Stay Ahead, Stay ONMINE

Fueling the future of digital transformation

In partnership withInfosys Cobalt In the rapidly evolving landscape of digital innovation, staying adaptable isn’t just a strategy—it’s a survival skill. “Everybody has a plan until they get punched in the face,” says Luis Niño, digital manager for technology ventures and innovation at Chevron, quoting Mike Tyson. Drawing from a career that spans IT, HR, and infrastructure operations across the globe, Niño offers a unique perspective on innovation and how organizational microcultures within Chevron shape how digital transformation evolves.  Centralized functions prioritize efficiency, relying on tools like AI, data analytics, and scalable system architectures. Meanwhile, business units focus on simplicity and effectiveness, deploying robotics and edge computing to meet site-specific needs and ensure safety. “From a digital transformation standpoint, what I have learned is that you have to tie your technology to what outcomes drive results for both areas, but you have to allow yourself to be flexible, to be nimble, and to understand that change is constant,” he says. Central to this transformation is the rise of industrial AI. Unlike consumer applications, industrial AI operates in high-stakes environments where the cost of errors can be severe.  “The wealth of potential information needs to be contextualized, modeled, and governed because of the safety of those underlying processes,” says Niño. “If a machine reacts in ways you don’t expect, people could get hurt, and so there’s an extra level of care that needs to happen and that we need to think about as we deploy these technologies.” Niño highlights Chevron’s efforts to use AI for predictive maintenance, subsurface analytics, and process automation, noting that “AI sits on top of that foundation of strong data management and robust telecommunications capabilities.” As such, AI is not just a tool but a transformation catalyst redefining how talent is managed, procurement is optimized, and safety is ensured. Looking ahead, Niño emphasizes the importance of adaptability and collaboration: “Transformation is as much about technology as it is about people.” With initiatives like the Citizen Developer Program and Learn Digital, Chevron is empowering its workforce to bridge the gap between emerging technologies and everyday operations using an iterative mindset.  Niño is also keeping watch over the convergence of technologies like AI, quantum computing, Internet of Things, and robotics, which hold the potential to transform how we produce and manage energy. “My job is to keep an eye on those developments,” says Niño, “to make sure that we’re managing these things responsibly and the things that we test and trial and the things that we deploy, that we maintain a strict sense of responsibility to make sure that we keep everyone safe, our employees, our customers, and also our stakeholders from a broader perspective.” This episode of Business Lab is produced in association with Infosys Cobalt. Full Transcript  Megan Tatum: From MIT Technology Review, I’m Megan Tatum and this is Business Lab, the show that helps business leaders make sense of new technologies coming out of the lab and into the marketplace.  Our topic today is digital transformation, from back office operations to infrastructure in the field like oil rigs, companies continue to look for ways to increase profit, meet sustainability goals, and invest in the latest and greatest technology.  Two words for you: enabling innovation.  My guest is Luis Niño, who is the digital manager of technology ventures, and innovation at Chevron. This podcast is produced in association with Infosys Cobalt.  Welcome, Luis.  Luis Niño: Thank you, Megan. Thank you for having me.  Megan: Thank you so much for joining us. Just to set some context, Luis, you’ve had a really diverse career at Chevron, spanning IT, HR, and infrastructure operations. I wonder, how have those different roles shaped your approach to innovation and digital strategy?  Luis: Thank you for the question. And you’re right, my career has spanned many different areas and geographies in the company. It really feels like I’ve worked for different companies every time I change roles. Like I said, different functions, organizations, locations I’ve had since here in Houston and in Bakersfield, California and in Buenos Aires, Argentina. From an organizational standpoint, I’ve seen central teams international service centers, as you mentioned, field infrastructure and operation organizations in our business units, and I’ve also had corporate function roles.  And the reason why I mentioned that diversity is that each one of those looks at digital transformation and innovation through its own lens. From the priority to scale and streamline in central organizations to the need to optimize and simplify out in business units and what I like to call the periphery, you really learn about the concept first off of microcultures and how different these organizations can be even within our own walls, but also how those come together in organizations like Chevron.  Over time, I would highlight two things. In central organizations, whether that’s functions like IT, HR, or our technical center, we have a central technical center, where we continuously look for efficiencies in scaling, for system architectures that allow for economies of scale. As you can imagine, the name of the game is efficiency. We have also looked to improve employee experience. We want to orchestrate ecosystems of large technology vendors that give us an edge and move the massive organization forward. In areas like this, in central areas like this, I would say that it is data analytics, data science, and artificial intelligence that has become the sort of the fundamental tools to achieve those objectives.  Now, if you allow that pendulum to swing out to the business units and to the periphery, the name of the game is effectiveness and simplicity. The priority for the business units is to find and execute technologies that help us achieve the local objectives and keep our people safe. Especially when we are talking about our manufacturing environments where there’s risk for our folks. In these areas, technologies like robotics, the Internet of Things, and obviously edge computing are currently the enablers of information.  I wouldn’t want to miss the opportunity to say that both of those, let’s call it, areas of the company, rely on the same foundation and that is a foundation of strong data management, of strong network and telecommunications capabilities because those are the veins through which the data flows and everything relies on data.  In my experience, this pendulum also drives our technology priorities and our technology strategy. From a digital transformation standpoint, what I have learned is that you have to tie your technology to what outcomes drive results for both areas, but you have to allow yourself to be flexible, to be nimble, and to understand that change is constant. If you are deploying something in the center and you suddenly realize that some business unit already has a solution, you cannot just say, let’s shut it down and go with what I said. You have to adapt, you have to understand behavioral change management and you really have to make sure that change and adjustments are your bread and butter.  I don’t know if you know this, Megan, but there’s a popular fight happening this weekend with Mike Tyson and he has a saying, and that is everybody has a plan until they get punched in the face. And what he’s trying to say is you have to be adaptable. The plan is good, but you have to make sure that you remain agile.  Megan: Yeah, absolutely.  Luis: And then I guess the last lesson really quick is about risk management or maybe risk appetite. Each group has its own risk appetite depending on the lens or where they’re sitting, and this may create some conflict between organizations that want to move really, really fast and have urgency and others that want to take a step back and make sure that we’re doing things right at the balance. I think that at the end, I think that’s a question for leadership to make sure that they have a pulse on our ability to change.  Megan: Absolutely, and you’ve mentioned a few different elements and technologies I’d love to dig into a bit more detail on. One of which is artificial intelligence because I know Chevron has been exploring AI for several years now. I wonder if you could tell us about some of the AI use cases it’s working on and what frameworks you’ve developed for effective adoption as well.  Luis: Yeah, absolutely. This is the big one, isn’t it? Everybody’s talking about AI. As you can imagine, the focus in our company is what is now being branded as industrial AI. That’s really a simple term to explain that AI is being applied to industrial and manufacturing settings. And like other AI, and as I mentioned before, the foundation remains data. I want to stress the importance of data here.  One of the differences however is that in the case of industrial AI, data comes from a variety of sources. Some of them are very critical. Some of them are non-critical. Sources like operating technologies, process control networks, and SCADA, all the way to Internet of Things sensors or industrial Internet of Things sensors, and unstructured data like engineering documentation and IT data. These are massive amounts of information coming from different places and also from different security structures. The complexity of industrial AI is considerably higher than what I would call consumer or productivity AI.  Megan: Right.  Luis: The wealth of potential information needs to be contextualized, modeled, and governed because of the safety of those underlying processes. When you’re in an industrial setting, if a machine reacts in ways you don’t expect, people could get hurt, and so there’s an extra level of care that needs to happen and that we need to think about as we deploy these technologies.  AI sits on top of that foundation and it takes different shapes. It can show up as a copilot like the ones that have been popularized recently, or it can show up as agentic AI, which is something that we’re looking at closely now. And agentic AI is just a term to mean that AI can operate autonomously and can use complex reasoning to solve multistep problems in an industrial setting.  So with that in mind, going back to your question, we use both kinds of AI for multiple use cases, including predictive maintenance, subsurface analytics, process automation, and workflow optimization, and also end-user productivity. Each one of those use cases obviously needs specific objectives that the business is looking at in each area of the value chain.  In predictive maintenance, for example, we monitor and we analyze equipment health, we prevent failures, and we allow for preventive maintenance and reduced downtime. The AI helps us understand when machinery needs to be maintained in order to prevent failure instead of just waiting for it to happen. In subsurface analysis, we’re exploring AI to develop better models of hydrocarbon reservoirs. We are exploring AI to forecast geomechanical models and to capture and understand data from fiber optic sensing. Fiber optic sensing is a capability that has proven very valuable to us, and AI is helping us make sense of the wealth of information that comes out of the whole, as we like to say. Of course, we don’t do this alone. We partner with many third-party organizations, with vendors, and with people inside subject matter experts inside of Chevron to move the projects forward.  There are several other areas beyond industrial AI that we are looking at. AI really is a transformation catalyst, and so areas like finance and law and procurement and HR, we’re also doing testing in those corporate areas. I can tell you that I’ve been part of projects in procurement, in HR. When I was in HR we ran a pretty amazing effort in partnership with a third-party company, and what they do is they seek to transform the way we understand talent, and the way they do that is they are trying to provide data-driven frameworks to make talent decisions.  And so they redefine talent by framing data in the form of skills, and as they do this, they help de-bias processes that are usually or can be usually prone to unconscious biases and perspectives. It really is fascinating to think of your talent-based skills and to start decoupling them from what we know since the industrial era began, which is people fit in jobs. Now the question is more the other way around. How can jobs adapt to people’s skills? And then in procurement, AI is basically helping us open the aperture to a wider array of vendors in an automated fashion that makes us better partners. It’s more cost-effective. It’s really helpful.  Before I close here, you did reference frameworks, so the framework of industrial AI versus what I call productivity AI, the understanding of the use cases. All of this sits on top of our responsible AI frameworks. We have set up a central enterprise AI organization and they have really done a great job in developing key areas of responsible AI as well as training and adoption frameworks. This includes how to use AI, how not to use AI, what data we can share with the different GPTs that are available to us.  We are now members of organizations like the Responsible AI Institute. This is an organization that fosters the safe use of AI and trustworthy AI. But our own responsible AI framework, it involves four pillars. The first one is the principles, and this is how we make sure we continue to stay aligned with the values that drive this company, which we call The Chevron Way. It includes assessment, making sure that we evaluate these solutions in proportion to impact and risk. As I mentioned, when you’re talking about industrial processes, people’s lives are at stake. And so we take a very close look at what we are putting out there and how we ensure that it keeps our people safe. It includes education, I mentioned training our people to augment their capabilities and reinforcing responsible principles, and the last of the four is governance oversight and accountability through control structures that we are putting in place.  Megan: Fantastic. Thank you so much for those really fascinating specific examples as well. It’s great to hear about. And digital transformation, which you did touch on briefly, has become critical of course to enable business growth and innovation. I wonder what has Chevron’s digital transformation looked like and how has the shift affected overall operations and the way employees engage with technology as well?  Luis: Yeah, yeah. That’s a really good question. The term digital transformation is interpreted in many different ways. For me, it really is about leveraging technology to drive business results and to drive business transformation. We usually tend to specify emerging technology as the catalyst for transformation. I think that is okay, but I also think that there are ways that you can drive digital transformation with technology that’s not necessarily emerging but is being optimized, and so under this umbrella, we include everything from our Citizen Developer Program to complex industry partnerships that help us maximize the value of data.  The Citizen Developer Program has been very successful in helping bridge the gap between our technical software engineer and software development practices and people who are out there doing the work, getting familiar, and demystifying the way to build solutions.  I do believe that transformation is as much about technology as it is about people. And so to go back to the responsible AI framework, we are actively training and upskilling the workforce. We created a program called Learn Digital that helps employees embrace the technologies. I mentioned the concept of demystifying. It’s really important that people don’t fall into the trap of getting scared by the potential of the technology or the fact that it is new and we help them and we give them the tools to bridge the change management gap so they can get to use them and get the most out of them.  At a high level, our transformation has followed the cyclical nature that pretty much any transformation does. We have identified the data foundations that we need to have. We have understood the impact of the processes that we are trying to digitize. We organize that information, then we streamline and automate processes, we learn, and now machines learn and then we do it all over again. And so this cyclical mindset, this iterative mindset has really taken hold in our culture and it has made us a little bit better at accepting the technologies that are driving the change.  Megan: And to look at one of those technologies in a bit more detail, cloud computing has revolutionized infrastructure across industries. But there’s also a pendulum ship now toward hybrid and edge computing models. How is Chevron balancing cloud, hybrid, and edge strategies for optimal performance as well?  Luis: Yeah, that’s a great question and I think you could argue that was the genesis of the digital transformation effort. It’s been a journey for us and it’s a journey that I think we’re not the only ones that may have started it as a cost savings and storage play, but then we got to this ever-increasing need for multiple things like scaling compute power to support large language models and maximize how we run complex models. There’s an increasing need to store vast amounts of data for training and inference models while we improve data management and, while we predict future needs.  There’s a need for the opportunity to eliminate hardware constraints. One of the promises of cloud was that you would be able to ramp up and down depending on your compute needs as projects demanded. And that hasn’t stopped, that has only increased. And then there’s a need to be able to do this at a global level. For a company like ours that is distributed across the globe, we want to do this everywhere while actively managing those resources without the weight of the infrastructure that we used to carry on our books. Cloud has really helped us change the way we think about the digital assets that we have.  It’s important also that it has created this symbiotic need to grow between AI and the cloud. So you don’t have the AI without the cloud, but now you don’t have the cloud without AI. In reality, we work on balancing the benefits of cloud and hybrid and edge computing, and we keep operational efficiency as our North Star. We have key partnerships in cloud, that’s something that I want to make sure I talk about. Microsoft is probably the most strategic of our partnerships because they’ve helped us set our foundation for cloud. But we also think of the convenience of hybrid through the lens of leveraging a convenient, scalable public cloud and a very secure private cloud that helps us meet our operational and safety needs.  Edge computing fills the gap or the need for low latency and real-time data processing, which are critical constraints for decision-making in most of the locations where we operate. You can think of an offshore rig, a refinery, an oil rig out in the field, and maybe even not-so-remote areas like here in our corporate offices. Putting that compute power close to the data source is critical. So we work and we partner with vendors to enable lighter compute that we can set at the edge and, I mentioned the foundation earlier, faster communication protocols at the edge that also solve the need for speed.  But it is important to remember that you don’t want to think about edge computing and cloud as separate things. Cloud supports edge by providing centralized management by providing advanced analytics among others. You can train models in the cloud and then deploy them to edge devices, keeping real-time priorities in mind. I would say that edge computing also supports our cybersecurity strategy because it allows us to control and secure sensitive environments and information while we embed machine learning and AI capabilities out there.  So I have mentioned use cases like predictive maintenance and safety, those are good examples of areas where we want to make sure our cybersecurity strategy is front and center. When I was talking about my experience I talked about the center and the edge. Our strategy to balance that pendulum relies on flexibility and on effective asset management. And so making sure that our cloud reflects those strategic realities gives us a good footing to achieve our corporate objectives.  Megan: As you say, safety is a top priority. How do technologies like the Internet of Things and AI help enhance safety protocols specifically too, especially in the context of emissions tracking and leak detection?  Luis: Yeah, thank you for the question. Safety is the most important thing that we think and talk about here at Chevron. There is nothing more important than ensuring that our people are safe and healthy, so I would break safety down into two. Before I jump to emissions tracking and leak detection, I just want to make a quick point on personal safety and how we leverage IoT and AI to that end.  We use sensing capabilities that help us keep workers out of harm’s way, and so things like computer vision to identify and alert people who are coming into safety areas. We also use computer vision, for example, to identify PPE requirements—personal protective equipment requirements—and so if there are areas that require a certain type of clothing, a certain type of identification, or a hard hat, we are using technologies that can help us make sure people have that before they go into a particular area.  We’re also using wearables. Wearables help us in one of the use cases is they help us track exhaustion and dehydration in locations where that creates inherent risk, and so locations that are very hot, whether it’s because of the weather or because they are enclosed, we can use wearables that tell us how fast the person’s getting dehydrated, what are the levels of liquid or sodium that they need to make sure that they’re safe or if they need to take a break. We have those capabilities now.  Going back to emissions tracking and leak detection, I think it’s actually the combination of IoT and AI that can transform how we prevent and react to those. In this case, we also deploy sensing capabilities. We use things like computer vision, like infrared capabilities, and we use others that deliver data to the AI models, which then alert and enable rapid response.  The way I would explain how we use IoT and AI for safety, whether it’s personnel safety or emissions tracking and leak detection, is to think about sensors as the extension of human ability to sense. In some cases, you could argue it’s super abilities. And so if you think of sight normally you would’ve had supervisors or people out there that would be looking at the field and identifying issues. Well, now we can use computer vision with traditional RGB vision, we can use them with infrared, we can use multi-angle to identify patterns, and have AI tell us what’s going on.  If you keep thinking about the human senses, that’s sight, but you can also use sound through ultrasonic sensors or microphone sensors. You can use touch through vibration recognition and heat recognition. And even more recently, this is something that we are testing more recently, you can use smell. There are companies that are starting to digitize smell. Pretty exciting, also a little bit crazy. But it is happening. And so these are all tools that any human would use to identify risk. Well, so now we can do it as an extension of our human abilities to do so. This way we can react much faster and better to the anomalies.  A specific example with methane. We have a simple goal with methane, we want to keep methane in the pipe. Once it’s out, it’s really hard or almost impossible to take it back. Over the last six to seven years, we have reduced our methane intensity by over 60% and we’re leveraging technology to achieve that. We have deployed a methane detection program. We have trialed over 10 to 15 advanced methane detection technologies.  A technology that I have been looking at recently is called Aquanta Vision. This is a company supported by an incubator program we have called Chevron Studio. We did this in partnership with the National Renewable Energy Laboratory, and what they do is they leverage optical gas imaging to detect methane effectively and to allow us to prevent it from escaping the pipe. So that’s just an example of the technologies that we’re leveraging in this space.  Megan: Wow, that’s fascinating stuff. And on emissions as well, Chevron has made significant investments in new energy technologies like hydrogen, carbon capture, and renewables. How do these technologies fit into Chevron’s broader goal of reducing its carbon footprint?  Luis: This is obviously a fascinating space for us, one that is ever-changing. It is honestly not my area of expertise. But what I can say is we truly believe we can achieve high returns and lower carbon, and that’s something that we communicate broadly. A few years ago, I believe it was 2021, we established our Chevron New Energies company and they actively explore lower carbon alternatives including hydrogen, renewables, and carbon capture offsets.  My area, the digital area, and the convergence between digital technologies and the technical sciences will enable the techno-commercial viability of those business lines. Thinking about carbon capture, is something that we’ve done for a long time. We have decades of experience in carbon capture technologies across the world.  One of our larger projects, the Gorgon Project in Australia, I think they’ve captured something between 5 and 10 million tons of CO2 emissions in the past few years, and so we have good expertise in that space. But we also actively partner in carbon capture. We have joined hubs of carbon capture here in Houston, for example, where we investing in companies like there’s a company called Carbon Clean, a company called Carbon Engineering, and one called Svante. I’m familiar with these names because the corporate VC team is close to me. These companies provide technologies for direct air capture. They provide solutions for hard-to-abate industries. And so we want to keep an eye on these emerging capabilities and make use of them to continuously lower our carbon footprint.  There are two areas here that I would like to talk about. Hydrogen first. This is another area that we’re familiar with. Our plan is to build on our existing assets and capabilities to deliver a large-scale hydrogen business. Since 2005, I think we’ve been doing retail hydrogen, and we also have several partnerships there. In renewables, we are creating a range of fuels for different transportation types. We use diesel, bio-based diesel, we use renewable natural gas, we use sustainable aviation fuel. Yeah, so these are all areas of importance to us. They’re emerging business lines that are young in comparison to the rest of our company. We’ve been a company for 140 years plus, and this started in 2021, so you can imagine how steep that learning curve is.  I mentioned how we leverage our corporate venture capital team to learn and to keep an eye out on what are these emerging trends and technologies that we want to learn about. They leverage two things. They leverage a core fund, which is focused on areas that can seek innovation for our core business for the title. And we have a separate future energy fund that explores areas that are emerging. Not only do they invest in places like hydrogen, carbon capture, and renewables, but they also may invest in other areas like wind and geothermal and nuclear capability. So we constantly keep our eyes open for these emerging technologies.  Megan: I see. And I wonder if you could share a bit more actually about Chevron’s role in driving sustainable business innovation. I’m thinking of initiatives like converting used cooking oil into biodiesel, for example. I wonder how those contribute to that overall goal of creating a circular economy.  Luis: Yeah, this is fascinating and I was so happy to learn a little bit more about this year when I had the chance to visit our offices in Iowa. I’ll get into that in a second. But happy to talk about this, again with the caveat that it’s not my area of expertise.  Megan: Of course.  Luis: In the case of biodiesel, we acquired a company called REG in 2022. They were one of the founders of the renewable fuels industry, and they honestly do incredible work to create energy through a process, I forget the name of the process to be honest. But at the most basic level what they do is they prepare feedstocks that come from different types of biomass, you mentioned cooking oils, there’s also soybeans, there’s animal fats. And through various chemical reactions, what they do is convert components of the feedstock into biodiesel and glycerin. After that process, what they do is they separate un-reactive methanol, which is recovered and recycled into the process, and the biodiesel goes through a final processing to make sure that it meets the standards necessary to be commercialized.  What REG has done is it has boosted our knowledge as a broader organization on how to do this better. They continuously look for bio-feedstocks that can help us deliver new types of energy. I had mentioned bio-based diesel. One of the areas that we’re very focused on right now is sustainable aviation fuel. I find that fascinating. The reason why this is working and the reason why this is exciting is because they brought this great expertise and capability into Chevron. And in turn, as a larger organization, we’re able to leverage our manufacturing and distribution capabilities to continue to provide that value to our customers.  I mentioned that I learned a little bit more about this this year. I was lucky earlier in the year I was able to visit our REG offices in Ames, Iowa. That’s where they’re located. And I will tell you that the passion and commitment that those people have for the work that they do was incredibly energizing. These are folks who have helped us believe, really, that our promise of lower carbon is attainable.  Megan: Wow. Sounds like there’s some fascinating work going on. Which brings me to my final question. Which is sort of looking ahead, what emerging technologies are you most excited about and how do you see them impacting both Chevron’s core business and the energy sector as a whole as well?  Luis: Yeah, that’s a great question. I have no doubt that the energy business is changing and will continue to change only faster, both our core business as well as the future energy, or the way it’s going to look in the future. Honestly, in my line of work, I come across exciting technology every day. The obvious answers are AI and industrial AI. These are things that are already changing the way we live without a doubt. You can see it in people’s productivity. You can see it in how we optimize and transform workflows. AI is changing everything. I am actually very, very interested in IoT, in the Internet of Things, and robotics, the ability to protect humans in high-risk environments, like I mentioned, is critical to us, the opportunity to prevent high-risk events and predict when they’re likely to happen.  This is pretty massive, both for our productivity objectives as well as for our lower carbon objectives. If we can predict when we are at risk of particular events, we could avoid them altogether. As I mentioned before, this ubiquitous ability to sense our surroundings is a capability that our industry and I’m going to say humankind, is only beginning to explore.  There’s another area that I didn’t talk too much about, which I think is coming, and that is quantum computing. Quantum computing promises to change the way we think of compute power and it will unlock our ability to simulate chemistry, to simulate molecular dynamics in ways we have not been able to do before. We’re working really hard in this space. When I say molecular dynamics, think of the way that we produce energy today. It is all about the molecule and understanding the interactions between hydrocarbon molecules and the environment. The ability to do that in multi-variable systems is something that quantum, we believe, can provide an edge on, and so we’re working really hard in this space.  Yeah, there are so many, and having talked about all of them, AI, IoT, robotics, quantum, the most interesting thing to me is the convergence of all of them. If you think about the opportunity to leverage robotics, but also do it as the machines continue to control limited processes and understand what it is they need to do in a preventive and predictive way, this is such an incredible potential to transform our lives, to make an impact in the world for the better. We see that potential.  My job is to keep an eye on those developments, to make sure that we’re managing these things responsibly and the things that we test and trial and the things that we deploy, that we maintain a strict sense of responsibility to make sure that we keep everyone safe, our employees, our customers, and also our stakeholders from a broader perspective.  Megan: Absolutely. Such an important point to finish on. And unfortunately, that is all the time we have for today, but what a fascinating conversation. Thank you so much for joining us on the Business Lab, Luis.  Luis: Great to talk to you.  Megan:  Thank you so much. That was Luis Niño, who is the digital manager of technology ventures and innovation at Chevron, who I spoke with today from Brighton, England.  That’s it for this episode of Business Lab. I’m Megan Tatum, I’m your host and a contributing editor at Insights, the custom publishing division of MIT Technology Review. We were founded in 1899 at the Massachusetts Institute of Technology, and you can find us in print on the web and at events each year around the world. For more information about us and the show, please check out our website at technologyreview.com.  This show is available wherever you get your podcasts, and if you enjoyed this episode, we really hope you’ll take a moment to rate and review us. Business Lab is a production of MIT Technology Review, and this episode was produced by Giro Studios. Thank you so much for listening. 

In partnership withInfosys Cobalt

In the rapidly evolving landscape of digital innovation, staying adaptable isn’t just a strategy—it’s a survival skill. “Everybody has a plan until they get punched in the face,” says Luis Niño, digital manager for technology ventures and innovation at Chevron, quoting Mike Tyson.

Drawing from a career that spans IT, HR, and infrastructure operations across the globe, Niño offers a unique perspective on innovation and how organizational microcultures within Chevron shape how digital transformation evolves. 

Centralized functions prioritize efficiency, relying on tools like AI, data analytics, and scalable system architectures. Meanwhile, business units focus on simplicity and effectiveness, deploying robotics and edge computing to meet site-specific needs and ensure safety.

“From a digital transformation standpoint, what I have learned is that you have to tie your technology to what outcomes drive results for both areas, but you have to allow yourself to be flexible, to be nimble, and to understand that change is constant,” he says.

Central to this transformation is the rise of industrial AI. Unlike consumer applications, industrial AI operates in high-stakes environments where the cost of errors can be severe. 

“The wealth of potential information needs to be contextualized, modeled, and governed because of the safety of those underlying processes,” says Niño. “If a machine reacts in ways you don’t expect, people could get hurt, and so there’s an extra level of care that needs to happen and that we need to think about as we deploy these technologies.”

Niño highlights Chevron’s efforts to use AI for predictive maintenance, subsurface analytics, and process automation, noting that “AI sits on top of that foundation of strong data management and robust telecommunications capabilities.” As such, AI is not just a tool but a transformation catalyst redefining how talent is managed, procurement is optimized, and safety is ensured.

Looking ahead, Niño emphasizes the importance of adaptability and collaboration: “Transformation is as much about technology as it is about people.” With initiatives like the Citizen Developer Program and Learn Digital, Chevron is empowering its workforce to bridge the gap between emerging technologies and everyday operations using an iterative mindset. 

Niño is also keeping watch over the convergence of technologies like AI, quantum computing, Internet of Things, and robotics, which hold the potential to transform how we produce and manage energy.

“My job is to keep an eye on those developments,” says Niño, “to make sure that we’re managing these things responsibly and the things that we test and trial and the things that we deploy, that we maintain a strict sense of responsibility to make sure that we keep everyone safe, our employees, our customers, and also our stakeholders from a broader perspective.”

This episode of Business Lab is produced in association with Infosys Cobalt.

Full Transcript 

Megan Tatum: From MIT Technology Review, I’m Megan Tatum and this is Business Lab, the show that helps business leaders make sense of new technologies coming out of the lab and into the marketplace. 

Our topic today is digital transformation, from back office operations to infrastructure in the field like oil rigs, companies continue to look for ways to increase profit, meet sustainability goals, and invest in the latest and greatest technology. 

Two words for you: enabling innovation. 

My guest is Luis Niño, who is the digital manager of technology ventures, and innovation at Chevron. This podcast is produced in association with Infosys Cobalt. 

Welcome, Luis. 

Luis Niño: Thank you, Megan. Thank you for having me. 

Megan: Thank you so much for joining us. Just to set some context, Luis, you’ve had a really diverse career at Chevron, spanning IT, HR, and infrastructure operations. I wonder, how have those different roles shaped your approach to innovation and digital strategy? 

Luis: Thank you for the question. And you’re right, my career has spanned many different areas and geographies in the company. It really feels like I’ve worked for different companies every time I change roles. Like I said, different functions, organizations, locations I’ve had since here in Houston and in Bakersfield, California and in Buenos Aires, Argentina. From an organizational standpoint, I’ve seen central teams international service centers, as you mentioned, field infrastructure and operation organizations in our business units, and I’ve also had corporate function roles. 

And the reason why I mentioned that diversity is that each one of those looks at digital transformation and innovation through its own lens. From the priority to scale and streamline in central organizations to the need to optimize and simplify out in business units and what I like to call the periphery, you really learn about the concept first off of microcultures and how different these organizations can be even within our own walls, but also how those come together in organizations like Chevron. 

Over time, I would highlight two things. In central organizations, whether that’s functions like IT, HR, or our technical center, we have a central technical center, where we continuously look for efficiencies in scaling, for system architectures that allow for economies of scale. As you can imagine, the name of the game is efficiency. We have also looked to improve employee experience. We want to orchestrate ecosystems of large technology vendors that give us an edge and move the massive organization forward. In areas like this, in central areas like this, I would say that it is data analytics, data science, and artificial intelligence that has become the sort of the fundamental tools to achieve those objectives. 

Now, if you allow that pendulum to swing out to the business units and to the periphery, the name of the game is effectiveness and simplicity. The priority for the business units is to find and execute technologies that help us achieve the local objectives and keep our people safe. Especially when we are talking about our manufacturing environments where there’s risk for our folks. In these areas, technologies like robotics, the Internet of Things, and obviously edge computing are currently the enablers of information. 

I wouldn’t want to miss the opportunity to say that both of those, let’s call it, areas of the company, rely on the same foundation and that is a foundation of strong data management, of strong network and telecommunications capabilities because those are the veins through which the data flows and everything relies on data. 

In my experience, this pendulum also drives our technology priorities and our technology strategy. From a digital transformation standpoint, what I have learned is that you have to tie your technology to what outcomes drive results for both areas, but you have to allow yourself to be flexible, to be nimble, and to understand that change is constant. If you are deploying something in the center and you suddenly realize that some business unit already has a solution, you cannot just say, let’s shut it down and go with what I said. You have to adapt, you have to understand behavioral change management and you really have to make sure that change and adjustments are your bread and butter. 

I don’t know if you know this, Megan, but there’s a popular fight happening this weekend with Mike Tyson and he has a saying, and that is everybody has a plan until they get punched in the face. And what he’s trying to say is you have to be adaptable. The plan is good, but you have to make sure that you remain agile. 

Megan: Yeah, absolutely. 

Luis: And then I guess the last lesson really quick is about risk management or maybe risk appetite. Each group has its own risk appetite depending on the lens or where they’re sitting, and this may create some conflict between organizations that want to move really, really fast and have urgency and others that want to take a step back and make sure that we’re doing things right at the balance. I think that at the end, I think that’s a question for leadership to make sure that they have a pulse on our ability to change. 

Megan: Absolutely, and you’ve mentioned a few different elements and technologies I’d love to dig into a bit more detail on. One of which is artificial intelligence because I know Chevron has been exploring AI for several years now. I wonder if you could tell us about some of the AI use cases it’s working on and what frameworks you’ve developed for effective adoption as well. 

Luis: Yeah, absolutely. This is the big one, isn’t it? Everybody’s talking about AI. As you can imagine, the focus in our company is what is now being branded as industrial AI. That’s really a simple term to explain that AI is being applied to industrial and manufacturing settings. And like other AI, and as I mentioned before, the foundation remains data. I want to stress the importance of data here. 

One of the differences however is that in the case of industrial AI, data comes from a variety of sources. Some of them are very critical. Some of them are non-critical. Sources like operating technologies, process control networks, and SCADA, all the way to Internet of Things sensors or industrial Internet of Things sensors, and unstructured data like engineering documentation and IT data. These are massive amounts of information coming from different places and also from different security structures. The complexity of industrial AI is considerably higher than what I would call consumer or productivity AI. 

Megan: Right. 

Luis: The wealth of potential information needs to be contextualized, modeled, and governed because of the safety of those underlying processes. When you’re in an industrial setting, if a machine reacts in ways you don’t expect, people could get hurt, and so there’s an extra level of care that needs to happen and that we need to think about as we deploy these technologies. 

AI sits on top of that foundation and it takes different shapes. It can show up as a copilot like the ones that have been popularized recently, or it can show up as agentic AI, which is something that we’re looking at closely now. And agentic AI is just a term to mean that AI can operate autonomously and can use complex reasoning to solve multistep problems in an industrial setting. 

So with that in mind, going back to your question, we use both kinds of AI for multiple use cases, including predictive maintenance, subsurface analytics, process automation, and workflow optimization, and also end-user productivity. Each one of those use cases obviously needs specific objectives that the business is looking at in each area of the value chain. 

In predictive maintenance, for example, we monitor and we analyze equipment health, we prevent failures, and we allow for preventive maintenance and reduced downtime. The AI helps us understand when machinery needs to be maintained in order to prevent failure instead of just waiting for it to happen. In subsurface analysis, we’re exploring AI to develop better models of hydrocarbon reservoirs. We are exploring AI to forecast geomechanical models and to capture and understand data from fiber optic sensing. Fiber optic sensing is a capability that has proven very valuable to us, and AI is helping us make sense of the wealth of information that comes out of the whole, as we like to say. Of course, we don’t do this alone. We partner with many third-party organizations, with vendors, and with people inside subject matter experts inside of Chevron to move the projects forward. 

There are several other areas beyond industrial AI that we are looking at. AI really is a transformation catalyst, and so areas like finance and law and procurement and HR, we’re also doing testing in those corporate areas. I can tell you that I’ve been part of projects in procurement, in HR. When I was in HR we ran a pretty amazing effort in partnership with a third-party company, and what they do is they seek to transform the way we understand talent, and the way they do that is they are trying to provide data-driven frameworks to make talent decisions. 

And so they redefine talent by framing data in the form of skills, and as they do this, they help de-bias processes that are usually or can be usually prone to unconscious biases and perspectives. It really is fascinating to think of your talent-based skills and to start decoupling them from what we know since the industrial era began, which is people fit in jobs. Now the question is more the other way around. How can jobs adapt to people’s skills? And then in procurement, AI is basically helping us open the aperture to a wider array of vendors in an automated fashion that makes us better partners. It’s more cost-effective. It’s really helpful. 

Before I close here, you did reference frameworks, so the framework of industrial AI versus what I call productivity AI, the understanding of the use cases. All of this sits on top of our responsible AI frameworks. We have set up a central enterprise AI organization and they have really done a great job in developing key areas of responsible AI as well as training and adoption frameworks. This includes how to use AI, how not to use AI, what data we can share with the different GPTs that are available to us. 

We are now members of organizations like the Responsible AI Institute. This is an organization that fosters the safe use of AI and trustworthy AI. But our own responsible AI framework, it involves four pillars. The first one is the principles, and this is how we make sure we continue to stay aligned with the values that drive this company, which we call The Chevron Way. It includes assessment, making sure that we evaluate these solutions in proportion to impact and risk. As I mentioned, when you’re talking about industrial processes, people’s lives are at stake. And so we take a very close look at what we are putting out there and how we ensure that it keeps our people safe. It includes education, I mentioned training our people to augment their capabilities and reinforcing responsible principles, and the last of the four is governance oversight and accountability through control structures that we are putting in place. 

Megan: Fantastic. Thank you so much for those really fascinating specific examples as well. It’s great to hear about. And digital transformation, which you did touch on briefly, has become critical of course to enable business growth and innovation. I wonder what has Chevron’s digital transformation looked like and how has the shift affected overall operations and the way employees engage with technology as well? 

Luis: Yeah, yeah. That’s a really good question. The term digital transformation is interpreted in many different ways. For me, it really is about leveraging technology to drive business results and to drive business transformation. We usually tend to specify emerging technology as the catalyst for transformation. I think that is okay, but I also think that there are ways that you can drive digital transformation with technology that’s not necessarily emerging but is being optimized, and so under this umbrella, we include everything from our Citizen Developer Program to complex industry partnerships that help us maximize the value of data. 

The Citizen Developer Program has been very successful in helping bridge the gap between our technical software engineer and software development practices and people who are out there doing the work, getting familiar, and demystifying the way to build solutions. 

I do believe that transformation is as much about technology as it is about people. And so to go back to the responsible AI framework, we are actively training and upskilling the workforce. We created a program called Learn Digital that helps employees embrace the technologies. I mentioned the concept of demystifying. It’s really important that people don’t fall into the trap of getting scared by the potential of the technology or the fact that it is new and we help them and we give them the tools to bridge the change management gap so they can get to use them and get the most out of them. 

At a high level, our transformation has followed the cyclical nature that pretty much any transformation does. We have identified the data foundations that we need to have. We have understood the impact of the processes that we are trying to digitize. We organize that information, then we streamline and automate processes, we learn, and now machines learn and then we do it all over again. And so this cyclical mindset, this iterative mindset has really taken hold in our culture and it has made us a little bit better at accepting the technologies that are driving the change. 

Megan: And to look at one of those technologies in a bit more detail, cloud computing has revolutionized infrastructure across industries. But there’s also a pendulum ship now toward hybrid and edge computing models. How is Chevron balancing cloud, hybrid, and edge strategies for optimal performance as well? 

Luis: Yeah, that’s a great question and I think you could argue that was the genesis of the digital transformation effort. It’s been a journey for us and it’s a journey that I think we’re not the only ones that may have started it as a cost savings and storage play, but then we got to this ever-increasing need for multiple things like scaling compute power to support large language models and maximize how we run complex models. There’s an increasing need to store vast amounts of data for training and inference models while we improve data management and, while we predict future needs. 

There’s a need for the opportunity to eliminate hardware constraints. One of the promises of cloud was that you would be able to ramp up and down depending on your compute needs as projects demanded. And that hasn’t stopped, that has only increased. And then there’s a need to be able to do this at a global level. For a company like ours that is distributed across the globe, we want to do this everywhere while actively managing those resources without the weight of the infrastructure that we used to carry on our books. Cloud has really helped us change the way we think about the digital assets that we have. 

It’s important also that it has created this symbiotic need to grow between AI and the cloud. So you don’t have the AI without the cloud, but now you don’t have the cloud without AI. In reality, we work on balancing the benefits of cloud and hybrid and edge computing, and we keep operational efficiency as our North Star. We have key partnerships in cloud, that’s something that I want to make sure I talk about. Microsoft is probably the most strategic of our partnerships because they’ve helped us set our foundation for cloud. But we also think of the convenience of hybrid through the lens of leveraging a convenient, scalable public cloud and a very secure private cloud that helps us meet our operational and safety needs. 

Edge computing fills the gap or the need for low latency and real-time data processing, which are critical constraints for decision-making in most of the locations where we operate. You can think of an offshore rig, a refinery, an oil rig out in the field, and maybe even not-so-remote areas like here in our corporate offices. Putting that compute power close to the data source is critical. So we work and we partner with vendors to enable lighter compute that we can set at the edge and, I mentioned the foundation earlier, faster communication protocols at the edge that also solve the need for speed. 

But it is important to remember that you don’t want to think about edge computing and cloud as separate things. Cloud supports edge by providing centralized management by providing advanced analytics among others. You can train models in the cloud and then deploy them to edge devices, keeping real-time priorities in mind. I would say that edge computing also supports our cybersecurity strategy because it allows us to control and secure sensitive environments and information while we embed machine learning and AI capabilities out there. 

So I have mentioned use cases like predictive maintenance and safety, those are good examples of areas where we want to make sure our cybersecurity strategy is front and center. When I was talking about my experience I talked about the center and the edge. Our strategy to balance that pendulum relies on flexibility and on effective asset management. And so making sure that our cloud reflects those strategic realities gives us a good footing to achieve our corporate objectives. 

Megan: As you say, safety is a top priority. How do technologies like the Internet of Things and AI help enhance safety protocols specifically too, especially in the context of emissions tracking and leak detection? 

Luis: Yeah, thank you for the question. Safety is the most important thing that we think and talk about here at Chevron. There is nothing more important than ensuring that our people are safe and healthy, so I would break safety down into two. Before I jump to emissions tracking and leak detection, I just want to make a quick point on personal safety and how we leverage IoT and AI to that end. 

We use sensing capabilities that help us keep workers out of harm’s way, and so things like computer vision to identify and alert people who are coming into safety areas. We also use computer vision, for example, to identify PPE requirements—personal protective equipment requirements—and so if there are areas that require a certain type of clothing, a certain type of identification, or a hard hat, we are using technologies that can help us make sure people have that before they go into a particular area. 

We’re also using wearables. Wearables help us in one of the use cases is they help us track exhaustion and dehydration in locations where that creates inherent risk, and so locations that are very hot, whether it’s because of the weather or because they are enclosed, we can use wearables that tell us how fast the person’s getting dehydrated, what are the levels of liquid or sodium that they need to make sure that they’re safe or if they need to take a break. We have those capabilities now. 

Going back to emissions tracking and leak detection, I think it’s actually the combination of IoT and AI that can transform how we prevent and react to those. In this case, we also deploy sensing capabilities. We use things like computer vision, like infrared capabilities, and we use others that deliver data to the AI models, which then alert and enable rapid response. 

The way I would explain how we use IoT and AI for safety, whether it’s personnel safety or emissions tracking and leak detection, is to think about sensors as the extension of human ability to sense. In some cases, you could argue it’s super abilities. And so if you think of sight normally you would’ve had supervisors or people out there that would be looking at the field and identifying issues. Well, now we can use computer vision with traditional RGB vision, we can use them with infrared, we can use multi-angle to identify patterns, and have AI tell us what’s going on. 

If you keep thinking about the human senses, that’s sight, but you can also use sound through ultrasonic sensors or microphone sensors. You can use touch through vibration recognition and heat recognition. And even more recently, this is something that we are testing more recently, you can use smell. There are companies that are starting to digitize smell. Pretty exciting, also a little bit crazy. But it is happening. And so these are all tools that any human would use to identify risk. Well, so now we can do it as an extension of our human abilities to do so. This way we can react much faster and better to the anomalies. 

A specific example with methane. We have a simple goal with methane, we want to keep methane in the pipe. Once it’s out, it’s really hard or almost impossible to take it back. Over the last six to seven years, we have reduced our methane intensity by over 60% and we’re leveraging technology to achieve that. We have deployed a methane detection program. We have trialed over 10 to 15 advanced methane detection technologies. 

A technology that I have been looking at recently is called Aquanta Vision. This is a company supported by an incubator program we have called Chevron Studio. We did this in partnership with the National Renewable Energy Laboratory, and what they do is they leverage optical gas imaging to detect methane effectively and to allow us to prevent it from escaping the pipe. So that’s just an example of the technologies that we’re leveraging in this space. 

Megan: Wow, that’s fascinating stuff. And on emissions as well, Chevron has made significant investments in new energy technologies like hydrogen, carbon capture, and renewables. How do these technologies fit into Chevron’s broader goal of reducing its carbon footprint? 

Luis: This is obviously a fascinating space for us, one that is ever-changing. It is honestly not my area of expertise. But what I can say is we truly believe we can achieve high returns and lower carbon, and that’s something that we communicate broadly. A few years ago, I believe it was 2021, we established our Chevron New Energies company and they actively explore lower carbon alternatives including hydrogen, renewables, and carbon capture offsets. 

My area, the digital area, and the convergence between digital technologies and the technical sciences will enable the techno-commercial viability of those business lines. Thinking about carbon capture, is something that we’ve done for a long time. We have decades of experience in carbon capture technologies across the world. 

One of our larger projects, the Gorgon Project in Australia, I think they’ve captured something between 5 and 10 million tons of CO2 emissions in the past few years, and so we have good expertise in that space. But we also actively partner in carbon capture. We have joined hubs of carbon capture here in Houston, for example, where we investing in companies like there’s a company called Carbon Clean, a company called Carbon Engineering, and one called Svante. I’m familiar with these names because the corporate VC team is close to me. These companies provide technologies for direct air capture. They provide solutions for hard-to-abate industries. And so we want to keep an eye on these emerging capabilities and make use of them to continuously lower our carbon footprint. 

There are two areas here that I would like to talk about. Hydrogen first. This is another area that we’re familiar with. Our plan is to build on our existing assets and capabilities to deliver a large-scale hydrogen business. Since 2005, I think we’ve been doing retail hydrogen, and we also have several partnerships there. In renewables, we are creating a range of fuels for different transportation types. We use diesel, bio-based diesel, we use renewable natural gas, we use sustainable aviation fuel. Yeah, so these are all areas of importance to us. They’re emerging business lines that are young in comparison to the rest of our company. We’ve been a company for 140 years plus, and this started in 2021, so you can imagine how steep that learning curve is. 

I mentioned how we leverage our corporate venture capital team to learn and to keep an eye out on what are these emerging trends and technologies that we want to learn about. They leverage two things. They leverage a core fund, which is focused on areas that can seek innovation for our core business for the title. And we have a separate future energy fund that explores areas that are emerging. Not only do they invest in places like hydrogen, carbon capture, and renewables, but they also may invest in other areas like wind and geothermal and nuclear capability. So we constantly keep our eyes open for these emerging technologies. 

Megan: I see. And I wonder if you could share a bit more actually about Chevron’s role in driving sustainable business innovation. I’m thinking of initiatives like converting used cooking oil into biodiesel, for example. I wonder how those contribute to that overall goal of creating a circular economy. 

Luis: Yeah, this is fascinating and I was so happy to learn a little bit more about this year when I had the chance to visit our offices in Iowa. I’ll get into that in a second. But happy to talk about this, again with the caveat that it’s not my area of expertise. 

Megan: Of course. 

Luis: In the case of biodiesel, we acquired a company called REG in 2022. They were one of the founders of the renewable fuels industry, and they honestly do incredible work to create energy through a process, I forget the name of the process to be honest. But at the most basic level what they do is they prepare feedstocks that come from different types of biomass, you mentioned cooking oils, there’s also soybeans, there’s animal fats. And through various chemical reactions, what they do is convert components of the feedstock into biodiesel and glycerin. After that process, what they do is they separate un-reactive methanol, which is recovered and recycled into the process, and the biodiesel goes through a final processing to make sure that it meets the standards necessary to be commercialized. 

What REG has done is it has boosted our knowledge as a broader organization on how to do this better. They continuously look for bio-feedstocks that can help us deliver new types of energy. I had mentioned bio-based diesel. One of the areas that we’re very focused on right now is sustainable aviation fuel. I find that fascinating. The reason why this is working and the reason why this is exciting is because they brought this great expertise and capability into Chevron. And in turn, as a larger organization, we’re able to leverage our manufacturing and distribution capabilities to continue to provide that value to our customers. 

I mentioned that I learned a little bit more about this this year. I was lucky earlier in the year I was able to visit our REG offices in Ames, Iowa. That’s where they’re located. And I will tell you that the passion and commitment that those people have for the work that they do was incredibly energizing. These are folks who have helped us believe, really, that our promise of lower carbon is attainable. 

Megan: Wow. Sounds like there’s some fascinating work going on. Which brings me to my final question. Which is sort of looking ahead, what emerging technologies are you most excited about and how do you see them impacting both Chevron’s core business and the energy sector as a whole as well? 

Luis: Yeah, that’s a great question. I have no doubt that the energy business is changing and will continue to change only faster, both our core business as well as the future energy, or the way it’s going to look in the future. Honestly, in my line of work, I come across exciting technology every day. The obvious answers are AI and industrial AI. These are things that are already changing the way we live without a doubt. You can see it in people’s productivity. You can see it in how we optimize and transform workflows. AI is changing everything. I am actually very, very interested in IoT, in the Internet of Things, and robotics, the ability to protect humans in high-risk environments, like I mentioned, is critical to us, the opportunity to prevent high-risk events and predict when they’re likely to happen. 

This is pretty massive, both for our productivity objectives as well as for our lower carbon objectives. If we can predict when we are at risk of particular events, we could avoid them altogether. As I mentioned before, this ubiquitous ability to sense our surroundings is a capability that our industry and I’m going to say humankind, is only beginning to explore. 

There’s another area that I didn’t talk too much about, which I think is coming, and that is quantum computing. Quantum computing promises to change the way we think of compute power and it will unlock our ability to simulate chemistry, to simulate molecular dynamics in ways we have not been able to do before. We’re working really hard in this space. When I say molecular dynamics, think of the way that we produce energy today. It is all about the molecule and understanding the interactions between hydrocarbon molecules and the environment. The ability to do that in multi-variable systems is something that quantum, we believe, can provide an edge on, and so we’re working really hard in this space. 

Yeah, there are so many, and having talked about all of them, AI, IoT, robotics, quantum, the most interesting thing to me is the convergence of all of them. If you think about the opportunity to leverage robotics, but also do it as the machines continue to control limited processes and understand what it is they need to do in a preventive and predictive way, this is such an incredible potential to transform our lives, to make an impact in the world for the better. We see that potential. 

My job is to keep an eye on those developments, to make sure that we’re managing these things responsibly and the things that we test and trial and the things that we deploy, that we maintain a strict sense of responsibility to make sure that we keep everyone safe, our employees, our customers, and also our stakeholders from a broader perspective. 

Megan: Absolutely. Such an important point to finish on. And unfortunately, that is all the time we have for today, but what a fascinating conversation. Thank you so much for joining us on the Business Lab, Luis. 

Luis: Great to talk to you. 

Megan:  Thank you so much. That was Luis Niño, who is the digital manager of technology ventures and innovation at Chevron, who I spoke with today from Brighton, England. 

That’s it for this episode of Business Lab. I’m Megan Tatum, I’m your host and a contributing editor at Insights, the custom publishing division of MIT Technology Review. We were founded in 1899 at the Massachusetts Institute of Technology, and you can find us in print on the web and at events each year around the world. For more information about us and the show, please check out our website at technologyreview.com. 

This show is available wherever you get your podcasts, and if you enjoyed this episode, we really hope you’ll take a moment to rate and review us. Business Lab is a production of MIT Technology Review, and this episode was produced by Giro Studios. Thank you so much for listening. 

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Lenovo targets AI workloads with massive storage update

These systems are aimed at enterprises that want to use both AI and virtualized systems, since AI hardware is not virtualized but bare-metal. For example, the all-new Lenovo ThinkAgile Converged Solution for VMware, which combines the enterprise-class features of the ThinkAgile VX Series with the data-management capabilities of the ThinkSystem

Read More »

AI plus digital twins could be the pairing enterprises need

3. Link AI with transactional workflows The third point of cooperation is the linkage of AI with transactional workflows. Companies already have applications that take orders, ship goods, move component parts around, and so forth. It’s these applications that currently drive the commercial side of a business, but taking an

Read More »

FirstEnergy faces minimal direct tariff impact, but ‘uncertainty’ weighs on customers: CEO

FirstEnergy faces little direct exposure to the Trump administration’s tariffs on foreign imports, said Brian Tierney, FirstEnergy chair, president and CEO, during a Thursday earnings call. The utility company’s tariff exposure represents less than 0.2% on its $28 billion, five-year capital investment program, according to Tierney. “Proactive management of our supply chain since COVID has resulted in a diversified supplier base with little exposure to single-source suppliers,” he said, noting that most of the company’s operations and maintenance expense is labor. However, Tierney said he agreed with comments made by Beth Hammack, president and CEO of the Federal Reserve Bank of Cleveland, that tariffs add economic uncertainty — making it difficult for people to make investment decisions. “We don’t anticipate a significant impact from an income standpoint in the near-term associated with the near-term uncertainty that we’re dealing with,” Tierney said in response to an analyst question about a possible economic slowdown. “But the quicker there’s certainty from an investment cycle standpoint, I think the quicker we’ll be able to see people be able to make those investment decisions and get on with investing in their business, whatever the answer is from a tariff standpoint.” A report released Tuesday by the Cleveland Fed found that 64% of respondents to a February survey expected that their business would be affected by import tariffs. “Sizable majorities of respondents expected tariffs to increase both input costs and selling prices while decreasing demand for their products and services,” Cleveland Fed analysts said in the report. FirstEnergy’s industrial sales fell about 6% to 12.8 million MWh in the first quarter, down from 13.6 million MWh in the third quarter last year, according to the company’s earnings presentation. The dip is mainly from steel manufacturers slowing production related to automotive demand, said Jon Taylor, senior vice

Read More »

PG&E foresees ‘bright future’ with lower prices, higher demand

Dive Brief: Pacific Gas & Electric expects to file a rate case with its lowest requested rate increase in a decade as the company continues to make strides toward cutting costs and improving its credit rating, CEO Patti Poppe told investors during a Thursday earnings call. Increased demand from prospective data center customers — which grew sharply — should help the company reduce residential rates, and PG&E does not expect to be heavily impacted by tariffs, according to Poppe. Company leaders held up a recent rating upgrade by Moody’s as proof of their progress, but cautioned that further improvements in the company’s credit score are unlikely pending legislation to reform California’s overwhelmed wildfire insurance fund. Dive Insight: With growing demand and possible legislative reforms in the works, Poppe expressed optimism about PG&E’s future even though the San Francisco-based company saw its first-quarter earnings decline slightly. Customers may remain skeptical of the company’s ability to deliver, but PG&E is on a path toward lower costs and more modest electric bills, she said. “We’re interrupting a pattern here in California for affordability for customers,” she said. “We know our customers don’t feel that yet, so there is a doubt that we can deliver on this but we are able to deliver, and we’ve delivered this year.” The company’s upcoming general rate case, which PG&E plans to initiate next month, will request the lowest increase in electric rates in a decade, Poppe said — and it doesn’t include the effects of other potential cost-saving developments, including the improved credit rating by Moody’s and growing electrical demand. PG&E’s regulatory framework, Poppe said, should allow the company to cut overall customer bills by 1% to 2% for every gigawatt of new demand from data centers. PG&E’s data center pipeline grew from 5.5 GW at the beginning

Read More »

WTI Ends Higher But Logs Weekly Loss

Oil edged higher in a day of listless trading as investors parsed conflicting messaging on the progress of trade talks between the US and China. West Texas Intermediate futures rose to settle near $63 a barrel, but still notched their third weekly loss in the past four. Chinese authorities are weighing removing additional levies on a number of products including ethane, according to people familiar with the matter, as economic costs mount for certain industries. Shares in China’s top buyers of the fuel from the US jumped. Still, an agreement on trade between the US and China appears far off. President Donald Trump said Thursday that his administration was talking with China about trade, despite Beijing earlier denying the existence of negotiations and demanding that unilateral tariffs be revoked. The president later said that he wouldn’t drop tariffs on China unless “something substantial” is offered in return. Oil has dropped sharply this month on concerns that Trump’s sweeping tariffs and retaliatory measures from trading partners including China will cripple economic activity and throttle energy demand. In an effort to reassure US oil firms, Energy Secretary Chris Wright said that the trade turmoil will be fleeting and that the administration fully supports more crude output. “Our president is very clear and he wants lower energy prices,” Wright said during an interview with Bloomberg Television at an energy conference in Oklahoma City. Oil prices at $50 per barrel “in today’s world probably is not sustainable for our producers in this country.” The president “wants American industry and American consumers to thrive,” he added. The OPEC+ alliance has added to bearish headwinds by ramping up idled oil production, stoking fears of an oversupply. The group will meet on May 5 to discuss its output plans for June. Still, some metrics are pointing to

Read More »

Trade War Is Diverting USA Petroleum Gas Cargoes Away From China

Multiple carriers of petroleum-based gases traveling from the US to China have begun diverting to other countries due to the intensifying trade war between the world’s two largest economies.  Four cargoes of propane have shifted their routes from China to alternate destinations over the past week, bound for countries including Japan and South Korea, according to a report from analytics firm Vortexa. At least one cargo of ethane — which is used in plastics production — has been scrapped entirely, according to a person familiar with the matter. The diversions show the disruption to supply chains caused by the trade fight between the US and China, historically a major buyer of US ethane and petroleum gases. President Donald Trump has levied 145% tariffs on most US imports from China, and the US Trade Representative more recently imposed steep fees on Chinese-linked vessels seeking to access American ports. Eight Very Large Gas Carriers carrying US LPG were still on course for China as of this week, while the four diversions have all been recorded since April 17, according to Vortexa. Diverted vessels include the Zakher, Maple Gas, BW Gemini and Eiger Explorer, all departing from the US Gulf Coast.  The G. Arete, a propane carrier, diverted to South Korea from China, while a chemical tanker named STI Notting Hill is also rerouting to South Korea, Vortexa said. The US exported about 310,000 barrels of propane to China per day in 2024, double the volume from a year earlier, according to East Daley Analytics. Spot ethane shipments may continue to be affected by the trade war, while committed cargoes are harder to unwind, the person said. Asia-bound flows of ethylene — used in plastics and industrial solvents — have already slowed because of seasonal factors but may be further reduced by the tariffs, the

Read More »

Valero to shutter at least one of its California refineries

Lengthening legislative shadow Valero’s proposal for the Benicia refinery follows Phillips 66 Co.’s October 2024 confirmation that it will permanently cease conventional crude oil processing operations its 138,700-b/d dual-sited refinery in Los Angeles by yearend 2025 amid the operator’s determination that market conditions will prevent the long-term viability and competitiveness of the manufacturing site (OGJ Online, Oct. 17, 2024). Announcement of the Los Angeles refinery closure came on the heels of California Gov. Gavin Newsom’s Oct. 14, 2024, signing of legislation aimed at making the state’s oil refiners manage California’s gasoline supplies more responsibly to prevent price spikes at the pump. The legislation specifically provides the CEC more tools for requiring petroleum refiners to backfill supplies and plan for maintenance downtime as a means of helping prevent gasoline-price spikes that cost Californians upwards of $2 billion in 2023, Newsom’s office said. Introduced in early September 2024 in response to Newsom’s late-August proclamation convening the state’s legislature into special session “to take on Big Oil’s gas-price spikes,” the new legislation allows the state to require that refiners maintain a minimum inventory of fuel to avoid supply shortages that “create higher gasoline prices for consumers and higher profits for the industry,” the governor’s office said. While Valero did not reveal in its April 2025 statement any specific reasons for its decision on the Benicia refinery, in the wake of the market announcement, Brian W. Jones (R-Calif.) and Vince Fong (R-Calif.) both attributed the pending refinery closure to the legislation and policies heralded by Newsom and state regulatory departments. “Valero intends to shut down its Benicia refinery thanks to Newsom and radical Democrats’ extreme regulations and hostile business climate,” Jones said on Apr. 16, citing Phillips 66’s decision on the Los Angeles refinery and Chevron Corp.’s relocation of headquarters from San Ramon, Calif.,

Read More »

US BOEM begins process to replace current OCS lease sale plan

US Interior Secretary Doug Burgum directed the Bureau of Ocean Energy Management (BOEM) to start developing a plan for offshore oil and gas lease sales on the US Outer Continental Shelf (OCS), including likely sales in a newly established 27h OCS planning area offshore Alaska in the High Arctic. The 11th National OCS program will replace the current 10th Program (2024–29), which includes only three oil and gas lease sales over 5 years—all in the Gulf, Burgum said in a release Apr. 18.  BOEM will work to complete those sales, while it begins to develop the new program, he said. Earlier this month, Burgum directed BOEM to move forward a lease sale in the Gulf, starting with publication in June 2025 of a notice of sale. BOEM will soon publish in the Federal Register a request for information and comments which starts a 45-day public comment period that serves as the initial step in the multi-year planning process that details lease sales BOEM will hold in the coming years.  The Federal Register notice will also outline BOEM’s new jurisdiction over the High Arctic planning area offshore Alaska, as well as new boundaries for existing planning areas, Interior noted. The request for information will not propose a specific timeline for future lease sales or outline the potential sale areas. Instead, it invites stakeholders to provide recommendations for leasing opportunities and raise concerns about offshore leasing. BOEM manages 3.2 billion acres in the OCS, including 2,227 active oil and gas leases covering about 12.1 million acres in OCS regions. Of these, 469 leases are currently producing oil and gas. BOEM earlier in April increased its estimate of oil and gas reserves in the US Gulf’s OCS by 1.30 billion boe from its 2021 estimate, bringing the total reserve estimate to 7.04 billion

Read More »

Deep Data Center: Neoclouds as the ‘Picks and Shovels’ of the AI Gold Rush

In 1849, the discovery of gold in California ignited a frenzy, drawing prospectors from around the world in pursuit of quick fortune. While few struck it rich digging and sifting dirt, a different class of entrepreneurs quietly prospered: those who supplied the miners with the tools of the trade. From picks and shovels to tents and provisions, these providers became indispensable to the gold rush, profiting handsomely regardless of who found gold. Today, a new gold rush is underway, in pursuit of artificial intelligence. And just like the days of yore, the real fortunes may lie not in the gold itself, but in the infrastructure and equipment that enable its extraction. This is where neocloud players and chipmakers are positioned, representing themselves as the fundamental enablers of the AI revolution. Neoclouds: The Essential Tools and Implements of AI Innovation The AI boom has sparked a frenzy of innovation, investment, and competition. From generative AI applications like ChatGPT to autonomous systems and personalized recommendations, AI is rapidly transforming industries. Yet, behind every groundbreaking AI model lies an unsung hero: the infrastructure powering it. Enter neocloud providers—the specialized cloud platforms delivering the GPU horsepower that fuels AI’s meteoric rise. Let’s examine how neoclouds represent the “picks and shovels” of the AI gold rush, used for extracting the essential backbone of AI innovation. Neoclouds are emerging as indispensable players in the AI ecosystem, offering tailored solutions for compute-intensive workloads such as training large language models (LLMs) and performing high-speed inference. Unlike traditional hyperscalers (e.g., AWS, Azure, Google Cloud), which cater to a broad range of use cases, neoclouds focus exclusively on optimizing infrastructure for AI and machine learning applications. This specialization allows them to deliver superior performance at a lower cost, making them the go-to choice for startups, enterprises, and research institutions alike.

Read More »

Soluna Computing: Innovating Renewable Computing for Sustainable Data Centers

Dorothy 1A & 1B (Texas): These twin 25 MW facilities are powered by wind and serve Bitcoin hosting and mining workloads. Together, they consumed over 112,000 MWh of curtailed energy in 2024, demonstrating the impact of Soluna’s model. Dorothy 2 (Texas): Currently under construction and scheduled for energization in Q4 2025, this 48 MW site will increase Soluna’s hosting and mining capacity by 64%. Sophie (Kentucky): A 25 MW grid- and hydro-powered hosting center with a strong cost profile and consistent output. Project Grace (Texas): A 2 MW AI pilot project in development, part of Soluna’s transition into HPC and machine learning. Project Kati (Texas): With 166 MW split between Bitcoin and AI hosting, this project recently exited the Electric Reliability Council of Texas, Inc. planning phase and is expected to energize between 2025 and 2027. Project Rosa (Texas): A 187 MW flagship project co-located with wind assets, aimed at both Bitcoin and AI workloads. Land and power agreements were secured by the company in early 2025. These developments are part of the company’s broader effort to tackle both energy waste and infrastructure bottlenecks. Soluna’s behind-the-meter design enables flexibility to draw from the grid or directly from renewable sources, maximizing energy value while minimizing emissions. Competition is Fierce and a Narrower Focus Better Serves the Business In 2024, Soluna tested the waters of providing AI services via a  GPU-as-a-Service through a partnership with HPE, branded as Project Ada. The pilot aimed to rent out cloud GPUs for AI developers and LLM training. However, due to oversupply in the GPU market, delayed product rollouts (like NVIDIA’s H200), and poor demand economics, Soluna terminated the contract in March 2025. The cancellation of the contract with HPE frees up resources for Soluna to focus on what it believes the company does best: designing

Read More »

Quiet Genius at the Neutral Line: How Onics Filters Are Reshaping the Future of Data Center Power Efficiency

Why Harmonics Matter In a typical data center, nonlinear loads—like servers, UPS systems, and switch-mode power supplies—introduce harmonic distortion into the electrical system. These harmonics travel along the neutral and ground conductors, where they can increase current flow, cause overheating in transformers, and shorten the lifespan of critical power infrastructure. More subtly, they waste power through reactive losses that don’t show up on a basic utility bill, but do show up in heat, inefficiency, and increased infrastructure stress. Traditional mitigation approaches—like active harmonic filters or isolation transformers—are complex, expensive, and often require custom integration and ongoing maintenance. That’s where Onics’ solution stands out. It’s engineered as a shunt-style, low-pass filter: a passive device that sits in parallel with the circuit, quietly siphoning off problematic harmonics without interrupting operations.  The result? Lower apparent power demand, reduced electrical losses, and a quieter, more stable current environment—especially on the neutral line, where cumulative harmonic effects often peak. Behind the Numbers: Real-World Impact While the Onics filters offer a passive complement to traditional mitigation strategies, they aren’t intended to replace active harmonic filters or isolation transformers in systems that require them—they work best as a low-complexity enhancement to existing power quality designs. LoPilato says Onics has deployed its filters in mission-critical environments ranging from enterprise edge to large colos, and the data is consistent. In one example, a 6 MW data center saw a verified 9.2% reduction in energy consumption after deploying Onics filters at key electrical junctures. Another facility clocked in at 17.8% savings across its lighting and support loads, thanks in part to improved power factor and reduced transformer strain. The filters work by targeting high-frequency distortion—typically above the 3rd harmonic and up through the 35th. By passively attenuating this range, the system reduces reactive current on the neutral and helps stabilize

Read More »

New IEA Report Contrasts Energy Bottlenecks with Opportunities for AI and Data Center Growth

Artificial intelligence has, without question, crossed the threshold—from a speculative academic pursuit into the defining infrastructure of 21st-century commerce, governance, and innovation. What began in the realm of research labs and open-source models is now embedded in the capital stack of every major hyperscaler, semiconductor roadmap, and national industrial strategy. But as AI scales, so does its energy footprint. From Nvidia-powered GPU clusters to exascale training farms, the conversation across boardrooms and site selection teams has fundamentally shifted. It’s no longer just about compute density, thermal loads, or software frameworks. It’s about power—how to find it, finance it, future-proof it, and increasingly, how to generate it onsite. That refrain—“It’s all about power now”—has moved from a whisper to a full-throated consensus across the data center industry. The latest report from the International Energy Agency (IEA) gives this refrain global context and hard numbers, affirming what developers, utilities, and infrastructure operators have already sensed on the ground: the AI revolution will be throttled or propelled by the availability of scalable, sustainable, and dispatchable electricity. Why Energy Is the Real Bottleneck to Intelligence at Scale The major new IEA report puts it plainly: The transformative promise of AI will be throttled—or unleashed—by the world’s ability to deliver scalable, reliable, and sustainable electricity. The stakes are enormous. Countries that can supply the power AI craves will shape the future. Those that can’t may find themselves sidelined. Importantly, while AI poses clear challenges, the report emphasizes how it also offers solutions: from optimizing energy grids and reducing emissions in industrial sectors to enhancing energy security by supporting infrastructure defenses against cyberattacks. The report calls for immediate investments in both energy generation and grid capabilities, as well as stronger collaboration between the tech and energy sectors to avoid critical bottlenecks. The IEA advises that, for countries

Read More »

Colorado Eyes the AI Data Center Boom with Bold Incentive Push

Even as states work on legislation to limit data center development, it is clear that some locations are looking to get a bigger piece of the huge data center spending that the AI wave has created. It appears that politicians in Colorado took a look around and thought to themselves “Why is all that data center building going to Texas and Arizona? What’s wrong with the Rocky Mountain State?” Taking a page from the proven playbook that has gotten data centers built all over the country, Colorado is trying to jump on the financial incentives for data center development bandwagon. SB 24-085: A Statewide Strategy to Attract Data Center Investment Looking to significantly boost its appeal as a data center hub, Colorado is now considering Senate Bill 24-085, currently making its way through the state legislature. Sponsored by Senators Priola and Buckner and Representatives Parenti and Weinberg, this legislation promises substantial economic incentives in the form of state sales and use tax rebates for new data centers established within the state from fiscal year 2026 through 2033. Colorado hopes to position itself strategically to compete with neighboring states in attracting lucrative tech investments and high-skilled jobs. According to DataCenterMap.com, there are currently 53 data centers in the state, almost all located in the Denver area, but they are predominantly smaller facilities. In today’s era of massive AI-driven hyperscale expansion, Colorado is rarely mentioned in the same breath as major AI data center markets.  Some local communities have passed their own incentive packages, but SB 24-085 aims to offer a unified, statewide framework that can also help mitigate growing NIMBY (Not In My Backyard) sentiment around new developments. The Details: How SB 24-085 Works The bill, titled “Concerning a rebate of the state sales and use tax paid on new digital infrastructure

Read More »

Wonder Valley and the Great AI Pivot: Kevin O’Leary’s Bold Data Center Play

Data Center World 2025 drew record-breaking attendance, underscoring the AI-fueled urgency transforming infrastructure investment. But no session captivated the crowd quite like Kevin O’Leary’s electrifying keynote on Wonder Valley—his audacious plan to build the world’s largest AI compute data center campus. In a sweeping narrative that ranged from pandemic pivots to stranded gas and Branson-brand inspiration, O’Leary laid out a real estate and infrastructure strategy built for the AI era. A Pandemic-Era Pivot Becomes a Case Study in Digital Resilience O’Leary opened with a Shark Tank success story that doubled as a business parable. In 2019, a woman-led startup called Blueland raised $50 million to eliminate plastic cleaning bottles by shipping concentrated cleaning tablets in reusable kits. When COVID-19 shut down retail in 2020, her inventory was stuck in limbo—until she made an urgent call to O’Leary. What followed was a high-stakes, last-minute pivot: a union-approved commercial shoot in Brooklyn the night SAG-AFTRA shut down television production. The direct response ad campaign that resulted would not only liquidate the stranded inventory at full margin, but deliver something more valuable—data. By targeting locked-down consumers through local remnant TV ad slots and optimizing by conversion, Blueland saw unheard-of response rates as high as 17%. The campaign turned into a data goldmine: buyer locations, tablet usage patterns, household sizes, and contact details. Follow-up SMS campaigns would drive 30% reorders. “It built such a franchise in those 36 months,” O’Leary said, “with no retail. Now every retailer wants in.” The lesson? Build your infrastructure to control your data, and you build a business that scales even in chaos. This anecdote set the tone for the keynote: in a volatile world, infrastructure resilience and data control are the new core competencies. The Data Center Power Crisis: “There Is Not a Gig on the Grid” O’Leary

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »