Stay Ahead, Stay ONMINE

AI means the end of internet search as we’ve known it

We all know what it means, colloquially, to google something. You pop a few relevant words in a search box and in return get a list of blue links to the most relevant results. Maybe some quick explanations up top. Maybe some maps or sports scores or a video. But fundamentally, it’s just fetching information that’s already out there on the internet and showing it to you, in some sort of structured way.  But all that is up for grabs. We are at a new inflection point. The biggest change to the way search engines have delivered information to us since the 1990s is happening right now. No more keyword searching. No more sorting through links to click. Instead, we’re entering an era of conversational search. Which means instead of keywords, you use real questions, expressed in natural language. And instead of links, you’ll increasingly be met with answers, written by generative AI and based on live information from all across the internet, delivered the same way.  Of course, Google—the company that has defined search for the past 25 years—is trying to be out front on this. In May of 2023, it began testing AI-generated responses to search queries, using its large language model (LLM) to deliver the kinds of answers you might expect from an expert source or trusted friend. It calls these AI Overviews. Google CEO Sundar Pichai described this to MIT Technology Review as “one of the most positive changes we’ve done to search in a long, long time.” AI Overviews fundamentally change the kinds of queries Google can address. You can now ask it things like “I’m going to Japan for one week next month. I’ll be staying in Tokyo but would like to take some day trips. Are there any festivals happening nearby? How will the surfing be in Kamakura? Are there any good bands playing?” And you’ll get an answer—not just a link to Reddit, but a built-out answer with current results.  More to the point, you can attempt searches that were once pretty much impossible, and get the right answer. You don’t have to be able to articulate what, precisely, you are looking for. You can describe what the bird in your yard looks like, or what the issue seems to be with your refrigerator, or that weird noise your car is making, and get an almost human explanation put together from sources previously siloed across the internet. It’s amazing, and once you start searching that way, it’s addictive. And it’s not just Google. OpenAI’s ChatGPT now has access to the web, making it far better at finding up-to-date answers to your queries. Microsoft released generative search results for Bing in September. Meta has its own version. The startup Perplexity was doing the same, but with a “move fast, break things” ethos. Literal trillions of dollars are at stake in the outcome as these players jockey to become the next go-to source for information retrieval—the next Google. Not everyone is excited for the change. Publishers are completely freaked out. The shift has heightened fears of a “zero-click” future, where search referral traffic—a mainstay of the web since before Google existed—vanishes from the scene.  I got a vision of that future last June, when I got a push alert from the Perplexity app on my phone. Perplexity is a startup trying to reinvent web search. But in addition to delivering deep answers to queries, it will create entire articles about the news of the day, cobbled together by AI from different sources.  On that day, it pushed me a story about a new drone company from Eric Schmidt. I recognized the story. Forbes had reported it exclusively, earlier in the week, but it had been locked behind a paywall. The image on Perplexity’s story looked identical to one from Forbes. The language and structure were quite similar. It was effectively the same story, but freely available to anyone on the internet. I texted a friend who had edited the original story to ask if Forbes had a deal with the startup to republish its content. But there was no deal. He was shocked and furious and, well, perplexed. He wasn’t alone. Forbes, the New York Times, and Condé Nast have now all sent the company cease-and-desist orders. News Corp is suing for damages.  People are worried about what these new LLM-powered results will mean for our fundamental shared reality. It could spell the end of the canonical answer. It was precisely the nightmare scenario publishers have been so afraid of: The AI was hoovering up their premium content, repackaging it, and promoting it to its audience in a way that didn’t really leave any reason to click through to the original. In fact, on Perplexity’s About page, the first reason it lists to choose the search engine is “Skip the links.” But this isn’t just about publishers (or my own self-interest).  People are also worried about what these new LLM-powered results will mean for our fundamental shared reality. Language models have a tendency to make stuff up—they can hallucinate nonsense. Moreover, generative AI can serve up an entirely new answer to the same question every time, or provide different answers to different people on the basis of what it knows about them. It could spell the end of the canonical answer. But make no mistake: This is the future of search. Try it for a bit yourself, and you’ll see.  Sure, we will always want to use search engines to navigate the web and to discover new and interesting sources of information. But the links out are taking a back seat. The way AI can put together a well-reasoned answer to just about any kind of question, drawing on real-time data from across the web, just offers a better experience. That is especially true compared with what web search has become in recent years. If it’s not exactly broken (data shows more people are searching with Google more often than ever before), it’s at the very least increasingly cluttered and daunting to navigate.  Who wants to have to speak the language of search engines to find what you need? Who wants to navigate links when you can have straight answers? And maybe: Who wants to have to learn when you can just know?  In the beginning there was Archie. It was the first real internet search engine, and it crawled files previously hidden in the darkness of remote servers. It didn’t tell you what was in those files—just their names. It didn’t preview images; it didn’t have a hierarchy of results, or even much of an interface. But it was a start. And it was pretty good.  Then Tim Berners-Lee created the World Wide Web, and all manner of web pages sprang forth. The Mosaic home page and the Internet Movie Database and Geocities and the Hampster Dance and web rings and Salon and eBay and CNN and federal government sites and some guy’s home page in Turkey. Until finally, there was too much web to even know where to start. We really needed a better way to navigate our way around, to actually find the things we needed.  And so in 1994 Jerry Yang created Yahoo, a hierarchical directory of websites. It quickly became the home page for millions of people. And it was … well, it was okay. TBH, and with the benefit of hindsight, I think we all thought it was much better back then than it actually was. But the web continued to grow and sprawl and expand, every day bringing more information online. Rather than just a list of sites by category, we needed something that actually looked at all that content and indexed it. By the late ’90s that meant choosing from a variety of search engines: AltaVista and AlltheWeb and WebCrawler and HotBot. And they were good—a huge improvement. At least at first.   But alongside the rise of search engines came the first attempts to exploit their ability to deliver traffic. Precious, valuable traffic, which web publishers rely on to sell ads and retailers use to get eyeballs on their goods. Sometimes this meant stuffing pages with keywords or nonsense text designed purely to push pages higher up in search results. It got pretty bad.  And then came Google. It’s hard to overstate how revolutionary Google was when it launched in 1998. Rather than just scanning the content, it also looked at the sources linking to a website, which helped evaluate its relevance. To oversimplify: The more something was cited elsewhere, the more reliable Google considered it, and the higher it would appear in results. This breakthrough made Google radically better at retrieving relevant results than anything that had come before. It was amazing.  Google CEO Sundar Pichai describes AI Overviews as “one of the most positive changes we’ve done to search in a long, long time.”JENS GYARMATY/LAIF/REDUX For 25 years, Google dominated search. Google was search, for most people. (The extent of that domination is currently the subject of multiple legal probes in the United States and the European Union.)   But Google has long been moving away from simply serving up a series of blue links, notes Pandu Nayak, Google’s chief scientist for search.  “It’s not just so-called web results, but there are images and videos, and special things for news. There have been direct answers, dictionary answers, sports, answers that come with Knowledge Graph, things like featured snippets,” he says, rattling off a litany of Google’s steps over the years to answer questions more directly.  It’s true: Google has evolved over time, becoming more and more of an answer portal. It has added tools that allow people to just get an answer—the live score to a game, the hours a café is open, or a snippet from the FDA’s website—rather than being pointed to a website where the answer may be.  But once you’ve used AI Overviews a bit, you realize they are different.  Take featured snippets, the passages Google sometimes chooses to highlight and show atop the results themselves. Those words are quoted directly from an original source. The same is true of knowledge panels, which are generated from information stored in a range of public databases and Google’s Knowledge Graph, its database of trillions of facts about the world. While these can be inaccurate, the information source is knowable (and fixable). It’s in a database. You can look it up. Not anymore: AI Overviews can be entirely new every time, generated on the fly by a language model’s predictive text combined with an index of the web.  “I think it’s an exciting moment where we have obviously indexed the world. We built deep understanding on top of it with Knowledge Graph. We’ve been using LLMs and generative AI to improve our understanding of all that,” Pichai told MIT Technology Review. “But now we are able to generate and compose with that.” The result feels less like a querying a database than like asking a very smart, well-read friend. (With the caveat that the friend will sometimes make things up if she does not know the answer.)  “[The company’s] mission is organizing the world’s information,” Liz Reid, Google’s head of search, tells me from its headquarters in Mountain View, California. “But actually, for a while what we did was organize web pages. Which is not really the same thing as organizing the world’s information or making it truly useful and accessible to you.”  That second concept—accessibility—is what Google is really keying in on with AI Overviews. It’s a sentiment I hear echoed repeatedly while talking to Google execs: They can address more complicated types of queries more efficiently by bringing in a language model to help supply the answers. And they can do it in natural language.  That will become even more important for a future where search goes beyond text queries. For example, Google Lens, which lets people take a picture or upload an image to find out more about something, uses AI-generated answers to tell you what you may be looking at. Google has even showed off the ability to query live video.  When it doesn’t have an answer, an AI model can confidently spew back a response anyway. For Google, this could be a real problem. For the rest of us, it could actually be dangerous. “We are definitely at the start of a journey where people are going to be able to ask, and get answered, much more complex questions than where we’ve been in the past decade,” says Pichai.  There are some real hazards here. First and foremost: Large language models will lie to you. They hallucinate. They get shit wrong. When it doesn’t have an answer, an AI model can blithely and confidently spew back a response anyway. For Google, which has built its reputation over the past 20 years on reliability, this could be a real problem. For the rest of us, it could actually be dangerous. In May 2024, AI Overviews were rolled out to everyone in the US. Things didn’t go well. Google, long the world’s reference desk, told people to eat rocks and to put glue on their pizza. These answers were mostly in response to what the company calls adversarial queries—those designed to trip it up. But still. It didn’t look good. The company quickly went to work fixing the problems—for example, by deprecating so-called user-generated content from sites like Reddit, where some of the weirder answers had come from. Yet while its errors telling people to eat rocks got all the attention, the more pernicious danger might arise when it gets something less obviously wrong. For example, in doing research for this article, I asked Google when MIT Technology Review went online. It helpfully responded that “MIT Technology Review launched its online presence in late 2022.” This was clearly wrong to me, but for someone completely unfamiliar with the publication, would the error leap out?  I came across several examples like this, both in Google and in OpenAI’s ChatGPT search. Stuff that’s just far enough off the mark not to be immediately seen as wrong. Google is banking that it can continue to improve these results over time by relying on what it knows about quality sources. “When we produce AI Overviews,” says Nayak, “we look for corroborating information from the search results, and the search results themselves are designed to be from these reliable sources whenever possible. These are some of the mechanisms we have in place that assure that if you just consume the AI Overview, and you don’t want to look further … we hope that you will still get a reliable, trustworthy answer.” In the case above, the 2022 answer seemingly came from a reliable source—a story about MIT Technology Review’s email newsletters, which launched in 2022. But the machine fundamentally misunderstood. This is one of the reasons Google uses human beings—raters—to evaluate the results it delivers for accuracy. Ratings don’t correct or control individual AI Overviews; rather, they help train the model to build better answers. But human raters can be fallible. Google is working on that too.  “Raters who look at your experiments may not notice the hallucination because it feels sort of natural,” says Nayak. “And so you have to really work at the evaluation setup to make sure that when there is a hallucination, someone’s able to point out and say, That’s a problem.” The new search Google has rolled out its AI Overviews to upwards of a billion people in more than 100 countries, but it is facing upstarts with new ideas about how search should work. Search Engine GoogleThe search giant has added AI Overviews to search results. These overviews take information from around the web and Google’s Knowledge Graph and use the company’s Gemini language model to create answers to search queries. What it’s good at Google’s AI Overviews are great at giving an easily digestible summary in response to even the most complex queries, with sourcing boxes adjacent to the answers. Among the major options, its deep web index feels the most “internety.” But web publishers fear its summaries will give people little reason to click through to the source material. PerplexityPerplexity is a conversational search engine that uses third-party largelanguage models from OpenAI and Anthropic to answer queries. Perplexity is fantastic at putting together deeper dives in response to user queries, producing answers that are like mini white papers on complex topics. It’s also excellent at summing up current events. But it has gotten a bad rep with publishers, who say it plays fast and loose with their content. ChatGPTWhile Google brought AI to search, OpenAI brought search to ChatGPT. Queries that the model determines will benefit from a web search automatically trigger one, or users can manually select the option to add a web search. Thanks to its ability to preserve context across a conversation, ChatGPT works well for performing searches that benefit from follow-up questions—like planning a vacation through multiple search sessions. OpenAI says users sometimes go “20 turns deep” in researching queries. Of these three, it makes links out to publishers least prominent. When I talked to Pichai about this, he expressed optimism about the company’s ability to maintain accuracy even with the LLM generating responses. That’s because AI Overviews is based on Google’s flagship large language model, Gemini, but also draws from Knowledge Graph and what it considers reputable sources around the web.  “You’re always dealing in percentages. What we have done is deliver it at, like, what I would call a few nines of trust and factuality and quality. I’d say 99-point-few-nines. I think that’s the bar we operate at, and it is true with AI Overviews too,” he says. “And so the question is, are we able to do this again at scale? And I think we are.” There’s another hazard as well, though, which is that people ask Google all sorts of weird things. If you want to know someone’s darkest secrets, look at their search history. Sometimes the things people ask Google about are extremely dark. Sometimes they are illegal. Google doesn’t just have to be able to deploy its AI Overviews when an answer can be helpful; it has to be extremely careful not to deploy them when an answer may be harmful.  “If you go and say ‘How do I build a bomb?’ it’s fine that there are web results. It’s the open web. You can access anything,” Reid says. “But we do not need to have an AI Overview that tells you how to build a bomb, right? We just don’t think that’s worth it.”  But perhaps the greatest hazard—or biggest unknown—is for anyone downstream of a Google search. Take publishers, who for decades now have relied on search queries to send people their way. What reason will people have to click through to the original source, if all the information they seek is right there in the search result?   Rand Fishkin, cofounder of the market research firm SparkToro, publishes research on so-called zero-click searches. As Google has moved increasingly into the answer business, the proportion of searches that end without a click has gone up and up. His sense is that AI Overviews are going to explode this trend.   “If you are reliant on Google for traffic, and that traffic is what drove your business forward, you are in long- and short-term trouble,” he says.  Don’t panic, is Pichai’s message. He argues that even in the age of AI Overviews, people will still want to click through and go deeper for many types of searches. “The underlying principle is people are coming looking for information. They’re not looking for Google always to just answer,” he says. “Sometimes yes, but the vast majority of the times, you’re looking at it as a jumping-off point.”  Reid, meanwhile, argues that because AI Overviews allow people to ask more complicated questions and drill down further into what they want, they could even be helpful to some types of publishers and small businesses, especially those operating in the niches: “You essentially reach new audiences, because people can now express what they want more specifically, and so somebody who specializes doesn’t have to rank for the generic query.”  “I’m going to start with something risky,” Nick Turley tells me from the confines of a Zoom window. Turley is the head of product for ChatGPT, and he’s showing off OpenAI’s new web search tool a few weeks before it launches. “I should normally try this beforehand, but I’m just gonna search for you,” he says. “This is always a high-risk demo to do, because people tend to be particular about what is said about them on the internet.”  He types my name into a search field, and the prototype search engine spits back a few sentences, almost like a speaker bio. It correctly identifies me and my current role. It even highlights a particular story I wrote years ago that was probably my best known. In short, it’s the right answer. Phew?  A few weeks after our call, OpenAI incorporated search into ChatGPT, supplementing answers from its language model with information from across the web. If the model thinks a response would benefit from up-to-date information, it will automatically run a web search (OpenAI won’t say who its search partners are) and incorporate those responses into its answer, with links out if you want to learn more. You can also opt to manually force it to search the web if it does not do so on its own. OpenAI won’t reveal how many people are using its web search, but it says some 250 million people use ChatGPT weekly, all of whom are potentially exposed to it.   “There’s an incredible amount of content on the web. There are a lot of things happening in real time. You want ChatGPT to be able to use that to improve its answers and to be a better super-assistant for you.” Kevin Weil, chief product officer, OpenAI According to Fishkin, these newer forms of AI-assisted search aren’t yet challenging Google’s search dominance. “It does not appear to be cannibalizing classic forms of web search,” he says.  OpenAI insists it’s not really trying to compete on search—although frankly this seems to me like a bit of expectation setting. Rather, it says, web search is mostly a means to get more current information than the data in its training models, which tend to have specific cutoff dates that are often months, or even a year or more, in the past. As a result, while ChatGPT may be great at explaining how a West Coast offense works, it has long been useless at telling you what the latest 49ers score is. No more.  “I come at it from the perspective of ‘How can we make ChatGPT able to answer every question that you have? How can we make it more useful to you on a daily basis?’ And that’s where search comes in for us,” Kevin Weil, the chief product officer with OpenAI, tells me. “There’s an incredible amount of content on the web. There are a lot of things happening in real time. You want ChatGPT to be able to use that to improve its answers and to be able to be a better super-assistant for you.” Today ChatGPT is able to generate responses for very current news events, as well as near-real-time information on things like stock prices. And while ChatGPT’s interface has long been, well, boring, search results bring in all sorts of multimedia—images, graphs, even video. It’s a very different experience.  Weil also argues that ChatGPT has more freedom to innovate and go its own way than competitors like Google—even more than its partner Microsoft does with Bing. Both of those are ad-dependent businesses. OpenAI is not. (At least not yet.) It earns revenue from the developers, businesses, and individuals who use it directly. It’s mostly setting large amounts of money on fire right now—it’s projected to lose $14 billion in 2026, by some reports. But one thing it doesn’t have to worry about is putting ads in its search results as Google does.  “For a while what we did was organize web pages. Which is not really the same thing as organizing the world’s information or making it truly useful and accessible to you,” says Google head of search, Liz Reid.WINNI WINTERMEYER/REDUX Like Google, ChatGPT is pulling in information from web publishers, summarizing it, and including it in its answers. But it has also struck financial deals with publishers, a payment for providing the information that gets rolled into its results. (MIT Technology Review has been in discussions with OpenAI, Google, Perplexity, and others about publisher deals but has not entered into any agreements. Editorial was neither party to nor informed about the content of those discussions.) But the thing is, for web search to accomplish what OpenAI wants—to be more current than the language model—it also has to bring in information from all sorts of publishers and sources that it doesn’t have deals with. OpenAI’s head of media partnerships, Varun Shetty, told MIT Technology Review that it won’t give preferential treatment to its publishing partners. Instead, OpenAI told me, the model itself finds the most trustworthy and useful source for any given question. And that can get weird too. In that very first example it showed me—when Turley ran that name search—it described a story I wrote years ago for Wired about being hacked. That story remains one of the most widely read I’ve ever written. But ChatGPT didn’t link to it. It linked to a short rewrite from The Verge. Admittedly, this was on a prototype version of search, which was, as Turley said, “risky.”  When I asked him about it, he couldn’t really explain why the model chose the sources that it did, because the model itself makes that evaluation. The company helps steer it by identifying—sometimes with the help of users—what it considers better answers, but the model actually selects them.  “And in many cases, it gets it wrong, which is why we have work to do,” said Turley. “Having a model in the loop is a very, very different mechanism than how a search engine worked in the past.” Indeed!  The model, whether it’s OpenAI’s GPT-4o or Google’s Gemini or Anthropic’s Claude, can be very, very good at explaining things. But the rationale behind its explanations, its reasons for selecting a particular source, and even the language it may use in an answer are all pretty mysterious. Sure, a model can explain very many things, but not when that comes to its own answers.  It was almost a decade ago, in 2016, when Pichai wrote that Google was moving from “mobile first” to “AI first”: “But in the next 10 years, we will shift to a world that is AI-first, a world where computing becomes universally available—be it at home, at work, in the car, or on the go—and interacting with all of these surfaces becomes much more natural and intuitive, and above all, more intelligent.”  We’re there now—sort of. And it’s a weird place to be. It’s going to get weirder. That’s especially true as these things we now think of as distinct—querying a search engine, prompting a model, looking for a photo we’ve taken, deciding what we want to read or watch or hear, asking for a photo we wish we’d taken, and didn’t, but would still like to see—begin to merge.  The search results we see from generative AI are best understood as a waypoint rather than a destination. What’s most important may not be search in itself; rather, it’s that search has given AI model developers a path to incorporating real-time information into their inputs and outputs. And that opens up all sorts of possibilities. “A ChatGPT that can understand and access the web won’t just be about summarizing results. It might be about doing things for you. And I think there’s a fairly exciting future there,” says OpenAI’s Weil. “You can imagine having the model book you a flight, or order DoorDash, or just accomplish general tasks for you in the future. It’s just once the model understands how to use the internet, the sky’s the limit.” This is the agentic future we’ve been hearing about for some time now, and the more AI models make use of real-time data from the internet, the closer it gets.  Let’s say you have a trip coming up in a few weeks. An agent that can get data from the internet in real time can book your flights and hotel rooms, make dinner reservations, and more, based on what it knows about you and your upcoming travel—all without your having to guide it. Another agent could, say, monitor the sewage output of your home for certain diseases, and order tests and treatments in response. You won’t have to search for that weird noise your car is making, because the agent in your vehicle will already have done it and made an appointment to get the issue fixed.  “It’s not always going to be just doing search and giving answers,” says Pichai. “Sometimes it’s going to be actions. Sometimes you’ll be interacting within the real world. So there is a notion of universal assistance through it all.” And the ways these things will be able to deliver answers is evolving rapidly now too. For example, today Google can not only search text, images, and even video; it can create them. Imagine overlaying that ability with search across an array of formats and devices. “Show me what a Townsend’s warbler looks like in the tree in front of me.” Or “Use my existing family photos and videos to create a movie trailer of our upcoming vacation to Puerto Rico next year, making sure we visit all the best restaurants and top landmarks.” “We have primarily done it on the input side,” he says, referring to the ways Google can now search for an image or within a video. “But you can imagine it on the output side too.” This is the kind of future Pichai says he is excited to bring online. Google has already showed off a bit of what that might look like with NotebookLM, a tool that lets you upload large amounts of text and have it converted into a chatty podcast. He imagines this type of functionality—the ability to take one type of input and convert it into a variety of outputs—transforming the way we interact with information.  In a demonstration of a tool called Project Astra this summer at its developer conference, Google showed one version of this outcome, where cameras and microphones in phones and smart glasses understand the context all around you—online and off, audible and visual—and have the ability to recall and respond in a variety of ways. Astra can, for example, look at a crude drawing of a Formula One race car and not only identify it, but also explain its various parts and their uses.  But you can imagine things going a bit further (and they will). Let’s say I want to see a video of how to fix something on my bike. The video doesn’t exist, but the information does. AI-assisted generative search could theoretically find that information somewhere online—in a user manual buried in a company’s website, for example—and create a video to show me exactly how to do what I want, just as it could explain that to me with words today. These are the kinds of things that start to happen when you put the entire compendium of human knowledge—knowledge that’s previously been captured in silos of language and format; maps and business registrations and product SKUs; audio and video and databases of numbers and old books and images and, really, anything ever published, ever tracked, ever recorded; things happening right now, everywhere—and introduce a model into all that. A model that maybe can’t understand, precisely, but has the ability to put that information together, rearrange it, and spit it back in a variety of different hopefully helpful ways. Ways that a mere index could not. That’s what we’re on the cusp of, and what we’re starting to see. And as Google rolls this out to a billion people, many of whom will be interacting with a conversational AI for the first time, what will that mean? What will we do differently? It’s all changing so quickly. Hang on, just hang on. 

We all know what it means, colloquially, to google something. You pop a few relevant words in a search box and in return get a list of blue links to the most relevant results. Maybe some quick explanations up top. Maybe some maps or sports scores or a video. But fundamentally, it’s just fetching information that’s already out there on the internet and showing it to you, in some sort of structured way. 

But all that is up for grabs. We are at a new inflection point.

The biggest change to the way search engines have delivered information to us since the 1990s is happening right now. No more keyword searching. No more sorting through links to click. Instead, we’re entering an era of conversational search. Which means instead of keywords, you use real questions, expressed in natural language. And instead of links, you’ll increasingly be met with answers, written by generative AI and based on live information from all across the internet, delivered the same way. 

Of course, Google—the company that has defined search for the past 25 years—is trying to be out front on this. In May of 2023, it began testing AI-generated responses to search queries, using its large language model (LLM) to deliver the kinds of answers you might expect from an expert source or trusted friend. It calls these AI Overviews. Google CEO Sundar Pichai described this to MIT Technology Review as “one of the most positive changes we’ve done to search in a long, long time.”

AI Overviews fundamentally change the kinds of queries Google can address. You can now ask it things like “I’m going to Japan for one week next month. I’ll be staying in Tokyo but would like to take some day trips. Are there any festivals happening nearby? How will the surfing be in Kamakura? Are there any good bands playing?” And you’ll get an answer—not just a link to Reddit, but a built-out answer with current results. 

More to the point, you can attempt searches that were once pretty much impossible, and get the right answer. You don’t have to be able to articulate what, precisely, you are looking for. You can describe what the bird in your yard looks like, or what the issue seems to be with your refrigerator, or that weird noise your car is making, and get an almost human explanation put together from sources previously siloed across the internet. It’s amazing, and once you start searching that way, it’s addictive.

And it’s not just Google. OpenAI’s ChatGPT now has access to the web, making it far better at finding up-to-date answers to your queries. Microsoft released generative search results for Bing in September. Meta has its own version. The startup Perplexity was doing the same, but with a “move fast, break things” ethos. Literal trillions of dollars are at stake in the outcome as these players jockey to become the next go-to source for information retrieval—the next Google.

Not everyone is excited for the change. Publishers are completely freaked out. The shift has heightened fears of a “zero-click” future, where search referral traffic—a mainstay of the web since before Google existed—vanishes from the scene. 

I got a vision of that future last June, when I got a push alert from the Perplexity app on my phone. Perplexity is a startup trying to reinvent web search. But in addition to delivering deep answers to queries, it will create entire articles about the news of the day, cobbled together by AI from different sources. 

On that day, it pushed me a story about a new drone company from Eric Schmidt. I recognized the story. Forbes had reported it exclusively, earlier in the week, but it had been locked behind a paywall. The image on Perplexity’s story looked identical to one from Forbes. The language and structure were quite similar. It was effectively the same story, but freely available to anyone on the internet. I texted a friend who had edited the original story to ask if Forbes had a deal with the startup to republish its content. But there was no deal. He was shocked and furious and, well, perplexed. He wasn’t alone. Forbes, the New York Times, and Condé Nast have now all sent the company cease-and-desist orders. News Corp is suing for damages. 

People are worried about what these new LLM-powered results will mean for our fundamental shared reality. It could spell the end of the canonical answer.

It was precisely the nightmare scenario publishers have been so afraid of: The AI was hoovering up their premium content, repackaging it, and promoting it to its audience in a way that didn’t really leave any reason to click through to the original. In fact, on Perplexity’s About page, the first reason it lists to choose the search engine is “Skip the links.”

But this isn’t just about publishers (or my own self-interest). 

People are also worried about what these new LLM-powered results will mean for our fundamental shared reality. Language models have a tendency to make stuff up—they can hallucinate nonsense. Moreover, generative AI can serve up an entirely new answer to the same question every time, or provide different answers to different people on the basis of what it knows about them. It could spell the end of the canonical answer.

But make no mistake: This is the future of search. Try it for a bit yourself, and you’ll see. 

Sure, we will always want to use search engines to navigate the web and to discover new and interesting sources of information. But the links out are taking a back seat. The way AI can put together a well-reasoned answer to just about any kind of question, drawing on real-time data from across the web, just offers a better experience. That is especially true compared with what web search has become in recent years. If it’s not exactly broken (data shows more people are searching with Google more often than ever before), it’s at the very least increasingly cluttered and daunting to navigate. 

Who wants to have to speak the language of search engines to find what you need? Who wants to navigate links when you can have straight answers? And maybe: Who wants to have to learn when you can just know? 


In the beginning there was Archie. It was the first real internet search engine, and it crawled files previously hidden in the darkness of remote servers. It didn’t tell you what was in those files—just their names. It didn’t preview images; it didn’t have a hierarchy of results, or even much of an interface. But it was a start. And it was pretty good. 

Then Tim Berners-Lee created the World Wide Web, and all manner of web pages sprang forth. The Mosaic home page and the Internet Movie Database and Geocities and the Hampster Dance and web rings and Salon and eBay and CNN and federal government sites and some guy’s home page in Turkey.

Until finally, there was too much web to even know where to start. We really needed a better way to navigate our way around, to actually find the things we needed. 

And so in 1994 Jerry Yang created Yahoo, a hierarchical directory of websites. It quickly became the home page for millions of people. And it was … well, it was okay. TBH, and with the benefit of hindsight, I think we all thought it was much better back then than it actually was.

But the web continued to grow and sprawl and expand, every day bringing more information online. Rather than just a list of sites by category, we needed something that actually looked at all that content and indexed it. By the late ’90s that meant choosing from a variety of search engines: AltaVista and AlltheWeb and WebCrawler and HotBot. And they were good—a huge improvement. At least at first.  

But alongside the rise of search engines came the first attempts to exploit their ability to deliver traffic. Precious, valuable traffic, which web publishers rely on to sell ads and retailers use to get eyeballs on their goods. Sometimes this meant stuffing pages with keywords or nonsense text designed purely to push pages higher up in search results. It got pretty bad. 

And then came Google. It’s hard to overstate how revolutionary Google was when it launched in 1998. Rather than just scanning the content, it also looked at the sources linking to a website, which helped evaluate its relevance. To oversimplify: The more something was cited elsewhere, the more reliable Google considered it, and the higher it would appear in results. This breakthrough made Google radically better at retrieving relevant results than anything that had come before. It was amazing

Sundar Pichai
Google CEO Sundar Pichai describes AI Overviews as “one of the most positive changes we’ve done to search in a long, long time.”
JENS GYARMATY/LAIF/REDUX

For 25 years, Google dominated search. Google was search, for most people. (The extent of that domination is currently the subject of multiple legal probes in the United States and the European Union.)  

But Google has long been moving away from simply serving up a series of blue links, notes Pandu Nayak, Google’s chief scientist for search. 

“It’s not just so-called web results, but there are images and videos, and special things for news. There have been direct answers, dictionary answers, sports, answers that come with Knowledge Graph, things like featured snippets,” he says, rattling off a litany of Google’s steps over the years to answer questions more directly. 

It’s true: Google has evolved over time, becoming more and more of an answer portal. It has added tools that allow people to just get an answer—the live score to a game, the hours a café is open, or a snippet from the FDA’s website—rather than being pointed to a website where the answer may be. 

But once you’ve used AI Overviews a bit, you realize they are different

Take featured snippets, the passages Google sometimes chooses to highlight and show atop the results themselves. Those words are quoted directly from an original source. The same is true of knowledge panels, which are generated from information stored in a range of public databases and Google’s Knowledge Graph, its database of trillions of facts about the world.

While these can be inaccurate, the information source is knowable (and fixable). It’s in a database. You can look it up. Not anymore: AI Overviews can be entirely new every time, generated on the fly by a language model’s predictive text combined with an index of the web. 

“I think it’s an exciting moment where we have obviously indexed the world. We built deep understanding on top of it with Knowledge Graph. We’ve been using LLMs and generative AI to improve our understanding of all that,” Pichai told MIT Technology Review. “But now we are able to generate and compose with that.”

The result feels less like a querying a database than like asking a very smart, well-read friend. (With the caveat that the friend will sometimes make things up if she does not know the answer.) 

“[The company’s] mission is organizing the world’s information,” Liz Reid, Google’s head of search, tells me from its headquarters in Mountain View, California. “But actually, for a while what we did was organize web pages. Which is not really the same thing as organizing the world’s information or making it truly useful and accessible to you.” 

That second concept—accessibility—is what Google is really keying in on with AI Overviews. It’s a sentiment I hear echoed repeatedly while talking to Google execs: They can address more complicated types of queries more efficiently by bringing in a language model to help supply the answers. And they can do it in natural language. 

That will become even more important for a future where search goes beyond text queries. For example, Google Lens, which lets people take a picture or upload an image to find out more about something, uses AI-generated answers to tell you what you may be looking at. Google has even showed off the ability to query live video. 

When it doesn’t have an answer, an AI model can confidently spew back a response anyway. For Google, this could be a real problem. For the rest of us, it could actually be dangerous.

“We are definitely at the start of a journey where people are going to be able to ask, and get answered, much more complex questions than where we’ve been in the past decade,” says Pichai. 

There are some real hazards here. First and foremost: Large language models will lie to you. They hallucinate. They get shit wrong. When it doesn’t have an answer, an AI model can blithely and confidently spew back a response anyway. For Google, which has built its reputation over the past 20 years on reliability, this could be a real problem. For the rest of us, it could actually be dangerous.

In May 2024, AI Overviews were rolled out to everyone in the US. Things didn’t go well. Google, long the world’s reference desk, told people to eat rocks and to put glue on their pizza. These answers were mostly in response to what the company calls adversarial queries—those designed to trip it up. But still. It didn’t look good. The company quickly went to work fixing the problems—for example, by deprecating so-called user-generated content from sites like Reddit, where some of the weirder answers had come from.

Yet while its errors telling people to eat rocks got all the attention, the more pernicious danger might arise when it gets something less obviously wrong. For example, in doing research for this article, I asked Google when MIT Technology Review went online. It helpfully responded that “MIT Technology Review launched its online presence in late 2022.” This was clearly wrong to me, but for someone completely unfamiliar with the publication, would the error leap out? 

I came across several examples like this, both in Google and in OpenAI’s ChatGPT search. Stuff that’s just far enough off the mark not to be immediately seen as wrong. Google is banking that it can continue to improve these results over time by relying on what it knows about quality sources.

“When we produce AI Overviews,” says Nayak, “we look for corroborating information from the search results, and the search results themselves are designed to be from these reliable sources whenever possible. These are some of the mechanisms we have in place that assure that if you just consume the AI Overview, and you don’t want to look further … we hope that you will still get a reliable, trustworthy answer.”

In the case above, the 2022 answer seemingly came from a reliable source—a story about MIT Technology Review’s email newsletters, which launched in 2022. But the machine fundamentally misunderstood. This is one of the reasons Google uses human beings—raters—to evaluate the results it delivers for accuracy. Ratings don’t correct or control individual AI Overviews; rather, they help train the model to build better answers. But human raters can be fallible. Google is working on that too. 

“Raters who look at your experiments may not notice the hallucination because it feels sort of natural,” says Nayak. “And so you have to really work at the evaluation setup to make sure that when there is a hallucination, someone’s able to point out and say, That’s a problem.”

The new search

Google has rolled out its AI Overviews to upwards of a billion people in more than 100 countries, but it is facing upstarts with new ideas about how search should work.


Search Engine

Google
The search giant has added AI Overviews to search results. These overviews take information from around the web and Google’s Knowledge Graph and use the company’s Gemini language model to create answers to search queries.

What it’s good at

Google’s AI Overviews are great at giving an easily digestible summary in response to even the most complex queries, with sourcing boxes adjacent to the answers. Among the major options, its deep web index feels the most “internety.” But web publishers fear its summaries will give people little reason to click through to the source material.


Perplexity
Perplexity is a conversational search engine that uses third-party large
language models from OpenAI and Anthropic to answer queries.

Perplexity is fantastic at putting together deeper dives in response to user queries, producing answers that are like mini white papers on complex topics. It’s also excellent at summing up current events. But it has gotten a bad rep with publishers, who say it plays fast and loose with their content.


ChatGPT
While Google brought AI to search, OpenAI brought search to ChatGPT. Queries that the model determines will benefit from a web search automatically trigger one, or users can manually select the option to add a web search.

Thanks to its ability to preserve context across a conversation, ChatGPT works well for performing searches that benefit from follow-up questions—like planning a vacation through multiple search sessions. OpenAI says users sometimes go “20 turns deep” in researching queries. Of these three, it makes links out to publishers least prominent.


When I talked to Pichai about this, he expressed optimism about the company’s ability to maintain accuracy even with the LLM generating responses. That’s because AI Overviews is based on Google’s flagship large language model, Gemini, but also draws from Knowledge Graph and what it considers reputable sources around the web. 

“You’re always dealing in percentages. What we have done is deliver it at, like, what I would call a few nines of trust and factuality and quality. I’d say 99-point-few-nines. I think that’s the bar we operate at, and it is true with AI Overviews too,” he says. “And so the question is, are we able to do this again at scale? And I think we are.”

There’s another hazard as well, though, which is that people ask Google all sorts of weird things. If you want to know someone’s darkest secrets, look at their search history. Sometimes the things people ask Google about are extremely dark. Sometimes they are illegal. Google doesn’t just have to be able to deploy its AI Overviews when an answer can be helpful; it has to be extremely careful not to deploy them when an answer may be harmful. 

“If you go and say ‘How do I build a bomb?’ it’s fine that there are web results. It’s the open web. You can access anything,” Reid says. “But we do not need to have an AI Overview that tells you how to build a bomb, right? We just don’t think that’s worth it.” 

But perhaps the greatest hazard—or biggest unknown—is for anyone downstream of a Google search. Take publishers, who for decades now have relied on search queries to send people their way. What reason will people have to click through to the original source, if all the information they seek is right there in the search result?  

Rand Fishkin, cofounder of the market research firm SparkToro, publishes research on so-called zero-click searches. As Google has moved increasingly into the answer business, the proportion of searches that end without a click has gone up and up. His sense is that AI Overviews are going to explode this trend.  

“If you are reliant on Google for traffic, and that traffic is what drove your business forward, you are in long- and short-term trouble,” he says. 

Don’t panic, is Pichai’s message. He argues that even in the age of AI Overviews, people will still want to click through and go deeper for many types of searches. “The underlying principle is people are coming looking for information. They’re not looking for Google always to just answer,” he says. “Sometimes yes, but the vast majority of the times, you’re looking at it as a jumping-off point.” 

Reid, meanwhile, argues that because AI Overviews allow people to ask more complicated questions and drill down further into what they want, they could even be helpful to some types of publishers and small businesses, especially those operating in the niches: “You essentially reach new audiences, because people can now express what they want more specifically, and so somebody who specializes doesn’t have to rank for the generic query.”


 “I’m going to start with something risky,” Nick Turley tells me from the confines of a Zoom window. Turley is the head of product for ChatGPT, and he’s showing off OpenAI’s new web search tool a few weeks before it launches. “I should normally try this beforehand, but I’m just gonna search for you,” he says. “This is always a high-risk demo to do, because people tend to be particular about what is said about them on the internet.” 

He types my name into a search field, and the prototype search engine spits back a few sentences, almost like a speaker bio. It correctly identifies me and my current role. It even highlights a particular story I wrote years ago that was probably my best known. In short, it’s the right answer. Phew? 

A few weeks after our call, OpenAI incorporated search into ChatGPT, supplementing answers from its language model with information from across the web. If the model thinks a response would benefit from up-to-date information, it will automatically run a web search (OpenAI won’t say who its search partners are) and incorporate those responses into its answer, with links out if you want to learn more. You can also opt to manually force it to search the web if it does not do so on its own. OpenAI won’t reveal how many people are using its web search, but it says some 250 million people use ChatGPT weekly, all of whom are potentially exposed to it.  

“There’s an incredible amount of content on the web. There are a lot of things happening in real time. You want ChatGPT to be able to use that to improve its answers and to be a better super-assistant for you.”

Kevin Weil, chief product officer, OpenAI

According to Fishkin, these newer forms of AI-assisted search aren’t yet challenging Google’s search dominance. “It does not appear to be cannibalizing classic forms of web search,” he says. 

OpenAI insists it’s not really trying to compete on search—although frankly this seems to me like a bit of expectation setting. Rather, it says, web search is mostly a means to get more current information than the data in its training models, which tend to have specific cutoff dates that are often months, or even a year or more, in the past. As a result, while ChatGPT may be great at explaining how a West Coast offense works, it has long been useless at telling you what the latest 49ers score is. No more. 

“I come at it from the perspective of ‘How can we make ChatGPT able to answer every question that you have? How can we make it more useful to you on a daily basis?’ And that’s where search comes in for us,” Kevin Weil, the chief product officer with OpenAI, tells me. “There’s an incredible amount of content on the web. There are a lot of things happening in real time. You want ChatGPT to be able to use that to improve its answers and to be able to be a better super-assistant for you.”

Today ChatGPT is able to generate responses for very current news events, as well as near-real-time information on things like stock prices. And while ChatGPT’s interface has long been, well, boring, search results bring in all sorts of multimedia—images, graphs, even video. It’s a very different experience. 

Weil also argues that ChatGPT has more freedom to innovate and go its own way than competitors like Google—even more than its partner Microsoft does with Bing. Both of those are ad-dependent businesses. OpenAI is not. (At least not yet.) It earns revenue from the developers, businesses, and individuals who use it directly. It’s mostly setting large amounts of money on fire right now—it’s projected to lose $14 billion in 2026, by some reports. But one thing it doesn’t have to worry about is putting ads in its search results as Google does. 

Elizabeth Reid
“For a while what we did was organize web pages. Which is not really the same thing as organizing the world’s information or making it truly useful and accessible to you,” says Google head of search, Liz Reid.
WINNI WINTERMEYER/REDUX

Like Google, ChatGPT is pulling in information from web publishers, summarizing it, and including it in its answers. But it has also struck financial deals with publishers, a payment for providing the information that gets rolled into its results. (MIT Technology Review has been in discussions with OpenAI, Google, Perplexity, and others about publisher deals but has not entered into any agreements. Editorial was neither party to nor informed about the content of those discussions.)

But the thing is, for web search to accomplish what OpenAI wants—to be more current than the language model—it also has to bring in information from all sorts of publishers and sources that it doesn’t have deals with. OpenAI’s head of media partnerships, Varun Shetty, told MIT Technology Review that it won’t give preferential treatment to its publishing partners.

Instead, OpenAI told me, the model itself finds the most trustworthy and useful source for any given question. And that can get weird too. In that very first example it showed me—when Turley ran that name search—it described a story I wrote years ago for Wired about being hacked. That story remains one of the most widely read I’ve ever written. But ChatGPT didn’t link to it. It linked to a short rewrite from The Verge. Admittedly, this was on a prototype version of search, which was, as Turley said, “risky.” 

When I asked him about it, he couldn’t really explain why the model chose the sources that it did, because the model itself makes that evaluation. The company helps steer it by identifying—sometimes with the help of users—what it considers better answers, but the model actually selects them. 

“And in many cases, it gets it wrong, which is why we have work to do,” said Turley. “Having a model in the loop is a very, very different mechanism than how a search engine worked in the past.”

Indeed! 

The model, whether it’s OpenAI’s GPT-4o or Google’s Gemini or Anthropic’s Claude, can be very, very good at explaining things. But the rationale behind its explanations, its reasons for selecting a particular source, and even the language it may use in an answer are all pretty mysterious. Sure, a model can explain very many things, but not when that comes to its own answers. 


It was almost a decade ago, in 2016, when Pichai wrote that Google was moving from “mobile first” to “AI first”: “But in the next 10 years, we will shift to a world that is AI-first, a world where computing becomes universally available—be it at home, at work, in the car, or on the go—and interacting with all of these surfaces becomes much more natural and intuitive, and above all, more intelligent.” 

We’re there now—sort of. And it’s a weird place to be. It’s going to get weirder. That’s especially true as these things we now think of as distinct—querying a search engine, prompting a model, looking for a photo we’ve taken, deciding what we want to read or watch or hear, asking for a photo we wish we’d taken, and didn’t, but would still like to see—begin to merge. 

The search results we see from generative AI are best understood as a waypoint rather than a destination. What’s most important may not be search in itself; rather, it’s that search has given AI model developers a path to incorporating real-time information into their inputs and outputs. And that opens up all sorts of possibilities.

“A ChatGPT that can understand and access the web won’t just be about summarizing results. It might be about doing things for you. And I think there’s a fairly exciting future there,” says OpenAI’s Weil. “You can imagine having the model book you a flight, or order DoorDash, or just accomplish general tasks for you in the future. It’s just once the model understands how to use the internet, the sky’s the limit.”

This is the agentic future we’ve been hearing about for some time now, and the more AI models make use of real-time data from the internet, the closer it gets. 

Let’s say you have a trip coming up in a few weeks. An agent that can get data from the internet in real time can book your flights and hotel rooms, make dinner reservations, and more, based on what it knows about you and your upcoming travel—all without your having to guide it. Another agent could, say, monitor the sewage output of your home for certain diseases, and order tests and treatments in response. You won’t have to search for that weird noise your car is making, because the agent in your vehicle will already have done it and made an appointment to get the issue fixed. 

“It’s not always going to be just doing search and giving answers,” says Pichai. “Sometimes it’s going to be actions. Sometimes you’ll be interacting within the real world. So there is a notion of universal assistance through it all.”

And the ways these things will be able to deliver answers is evolving rapidly now too. For example, today Google can not only search text, images, and even video; it can create them. Imagine overlaying that ability with search across an array of formats and devices. “Show me what a Townsend’s warbler looks like in the tree in front of me.” Or “Use my existing family photos and videos to create a movie trailer of our upcoming vacation to Puerto Rico next year, making sure we visit all the best restaurants and top landmarks.”

“We have primarily done it on the input side,” he says, referring to the ways Google can now search for an image or within a video. “But you can imagine it on the output side too.”

This is the kind of future Pichai says he is excited to bring online. Google has already showed off a bit of what that might look like with NotebookLM, a tool that lets you upload large amounts of text and have it converted into a chatty podcast. He imagines this type of functionality—the ability to take one type of input and convert it into a variety of outputs—transforming the way we interact with information. 

In a demonstration of a tool called Project Astra this summer at its developer conference, Google showed one version of this outcome, where cameras and microphones in phones and smart glasses understand the context all around you—online and off, audible and visual—and have the ability to recall and respond in a variety of ways. Astra can, for example, look at a crude drawing of a Formula One race car and not only identify it, but also explain its various parts and their uses. 

But you can imagine things going a bit further (and they will). Let’s say I want to see a video of how to fix something on my bike. The video doesn’t exist, but the information does. AI-assisted generative search could theoretically find that information somewhere online—in a user manual buried in a company’s website, for example—and create a video to show me exactly how to do what I want, just as it could explain that to me with words today.

These are the kinds of things that start to happen when you put the entire compendium of human knowledge—knowledge that’s previously been captured in silos of language and format; maps and business registrations and product SKUs; audio and video and databases of numbers and old books and images and, really, anything ever published, ever tracked, ever recorded; things happening right now, everywhere—and introduce a model into all that. A model that maybe can’t understand, precisely, but has the ability to put that information together, rearrange it, and spit it back in a variety of different hopefully helpful ways. Ways that a mere index could not.

That’s what we’re on the cusp of, and what we’re starting to see. And as Google rolls this out to a billion people, many of whom will be interacting with a conversational AI for the first time, what will that mean? What will we do differently? It’s all changing so quickly. Hang on, just hang on. 

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Lenovo targets AI workloads with massive storage update

These systems are aimed at enterprises that want to use both AI and virtualized systems, since AI hardware is not virtualized but bare-metal. For example, the all-new Lenovo ThinkAgile Converged Solution for VMware, which combines the enterprise-class features of the ThinkAgile VX Series with the data-management capabilities of the ThinkSystem

Read More »

AI plus digital twins could be the pairing enterprises need

3. Link AI with transactional workflows The third point of cooperation is the linkage of AI with transactional workflows. Companies already have applications that take orders, ship goods, move component parts around, and so forth. It’s these applications that currently drive the commercial side of a business, but taking an

Read More »

FirstEnergy faces minimal direct tariff impact, but ‘uncertainty’ weighs on customers: CEO

FirstEnergy faces little direct exposure to the Trump administration’s tariffs on foreign imports, said Brian Tierney, FirstEnergy chair, president and CEO, during a Thursday earnings call. The utility company’s tariff exposure represents less than 0.2% on its $28 billion, five-year capital investment program, according to Tierney. “Proactive management of our supply chain since COVID has resulted in a diversified supplier base with little exposure to single-source suppliers,” he said, noting that most of the company’s operations and maintenance expense is labor. However, Tierney said he agreed with comments made by Beth Hammack, president and CEO of the Federal Reserve Bank of Cleveland, that tariffs add economic uncertainty — making it difficult for people to make investment decisions. “We don’t anticipate a significant impact from an income standpoint in the near-term associated with the near-term uncertainty that we’re dealing with,” Tierney said in response to an analyst question about a possible economic slowdown. “But the quicker there’s certainty from an investment cycle standpoint, I think the quicker we’ll be able to see people be able to make those investment decisions and get on with investing in their business, whatever the answer is from a tariff standpoint.” A report released Tuesday by the Cleveland Fed found that 64% of respondents to a February survey expected that their business would be affected by import tariffs. “Sizable majorities of respondents expected tariffs to increase both input costs and selling prices while decreasing demand for their products and services,” Cleveland Fed analysts said in the report. FirstEnergy’s industrial sales fell about 6% to 12.8 million MWh in the first quarter, down from 13.6 million MWh in the third quarter last year, according to the company’s earnings presentation. The dip is mainly from steel manufacturers slowing production related to automotive demand, said Jon Taylor, senior vice

Read More »

PG&E foresees ‘bright future’ with lower prices, higher demand

Dive Brief: Pacific Gas & Electric expects to file a rate case with its lowest requested rate increase in a decade as the company continues to make strides toward cutting costs and improving its credit rating, CEO Patti Poppe told investors during a Thursday earnings call. Increased demand from prospective data center customers — which grew sharply — should help the company reduce residential rates, and PG&E does not expect to be heavily impacted by tariffs, according to Poppe. Company leaders held up a recent rating upgrade by Moody’s as proof of their progress, but cautioned that further improvements in the company’s credit score are unlikely pending legislation to reform California’s overwhelmed wildfire insurance fund. Dive Insight: With growing demand and possible legislative reforms in the works, Poppe expressed optimism about PG&E’s future even though the San Francisco-based company saw its first-quarter earnings decline slightly. Customers may remain skeptical of the company’s ability to deliver, but PG&E is on a path toward lower costs and more modest electric bills, she said. “We’re interrupting a pattern here in California for affordability for customers,” she said. “We know our customers don’t feel that yet, so there is a doubt that we can deliver on this but we are able to deliver, and we’ve delivered this year.” The company’s upcoming general rate case, which PG&E plans to initiate next month, will request the lowest increase in electric rates in a decade, Poppe said — and it doesn’t include the effects of other potential cost-saving developments, including the improved credit rating by Moody’s and growing electrical demand. PG&E’s regulatory framework, Poppe said, should allow the company to cut overall customer bills by 1% to 2% for every gigawatt of new demand from data centers. PG&E’s data center pipeline grew from 5.5 GW at the beginning

Read More »

WTI Ends Higher But Logs Weekly Loss

Oil edged higher in a day of listless trading as investors parsed conflicting messaging on the progress of trade talks between the US and China. West Texas Intermediate futures rose to settle near $63 a barrel, but still notched their third weekly loss in the past four. Chinese authorities are weighing removing additional levies on a number of products including ethane, according to people familiar with the matter, as economic costs mount for certain industries. Shares in China’s top buyers of the fuel from the US jumped. Still, an agreement on trade between the US and China appears far off. President Donald Trump said Thursday that his administration was talking with China about trade, despite Beijing earlier denying the existence of negotiations and demanding that unilateral tariffs be revoked. The president later said that he wouldn’t drop tariffs on China unless “something substantial” is offered in return. Oil has dropped sharply this month on concerns that Trump’s sweeping tariffs and retaliatory measures from trading partners including China will cripple economic activity and throttle energy demand. In an effort to reassure US oil firms, Energy Secretary Chris Wright said that the trade turmoil will be fleeting and that the administration fully supports more crude output. “Our president is very clear and he wants lower energy prices,” Wright said during an interview with Bloomberg Television at an energy conference in Oklahoma City. Oil prices at $50 per barrel “in today’s world probably is not sustainable for our producers in this country.” The president “wants American industry and American consumers to thrive,” he added. The OPEC+ alliance has added to bearish headwinds by ramping up idled oil production, stoking fears of an oversupply. The group will meet on May 5 to discuss its output plans for June. Still, some metrics are pointing to

Read More »

Trade War Is Diverting USA Petroleum Gas Cargoes Away From China

Multiple carriers of petroleum-based gases traveling from the US to China have begun diverting to other countries due to the intensifying trade war between the world’s two largest economies.  Four cargoes of propane have shifted their routes from China to alternate destinations over the past week, bound for countries including Japan and South Korea, according to a report from analytics firm Vortexa. At least one cargo of ethane — which is used in plastics production — has been scrapped entirely, according to a person familiar with the matter. The diversions show the disruption to supply chains caused by the trade fight between the US and China, historically a major buyer of US ethane and petroleum gases. President Donald Trump has levied 145% tariffs on most US imports from China, and the US Trade Representative more recently imposed steep fees on Chinese-linked vessels seeking to access American ports. Eight Very Large Gas Carriers carrying US LPG were still on course for China as of this week, while the four diversions have all been recorded since April 17, according to Vortexa. Diverted vessels include the Zakher, Maple Gas, BW Gemini and Eiger Explorer, all departing from the US Gulf Coast.  The G. Arete, a propane carrier, diverted to South Korea from China, while a chemical tanker named STI Notting Hill is also rerouting to South Korea, Vortexa said. The US exported about 310,000 barrels of propane to China per day in 2024, double the volume from a year earlier, according to East Daley Analytics. Spot ethane shipments may continue to be affected by the trade war, while committed cargoes are harder to unwind, the person said. Asia-bound flows of ethylene — used in plastics and industrial solvents — have already slowed because of seasonal factors but may be further reduced by the tariffs, the

Read More »

Valero to shutter at least one of its California refineries

Lengthening legislative shadow Valero’s proposal for the Benicia refinery follows Phillips 66 Co.’s October 2024 confirmation that it will permanently cease conventional crude oil processing operations its 138,700-b/d dual-sited refinery in Los Angeles by yearend 2025 amid the operator’s determination that market conditions will prevent the long-term viability and competitiveness of the manufacturing site (OGJ Online, Oct. 17, 2024). Announcement of the Los Angeles refinery closure came on the heels of California Gov. Gavin Newsom’s Oct. 14, 2024, signing of legislation aimed at making the state’s oil refiners manage California’s gasoline supplies more responsibly to prevent price spikes at the pump. The legislation specifically provides the CEC more tools for requiring petroleum refiners to backfill supplies and plan for maintenance downtime as a means of helping prevent gasoline-price spikes that cost Californians upwards of $2 billion in 2023, Newsom’s office said. Introduced in early September 2024 in response to Newsom’s late-August proclamation convening the state’s legislature into special session “to take on Big Oil’s gas-price spikes,” the new legislation allows the state to require that refiners maintain a minimum inventory of fuel to avoid supply shortages that “create higher gasoline prices for consumers and higher profits for the industry,” the governor’s office said. While Valero did not reveal in its April 2025 statement any specific reasons for its decision on the Benicia refinery, in the wake of the market announcement, Brian W. Jones (R-Calif.) and Vince Fong (R-Calif.) both attributed the pending refinery closure to the legislation and policies heralded by Newsom and state regulatory departments. “Valero intends to shut down its Benicia refinery thanks to Newsom and radical Democrats’ extreme regulations and hostile business climate,” Jones said on Apr. 16, citing Phillips 66’s decision on the Los Angeles refinery and Chevron Corp.’s relocation of headquarters from San Ramon, Calif.,

Read More »

US BOEM begins process to replace current OCS lease sale plan

US Interior Secretary Doug Burgum directed the Bureau of Ocean Energy Management (BOEM) to start developing a plan for offshore oil and gas lease sales on the US Outer Continental Shelf (OCS), including likely sales in a newly established 27h OCS planning area offshore Alaska in the High Arctic. The 11th National OCS program will replace the current 10th Program (2024–29), which includes only three oil and gas lease sales over 5 years—all in the Gulf, Burgum said in a release Apr. 18.  BOEM will work to complete those sales, while it begins to develop the new program, he said. Earlier this month, Burgum directed BOEM to move forward a lease sale in the Gulf, starting with publication in June 2025 of a notice of sale. BOEM will soon publish in the Federal Register a request for information and comments which starts a 45-day public comment period that serves as the initial step in the multi-year planning process that details lease sales BOEM will hold in the coming years.  The Federal Register notice will also outline BOEM’s new jurisdiction over the High Arctic planning area offshore Alaska, as well as new boundaries for existing planning areas, Interior noted. The request for information will not propose a specific timeline for future lease sales or outline the potential sale areas. Instead, it invites stakeholders to provide recommendations for leasing opportunities and raise concerns about offshore leasing. BOEM manages 3.2 billion acres in the OCS, including 2,227 active oil and gas leases covering about 12.1 million acres in OCS regions. Of these, 469 leases are currently producing oil and gas. BOEM earlier in April increased its estimate of oil and gas reserves in the US Gulf’s OCS by 1.30 billion boe from its 2021 estimate, bringing the total reserve estimate to 7.04 billion

Read More »

Deep Data Center: Neoclouds as the ‘Picks and Shovels’ of the AI Gold Rush

In 1849, the discovery of gold in California ignited a frenzy, drawing prospectors from around the world in pursuit of quick fortune. While few struck it rich digging and sifting dirt, a different class of entrepreneurs quietly prospered: those who supplied the miners with the tools of the trade. From picks and shovels to tents and provisions, these providers became indispensable to the gold rush, profiting handsomely regardless of who found gold. Today, a new gold rush is underway, in pursuit of artificial intelligence. And just like the days of yore, the real fortunes may lie not in the gold itself, but in the infrastructure and equipment that enable its extraction. This is where neocloud players and chipmakers are positioned, representing themselves as the fundamental enablers of the AI revolution. Neoclouds: The Essential Tools and Implements of AI Innovation The AI boom has sparked a frenzy of innovation, investment, and competition. From generative AI applications like ChatGPT to autonomous systems and personalized recommendations, AI is rapidly transforming industries. Yet, behind every groundbreaking AI model lies an unsung hero: the infrastructure powering it. Enter neocloud providers—the specialized cloud platforms delivering the GPU horsepower that fuels AI’s meteoric rise. Let’s examine how neoclouds represent the “picks and shovels” of the AI gold rush, used for extracting the essential backbone of AI innovation. Neoclouds are emerging as indispensable players in the AI ecosystem, offering tailored solutions for compute-intensive workloads such as training large language models (LLMs) and performing high-speed inference. Unlike traditional hyperscalers (e.g., AWS, Azure, Google Cloud), which cater to a broad range of use cases, neoclouds focus exclusively on optimizing infrastructure for AI and machine learning applications. This specialization allows them to deliver superior performance at a lower cost, making them the go-to choice for startups, enterprises, and research institutions alike.

Read More »

Soluna Computing: Innovating Renewable Computing for Sustainable Data Centers

Dorothy 1A & 1B (Texas): These twin 25 MW facilities are powered by wind and serve Bitcoin hosting and mining workloads. Together, they consumed over 112,000 MWh of curtailed energy in 2024, demonstrating the impact of Soluna’s model. Dorothy 2 (Texas): Currently under construction and scheduled for energization in Q4 2025, this 48 MW site will increase Soluna’s hosting and mining capacity by 64%. Sophie (Kentucky): A 25 MW grid- and hydro-powered hosting center with a strong cost profile and consistent output. Project Grace (Texas): A 2 MW AI pilot project in development, part of Soluna’s transition into HPC and machine learning. Project Kati (Texas): With 166 MW split between Bitcoin and AI hosting, this project recently exited the Electric Reliability Council of Texas, Inc. planning phase and is expected to energize between 2025 and 2027. Project Rosa (Texas): A 187 MW flagship project co-located with wind assets, aimed at both Bitcoin and AI workloads. Land and power agreements were secured by the company in early 2025. These developments are part of the company’s broader effort to tackle both energy waste and infrastructure bottlenecks. Soluna’s behind-the-meter design enables flexibility to draw from the grid or directly from renewable sources, maximizing energy value while minimizing emissions. Competition is Fierce and a Narrower Focus Better Serves the Business In 2024, Soluna tested the waters of providing AI services via a  GPU-as-a-Service through a partnership with HPE, branded as Project Ada. The pilot aimed to rent out cloud GPUs for AI developers and LLM training. However, due to oversupply in the GPU market, delayed product rollouts (like NVIDIA’s H200), and poor demand economics, Soluna terminated the contract in March 2025. The cancellation of the contract with HPE frees up resources for Soluna to focus on what it believes the company does best: designing

Read More »

Quiet Genius at the Neutral Line: How Onics Filters Are Reshaping the Future of Data Center Power Efficiency

Why Harmonics Matter In a typical data center, nonlinear loads—like servers, UPS systems, and switch-mode power supplies—introduce harmonic distortion into the electrical system. These harmonics travel along the neutral and ground conductors, where they can increase current flow, cause overheating in transformers, and shorten the lifespan of critical power infrastructure. More subtly, they waste power through reactive losses that don’t show up on a basic utility bill, but do show up in heat, inefficiency, and increased infrastructure stress. Traditional mitigation approaches—like active harmonic filters or isolation transformers—are complex, expensive, and often require custom integration and ongoing maintenance. That’s where Onics’ solution stands out. It’s engineered as a shunt-style, low-pass filter: a passive device that sits in parallel with the circuit, quietly siphoning off problematic harmonics without interrupting operations.  The result? Lower apparent power demand, reduced electrical losses, and a quieter, more stable current environment—especially on the neutral line, where cumulative harmonic effects often peak. Behind the Numbers: Real-World Impact While the Onics filters offer a passive complement to traditional mitigation strategies, they aren’t intended to replace active harmonic filters or isolation transformers in systems that require them—they work best as a low-complexity enhancement to existing power quality designs. LoPilato says Onics has deployed its filters in mission-critical environments ranging from enterprise edge to large colos, and the data is consistent. In one example, a 6 MW data center saw a verified 9.2% reduction in energy consumption after deploying Onics filters at key electrical junctures. Another facility clocked in at 17.8% savings across its lighting and support loads, thanks in part to improved power factor and reduced transformer strain. The filters work by targeting high-frequency distortion—typically above the 3rd harmonic and up through the 35th. By passively attenuating this range, the system reduces reactive current on the neutral and helps stabilize

Read More »

New IEA Report Contrasts Energy Bottlenecks with Opportunities for AI and Data Center Growth

Artificial intelligence has, without question, crossed the threshold—from a speculative academic pursuit into the defining infrastructure of 21st-century commerce, governance, and innovation. What began in the realm of research labs and open-source models is now embedded in the capital stack of every major hyperscaler, semiconductor roadmap, and national industrial strategy. But as AI scales, so does its energy footprint. From Nvidia-powered GPU clusters to exascale training farms, the conversation across boardrooms and site selection teams has fundamentally shifted. It’s no longer just about compute density, thermal loads, or software frameworks. It’s about power—how to find it, finance it, future-proof it, and increasingly, how to generate it onsite. That refrain—“It’s all about power now”—has moved from a whisper to a full-throated consensus across the data center industry. The latest report from the International Energy Agency (IEA) gives this refrain global context and hard numbers, affirming what developers, utilities, and infrastructure operators have already sensed on the ground: the AI revolution will be throttled or propelled by the availability of scalable, sustainable, and dispatchable electricity. Why Energy Is the Real Bottleneck to Intelligence at Scale The major new IEA report puts it plainly: The transformative promise of AI will be throttled—or unleashed—by the world’s ability to deliver scalable, reliable, and sustainable electricity. The stakes are enormous. Countries that can supply the power AI craves will shape the future. Those that can’t may find themselves sidelined. Importantly, while AI poses clear challenges, the report emphasizes how it also offers solutions: from optimizing energy grids and reducing emissions in industrial sectors to enhancing energy security by supporting infrastructure defenses against cyberattacks. The report calls for immediate investments in both energy generation and grid capabilities, as well as stronger collaboration between the tech and energy sectors to avoid critical bottlenecks. The IEA advises that, for countries

Read More »

Colorado Eyes the AI Data Center Boom with Bold Incentive Push

Even as states work on legislation to limit data center development, it is clear that some locations are looking to get a bigger piece of the huge data center spending that the AI wave has created. It appears that politicians in Colorado took a look around and thought to themselves “Why is all that data center building going to Texas and Arizona? What’s wrong with the Rocky Mountain State?” Taking a page from the proven playbook that has gotten data centers built all over the country, Colorado is trying to jump on the financial incentives for data center development bandwagon. SB 24-085: A Statewide Strategy to Attract Data Center Investment Looking to significantly boost its appeal as a data center hub, Colorado is now considering Senate Bill 24-085, currently making its way through the state legislature. Sponsored by Senators Priola and Buckner and Representatives Parenti and Weinberg, this legislation promises substantial economic incentives in the form of state sales and use tax rebates for new data centers established within the state from fiscal year 2026 through 2033. Colorado hopes to position itself strategically to compete with neighboring states in attracting lucrative tech investments and high-skilled jobs. According to DataCenterMap.com, there are currently 53 data centers in the state, almost all located in the Denver area, but they are predominantly smaller facilities. In today’s era of massive AI-driven hyperscale expansion, Colorado is rarely mentioned in the same breath as major AI data center markets.  Some local communities have passed their own incentive packages, but SB 24-085 aims to offer a unified, statewide framework that can also help mitigate growing NIMBY (Not In My Backyard) sentiment around new developments. The Details: How SB 24-085 Works The bill, titled “Concerning a rebate of the state sales and use tax paid on new digital infrastructure

Read More »

Wonder Valley and the Great AI Pivot: Kevin O’Leary’s Bold Data Center Play

Data Center World 2025 drew record-breaking attendance, underscoring the AI-fueled urgency transforming infrastructure investment. But no session captivated the crowd quite like Kevin O’Leary’s electrifying keynote on Wonder Valley—his audacious plan to build the world’s largest AI compute data center campus. In a sweeping narrative that ranged from pandemic pivots to stranded gas and Branson-brand inspiration, O’Leary laid out a real estate and infrastructure strategy built for the AI era. A Pandemic-Era Pivot Becomes a Case Study in Digital Resilience O’Leary opened with a Shark Tank success story that doubled as a business parable. In 2019, a woman-led startup called Blueland raised $50 million to eliminate plastic cleaning bottles by shipping concentrated cleaning tablets in reusable kits. When COVID-19 shut down retail in 2020, her inventory was stuck in limbo—until she made an urgent call to O’Leary. What followed was a high-stakes, last-minute pivot: a union-approved commercial shoot in Brooklyn the night SAG-AFTRA shut down television production. The direct response ad campaign that resulted would not only liquidate the stranded inventory at full margin, but deliver something more valuable—data. By targeting locked-down consumers through local remnant TV ad slots and optimizing by conversion, Blueland saw unheard-of response rates as high as 17%. The campaign turned into a data goldmine: buyer locations, tablet usage patterns, household sizes, and contact details. Follow-up SMS campaigns would drive 30% reorders. “It built such a franchise in those 36 months,” O’Leary said, “with no retail. Now every retailer wants in.” The lesson? Build your infrastructure to control your data, and you build a business that scales even in chaos. This anecdote set the tone for the keynote: in a volatile world, infrastructure resilience and data control are the new core competencies. The Data Center Power Crisis: “There Is Not a Gig on the Grid” O’Leary

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »