of malware can go. Will it ever become capable enough to sneakily infiltrate thousands of companies’ systems and extract millions of dollars, completely undetected?  Most popular AI models have guardrails in place to prevent them from generating malicious code or illegal material, but bad actors still find ways to work around them. For example, Google observed a China-linked actor asking its Gemini AI model to identify vulnerabilities on a compromised system—a request it initially refused on safety grounds. However, the attacker managed to persuade Gemini to break its own rules by posing as a participant in a capture-the-flag competition, a popular cybersecurity game. This sneaky form of jailbreaking led Gemini to hand over information that could have been used to exploit the system. (Google has since adjusted Gemini to deny these kinds of requests.) But bad actors aren’t just focusing on trying to bend the AI giants’ models to their nefarious ends. Going forward, they’re increasingly likely to adopt open-source AI models, as it’s easier to strip out their safeguards and get them to do malicious things, says Ashley Jess, a former tactical specialist at the US Department of Justice and now a senior intelligence analyst at the cybersecurity company Intel 471. “Those are the ones I think that [bad] actors are going to adopt, because they can jailbreak them and tailor them to what they need,” she says. The NYU team used two open-source models from OpenAI in its PromptLock experiment, and the researchers found they didn’t even need to resort to jailbreaking techniques to get the model to do what they wanted. They say that makes attacks much easier. Although these kinds of open-source models are designed with an eye to ethical alignment, meaning that their makers do consider certain goals and values in dictating the way they respond to requests, the models don’t have the same kinds of restrictions as their closed-source counterparts, says Meet Udeshi, a PhD student at New York University who worked on the project. “That is what we were trying to test,” he says. “These LLMs claim that they are ethically aligned—can we still misuse them for these purposes? And the answer turned out to be yes.”  It’s possible that criminals have already successfully pulled off covert PromptLock-style attacks and we’ve simply never seen any evidence of them, says Udeshi. If that’s the case, attackers could—in theory—have created a fully autonomous hacking system. But to do that they would have had to overcome the significant barrier that is getting AI models to behave reliably, as well as any inbuilt aversion the models have to being used for malicious purposes—all while evading detection. Which is a pretty high bar indeed. Productivity tools for hackers So, what do we know for sure? Some of the best data we have now on how people are attempting to use AI for malicious purposes comes from the big AI companies themselves. And their findings certainly sound alarming, at least at first. In November, Leonard’s team at Google released a report that found bad actors were using AI tools (including Google’s Gemini) to dynamically alter malware’s behavior; for example, it could self-modify to evade detection. The team wrote that it ushered in “a new operational phase of AI abuse.” However, the five malware families the report dug into (including PromptLock) consisted of code that was easily detected and didn’t actually do any harm, the cybersecurity writer Kevin Beaumont pointed out on social media. “There’s nothing in the report to suggest orgs need to deviate from foundational security programmes—everything worked as it should,” he wrote. It’s true that this malware activity is in an early phase, concedes Leonard. Still, he sees value in making these kinds of reports public if it helps security vendors and others build better defenses to prevent more dangerous AI attacks further down the line. “Cliché to say, but sunlight is the best disinfectant,” he says. “It doesn’t really do us any good to keep it a secret or keep it hidden away. We want people to be able to know about this— we want other security vendors to know about this—so that they can continue to build their own detections.” And it’s not just new strains of malware that would-be attackers are experimenting with—they also seem to be using AI to try to automate the process of hacking targets. In November, Anthropic announced it had disrupted a large-scale cyberattack, the first reported case of one executed without “substantial human intervention.” Although the company didn’t go into much detail about the exact tactics the hackers used, the report’s authors said a Chinese state-sponsored group had used its Claude Code assistant to automate up to 90% of what they called a “highly sophisticated espionage campaign.” “We’re entering an era where the barrier to sophisticated cyber operations has fundamentally lowered, and the pace of attacks will accelerate faster than many organizations are prepared for.” Jacob Klein, head of threat intelligence at Anthropic But, as with the Google findings, there were caveats. A human operator, not AI, selected the targets before tasking Claude with identifying vulnerabilities. And of 30 attempts, only a “handful” were successful. The Anthropic report also found that Claude hallucinated and ended up fabricating data during the campaign, claiming it had obtained credentials it hadn’t and “frequently” overstating its findings, so the attackers would have had to carefully validate those results to make sure they were actually true. “This remains an obstacle to fully autonomous cyberattacks,” the report’s authors wrote.  Existing controls within any reasonably secure organization would stop these attacks, says Gary McGraw, a veteran security expert and cofounder of the Berryville Institute of Machine Learning in Virginia. “None of the malicious-attack part, like the vulnerability exploit … was actually done by the AI—it was just prefabricated tools that do that, and that stuff’s been automated for 20 years,” he says. “There’s nothing novel, creative, or interesting about this attack.” Anthropic maintains that the report’s findings are a concerning signal of changes ahead. “Tying this many steps of an intrusion campaign together through [AI] agentic orchestration is unprecedented,” Jacob Klein, head of threat intelligence at Anthropic, said in a statement. “It turns what has always been a labor-intensive process into something far more scalable. We’re entering an era where the barrier to sophisticated cyber operations has fundamentally lowered, and the pace of attacks will accelerate faster than many organizations are prepared for.” Some are not convinced there’s reason to be alarmed. AI hype has led a lot of people in the cybersecurity industry to overestimate models’ current abilities, Hutchins says. “They want this idea of unstoppable AIs that can outmaneuver security, so they’re forecasting that’s where we’re going,” he says. But “there just isn’t any evidence to support that, because the AI capabilities just don’t meet any of the requirements.” BRIAN STAUFFER Indeed, for now criminals mostly seem to be tapping AI to enhance their productivity: using LLMs to write malicious code and phishing lures, to conduct reconnaissance, and for language translation. Jess sees this kind of activity a lot, alongside efforts to sell tools in underground criminal markets. For example, there are phishing kits that compare the click-rate success of various spam campaigns, so criminals can track which campaigns are most effective at any given time. She is seeing a lot of this activity in what could be called the “AI slop landscape” but not as much “widespread adoption from highly technical actors,” she says. But attacks don’t need to be sophisticated to be effective. Models that produce “good enough” results allow attackers to go after larger numbers of people than previously possible, says Liz James, a managing security consultant at the cybersecurity company NCC Group. “We’re talking about someone who might be using a scattergun approach phishing a whole bunch of people with a model that, if it lands itself on a machine of interest that doesn’t have any defenses … can reasonably competently encrypt your hard drive,” she says. “You’ve achieved your objective.”  On the defense For now, researchers are optimistic about our ability to defend against these threats—regardless of whether they are made with AI. “Especially on the malware side, a lot of the defenses and the capabilities and the best practices that we’ve recommended for the past 10-plus years—they all still apply,” says Leonard. The security programs we use to detect standard viruses and attack attempts work; a lot of phishing emails will still get caught in inbox spam filters, for example. These traditional forms of defense will still largely get the job done—at least for now.  And in a neat twist, AI itself is helping to counter security threats more effectively. After all, it is excellent at spotting patterns and correlations. Vasu Jakkal, corporate vice president of Microsoft Security, says that every day, the company processes more than 100 trillion signals flagged by its AI systems as potentially malicious or suspicious events. Despite the cybersecurity landscape’s constant state of flux, Jess is heartened by how readily defenders are sharing detailed information with each other about attackers’ tactics. Mitre’s Adversarial Threat Landscape for Artificial-Intelligence Systems and the GenAI Security Project from the Open Worldwide Application Security Project are two helpful initiatives documenting how potential criminals are incorporating AI into their attacks and how AI systems are being targeted by them. “We’ve got some really good resources out there for understanding how to protect your own internal AI toolings and understand the threat from AI toolings in the hands of cybercriminals,” she says. PromptLock, the result of a limited university project, isn’t representative of how an attack would play out in the real world. But if it taught us anything, it’s that the technical capabilities of AI shouldn’t be dismissed.New York University’s Udeshi says he wastaken aback at how easily AI was able to handle a full end-to-end chain of attack, from mapping and working out how to break into a targeted computer system to writing personalized ransom notes to victims: “We expected it would do the initial task very well but it would stumble later on, but we saw high—80% to 90%—success throughout the whole pipeline.”  AI is still evolving rapidly, and today’s systems are already capable of things that would have seemed preposterously out of reach just a few short years ago. That makes it incredibly tough to say with absolute confidence what it will—or won’t—be able to achieve in the future. While researchers are certain that AI-driven attacks are likely to increase in both volume and severity, the forms they could take are unclear. Perhaps the most extreme possibility is that someone makes an AI model capable of creating and automating its own zero-day exploits—highly dangerous cyber­attacks that take advantage of previously unknown vulnerabilities in software. But building and hosting such a model—and evading detection—would require billions of dollars in investment, says Hutchins, meaning it would only be in the reach of a wealthy nation-state.  Engin Kirda, a professor at Northeastern University in Boston who specializes in malware detection and analysis, says he wouldn’t be surprised if this was already happening. “I’m sure people are investing in it, but I’m also pretty sure people are already doing it, especially [in] China—they have good AI capabilities,” he says.  It’s a pretty scary possibility. But it’s one that—thankfully—is still only theoretical. A large-scale campaign that is both effective and clearly AI-driven has yet to materialize. What we can say is that generative AI is already significantly lowering the bar for criminals. They’ll keep experimenting with the newest releases and updates and trying to find new ways to trick us into parting with important information and precious cash. For now, all we can do is be careful, remain vigilant, and—for all our sakes—stay on top of those system updates. 

Anton Cherepanov is always on the lookout for something interesting. And in late August last year, he spotted just that. It was a file uploaded to VirusTotal, a site cybersecurity researchers like him use to analyze submissions for potential viruses and other types of malicious software, often known as malware. On the surface it seemed innocuous, but it triggered Cherepanov’s custom malware-detecting measures. Over the next few hours, he and his colleague Peter Strýček inspected the sample and realized they’d never come across anything like it before.

The file contained ransomware, a nasty strain of malware that encrypts the files it comes across on a victim’s system, rendering them unusable until a ransom is paid to the attackers behind it. But what set this example apart was that it employed large language models (LLMs). Not just incidentally, but across every stage of an attack. Once it was installed, it could tap into an LLM to generate customized code in real time, rapidly map a computer to identify sensitive data to copy or encrypt, and write personalized ransom notes based on the files’ content. The software could do this autonomously, without any human intervention. And every time it ran, it would act differently, making it harder to detect.

Cherepanov and Strýček were confident that their discovery, which they dubbed PromptLock, marked a turning point in generative AI, showing how the technology could be exploited to create highly flexible malware attacks. They published a blog post declaring that they’d uncovered the first example of AI-powered ransomware, which quickly became the object of widespread global media attention.

But the threat wasn’t quite as dramatic as it first appeared. The day after the blog post went live, a team of researchers from New York University claimed responsibility, explaining that the malware was not, in fact, a full attack let loose in the wild but a research project, merely designed to prove it was possible to automate each step of a ransomware campaign—which, they said, they had. 

PromptLock may have turned out to be an academic project, but the real bad guys are using the latest AI tools. Just as software engineers are using artificial intelligence to help write code and check for bugs, hackers are using these tools to reduce the time and effort required to orchestrate an attack, lowering the barriers for less experienced attackers to try something out. 

The likelihood that cyberattacks will now become more common and more effective over time is not a remote possibility but “a sheer reality,” says Lorenzo Cavallaro, a professor of computer science at University College London. 

Some in Silicon Valley warn that AI is on the brink of being able to carry out fully automated attacks. But most security researchers say this claim is overblown. “For some reason, everyone is just focused on this malware idea of, like, AI superhackers, which is just absurd,” says Marcus Hutchins, who is principal threat researcher at the security company Expel and famous in the security world for ending a giant global ransomware attack called WannaCry in 2017. 

Instead, experts argue, we should be paying closer attention to the much more immediate risks posed by AI, which is already speeding up and increasing the volume of scams. Criminals are increasingly exploiting the latest deepfake technologies to impersonate people and swindle victims out of vast sums of money. These AI-enhanced cyberattacks are only set to get more frequent and more destructive, and we need to be ready. 

Spam and beyond

Attackers started adopting generative AI tools almost immediately after ChatGPT exploded on the scene at the end of 2022. These efforts began, as you might imagine, with the creation of spam—and a lot of it. Last year, a report from Microsoft said that in the year leading up to April 2025, the company had blocked $4 billion worth of scams and fraudulent transactions, “many likely aided by AI content.” 

At least half of spam email is now generated using LLMs, according to estimates by researchers at Columbia University, the University of Chicago, and Barracuda Networks, who analyzed nearly 500,000 malicious messages collected before and after the launch of ChatGPT. They also found evidence that AI is increasingly being deployed in more sophisticated schemes. They looked at targeted email attacks, which impersonate a trusted figure in order to trick a worker within an organization out of funds or sensitive information. By April 2025, they found, at least 14% of those sorts of focused email attacks were generated using LLMs, up from 7.6% in April 2024.

In one high-profile case, a worker was tricked into transferring $25 million to criminals via a video call with digital versions of the company’s chief financial officer and other employees.

And the generative AI boom has made it easier and cheaper than ever before to generate not only emails but highly convincing images, videos, and audio. The results are much more realistic than even just a few short years ago, and it takes much less data to generate a fake version of someone’s likeness or voice than it used to.

Criminals aren’t deploying these sorts of deepfakes to prank people or to simply mess around—they’re doing it because it works and because they’re making money out of it, says Henry Ajder, a generative AI expert. “If there’s money to be made and people continue to be fooled by it, they’ll continue to do it,” he says. In one high-­profile case reported in 2024, a worker at the British engineering firm Arup was tricked into transferring $25 million to criminals via a video call with digital versions of the company’s chief financial officer and other employees. That’s likely only the tip of the iceberg, and the problem posed by convincing deepfakes is only likely to get worse as the technology improves and is more widely adopted. 

person sitting in profile at a computer with an enormous mask in front of them and words spooling out through the frame

BRIAN STAUFFER

Criminals’ tactics evolve all the time, and as AI’s capabilities improve, such people are constantly probing how those new capabilities can help them gain an advantage over victims. Billy Leonard, tech leader of Google’s Threat Analysis Group, has been keeping a close eye on changes in the use of AI by potential bad actors (a widely used term in the industry for hackers and others attempting to use computers for criminal purposes). In the latter half of 2024, he and his team noticed prospective criminals using tools like Google Gemini the same way everyday users do—to debug code and automate bits and pieces of their work—as well as tasking it with writing the odd phishing email. By 2025, they had progressed to using AI to help create new pieces of malware and release them into the wild, he says.

The big question now is how far this kind of malware can go. Will it ever become capable enough to sneakily infiltrate thousands of companies’ systems and extract millions of dollars, completely undetected? 

Most popular AI models have guardrails in place to prevent them from generating malicious code or illegal material, but bad actors still find ways to work around them. For example, Google observed a China-linked actor asking its Gemini AI model to identify vulnerabilities on a compromised system—a request it initially refused on safety grounds. However, the attacker managed to persuade Gemini to break its own rules by posing as a participant in a capture-the-flag competition, a popular cybersecurity game. This sneaky form of jailbreaking led Gemini to hand over information that could have been used to exploit the system. (Google has since adjusted Gemini to deny these kinds of requests.)

But bad actors aren’t just focusing on trying to bend the AI giants’ models to their nefarious ends. Going forward, they’re increasingly likely to adopt open-source AI models, as it’s easier to strip out their safeguards and get them to do malicious things, says Ashley Jess, a former tactical specialist at the US Department of Justice and now a senior intelligence analyst at the cybersecurity company Intel 471. “Those are the ones I think that [bad] actors are going to adopt, because they can jailbreak them and tailor them to what they need,” she says.

The NYU team used two open-source models from OpenAI in its PromptLock experiment, and the researchers found they didn’t even need to resort to jailbreaking techniques to get the model to do what they wanted. They say that makes attacks much easier. Although these kinds of open-source models are designed with an eye to ethical alignment, meaning that their makers do consider certain goals and values in dictating the way they respond to requests, the models don’t have the same kinds of restrictions as their closed-source counterparts, says Meet Udeshi, a PhD student at New York University who worked on the project. “That is what we were trying to test,” he says. “These LLMs claim that they are ethically aligned—can we still misuse them for these purposes? And the answer turned out to be yes.” 

It’s possible that criminals have already successfully pulled off covert PromptLock-style attacks and we’ve simply never seen any evidence of them, says Udeshi. If that’s the case, attackers could—in theory—have created a fully autonomous hacking system. But to do that they would have had to overcome the significant barrier that is getting AI models to behave reliably, as well as any inbuilt aversion the models have to being used for malicious purposes—all while evading detection. Which is a pretty high bar indeed.

Productivity tools for hackers

So, what do we know for sure? Some of the best data we have now on how people are attempting to use AI for malicious purposes comes from the big AI companies themselves. And their findings certainly sound alarming, at least at first. In November, Leonard’s team at Google released a report that found bad actors were using AI tools (including Google’s Gemini) to dynamically alter malware’s behavior; for example, it could self-modify to evade detection. The team wrote that it ushered in “a new operational phase of AI abuse.”

However, the five malware families the report dug into (including PromptLock) consisted of code that was easily detected and didn’t actually do any harm, the cybersecurity writer Kevin Beaumont pointed out on social media. “There’s nothing in the report to suggest orgs need to deviate from foundational security programmes—everything worked as it should,” he wrote.

It’s true that this malware activity is in an early phase, concedes Leonard. Still, he sees value in making these kinds of reports public if it helps security vendors and others build better defenses to prevent more dangerous AI attacks further down the line. “Cliché to say, but sunlight is the best disinfectant,” he says. “It doesn’t really do us any good to keep it a secret or keep it hidden away. We want people to be able to know about this— we want other security vendors to know about this—so that they can continue to build their own detections.”

And it’s not just new strains of malware that would-be attackers are experimenting with—they also seem to be using AI to try to automate the process of hacking targets. In November, Anthropic announced it had disrupted a large-scale cyberattack, the first reported case of one executed without “substantial human intervention.” Although the company didn’t go into much detail about the exact tactics the hackers used, the report’s authors said a Chinese state-sponsored group had used its Claude Code assistant to automate up to 90% of what they called a “highly sophisticated espionage campaign.”

“We’re entering an era where the barrier to sophisticated cyber operations has fundamentally lowered, and the pace of attacks will accelerate faster than many organizations are prepared for.”

Jacob Klein, head of threat intelligence at Anthropic

But, as with the Google findings, there were caveats. A human operator, not AI, selected the targets before tasking Claude with identifying vulnerabilities. And of 30 attempts, only a “handful” were successful. The Anthropic report also found that Claude hallucinated and ended up fabricating data during the campaign, claiming it had obtained credentials it hadn’t and “frequently” overstating its findings, so the attackers would have had to carefully validate those results to make sure they were actually true. “This remains an obstacle to fully autonomous cyberattacks,” the report’s authors wrote. 

Existing controls within any reasonably secure organization would stop these attacks, says Gary McGraw, a veteran security expert and cofounder of the Berryville Institute of Machine Learning in Virginia. “None of the malicious-attack part, like the vulnerability exploit … was actually done by the AI—it was just prefabricated tools that do that, and that stuff’s been automated for 20 years,” he says. “There’s nothing novel, creative, or interesting about this attack.”

Anthropic maintains that the report’s findings are a concerning signal of changes ahead. “Tying this many steps of an intrusion campaign together through [AI] agentic orchestration is unprecedented,” Jacob Klein, head of threat intelligence at Anthropic, said in a statement. “It turns what has always been a labor-intensive process into something far more scalable. We’re entering an era where the barrier to sophisticated cyber operations has fundamentally lowered, and the pace of attacks will accelerate faster than many organizations are prepared for.”

Some are not convinced there’s reason to be alarmed. AI hype has led a lot of people in the cybersecurity industry to overestimate models’ current abilities, Hutchins says. “They want this idea of unstoppable AIs that can outmaneuver security, so they’re forecasting that’s where we’re going,” he says. But “there just isn’t any evidence to support that, because the AI capabilities just don’t meet any of the requirements.”

person kneeling warding off an attack of arrows under a sheild

BRIAN STAUFFER

Indeed, for now criminals mostly seem to be tapping AI to enhance their productivity: using LLMs to write malicious code and phishing lures, to conduct reconnaissance, and for language translation. Jess sees this kind of activity a lot, alongside efforts to sell tools in underground criminal markets. For example, there are phishing kits that compare the click-rate success of various spam campaigns, so criminals can track which campaigns are most effective at any given time. She is seeing a lot of this activity in what could be called the “AI slop landscape” but not as much “widespread adoption from highly technical actors,” she says.

But attacks don’t need to be sophisticated to be effective. Models that produce “good enough” results allow attackers to go after larger numbers of people than previously possible, says Liz James, a managing security consultant at the cybersecurity company NCC Group. “We’re talking about someone who might be using a scattergun approach phishing a whole bunch of people with a model that, if it lands itself on a machine of interest that doesn’t have any defenses … can reasonably competently encrypt your hard drive,” she says. “You’ve achieved your objective.” 

On the defense

For now, researchers are optimistic about our ability to defend against these threats—regardless of whether they are made with AI. “Especially on the malware side, a lot of the defenses and the capabilities and the best practices that we’ve recommended for the past 10-plus years—they all still apply,” says Leonard. The security programs we use to detect standard viruses and attack attempts work; a lot of phishing emails will still get caught in inbox spam filters, for example. These traditional forms of defense will still largely get the job done—at least for now. 

And in a neat twist, AI itself is helping to counter security threats more effectively. After all, it is excellent at spotting patterns and correlations. Vasu Jakkal, corporate vice president of Microsoft Security, says that every day, the company processes more than 100 trillion signals flagged by its AI systems as potentially malicious or suspicious events.

Despite the cybersecurity landscape’s constant state of flux, Jess is heartened by how readily defenders are sharing detailed information with each other about attackers’ tactics. Mitre’s Adversarial Threat Landscape for Artificial-Intelligence Systems and the GenAI Security Project from the Open Worldwide Application Security Project are two helpful initiatives documenting how potential criminals are incorporating AI into their attacks and how AI systems are being targeted by them. “We’ve got some really good resources out there for understanding how to protect your own internal AI toolings and understand the threat from AI toolings in the hands of cybercriminals,” she says.

PromptLock, the result of a limited university project, isn’t representative of how an attack would play out in the real world. But if it taught us anything, it’s that the technical capabilities of AI shouldn’t be dismissed.New York University’s Udeshi says he wastaken aback at how easily AI was able to handle a full end-to-end chain of attack, from mapping and working out how to break into a targeted computer system to writing personalized ransom notes to victims: “We expected it would do the initial task very well but it would stumble later on, but we saw high—80% to 90%—success throughout the whole pipeline.” 

AI is still evolving rapidly, and today’s systems are already capable of things that would have seemed preposterously out of reach just a few short years ago. That makes it incredibly tough to say with absolute confidence what it will—or won’t—be able to achieve in the future. While researchers are certain that AI-driven attacks are likely to increase in both volume and severity, the forms they could take are unclear. Perhaps the most extreme possibility is that someone makes an AI model capable of creating and automating its own zero-day exploits—highly dangerous cyber­attacks that take advantage of previously unknown vulnerabilities in software. But building and hosting such a model—and evading detection—would require billions of dollars in investment, says Hutchins, meaning it would only be in the reach of a wealthy nation-state. 

Engin Kirda, a professor at Northeastern University in Boston who specializes in malware detection and analysis, says he wouldn’t be surprised if this was already happening. “I’m sure people are investing in it, but I’m also pretty sure people are already doing it, especially [in] China—they have good AI capabilities,” he says. 

It’s a pretty scary possibility. But it’s one that—thankfully—is still only theoretical. A large-scale campaign that is both effective and clearly AI-driven has yet to materialize. What we can say is that generative AI is already significantly lowering the bar for criminals. They’ll keep experimenting with the newest releases and updates and trying to find new ways to trick us into parting with important information and precious cash. For now, all we can do is be careful, remain vigilant, and—for all our sakes—stay on top of those system updates. 

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

SSHStalker botnet brute-forces its way onto 7,000 Linux machines

However, so far the botnet hasn’t done much other than maintaining persistence on infected machines. It has the ability to launch DDoS (distributed denial of service) attacks and conduct cryptomining, but hasn’t done anything yet to monetize its access. That, Flare says, suggests either the operator is still staging the

Read More »

NetBrain’s new AI agents automate network diagnosis

In testing, the system handled the majority of real-world network issues. “90% of the real-world network issues that they had when they threw them at it, it handled it,” Nixon said. “[People] couldn’t quite believe that it was at the 90% mark. People went in thinking, ‘Well, if this gives me

Read More »

IBM FlashSystems gain AI-assisted telemetry, analytics

For security, the systems include a new FlashCore Module all-flash drive, which brings hardware-accelerated, real-time ransomware detection, data reduction, analytics and operations. The devices can spot anomalies and patterns in data that need to be remediated, IBM noted. “The next-generation IBM FlashSystem elevates storage to an intelligent, always-available layer, where autonomous

Read More »

USA Labor Market Report Underpins Energy Demand

In a market update sent to Rigzone late Wednesday, Rystad Energy outlined that the January U.S. labor market report “surprise[d]… to the upside, underpinning energy demand”. Rystad noted in the report that the latest U.S. jobs data “shows promise, with the unemployment rate falling by 4.3 percent, pointing to market stability”. “Non-farm payrolls increased by 130,000 jobs in January, while the rise for December was downwardly revised to 48,000,” it pointed out, adding that the unemployment rate in December was 4.4 percent. “The latest data compares with consensus expectations of job gains of around 70,000 and the unemployment rate holding steady at 4.4 percent,” Rystad said. In the update, Rystad Energy Chief Economist Claudio Galimberti noted that payroll growth exceeded expectations and that unemployment edged lower. “Following a series of weaker private indicators, the data suggests stabilization rather than strong acceleration,” Galimberti said. “Markets that had positioned for a rapid easing cycle responded by repricing yields higher and scaling back expectations for near-term rate cuts,” he added. “For energy markets, the implications are moderately supportive. A resilient labor market underpins demand for transport fuels, petrochemicals and power generation, reducing downside risks to U.S. consumption at a time when macro sentiment had turned cautious,” he continued. “While the U.S. is not the primary driver of incremental global oil demand, labor market stability reinforces the view that the demand picture is firming up,” he went on to state. Galimberti noted in the update that “revisions to prior data confirm that the cycle is mature, not accelerating”. “Still, in a market already balancing OPEC+ supply management against geopolitical risk, a firmer U.S. macro signal marginally strengthens the demand outlook,” he said. “The result is a modestly constructive backdrop for oil prices in the near term, without materially shifting the fundamentals,” Galimberti concluded. In

Read More »

Energy Department Announces $175 Million to Modernize Coal Plants, Keeping Affordable Reliable Power Online for Americans

WASHINGTON—The U.S. Department of Energy (DOE) today announced $175 million in funding for six projects to modernize, retrofit, and extend the useful life of coal-fired power plants that serve rural and remote communities across the United States, keeping dependable energy sources online, strengthening grid reliability, and helping keep electricity costs low for American families and businesses. The projects are part of the Department’s $525 million effort to expand and reinvigorate America’s coal fleet through targeted upgrades that increase efficiency, extend plant life, and add dependable capacity using infrastructure that is already built and connected to the grid. Modernizing existing plants provides one of the fastest and most cost-effective ways to deliver reliable power while preserving high-wage energy jobs, particularly across Appalachian communities that have long powered the nation. “For years, previous administrations targeted America’s coal industry and the workers who power our country, forcing the premature closure of reliable plants, and driving up electricity costs,” said U.S. Secretary of Energy Chris Wright. “President Trump has ended the war on American coal and is restoring common-sense energy policy. These investments will keep America’s coal plants operating, keep costs low for Americans, and ensure we have the reliable power needed to keep the lights on and power our future.” These actions advance President Trump’s Executive Orders Reinvigorating America’s Beautiful Clean Coal Industry and Strengthening the Reliability and Security of the United States Electric Grid to restore common-sense energy policies that prioritize dependable power, affordability, and American workers. As electricity demand continues to grow, dependable, around-the-clock generation remains essential to maintaining a reliable and affordable power system. By upgrading existing coal facilities, DOE is strengthening the backbone of America’s power grid and ensuring communities have access to secure, reliable energy when they need it most. Selected projects include the following: Appalachian Power Company (Letart and Winfield, West Virginia) will upgrade two coal-fired plants in West

Read More »

Oil Gains As Middle East Tensions Rise

Oil gained as tensions in the Middle East outweighed concerns that there is a supply glut building in the market. West Texas Intermediate rose to settle above $64 after the Wall Street Journal said that the Pentagon has told a second aircraft carrier strike group to prepare to deploy to the Middle East, citing three US officials. That follows an earlier report from the news agency that the US is considering seizing tankers with Iranian crude. “Oil right now, and just the rest of the commodity complex, is really dominated by three things: geopolitics, trade and technology,” Francisco Blanch, head of commodities research at Bank of America Global Research, said in a Bloomberg Television interview. “Certainly, right now, geopolitics are the main driving force pushing oil close to the high end of this year’s range.” Iran is the fourth-largest OPEC producer, pumping an estimated 3.3 million barrels a day in January, according to a Bloomberg survey. Crude and condensate shipments totaled about 1.63 million barrels a day last month, vessel-tracking data show. The WSJ report meant crude erased earlier losses after President Donald Trump said in a social media post that he insisted that talks with Iran continue in a meeting with Israeli Prime Minister Benjamin Netanyahu. It was widely expected that Netanyahu would push for a broad curtailment of the Islamic Republic’s military activities in the region. The commodity has also received support earlier after strong US jobs data brightened the outlook for the world’s largest economy. “A resilient labor market underpins demand for transport fuels, petrochemicals and power generation, reducing downside risks to US consumption at a time when macro sentiment had turned cautious,” said Claudio Galimberti, chief economist at Rystad Energy. The strong numbers are a sign that the demand picture is firming up, he added. Crude

Read More »

OPEC Says Oil Production Declined Last Month

OPEC+ oil production declined sharply last month amid losses in Kazakhstan, Venezuela and Iran, the group said.  The 22 nations of the alliance produced an average of 42.448 million barrels a day in January, or 439,000 a day less than the previous month, according to a copy of the group’s monthly report obtained by Bloomberg. Kazakhstan accounted for more than half of the drop. While the report didn’t give a reason for the overall decline, Kazakhstan’s production fell as it suspended operations at the Tengiz oil field, the country’s largest. The Chevron-led venture started to restore output there at the end of last month.  Separately, Venezuelan oil exports were disrupted by a US blockade during the ousting of former President Nicolas Maduro, while Iran continues to face American sanctions. Saudi Arabia and several other key nations held steady in January as the Organization of the Petroleum Exporting Countries and its allies began a three-month freeze to offset a seasonal lull in consumption. They’ll meet online on March 1 to review production levels for April and beyond. OPEC kept forecasts for global oil supply and demand unchanged for this year and next, according to the report. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

Ukraine Hits Lukoil Refinery

Ukraine attacked an oil refinery in Russia’s Volgograd region in the first major strike on Russia’s oil-processing industry this year. An overnight drone strike sparked a fire at the facility, Ukraine’s General Staff said on Telegram Wednesday. “The scope of the damage is being clarified,” it said, adding that the refinery helps supply the Russian army. Ukraine carried out multiple high-precision strikes on Russia’s energy assets last year, leading to refinery shutdowns, disruptions at oil terminals and the rerouting of some tankers. The attacks were designed to curb the Kremlin’s energy revenues and restrict fuel supplies to Russian front lines in the war, now nearing its fifth year. The Volgograd refinery, which was attacked several times last year, has a design capacity of about 300,000 barrels of crude a day. It mainly supplies oil products to southern Russia, with some volumes exported. The administration of the Volgograd region said in a Telegram statement that an an industrial plant caught fire after a drone attack but did not name the facility. Lukoil, Russia’s largest private oil producer, did not immediately respond to a request for comment. Satellite images from NASA’s Fire Information for Resource Management System show multiple fires at the refinery that began during the night of Feb. 10-11. The fires were not visible the previous day, according to the data. In January, Ukraine targeted three small independent Russian refineries, which together account for about 7% of Russia’s typical monthly crude throughput. The lull in drone strikes had offered temporary relief for Russia’s downstream sector, allowing refinery runs to gradually increase. Encouraged by the recovery, the government lifted its ban on most gasoline exports, permitting producers to resume shipments in February — a month earlier than planned. While Ukrainian attacks on Russia’s oil industry slowed in January, Moscow continued intense assaults on energy infrastructure

Read More »

TotalEnergies Cuts Buyback to Lower End of Range

(Update) February 11, 2026, 5:10 PM GMT: Article updated with comments on dividend growth, potential investment decisions and acquisitions from 14th paragraph. TotalEnergies SE trimmed its share buybacks to the lower end of its guidance range, aiming to keep debt in check as it adjusts to lower oil prices. The company plans to repurchase $750 million of stock in the first quarter, compared with $1.5 billion in the final three months of 2025, it said in an earnings statement Wednesday. For the year, its buyback target was kept at a range of $3 billion to $6 billion. TotalEnergies is the third and last of Europe’s top oil and gas producers to release earnings after Shell Plc and BP Plc published disappointing quarterly reports. The company has a lower ratio of debt to equity than its European peers and kept quarterly dividend unchanged. “This year we want to balance cash generation with cash expenditure,” Chief Executive Officer Patrick Pouyanne said during a press conference in Paris to discuss earnings. “We don’t know what will happen this year. We want to keep a healthy balance sheet.” Shares of Total closed 2.7% up, at their highest since July 2024. The company has a “solid balance sheet despite uncertain environment,“ Jefferies analysts led by Mark Wilson said in a note after the earnings release. While Big Oil is still churning out hefty profits, cash flows — particularly in Europe — have been undermined by last year’s 18% dive in crude prices. There are also widespread forecasts that the market will remain oversupplied this year as production swells both inside and outside the OPEC+ alliance. “Oil supply remains abundant, so the market is rather trending down,” Pouyanne said, adding that sanctions on Russia are causing a buildup of the nation’s crude at sea. Total’s adjusted

Read More »

Energy providers seek flexible load strategies for data center operations

“In theory, yes, they’d have to wait a little bit longer while their queries are routed to a data center that has capacity,” said Lawrence. The one thing the industry cannot do is operate like it has in the past, where data center power was tuned and then forgotten for six months. Previously, data centers would test their power sources once or twice a year. They don’t have that luxury anymore. They need to check their power sources and loads far more regularly, according to Lawrence. “I think that for that for the data center industry to continue to survive like we all need it, there’s going to have to be some realignment on the incentives to why somebody would become flexible,” said Lawrence. The survey suggests that utilities and load operators expect to expand their demand response activities and budgets in the near term. Sixty-three percent of respondents anticipate DR program funding to grow by 50% or more over the next three years. While they remain a major source of load growth and system strain, 57% of respondents indicate that onsite power generation from data centers will be most important to improving grid stability over the next five years. One of the proposed fixes to the power shortage has been small modular nuclear reactors. These have gained a lot of traction in the marketplace even if they have nothing to sell yet. But Lawrence said that that’s not an ideal solution for existing power generators, ironically enough.

Read More »

Nokia predicts huge WAN traffic growth, but experts question assumptions

Consumer, which includes both mobile access and fixed access, including fixed wireless access. Enterprise and industrial, which covers wide-area connectivity that supports knowledge work, automation, machine vision, robotics coordination, field support, and industrial IoT. AI, including applications that people directly invoke, such as assistants, copilots, and media generation, as well as autonomous use cases in which AI systems trigger other AI systems to perform functions and move data across networks. The report outlines three scenarios: conservative, moderate, and aggressive. “Our goal is to present scenarios that fall within a realistic range of possible outcomes, encouraging stakeholders to plan across the full spectrum of high-impact demand possibilities,” the report says. Nokia’s prediction for global WAN traffic growth ranges from a 13% CAGR for the conservative scenario to 16% CAGR for moderate and 22% CAGR for aggressive. Looking more closely at the moderate scenario, it’s clear that consumer traffic dominates. Enterprise and industrial traffic make up only about 14% to 17% of overall WAN traffic, although their share is expected to grow during the 10-year forecast period. “On the consumer side, the vast majority of traffic by volume is video,” says William Webb, CEO of the consulting firm Commcisive. Asked whether any of that consumer traffic is at some point served up by enterprises, the answer is a decisive “no.” It’s mostly YouTube and streaming services like Netflix, he says. In short, that doesn’t raise enterprise concerns. Nokia predicts AI traffic boom AI is a different story. “Consumer- and enterprise-generated AI traffic imposes a substantial impact on the wide-area network (WAN) by adding AI workloads processed by data centers across the WAN. AI traffic does not stay inside one data center; it moves across edge, metro, core, and cloud infrastructure, driving dense lateral flows and new capacity demands,” the report says. An

Read More »

Cisco amps up Silicon One line, delivers new systems and optics for AI networking

Those building blocks include the new G300 as well as the G200 51.2 Tbps chip, which is aimed at spine and aggregation applications, and the G100 25.6 Tbps chip, which is aimed at leaf operations. Expanded portfolio of Silicon One P200-powered systems Cisco in October rolled out the P200 Silicon One chip and the high-end, 51.2 Tbps 8223 router aimed at distributed AI workloads. That system supports Octal Small Form-Factor Pluggable (OSFP) and Quad Small Form-Factor Pluggable Double Density (QSFP-DD) optical form factors that help the box support geographically dispersed AI clusters. Cisco grew the G200 family this week with the addition of the 8122X-64EF-O, a 64x800G switch that will run the SONiC OS and includes support for Cisco 800G Linear Pluggable Optics (LPO) connectivity. LPO components typically set up direct links between fiber optic modules, eliminating the need for traditional components such as a digital signal processor. Cisco said its P200 systems running IOS XR software now better support core routing services to allow data-center-to-data-center links and data center interconnect applications. In addition, Cisco introduced a P200-powered 88-LC2-36EF-M line card, which delivers 28.8T of capacity. “Available for both our 8-slot and 18-slot modular systems, this line card enables up to an unprecedented 518.4T of total system bandwidth, the highest in the industry,” wrote Guru Shenoy, senior vice president of the Cisco provider connectivity group, in a blog post about the news. “When paired with Cisco 800G ZR/ZR+ coherent pluggable optics, these systems can easily connect sites over 1,000 kilometers apart, providing the high-density performance needed for modern data center interconnects and core routing.”

Read More »

NetBox Labs ships AI copilot designed for network engineers, not developers

Natural language for network engineers Beevers explained that network operations teams face two fundamental barriers to automation. First, they lack accurate data about their infrastructure. Second, they aren’t software developers and shouldn’t have to become them. “These are not software developers. They are network engineers or IT infrastructure engineers,” Beevers said. “The big realization for us through the copilot journey is they will never be software developers. Let’s stop trying to make them be. Let’s let these computers that are really good at being software developers do that, and let’s let the network engineers or the data center engineers be really good at what they’re really good at.”  That vision drove the development of NetBox Copilot’s natural language interface and its capabilities. Grounding AI in infrastructure reality The challenge with deploying AI  in network operations is trust. Generic large language models hallucinate, produce inconsistent results, and lack the operational context to make reliable decisions. NetBox Copilot addresses this by grounding the AI agent in NetBox’s comprehensive infrastructure data model. NetBox serves as the system of record for network and infrastructure teams, maintaining a semantic map of devices, connections, IP addressing, rack layouts, power distribution and the relationships between these elements. Copilot has native awareness of this data structure and the context it provides. This enables queries that would be difficult or impossible with traditional interfaces. Network engineers can ask “Which devices are missing IP addresses?” to validate data completeness, “Who changed this prefix last week?” for change tracking and compliance, or “What depends on this switch?” for impact analysis before maintenance windows.

Read More »

US pushes voluntary pact to curb AI data center energy impact

Others note that cost pressure isn’t limited to the server rack. Danish Faruqui, CEO of Fab Economics, said the AI ecosystem is layered from silicon to software services, creating multiple points where infrastructure expenses eventually resurface. “Cloud service providers are likely to gradually introduce more granular pricing models across cloud, AI, and SaaS offerings, tailored by customer type, as they work to absorb the costs associated with the White House energy and grid compact,” Faruqui said.   This may not show up as explicit energy surcharges, but instead surface through reduced discounts, higher spending commitments, and premiums for guaranteed capacity or performance. “Smaller enterprises will feel the impact first, while large strategic customers remain insulated longer,” Rawat said. “Ultimately, the compact would delay and redistribute cost pressure; it does not eliminate it.” Implications for data center design The proposal is also likely to accelerate changes in how AI facilities are designed. “Data centers will evolve into localized microgrids that combine utility power with on-site generation and higher-level implementation of battery energy storage systems,” Faruqui said. “Designing for grid interaction will become imperative for AI data centers, requiring intelligent, high-speed switching gear, increased battery energy storage capacity for frequency regulation, and advanced control systems that can manage on-site resources.”

Read More »

Intel teams with SoftBank to develop new memory type

However, don’t expect anything anytime soon. Intel’s Director of Global Strategic Partnerships Sanam Masroor outlined the plans in a blog post. Operations are expected to begin in Q1 2026, with prototypes due in 2027 and commercial products by 2030. While Intel has not come out and said it, that memory design is almost identical to HBM used in GPU accelerators and AI data centers. HBM sits right on the GPU die for immediate access to the GPU, unlike standard DRAM which resides on memory sticks plugged into the motherboard. HBM is much faster than DDR memory but is also much more expensive to produce. It’s also much more profitable than standard DRAM which is why the big three memory makers – Micron, Samsung, and SK Hynix – are favoring production of it.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »