Stay Ahead, Stay ONMINE

Algorithm Protection in the Context of Federated Learning 

While working at a biotech company, we aim to advance ML & AI Algorithms to enable, for example, brain lesion segmentation to be executed at the hospital/clinic location where patient data resides, so it is processed in a secure manner. This, in essence, is guaranteed by federated learning mechanisms, which we have adopted in numerous real-world hospital settings. However, when an algorithm is already considered as a company asset, we also need means that protect not only sensitive data, but also secure algorithms in a heterogeneous federated environment. Fig.1 High-level workflow and attack surface. Image by author Most algorithms are assumed to be encapsulated within docker-compatible containers, allowing them to use different libraries and runtimes independently. It is assumed that there is a 3rd party IT administrator who will aim to secure patients’ data and lock the deployment environment, making it inaccessible for algorithm providers. This perspective describes different mechanisms intended to package and protect containerized workloads against theft of intellectual property by a local system administrator.  To ensure a comprehensive approach, we will address protection measures across three critical layers: Algorithm code protection: Measures to secure algorithm code, preventing unauthorized access or reverse engineering. Runtime environment: Evaluates risks of administrators accessing confidential data within a containerized system. Deployment environment: Infrastructure safeguards against unauthorized system administrator access. Fig.2 Different layers of protection. Image by author Methodology After analysis of risks, we have identified two protection measures categories: Intellectual property theft and unauthorized distribution: preventing administrator users from accessing, copying, executing the algorithm.  Reverse engineering risk reduction: blocking administrator users from analyzing code to uncover and claim ownership. While understanding the subjectivity of this assessment, we have considered both qualitative and quantitative characteristics of all mechanisms. Qualitative assessment Categories mentioned were considered when selecting suitable solution and are considered in summary: Hardware dependency: potential lock-in and scalability challenges in federated systems. Software dependency: reflects maturity and long-term stability Hardware and Software dependency: measures setup complexity, deployment and maintenance effort Cloud dependency: risks of lock-in with a single cloud hypervisor Hospital environment: evaluates technology maturity and requirements heterogeneous hardware setups. Cost: covers for dedicated hardware, implementation and maintenance Quantitative assessment Subjective risk reduction quantitative assessment description: Considering the above methodology and assessment criteria, we came up with a list of mechanisms that have the potential to guarantee the objective.  Confidential containers Confidential Containers (CoCo) is an emerging CNCF technology that aims to deliver confidential runtime environments that will run CPU and GPU workloads while protecting the algorithm code and data from the hosting company. CoCo supports multiple TEE, including Intel TDX/SGX and AMD SEV hardware technologies, including extensions of NVidia GPU operators, that use hardware-backed protection of code and data during its execution, preventing scenarios in which a determined and skillful local administrator uses a local debugger to dump the contents of the container memory and has access to both the algorithm and data being processed.  Trust is built using cryptographic attestation of runtime environment and code that is executed. It makes sure the code is not tempered with nor read by remote admin. This appears to be a perfect fit for our problem, as the remote data site admin would not be able to access the algorithm code. Unfortunately, the current state of the CoCo software stack, despite continuous efforts, still suffers from security gaps that enable the malicious administrators to issue attestation for themselves and effectively bypass all the other protection mechanisms, rendering all of them effectively useless. Each time the technology gets closer to practical production readiness, a new fundamental security issue is discovered that needs to be addressed. It is worth noting that this community is fairly transparent in communicating gaps.  The often and rightfully recognized additional complexity introduced by TEEs and CoCo (specialized hardware, configuration burden, runtime overhead due to encryption) would be justifiable if the technology delivered on its promise of code protection. While TEE seems to be well adopted, CoCo is close but not there yet and based on our experiences the horizon keeps on moving, as new fundamental vulnerabilities are discovered and need to be addressed. In other words, if we had production-ready CoCo, it would have been a solution to our problem.  Host-based container image encryption at rest (protection at rest and in transit) This strategy is based on end-to-end protection of container images containing the algorithm. It protects the source code of the algorithm at rest and in transit but does not protect it at runtime, as the container needs to be decrypted prior to the execution. The malicious administrator at the site has direct or indirect access to the decryption key, so he can read container contents just after it is decrypted for the execution time.  Another attack scenario is to attach a debugger to the running container image. So host-based container image encryption at rest makes it harder to steal the algorithm from a storage device and in transit due to encryption, but moderately skilled administrators can decrypt and expose the algorithm. In our opinion, the increased practical effort of decrypting the algorithm (time, effort, skillset, infrastructure) from the container by the administrator who has access to the decryption key is too low to be considered as a valid algorithm protection mechanism. Prebaked custom virtual machine In this scenario the algorithm owner is delivering an encrypted virtual machine. The key can be added at boot time from the keyboard by someone else than admin (required at each reboot), from external storage (USB Key, very vulnerable, as anyone with physical access can attach the key storage), or using a remote SSH session (using Dropbear for instance) without allowing local admin to unlock the bootloader and disk. Effective and established technologies such as LUKS can be used to fully encrypt local VM filesystems including bootloader. However, even if the remote key is provided using a boot-level tiny SSH session by someone other than a malicious admin, the runtime is exposed to a hypervisor-level debugger attack, as after boot, the VM memory is decrypted and can be scanned for code and data. Still, this solution, especially with remotely provided keys by the algorithm owner, provides significantly increased algorithm code protection compared to encrypted containers because an attack requires more skills and determination than just decrypting the container image using a decryption key.  To prevent memory dump analysis, we considered deploying a prebaked host machine with ssh possessed keys at boot time, this removes any hypervisor level access to memory. As a side note, there are methods to freeze physical memory modules to delay loss of data. Distroless container images Distroless container images are reducing the number of layers and components to a minimum required to run the algorithm. The attack surface is greatly reduced, as there are fewer components prone to vulnerabilities and known attacks. They are also lighter in terms of storage, network transmission, and latency. However, despite these improvements, the algorithm code is not protected at all.  Distroless containers are recommended as more secure containers but not the containers that protect the algorithm, as the algorithm is there, container image can be easily mounted and algorithm can be stolen without a significant effort. Being distroless does not address our goal of protecting the algorithm code. Compiled algorithm Most machine learning algorithms are written in Python. This interpreted language makes it really easy not only to execute the algorithm code on other machines and in other environments but also to access source code and be able to modify the algorithm. The potential scenario even enables the party that steals the algorithm code to modify it, let’s say 30% or more of the source code, and claim it’s no longer the original algorithm, and could even make a legal action much harder to provide evidence of intellectual property infringement. Compiled languages, such as C, C++, Rust, when combined with strong compiler optimization (-O3 in the case of C, linker-time optimizations), make the source code not only unavailable as such, but also much harder to reverse engineer source code.  Compiler optimizations introduce significant control flow changes, mathematical operations substitutions, function inlining, code restructuring, and difficult stack tracing. This makes it much harder to reverse engineer the code, making it a practically infeasible option in some scenarios, thus it can be considered as a way to increase the cost of reverse engineering attack by orders of magnitude compared to plain Python code. There’s an increased complexity and skill gap, as most of the algorithms are written in Python and would have to be converted to C, C++ or Rust. This option does increase the cost of further development of the algorithm and even modifying it to make a claim of its ownership but it does not prevent the algorithm from being executed outside of the agreed contractual scope. Code obfuscation The established technique of making the code much less readable, harder to understand and develop further can be used to make algorithm evolutions much harder. Unfortunately, it does not prevent the algorithm from being executed outside of contractual scope. Also, the de-obfuscation technologies are getting much better, thanks to advanced language models, lowering the practical effectiveness of code obfuscation. Code obfuscation does increase the practical cost of algorithm reverse engineering, so it’s worth considering as an option combined with other options (for instance, with compiled code and custom VMs). Homomorphic Encryption as code protection mechanism Homomorphic Encryption (HE) is a promised technology aimed at protecting the data, very interesting from secure aggregation strategies of partial results in Federated Learning and analytics scenarios.  The aggregation party (with limited trust) can only process encrypted data and perform encrypted aggregations, then it can decrypt aggregated results without being able to decrypt any individual data. Practical applications of HE are limited due to its complexity, performance hits, limited number of supported operations, there’s observable progress (including GPU acceleration for HE) but still it’s a niche and emerging data protection technique. From an algorithm protection goal perspective, HE is not designed, nor can be made to protect the algorithm. So it’s not an algorithm protection mechanism at all. Conclusions Fig.3 Risk reduction scores, Image by author In essence, we described and assessed strategies and technologies to protect algorithm IP and sensitive data in the context of deploying Medical Algorithms and running them in potentially untrusted environments, such as hospitals. What’s visible, the most promising technologies are those that provide a degree of hardware isolation. However those make an algorithm provider completely dependent on the runtime it will be deployed. While compilation and obfuscation do not mitigate completely the risk of intellectual property theft, especially even basic LLM seem to be helpful, those methods, especially when combined, make algorithms very difficult, thus expensive, to use and modify the code. Which would already provide a degree of security. Prebaked host/virtual machines are the most common and adopted methods, extended with features like full disk encryption with keys acquired during boot via SSH, which could make it fairly difficult for local admin to access any data. However, especially pre-baked machines could cause certain compliance concerns at the hospital, and this needs to be assessed prior to establishing a federated network.  Key Hardware and Software vendors(Intel, AMD, NVIDIA, Microsoft, RedHat) recognized significant demand and continue to evolve, which gives a promise that training IP-protected algorithms in a federated manner, without disclosing patients’ data, will soon be within reach. However, hardware-supported methods are very sensitive to hospital internal infrastructure, which by nature is quite heterogeneous. Therefore, containerisation provides some promise of portability. Considering this, Confidential Containers technology seems to be a very tempting promise provided by collaborators, while it’s still not fullyproduction-readyy. Certainly combining above mechanisms, code, runtime and infrastructure environment supplemented with proper legal framework decrease residual risks, however no solution provides absolute protection particularly against determined adversaries with privileged access – the combined effect of these measures creates substantial barriers to intellectual property theft.  We deeply appreciate and value feedback from the community helping to further steer future efforts to develop sustainable, secure and effective methods for accelerating AI development and deployment. Together, we can tackle these challenges and achieve groundbreaking progress, ensuring robust security and compliance in various contexts.  Contributions: The author would like to thank Jacek Chmiel, Peter Fernana Richie, Vitor Gouveia and the Federated Open Science team at Roche for brainstorming, pragmatic solution-oriented thinking, and contributions. Link & Resources Intel Confidential Containers Guide  Nvidia blog describing integration with CoCo Confidential Containers Github & Kata Agent Policies Commercial Vendors: Edgeless systems contrast, Redhat & Azure Remote Unlock of LUKS encrypted disk A perfect match to elevate privacy-enhancing healthcare analytics Differential Privacy and Federated Learning for Medical Data

While working at a biotech company, we aim to advance ML & AI Algorithms to enable, for example, brain lesion segmentation to be executed at the hospital/clinic location where patient data resides, so it is processed in a secure manner. This, in essence, is guaranteed by federated learning mechanisms, which we have adopted in numerous real-world hospital settings. However, when an algorithm is already considered as a company asset, we also need means that protect not only sensitive data, but also secure algorithms in a heterogeneous federated environment.

Fig.1 High-level workflow and attack surface. Image by author

Most algorithms are assumed to be encapsulated within docker-compatible containers, allowing them to use different libraries and runtimes independently. It is assumed that there is a 3rd party IT administrator who will aim to secure patients’ data and lock the deployment environment, making it inaccessible for algorithm providers. This perspective describes different mechanisms intended to package and protect containerized workloads against theft of intellectual property by a local system administrator. 

To ensure a comprehensive approach, we will address protection measures across three critical layers:

  • Algorithm code protection: Measures to secure algorithm code, preventing unauthorized access or reverse engineering.
  • Runtime environment: Evaluates risks of administrators accessing confidential data within a containerized system.
  • Deployment environment: Infrastructure safeguards against unauthorized system administrator access.
Fig.2 Different layers of protection. Image by author

Methodology

After analysis of risks, we have identified two protection measures categories:

  • Intellectual property theft and unauthorized distribution: preventing administrator users from accessing, copying, executing the algorithm. 
  • Reverse engineering risk reduction: blocking administrator users from analyzing code to uncover and claim ownership.

While understanding the subjectivity of this assessment, we have considered both qualitative and quantitative characteristics of all mechanisms.

Qualitative assessment

Categories mentioned were considered when selecting suitable solution and are considered in summary:

  • Hardware dependency: potential lock-in and scalability challenges in federated systems.
  • Software dependency: reflects maturity and long-term stability
  • Hardware and Software dependency: measures setup complexity, deployment and maintenance effort
  • Cloud dependency: risks of lock-in with a single cloud hypervisor
  • Hospital environment: evaluates technology maturity and requirements heterogeneous hardware setups.
  • Cost: covers for dedicated hardware, implementation and maintenance

Quantitative assessment

Subjective risk reduction quantitative assessment description:

Considering the above methodology and assessment criteria, we came up with a list of mechanisms that have the potential to guarantee the objective. 

Confidential containers

Confidential Containers (CoCo) is an emerging CNCF technology that aims to deliver confidential runtime environments that will run CPU and GPU workloads while protecting the algorithm code and data from the hosting company.

CoCo supports multiple TEE, including Intel TDX/SGX and AMD SEV hardware technologies, including extensions of NVidia GPU operators, that use hardware-backed protection of code and data during its execution, preventing scenarios in which a determined and skillful local administrator uses a local debugger to dump the contents of the container memory and has access to both the algorithm and data being processed. 

Trust is built using cryptographic attestation of runtime environment and code that is executed. It makes sure the code is not tempered with nor read by remote admin.

This appears to be a perfect fit for our problem, as the remote data site admin would not be able to access the algorithm code. Unfortunately, the current state of the CoCo software stack, despite continuous efforts, still suffers from security gaps that enable the malicious administrators to issue attestation for themselves and effectively bypass all the other protection mechanisms, rendering all of them effectively useless. Each time the technology gets closer to practical production readiness, a new fundamental security issue is discovered that needs to be addressed. It is worth noting that this community is fairly transparent in communicating gaps. 

The often and rightfully recognized additional complexity introduced by TEEs and CoCo (specialized hardware, configuration burden, runtime overhead due to encryption) would be justifiable if the technology delivered on its promise of code protection. While TEE seems to be well adopted, CoCo is close but not there yet and based on our experiences the horizon keeps on moving, as new fundamental vulnerabilities are discovered and need to be addressed.

In other words, if we had production-ready CoCo, it would have been a solution to our problem. 

Host-based container image encryption at rest (protection at rest and in transit)

This strategy is based on end-to-end protection of container images containing the algorithm.

It protects the source code of the algorithm at rest and in transit but does not protect it at runtime, as the container needs to be decrypted prior to the execution.

The malicious administrator at the site has direct or indirect access to the decryption key, so he can read container contents just after it is decrypted for the execution time. 

Another attack scenario is to attach a debugger to the running container image.

So host-based container image encryption at rest makes it harder to steal the algorithm from a storage device and in transit due to encryption, but moderately skilled administrators can decrypt and expose the algorithm.

In our opinion, the increased practical effort of decrypting the algorithm (time, effort, skillset, infrastructure) from the container by the administrator who has access to the decryption key is too low to be considered as a valid algorithm protection mechanism.

Prebaked custom virtual machine

In this scenario the algorithm owner is delivering an encrypted virtual machine.

The key can be added at boot time from the keyboard by someone else than admin (required at each reboot), from external storage (USB Key, very vulnerable, as anyone with physical access can attach the key storage), or using a remote SSH session (using Dropbear for instance) without allowing local admin to unlock the bootloader and disk.

Effective and established technologies such as LUKS can be used to fully encrypt local VM filesystems including bootloader.

However, even if the remote key is provided using a boot-level tiny SSH session by someone other than a malicious admin, the runtime is exposed to a hypervisor-level debugger attack, as after boot, the VM memory is decrypted and can be scanned for code and data.

Still, this solution, especially with remotely provided keys by the algorithm owner, provides significantly increased algorithm code protection compared to encrypted containers because an attack requires more skills and determination than just decrypting the container image using a decryption key. 

To prevent memory dump analysis, we considered deploying a prebaked host machine with ssh possessed keys at boot time, this removes any hypervisor level access to memory. As a side note, there are methods to freeze physical memory modules to delay loss of data.

Distroless container images

Distroless container images are reducing the number of layers and components to a minimum required to run the algorithm.

The attack surface is greatly reduced, as there are fewer components prone to vulnerabilities and known attacks. They are also lighter in terms of storage, network transmission, and latency.

However, despite these improvements, the algorithm code is not protected at all. 

Distroless containers are recommended as more secure containers but not the containers that protect the algorithm, as the algorithm is there, container image can be easily mounted and algorithm can be stolen without a significant effort.

Being distroless does not address our goal of protecting the algorithm code.

Compiled algorithm

Most machine learning algorithms are written in Python. This interpreted language makes it really easy not only to execute the algorithm code on other machines and in other environments but also to access source code and be able to modify the algorithm.

The potential scenario even enables the party that steals the algorithm code to modify it, let’s say 30% or more of the source code, and claim it’s no longer the original algorithm, and could even make a legal action much harder to provide evidence of intellectual property infringement.

Compiled languages, such as C, C++, Rust, when combined with strong compiler optimization (-O3 in the case of C, linker-time optimizations), make the source code not only unavailable as such, but also much harder to reverse engineer source code. 

Compiler optimizations introduce significant control flow changes, mathematical operations substitutions, function inlining, code restructuring, and difficult stack tracing.

This makes it much harder to reverse engineer the code, making it a practically infeasible option in some scenarios, thus it can be considered as a way to increase the cost of reverse engineering attack by orders of magnitude compared to plain Python code.

There’s an increased complexity and skill gap, as most of the algorithms are written in Python and would have to be converted to C, C++ or Rust.

This option does increase the cost of further development of the algorithm and even modifying it to make a claim of its ownership but it does not prevent the algorithm from being executed outside of the agreed contractual scope.

Code obfuscation

The established technique of making the code much less readable, harder to understand and develop further can be used to make algorithm evolutions much harder.

Unfortunately, it does not prevent the algorithm from being executed outside of contractual scope.

Also, the de-obfuscation technologies are getting much better, thanks to advanced language models, lowering the practical effectiveness of code obfuscation.

Code obfuscation does increase the practical cost of algorithm reverse engineering, so it’s worth considering as an option combined with other options (for instance, with compiled code and custom VMs).

Homomorphic Encryption as code protection mechanism

Homomorphic Encryption (HE) is a promised technology aimed at protecting the data, very interesting from secure aggregation strategies of partial results in Federated Learning and analytics scenarios. 

The aggregation party (with limited trust) can only process encrypted data and perform encrypted aggregations, then it can decrypt aggregated results without being able to decrypt any individual data.

Practical applications of HE are limited due to its complexity, performance hits, limited number of supported operations, there’s observable progress (including GPU acceleration for HE) but still it’s a niche and emerging data protection technique.

From an algorithm protection goal perspective, HE is not designed, nor can be made to protect the algorithm. So it’s not an algorithm protection mechanism at all.

Conclusions

Fig.3 Risk reduction scores, Image by author

In essence, we described and assessed strategies and technologies to protect algorithm IP and sensitive data in the context of deploying Medical Algorithms and running them in potentially untrusted environments, such as hospitals.

What’s visible, the most promising technologies are those that provide a degree of hardware isolation. However those make an algorithm provider completely dependent on the runtime it will be deployed. While compilation and obfuscation do not mitigate completely the risk of intellectual property theft, especially even basic LLM seem to be helpful, those methods, especially when combined, make algorithms very difficult, thus expensive, to use and modify the code. Which would already provide a degree of security.

Prebaked host/virtual machines are the most common and adopted methods, extended with features like full disk encryption with keys acquired during boot via SSH, which could make it fairly difficult for local admin to access any data. However, especially pre-baked machines could cause certain compliance concerns at the hospital, and this needs to be assessed prior to establishing a federated network. 

Key Hardware and Software vendors(Intel, AMD, NVIDIA, Microsoft, RedHat) recognized significant demand and continue to evolve, which gives a promise that training IP-protected algorithms in a federated manner, without disclosing patients’ data, will soon be within reach. However, hardware-supported methods are very sensitive to hospital internal infrastructure, which by nature is quite heterogeneous. Therefore, containerisation provides some promise of portability. Considering this, Confidential Containers technology seems to be a very tempting promise provided by collaborators, while it’s still not fullyproduction-readyy.

Certainly combining above mechanisms, code, runtime and infrastructure environment supplemented with proper legal framework decrease residual risks, however no solution provides absolute protection particularly against determined adversaries with privileged access – the combined effect of these measures creates substantial barriers to intellectual property theft. 

We deeply appreciate and value feedback from the community helping to further steer future efforts to develop sustainable, secure and effective methods for accelerating AI development and deployment. Together, we can tackle these challenges and achieve groundbreaking progress, ensuring robust security and compliance in various contexts. 

Contributions: The author would like to thank Jacek Chmiel, Peter Fernana Richie, Vitor Gouveia and the Federated Open Science team at Roche for brainstorming, pragmatic solution-oriented thinking, and contributions.

Link & Resources

Intel Confidential Containers Guide 

Nvidia blog describing integration with CoCo Confidential Containers Github & Kata Agent Policies

Commercial Vendors: Edgeless systems contrast, Redhat & Azure

Remote Unlock of LUKS encrypted disk

A perfect match to elevate privacy-enhancing healthcare analytics

Differential Privacy and Federated Learning for Medical Data

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

VMware (quietly) brings back its free ESXi hypervisor

By many accounts, Broadcom’s handling of the VMware acquisition was clumsy and caused many enterprises to reevaluate their relationship with the vendor The move to subscription models was tilted in favor of larger customers and longer, three-year licenses. Because the string of bad publicity and VMware’s competitors pounced, offering migration

Read More »

CoreWeave offers cloud-based Grace Blackwell GPUs for AI training

Cloud services provider CoreWeave has announced it is offering Nvidia’s GB200 NVL72 systems, otherwise known as “Grace Blackwell,” to customers looking to do intensive AI training. CoreWeave said its portfolio of cloud services are optimized for the GB200 NVL72, including CoreWeave’s Kubernetes Service, Slurm on Kubernetes (SUNK), Mission Control, and

Read More »

Kyndryl launches private cloud services for enterprise AI deployments

Kyndryl’s AI Private Cloud environment includes services and capabilities around containerization, data science tools, and microservices to deploy and manage AI applications on the private cloud. The service supports AI data foundations and MLOps/LLMOps services, letting customers manage their AI data pipelines and machine learning operation, Kyndryl stated. These tools facilitate

Read More »

US Energy Expands Carbon Capture Assets With New Acquisition

U.S. Energy Corporation strengthened its industrial gas and carbon capture platform in Montana by acquiring a privately held company for $0.2 million. With the acquisition, U.S. Energy secured approximately 2,300 net acres with carbon dioxide (CO2) rights that are highly contiguous to its existing position across Montana’s Kevin Dome structure. Additionally, the acquisition includes an active Class II injection well to sequester CO2 captured from U.S. Energy’s upcoming industrial gas processing facility, the company said in a media release. The permitted well advances the company’s carbon capture, utilization, and storage (CCUS) initiatives within its industrial gas development platform, U.S. Energy said. The Class II injection well is a key part of U.S. Energy’s plan to store CO2 from its upcoming gas processing facility. The well has active permits from the U.S. Environmental Protection Agency (EPA) under the Safe Drinking Water Act’s Underground Injection Control Program (UIC), ensuring compliance with regulations for safe CO2 storage, the company said. U.S. Energy added that the acquisition adds CCUS-ready infrastructure and supports its strategy to develop low-emission gas operations while establishing itself as a U.S. supplier of clean helium and other essential gases. “This acquisition marks a meaningful milestone forward in our efforts to integrate carbon sequestration into our industrial gas platform” Ryan Smith, Chief Executive Officer of U.S. Energy, said. “The addition of permitted injection infrastructure and strategic acreage strengthens our position across the Kevin Dome and accelerates our ability to deliver clean, domestically sourced helium while sequestering CO₂ at scale. We are committed to executing a responsible growth strategy that aligns with global demand for lower-carbon energy solutions”. The acquisition enhances U.S. Energy’s control over a contiguous acreage block in the Kevin Dome, a geological formation recognized for its helium-rich and CO₂-dominated gas systems. The company plans to present a Monitoring, Reporting,

Read More »

Carney, Poilievre Scrap Over Energy and Housing in Canada Debate

Liberal Party Leader Mark Carney argued that he represents change from Justin Trudeau’s nine years in power as he fended off attacks from his rivals during the final televised debate of Canada’s election. “Look, I’m a very different person from Justin Trudeau,” Carney said in response to comments from Conservative Leader Pierre Poilievre, his chief opponent in the election campaign that concludes April 28. Carney’s Liberals lead by several percentage points in most polls, marking a stunning reversal from the start of this year, when Trudeau was still the party’s leader and Poilievre’s Conservatives were ahead by more than 20 percentage points in some surveys. Trudeau’s resignation and US President Donald Trump’s economic and sovereignty threats against Canada have upended the race. Poilievre sought to remind Canadians of their complaints about the Liberal government, while Carney tried to distance himself from Trudeau’s record.  Poilievre argued that Carney was an adviser to Trudeau’s Liberals during a time when energy projects were stymied and the cost of living soared — especially housing prices. Carney, 60, responded that he has been prime minister for just a month, and pointed to moves he made to reverse some of Trudeau’s policies, such as scrapping the carbon tax on consumer fuels. As for inflation, Carney noted that it was well under control when he was governor of the Bank of Canada.  “I know it may be difficult, Mr. Poilievre,” Carney told him. “You spent years running against Justin Trudeau and the carbon tax and they’re both gone.” “Well, you’re doing a good impersonation of him, with the same policies,” Poilievre shot back. Trudeau announced in January that he was stepping down as prime minister and Carney was sworn in as his replacement on March 14. He triggered an election nine days later. “The question you have

Read More »

Gunvor, Adnoc Shortlisted for Shell South Africa Unit

Abu Dhabi National Oil Co. and Swiss commodities trading firm Gunvor are among companies that have been shortlisted to buy Shell Plc’s downstream assets in South Africa, according to people familiar with the matter.  The two companies are strong contenders for the assets that are valued at about $1 billion, said the people, who asked not to be identified as the information is private. Previous potential bidders including Trafigura’s Puma Energy, Sasol Ltd. and South Africa’s PetroSA are no longer in the running, two of the people said.  “While Adnoc Distribution regularly reviews opportunities for domestic and international growth, we don’t comment on market speculation,” Adnoc’s fuel retail unit said. Shell, Gunvor, Trafigura and Sasol declined to comment. PetroSA did not immediately reply to a request for comment. Shell has been looking to offload the assets, which include about 600 fuel stations and trading operations in Africa’s biggest economy, as part of a broader strategy to focus on regions and businesses that offer higher returns. The assets are attractive for trading firms since they ensure demand for fuels that they can then supply. Adnoc and other Middle East oil companies such as Saudi Aramco have been expanding their trading arms as they look to break into new markets.   Shell is working with adviser Rothschild & Co and a winner could be announced in the coming weeks, the people said. Talks are continuing and there’s no certainty there will be a final sale, they said. Saudi Aramco has also been involved in the process, but it wasn’t immediately clear if it was still in the running, the people said. Aramco declined to comment. A deal would give the buyer about 10% of South Africa’s fuel stations. The market in the country has changed significantly in recent years with trader Glencore Plc acquiring

Read More »

ICYMI: Trump Administration Adds Two DOE Critical Minerals Projects to Federal Permitting Dashboard

ICYMI— The Federal Permitting Improvement Steering Council (Permitting Council) today announced increased transparency and accountability for the federal permitting of two Department of Energy (DOE) critical minerals projects. The projects — Michigan Potash and the South West Arkansas Project — are part of the first wave of critical minerals projects added to the Permitting Dashboard in response to President Trump’s Executive Order, Immediate Measures to Increase American Mineral Production. Once completed, both DOE-supported projects will help meet President Trump’s commitment to bolster domestic production of America’s vast mineral resources, support more American jobs and reduce reliance on foreign supply chains. The Michigan Potash Project, supported by DOE’s Loan Programs Office, is projected to produce the largest American-based source of high-quality potash fertilizer and food-grade salt using mechanical vapor recompression technology and geothermal heat from subsurface brine. Once completed, this project will reduce reliance on potash imports, support American farmers, improve food security, and create 200 permanent and 400 construction sector jobs. DOE announced a conditional commitment for a loan guarantee of up to $1.26 billion to Michigan Potash in January 2025. The South West Arkansas Project, under DOE’s Office of Manufacturing and Energy Supply Chains, supports the construction of a world-class Direct Lithium Extraction facility that will produce battery-grade lithium carbonate from lithium-rich brine in North America. Once completed, this project will help secure the domestic lithium supply chain and is expected to create roughly 100 direct long-term jobs and 300 construction sector jobs. These additions to the Federal Permitting Dashboard reflect the Administration’s commitment to strengthen domestic supply chains for critical minerals and materials, reduce dependence on foreign sources, and advance President Trump’s bold agenda for American energy dominance through a more secure, affordable, and reliable U.S. energy system. The Department looks forward to working with federal partners, project

Read More »

EVOL: Courting wood, grid zombies and Easter wake loss

This week, Wood provided updates on Sidara’s proposed £250 million takeover, NESO declared war on zombies in the grid queue, and Equinor and Orsted warned of the impacts of wake loss. Aberdeen-headquartered Wood received a non-binding takeover bid from Dubai-based rival Sidara worth £250m, a significant drop-off compared to last year’s £1.5 billion bid. Our reporters discuss this, Wood’s shares being suspended and the impacts of yet another Scottish company being bought over by international competitors. Next up, the UK’s National Energy System Operator (NESO) unveiled plans to get rid of ‘zombies’ from the grid queue in a collaboration with regulator Ofgem. This could see up to 360GW of projects on the current queue have their contracts downgraded because they are not ready. What does this mean, and is it a result of too much dithering from the UK? Finally, European energy giants Equinor and Orsted have said offshore wind revenues could take a £363m hit due to other projects getting in the way of their turbines. Although those in the Tour de France peloton don’t mind the frontrunner taking the brunt of the wind resistance, turbine operators do. Does the industry need to share its survey results so that everyone can benefit from the North Sea breeze? Listen to Energy Voice Out Loud on your podcast platform of choice.

Read More »

Trump administration moves to curb energy regulation; BLM nominee stands down

The Trump administration issued two policy directives Apr. 10 to curb energy regulations, the same day the president’s choice to lead the Bureau of Land Management (BLM) pulled her nomination.  Kathleen Sgamma, former head of Western Energy Alliance (WEA), an oil and gas trade association, withdrew her nomination after a memo was leaked on X that included critical remarks following the Jan. 6, 2021, attack on the US Capitol. In the memo to WEA executives, Sgamma said she was “disgusted” by Trump “spreading misinformation” on Jan. 6 and “dishonoring the vote of the people.” The Senate was to conduct a confirmation hearing Apr. 10.  Prior to her withdrawal, industry had praised the choice of Sgamma to head the agency that determines the rules for oil and gas operations on federal lands.  Deregulation On the deregulation front, the Interior Department said it would no longer require BLM to prepare environmental impact statements (EIS) for about 3,244 oil and gas leases in seven western states. The move comes in response to two executive orders by President Donald Trump in January to increase US oil and gas production “by reducing regulatory barriers for oil and gas companies” and expediting development permits, Interior noted (OGJ Online, Jan. 21, 2025). Under the policy, BLM would no longer have to prepare an EIS for oil and gas leasing decisions on about 3.5 million acres across Colorado, New Mexico, North Dakota, South Dakota, Utah, and Wyoming.  BLM currently manages over 23 million acres of federal land leased for oil and gas development.  The agency said it will look for ways to comply with the National Environmental Policy Act (NEPA), a 1970 law that requires federal agencies to assess the potential environmental impacts of their proposed actions.  In recent years, courts have increasingly delayed lease sales and projects,

Read More »

The Rise of AI Factories: Transforming Intelligence at Scale

AI Factories Redefine Infrastructure The architecture of AI factories reflects a paradigm shift that mirrors the evolution of the industrial age itself—from manual processes to automation, and now to autonomous intelligence. Nvidia’s framing of these systems as “factories” isn’t just branding; it’s a conceptual leap that positions AI infrastructure as the new production line. GPUs are the engines, data is the raw material, and the output isn’t a physical product, but predictive power at unprecedented scale. In this vision, compute capacity becomes a strategic asset, and the ability to iterate faster on AI models becomes a competitive differentiator, not just a technical milestone. This evolution also introduces a new calculus for data center investment. The cost-per-token of inference—how efficiently a system can produce usable AI output—emerges as a critical KPI, replacing traditional metrics like PUE or rack density as primary indicators of performance. That changes the game for developers, operators, and regulators alike. Just as cloud computing shifted the industry’s center of gravity over the past decade, the rise of AI factories is likely to redraw the map again—favoring locations with not only robust power and cooling, but with access to clean energy, proximity to data-rich ecosystems, and incentives that align with national digital strategies. The Economics of AI: Scaling Laws and Compute Demand At the heart of the AI factory model is a requirement for a deep understanding of the scaling laws that govern AI economics. Initially, the emphasis in AI revolved around pretraining large models, requiring massive amounts of compute, expert labor, and curated data. Over five years, pretraining compute needs have increased by a factor of 50 million. However, once a foundational model is trained, the downstream potential multiplies exponentially, while the compute required to utilize a fully trained model for standard inference is significantly less than

Read More »

Google’s AI-Powered Grid Revolution: How Data Centers Are Reshaping the U.S. Power Landscape

Google Unveils Groundbreaking AI Partnership with PJM and Tapestry to Reinvent the U.S. Power Grid In a move that underscores the growing intersection between digital infrastructure and energy resilience, Google has announced a major new initiative to modernize the U.S. electric grid using artificial intelligence. The company is partnering with PJM Interconnection—the largest grid operator in North America—and Tapestry, an Alphabet moonshot backed by Google Cloud and DeepMind, to develop AI tools aimed at transforming how new power sources are brought online. The initiative, detailed in a blog post by Alphabet and Google President Ruth Porat, represents one of Google’s most ambitious energy collaborations to date. It seeks to address mounting challenges facing grid operators, particularly the explosive backlog of energy generation projects that await interconnection in a power system unprepared for 21st-century demands. “This is our biggest step yet to use AI for building a stronger, more resilient electricity system,” Porat wrote. Tapping AI to Tackle an Interconnection Crisis The timing is critical. The U.S. energy grid is facing a historic inflection point. According to the Lawrence Berkeley National Laboratory, more than 2,600 gigawatts (GW) of generation and storage projects were waiting in interconnection queues at the end of 2023—more than double the total installed capacity of the entire U.S. grid. Meanwhile, the Federal Energy Regulatory Commission (FERC) has revised its five-year demand forecast, now projecting U.S. peak load to rise by 128 GW before 2030—more than triple the previous estimate. Grid operators like PJM are straining to process a surge in interconnection requests, which have skyrocketed from a few dozen to thousands annually. This wave of applications has exposed the limits of legacy systems and planning tools. Enter AI. Tapestry’s role is to develop and deploy AI models that can intelligently manage and streamline the complex process of

Read More »

Podcast: Vaire Computing Bets on Reversible Logic for ‘Near Zero Energy’ AI Data Centers

The AI revolution is charging ahead—but powering it shouldn’t cost us the planet. That tension lies at the heart of Vaire Computing’s bold proposition: rethinking the very logic that underpins silicon to make chips radically more energy efficient. Speaking on the Data Center Frontier Show podcast, Vaire CEO Rodolfo Rossini laid out a compelling case for why the next era of compute won’t just be about scaling transistors—but reinventing the way they work. “Moore’s Law is coming to an end, at least for classical CMOS,” Rossini said. “There are a number of potential architectures out there—quantum and photonics are the most well known. Our bet is that the future will look a lot like existing CMOS, but the logic will look very, very, very different.” That bet is reversible computing—a largely untapped architecture that promises major gains in energy efficiency by recovering energy lost during computation. A Forgotten Frontier Unlike conventional chips that discard energy with each logic operation, reversible chips can theoretically recycle that energy. The concept, Rossini explained, isn’t new—but it’s long been overlooked. “The tech is really old. I mean really old,” Rossini said. “The seeds of this technology were actually at the very beginning of the industrial revolution.” Drawing on the work of 19th-century mechanical engineers like Sadi Carnot and later insights from John von Neumann, the theoretical underpinnings of reversible computing stretch back decades. A pivotal 1961 paper formally connected reversibility to energy efficiency in computing. But progress stalled—until now. “Nothing really happened until a team of MIT students built the first chip in the 1990s,” Rossini noted. “But they were trying to build a CPU, which is a world of pain. There’s a reason why I don’t think there’s been a startup trying to build CPUs for a very, very long time.” AI, the

Read More »

Pennsylvania’s Homer City Energy Campus: A Brownfield Transformed for Data Center Innovation

The redevelopment of the Homer City Generating Station in Pennsylvania represents an important transformation from a decommissioned coal-fired power plant to a state-of-the-art natural gas-powered data center campus, showing the creative reuse of a large brownfield site and the creation of what can be a significant location in power generation and the digital future. The redevelopment will address the growing energy demands of artificial intelligence and high-performance computing technologies, while also contributing to Pennsylvania’s digital advancement, in an area not known as a hotbed of technical prowess. Brownfield Development Established in 1969, the original generating station was a 2-gigawatt coal-fired power plant located near Homer City, Indiana County, Pennsylvania. The site was formerly the largest coal-burning power plant in the state, and known for its 1,217-foot chimney, the tallest in the United States. In April 2023, the owners announced its closure due to competition from cheaper natural gas and the rising costs of environmental compliance. The plant was officially decommissioned on July 1, 2023, and its demolition, including the iconic chimney, was completed by March 22, 2025. ​ The redevelopment project, led by Homer City Redevelopment (HCR) in partnership with Kiewit Power Constructors Co., plans to transform the 3,200-acre site into the Homer City Energy Campus, via construction of a 4.5-gigawatt natural gas-fired power plant, making it the largest of its kind in the United States. Gas Turbines This plant will utilize seven high-efficiency, hydrogen-enabled 7HA.02 gas turbines supplied by GE Vernova, with deliveries expected to begin in 2026. ​The GE Vernova gas turbine has been seeing significant interest in the power generation market as new power plants have been moving to the planning stage. The GE Vernova 7HA.02 is a high-efficiency, hydrogen-enabled gas turbine designed for advanced power generation applications. As part of GE Vernova’s HA product line, it

Read More »

Dell data center modernization gear targets AI, HPC workloads

The update starts with new PowerEdge R470, R570, R670 and R770 servers featuring Intel Xeon 6 with P-cores processors in single- and dual-socket configurations designed to handle high-performance computing, virtualization, analytics and artificial intelligence inferencing. Dell said they save up to half of the energy costs of previous server generations while supporting up to 50% more cores per processors and 67% better performance. With the R770, up to 80% of space can be saved and a 42U rack. They feature the Dell Modular Hardware System architecture, which is based on Open Compute Project standards. The controller system also received a significant update, with improvements to Dell OpenManage and Integrated Dell Remote Access Controller providing real-time monitoring, while the Dell PowerEdge RAID Controller for PCIe Gen 5 hardware reduces write latency up to 33-fold.

Read More »

Intel sells off majority stake in its FPGA business

Altera will continue offering field-programmable gate array (FPGA) products across a wide range of use cases, including automotive, communications, data centers, embedded systems, industrial, and aerospace.  “People were a bit surprised at Intel’s sale of the majority stake in Altera, but they shouldn’t have been. Lip-Bu indicated that shoring up Intel’s balance sheet was important,” said Jim McGregor, chief analyst with Tirias Research. The Altera has been in the works for a while and is a relic of past mistakes by Intel to try to acquire its way into AI, whether it was through FPGAs or other accelerators like Habana or Nervana, note Anshel Sag, principal analyst with Moor Insight and Research. “Ultimately, the 50% haircut on the valuation of Altera is unfortunate, but again is a demonstration of Intel’s past mistakes. I do believe that finishing the process of spinning it out does give Intel back some capital and narrows the company’s focus,” he said. So where did it go wrong? It wasn’t with FPGAs because AMD is making a good run of it with its Xilinx acquisition. The fault, analysts say, lies with Intel, which has a terrible track record when it comes to acquisitions. “Altera could have been a great asset to Intel, just as Xilinx has become a valuable asset to AMD. However, like most of its acquisitions, Intel did not manage Altera well,” said McGregor.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »