Stay Ahead, Stay ONMINE

ByteDance’s UI-TARS can take over your computer, outperforms GPT-4o and Claude

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More A new AI agent has emerged from the parent company of TikTok to take control of your computer and perform complex workflows. Much like Anthropic’s Computer Use, ByteDance’s new UI-TARS understands graphical user interfaces (GUIs), applies […]

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More


A new AI agent has emerged from the parent company of TikTok to take control of your computer and perform complex workflows.

Much like Anthropic’s Computer Use, ByteDance’s new UI-TARS understands graphical user interfaces (GUIs), applies reasoning and takes autonomous, step-by-step action. 

Trained on roughly 50B tokens and offered in 7B and 72B parameter versions, the PC/MacOS agents achieves state-of-the-art (SOTA) performance on 10-plus GUI benchmarks across performance, perception, grounding and overall agent capabilities, consistently beating out OpenAI’s GPT-4o, Claude and Google’s Gemini.

“Through iterative training and reflection tuning, UI-TARS continuously learns from its mistakes and adapts to unforeseen situations with minimal human intervention,” researchers from ByteDance and Tsinghua University write in a new research paper

Source: Arxiv

How UI-TARS explains its thinking

UI-TARS works across desktop, mobile and web applications, using multimodal inputs (text, images, interactions) to understand visual environments.

Its UI features two tabs — one to the left showing its step-by-step “thinking,” and a larger one to the right where it pulls up files, websites and apps and automatically takes action. 

For example, in a demo video released today, the model is prompted to “Find round trip flights from SEA to NYC on the 5th and return on the 10th next month and filter by price in ascending order.”

In response, UI-TARS navigates to the website for Delta Airlines, fills in the “from” and “to” fields, clicks in the relevant dates and sorts and filters by price, explaining each step in its thinking box before taking action. 

In another scenario, it is instructed to install an autoDocstring extension in VS Code. Here is its step-by-step thinking as it completes that task: 

  • It first reports that “to proceed with installing the autoDocstring extension in VS Code, I first need to open the VS Code application.” 
  • Recognizing that the VS Code window has not fully loaded, the model notes that “it is necessary to wait for the application to finish initializing before proceeding with the installation of the autoDocstring extension. This ensures that all required functionalities are available for the next steps.” 
  • It then explains that it must access the Extensions view in VS Code, which can be done by clicking on a tab in the left sidebar. 
  • Running into a small glitch, it reasons: “The previous attempt to click on the ‘Extensions’ tab may not have been precise enough, so I will try clicking on it again to ensure the Extensions view opens successfully.”
  • Once in the Extensions view, it types in ‘autoDocstring’ before concluding: “Since the installation process has already been initiated, there is no further action required at this moment. I will wait for the installation to complete and confirm its success once the process is finished.”

Outperforming its rivals

Across a variety of benchmarks, researchers report that UI-TARS consistently outranked OpenAI’s GPT-4o; Anthropic’s Claude-3.5-Sonnet; Gemini-1.5-Pro and Gemini-2.0; four Qwen models; and numerous academic models.

For instance, in VisualWebBench — which measures a model’s ability to ground web elements including webpage quality assurance and optical character recognition — UI-TARS 72B scored 82.8%, outperforming GPT-4o (78.5%) and Claude 3.5 (78.2%). 

It also did significantly better on WebSRC benchmarks (understanding of semantic content and layout in web contexts) and ScreenQA-short (comprehension of complex mobile screen layouts and web structure). UI-TARS-7B achieved leading scores of 93.6% on WebSRC, while UI-TARS-72B achieved 88.6% on ScreenQA-short, outperforming Qwen, Gemini, Claude 3.5 and GPT-4o. 

“These results demonstrate the superior perception and comprehension capabilities of UI-TARS in web and mobile environments,” the researchers write. “Such perceptual ability lays the foundation for agent tasks, where accurate environmental understanding is crucial for task execution and decision-making.”

UI-TARS also showed impressive results in ScreenSpot Pro and ScreenSpot v2 , which assess a model’s ability to understand and localize elements in GUIs. Further, researchers tested its capabilities in planning multi-step actions and low-level tasks in mobile environments, and benchmarked it on OSWorld (which assesses open-ended computer tasks) and AndroidWorld (which scores autonomous agents on 116 programmatic tasks across 20 mobile apps). 

Source: Arxiv
Source: Arxiv

Under the hood

To help it take step-by-step actions and recognize what it’s seeing, UI-TARS was trained on a large-scale dataset of screenshots that parsed metadata including element description and type, visual description, bounding boxes (position information), element function and text from various websites, applications and operating systems. This allows the model to provide a comprehensive, detailed description of a screenshot, capturing not only elements but spatial relationships and overall layout. 

The model also uses state transition captioning to identify and describe the differences between two consecutive screenshots and determine whether an action — such as a mouse click or keyboard input — has occurred. Meanwhile, set-of-mark (SoM) prompting allows it to overlay distinct marks (letters, numbers) on specific regions of an image. 

The model is equipped with both short-term and long-term memory to handle tasks at hand while also retaining historical interactions to improve later decision-making. Researchers trained the model to perform both System 1 (fast, automatic and intuitive) and System 2 (slow and deliberate) reasoning. This allows for multi-step decision-making, “reflection” thinking, milestone recognition and error correction. 

Researchers emphasized that it is critical that the model be able to maintain consistent goals and engage in trial and error to hypothesize, test and evaluate potential actions before completing a task. They introduced two types of data to support this: error correction and post-reflection data. For error correction, they identified mistakes and labeled corrective actions; for post-reflection, they simulated recovery steps. 

“This strategy ensures that the agent not only learns to avoid errors but also adapts dynamically when they occur,” the researchers write.

Clearly, UI-TARS exhibits impressive capabilities, and it’ll be interesting to see its evolving use cases in the increasingly competitive AI agents space. As the researchers note: “Looking ahead, while native agents represent a significant leap forward, the future lies in the integration of active and lifelong learning, where agents autonomously drive their own learning through continuous, real-world interactions.”

Researchers point out that Claude Computer Use “performs strongly in web-based tasks but significantly struggles with mobile scenarios, indicating that the GUI operation ability of Claude has not been well transferred to the mobile domain.” 

By contrast, “UI-TARS exhibits excellent performance in both website and mobile domain.” 

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Akamai acquires Fermyon for edge computing as WebAssembly comes of age

Spin handles compilation from source to WebAssembly bytecode and manages execution on target platforms. The runtime abstracts the underlying technology while preserving WebAssembly’s performance and security characteristics. This bet on WebAssembly standards has paid off as the technology matured.  WebAssembly has evolved significantly beyond its initial browser-focused design to support

Read More »

Winners and losers in the latest Top500 supercomputer list

Winner: Slingshot-11 Slingshot-11 is a 200G proprietary interconnect developed by HPE and its Cray supercomputer subsidiary. As the number of Cray systems increases on the list, so goes the number of Slingshot-11 based systems. The total number of Slingshot-11 systems jumped from 37 and 2024 to 52 this year. Loser:

Read More »

Chevron Joins TotalEnergies in New Nigerian Exploration Blocks

Chevron Corp has signed a deal to acquire 40 percent in Petroleum Prospecting License (PPL) 2000 and PPL 2001 offshore Nigeria from TotalEnergies SE. TotalEnergies will retain operatorship with a 40 percent interest. Local player South Atlantic Petroleum Ltd owns 20 percent. “This new joint venture aims at derisking and

Read More »

Four things AWS needs to fix at re:Invent this week

When it comes to new AI analytics services from AWS, CIOs can expect more of the same, said David Linthicum, independent consultant and retired chief cloud strategy officer at Deloitte Consulting. “Realistically, they can expect AWS to keep integrating its existing services; the key test will be whether this shows

Read More »

Petrogas spuds exploration well onshore Indonesia

Petrogas (Basin) Ltd. spudded the Karim-1 exploration well in the Kepala Burung Production Sharing Contract (PSC), Southwest Papua, Indonesia. The well is being drilled onshore in a relatively under-explored area within Arar block and is about 23 km east of the Petrogas’ existing Arar production cluster. The well will be vertical and drilled to about 1,311 m TD. Drilling and completion is estimated to take 43 days. Karim-1 well is designed to assess the oil potential of the Miocene Kais reservoir within a structural closure located updip of the previous Klaifi-1 oil discovery, situated about 7 km northwest of Karim-1. The Miocene Kais formation is a carbonate sequence that forms a broad shallow marine platform with localized reefal complexes and is the main producing reservoir in the PSC. Following completion of Karim-1 well, the drilling rig will be deployed to drill the Northwest Klagagi-1 exploration well, which is about 15 km northeast of the Arar production cluster and about 12 km from the Karim-1 well site. The Karim-1 well and the Northwest Klagagi-1 well are part of exploration wells being drilled under the firm work commitment of the Kepala Burung PSC which began in 2020. Kepala Burung PSC covers an onshore area of 1,030 sq km within Salawati basin, which is one of the most prolific petroleum basins in Indonesia. Petrogas (Basin) Ltd. is a subsidiary of RH Petrogas Ltd. (82.65% owned). RH Petrogas is operator of the Kepala Burung PSC (70%) with Pertamina holding the remaining 30%.     

Read More »

NextDecade progresses Rio Grande LNG Train 6 plan with FERC pre-filing

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #c19a06 !important; border-color: #c19a06 !important; } NextDecade Corp. has initiated the pre-filing process with the Federal Energy Regulatory Commission (FERC) for expansion at Rio Grande LNG that includes a sixth liquefaction train (Train 6) and an additional marine berth. The company expects to file a full application for the expansion with FERC in 2026. Trains 1-5 are under construction on the north shore of the Brownsville Ship Channel in south Texas, and NextDecade is developing and advancing the permitting process for Trains 6-8. Train 6 is being developed inside the existing levee at the Rio Grande LNG plant site and adjacent to Trains 1-5. The company is evaluating areas on the site for development of Trains 7 and 8, which would bring potential liquefaction capacity at the plant to about 48 million tonnes/year. NextDecade says the site has sufficient space for development of up to 10 liquefaction trains.

Read More »

Then & Now: Global oil supply transformation

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #c19a06 !important; border-color: #c19a06 !important; } In this Then & Now episode of the Oil & Gas Journal ReEnterprised podcast, Statistics Editor Laura Bell-Hammer takes listeners on a journey through three decades of oil-market transformation. Bell-Hammer looks back at the mid-1990s, when US production was believed to be in irreversible decline, fast-forwarding to today’s record production highs powered by shale technology, deepwater advances, and new global producers. From the Permian basin to Brazil’s presalt and Guyana’s meteoric rise, this episode reveals how technology reshaped the world’s supply map. OGJ Worldwide Report In this episode of the Oil & Gas Journal ReEnterprised podcast, Bell-Hammer notes OGJ’s annual Worldwide Report, a compilation of field-by-field oil production and country-by-country oil and gas reserves accessible to paid subscribers. The most recent report will be published in December. In the meantime, archived Worldwide Reports can be found as part of OGJ’s Surveys page.  

Read More »

bp Trinidad and Tobago completes Cypre drilling

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #c19a06 !important; border-color: #c19a06 !important; } bp Trinidad and Tobago (bpTT) completed the Cypre seven-well drilling program 78 km off the southeast coast of Trinidad within East Mayaro block, Columbus basin, in about 80 m of water. The wells are tied back into bpTT’s existing Juniper platform. Four wells were drilled and completed at end-2024 with the first gas delivered in April this year. The project team has now drilled, completed, and commissioned the remaining three wells. At peak, Cypre is projected to deliver about 45,000 boe/d. Cypre is bpTT’s third subsea development and is one of bp’s 10 major projects expected to start up worldwide between 2025 and 2027.  Cypre is 100% owned by bpTT which is owned by bp (70%) and Repsol (30%).

Read More »

Shell adds 10% stake in operated field offshore Nigeria as Eni exercises preemption right

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #c19a06 !important; border-color: #c19a06 !important; } Shell Nigeria Exploration and Production Co. (SNEPCo), a subsidiary of Shell plc, has added 10% interest to its stake in Bonga field offshore Nigeria. The now-completed deal with TotalEnergies EP Nigeria Ltd. brings Shell’s stake in the OML 118 production sharing contract to 65% from 55%, a slight decrease in the total expected stake as Eni SpA subsidiary Nigeria Agip Exploration Ltd. (NAE) exercised its preemption right to acquire a 2.5% stake from TotalEnergies’ 12.5% share. SNEPCo (65%) operates Bonga field in partnership with Esso Exploration and Production Nigeria Ltd. (20%), and NAE (15%), on behalf of the Nigerian National Petroleum Co. Ltd. (NNPC). Bonga field lies in the Gulf of Guinea about 120 km south of the Niger Delta in water depths over 1,000 m. The field is produced via a floating production storage and offloading (FPSO) vessel with capacity to produce 225,000 b/d of oil. Last year, SNEPCo took final investment decision (FID) to develop Bonga North via subsea tieback to the FPSO.   

Read More »

FERC grants extension to Sempra’s Cameron LNG, explores certain blanket LNG plant authorizations

The US Federal Energy Regulatory Commission (FERC) Nov. 23 granted Sempra Infrastructure a 5-year extension to construct and place into service its planned 6.75 million tonne/year Cameron LNG plant in Cameron Parish, La. FERC’s new certificate extends the plant’s start date to Mar. 16, 2033. Sempra in October requested FERC push the deadline, noting that “project lenders require assurances that it has all necessary authorizations, including the approval of this extension of time request prior to reaching a positive financial decision” for the plant, according to FERC’s order. FERC noted that Sempra had reported progress working with the Louisiana Department of Environmental Quality (LDEQ). Sempra described “significant engineering and commercial efforts to advance the project such as various design enhancements to increase efficiency and reliability of the project” in its filing, FERC said. FERC notice of inquiry Meanwhile, FERC Nov. 20 took the first steps to streamline approvals of LNG plants by requesting comments on whether the commission should establish blanket authorization for certain activities at the plants. Law firm Van Ness Feldman, in a client alert Nov. 24, called FERC’s notice of inquiry (NOI) “significant,” especially given the  rapid growth of the US LNG sector. A blanket authorization program for LNG plants “could expedite certain modifications and expansions, reduce regulatory burdens and provide greater certainty for project developers,” the alert said. FERC has maintained a blanket certificate program for interstate natural gas pipelines since 1982. Under the program, interstate pipeline owners can perform certain routine activities without individual authorization, provided they meet regulatory requirements and cost limits. In the past, FERC declined to extend blanket authorization to LNG plants, citing environmental and security concerns and highlighting the non-routine nature of LNG projects at the time. In the NOI, FERC said its “experience with LNG facilities in the United States

Read More »

Nvidia’s $2B Synopsys stake tests independence of open AI interconnect standard

But the concern for enterprise IT leaders is whether Nvidia’s financial stakes in UALink consortium members could influence the development of an open standard specifically designed to compete with Nvidia’s proprietary technology and to give enterprises more choices in the datacenter. Organizations planning major AI infrastructure investments view such open standards as critical to avoiding vendor lock-in and maintaining competitive pricing. “This does put more pressure on UALink since Intel is also a member and also took investment from Nvidia,” Sag said. UALink and Synopsys’s critical role UALink represents the industry’s most significant effort to prevent vendor lock-in for AI infrastructure. The consortium ratified its UALink 200G 1.0 Specification in April, defining an open standard for connecting up to 1,024 AI accelerators within computing pods at 200 Gbps per lane — directly competing with Nvidia’s NVLink for scale-up applications. Synopsys plays a critical role. The company joined UALink’s board in January and in December announced the industry’s first UALink design components, enabling chip designers to build UALink-compatible accelerators. Analysts flag governance concerns Gaurav Gupta, VP analyst at Gartner, acknowledged the tension. “The Nvidia-Synopsys deal does raise questions around the future of UALink as Synopsys is a key partner of the consortium and holds critical IP for UALink, which competes with Nvidia’s proprietary NVLink,” he said. Sanchit Vir Gogia, chief analyst at Greyhound Research, sees deeper structural concerns. “Synopsys is not a peripheral player in this standard; it is the primary supplier of UALink IP and a board member within the UALink Consortium,” he said. “Nvidia’s entry into Synopsys’ shareholder structure risks contaminating that neutrality.”

Read More »

Cooling crisis at CME: A wakeup call for modern infrastructure governance

Organizations should reassess redundancy However, he pointed out, “the deeper concern is that CME had a secondary data center ready to take the load, yet the failover threshold was set too high, and the activation sequence remained manually gated. The decision to wait for the cooling issue to self-correct rather than trigger the backup site immediately revealed a governance model that had not evolved to keep pace with the operational tempo of modern markets.” Thermal failures, he said, “do not unfold on the timelines assumed in traditional disaster recovery playbooks. They escalate within minutes and demand automated responses that do not depend on human certainty about whether a facility will recover in time.” Matt Kimball, VP and principal analyst at Moor Insights & Strategy, said that to some degree what happened in Aurora highlights an issue that may arise on occasion: “the communications gap that can exist between IT executives and data center operators. Think of ‘rack in versus rack out’ mindsets.” Often, he said, the operational elements of that data center environment, such as cooling, power, fire hazards, physical security, and so forth, fall outside the realm of an IT executive focused on delivering IT services to the business. “And even if they don’t fall outside the realm, these elements are certainly not a primary focus,” he noted. “This was certainly true when I was living in the IT world.” Additionally, said Kimball, “this highlights the need for organizations to reassess redundancy and resilience in a new light. Again, in IT, we tend to focus on resilience and redundancy at the app, server, and workload layers. Maybe even cluster level. But as we continue to place more and more of a premium on data, and the terms ‘business critical’ or ‘mission critical’ have real relevance, we have to zoom out

Read More »

Microsoft loses two senior AI infrastructure leaders as data center pressures mount

Microsoft did not immediately respond to a request for comment. Microsoft’s constraints Analysts say the twin departures mark a significant setback for Microsoft at a critical moment in the AI data center race, with pressure mounting from both OpenAI’s model demands and Google’s infrastructure scale. “Losing some of the best professionals working on this challenge could set Microsoft back,” said Neil Shah, partner and co-founder at Counterpoint Research. “Solving the energy wall is not trivial, and there may have been friction or strategic differences that contributed to their decision to move on, especially if they saw an opportunity to make a broader impact and do so more lucratively at a company like Nvidia.” Even so, Microsoft has the depth and ecosystem strength to continue doubling down on AI data centers, said Prabhu Ram, VP for industry research at Cybermedia Research. According to Sanchit Gogia, chief analyst at Greyhound Research, the departures come at a sensitive moment because Microsoft is trying to expand its AI infrastructure faster than physical constraints allow. “The executives who have left were central to GPU cluster design, data center engineering, energy procurement, and the experimental power and cooling approaches Microsoft has been pursuing to support dense AI workloads,” Gogia said. “Their exit coincides with pressures the company has already acknowledged publicly. GPUs are arriving faster than the company can energize the facilities that will house them, and power availability has overtaken chip availability as the real bottleneck.”

Read More »

What is Edge AI? When the cloud isn’t close enough

Many edge devices can periodically send summarized or selected inference output data back to a central system for model retraining or refinement. That feedback loop helps the model improve over time while still keeping most decisions local. And to run efficiently on constrained edge hardware, the AI model is often pre-processed by techniques such as quantization (which reduces precision), pruning (which removes redundant parameters), or knowledge distillation (which trains a smaller model to mimic a larger one). These optimizations reduce the model’s memory, compute, and power demands so it can run more easily on an edge device. What technologies make edge AI possible? The concept of the “edge” always assumes that edge devices are less computationally powerful than data centers and cloud platforms. While that remains true, overall improvements in computational hardware have made today’s edge devices much more capable than those designed just a few years ago. In fact, a whole host of technological developments have come together to make edge AI a reality. Specialized hardware acceleration. Edge devices now ship with dedicated AI-accelerators (NPUs, TPUs, GPU cores) and system-on-chip units tailored for on-device inference. For example, companies like Arm have integrated AI-acceleration libraries into standard frameworks so models can run efficiently on Arm-based CPUs. Connectivity and data architecture. Edge AI often depends on durable, low-latency links (e.g., 5G, WiFi 6, LPWAN) and architectures that move compute closer to data. Merging edge nodes, gateways, and local servers means less reliance on distant clouds. And technologies like Kubernetes can provide a consistent management plane from the data center to remote locations. Deployment, orchestration, and model lifecycle tooling. Edge AI deployments must support model-update delivery, device and fleet monitoring, versioning, rollback and secure inference — especially when orchestrated across hundreds or thousands of locations. VMware, for instance, is offering traffic management

Read More »

Networks, AI, and metaversing

Our first, conservative, view says that AI’s network impact is largely confined to the data center, to connect clusters of GPU servers and the data they use as they crunch large language models. It’s all “horizontal” traffic; one TikTok challenge would generate way more traffic in the wide area. WAN costs won’t rise for you as an enterprise, and if you’re a carrier you won’t be carrying much new, so you don’t have much service revenue upside. If you don’t host AI on premises, you can pretty much dismiss its impact on your network. Contrast that with the radical metaverse view, our third view. Metaverses and AR/VR transform AI missions, and network services, from transaction processing to event processing, because the real world is a bunch of events pushing on you. They also let you visualize the way that process control models (digital twins) relate to the real world, which is critical if the processes you’re modeling involve human workers who rely on their visual sense. Could it be that the reason Meta is willing to spend on AI, is that the most credible application of AI, and the most impactful for networks, is the metaverse concept? In any event, this model of AI, by driving the users’ experiences and activities directly, demands significant edge connectivity, so you could expect it to have a major impact on network requirements. In fact, just dipping your toes into a metaverse could require a major up-front network upgrade. Networks carry traffic. Traffic is messages. More messages, more traffic, more infrastructure, more service revenue…you get the picture. Door number one, to the AI giant future, leads to nothing much in terms of messages. Door number three, metaverses and AR/VR, leads to a message, traffic, and network revolution. I’ll bet that most enterprises would doubt

Read More »

Microsoft’s Fairwater Atlanta and the Rise of the Distributed AI Supercomputer

Microsoft’s second Fairwater data center in Atlanta isn’t just “another big GPU shed.” It represents the other half of a deliberate architectural experiment: proving that two massive AI campuses, separated by roughly 700 miles, can operate as one coherent, distributed supercomputer. The Atlanta installation is the latest expression of Microsoft’s AI-first data center design: purpose-built for training and serving frontier models rather than supporting mixed cloud workloads. It links directly to the original Fairwater campus in Wisconsin, as well as to earlier generations of Azure AI supercomputers, through a dedicated AI WAN backbone that Microsoft describes as the foundation of a “planet-scale AI superfactory.” Inside a Fairwater Site: Preparing for Multi-Site Distribution Efficient multi-site training only works if each individual site behaves as a clean, well-structured unit. Microsoft’s intra-site design is deliberately simplified so that cross-site coordination has a predictable abstraction boundary—essential for treating multiple campuses as one distributed AI system. Each Fairwater installation presents itself as a single, flat, high-regularity cluster: Up to 72 NVIDIA Blackwell GPUs per rack, using GB200 NVL72 rack-scale systems. NVLink provides the ultra-low-latency, high-bandwidth scale-up fabric within the rack, while the Spectrum-X Ethernet stack handles scale-out. Each rack delivers roughly 1.8 TB/s of GPU-to-GPU bandwidth and exposes a multi-terabyte pooled memory space addressable via NVLink—critical for large-model sharding, activation checkpointing, and parallelism strategies. Racks feed into a two-tier Ethernet scale-out network offering 800 Gbps GPU-to-GPU connectivity with very low hop counts, engineered to scale to hundreds of thousands of GPUs without encountering the classic port-count and topology constraints of traditional Clos fabrics. Microsoft confirms that the fabric relies heavily on: SONiC-based switching and a broad commodity Ethernet ecosystem to avoid vendor lock-in and accelerate architectural iteration. Custom network optimizations, such as packet trimming, packet spray, high-frequency telemetry, and advanced congestion-control mechanisms, to prevent collective

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »