
This week, Commonwealth Fusion Systems announced it has another customer for its first commercial fusion power plant, in Virginia. Eni, one of the world’s largest oil and gas companies, signed a billion-dollar deal to buy electricity from the facility.
One small detail? That reactor doesn’t exist yet. Neither does the smaller reactor Commonwealth is building first to demonstrate that its tokamak design will work as intended.
This is a weird moment in fusion. Investors are pouring billions into the field to build power plants, and some companies are even signing huge agreements to purchase power from those still-nonexistent plants. All this comes before companies have actually completed a working reactor that can produce electricity. It takes money to develop a new technology, but all this funding could lead to some twisted expectations.
Nearly three years ago, the National Ignition Facility at Lawrence Livermore National Laboratory hit a major milestone for fusion power. With the help of the world’s most powerful lasers, scientists heated a pellet of fuel to 100 million °C. Hydrogen atoms in that fuel fused together, releasing more energy than the lasers put in.
It was a game changer for the vibes in fusion. The NIF experiment finally showed that a fusion reactor could yield net energy. Plasma physicists’ models had certainly suggested that it should be true, but it was another thing to see it demonstrated in real life.
But in some ways, the NIF results didn’t really change much for commercial fusion. That site’s lasers used a bonkers amount of energy, the setup was wildly complicated, and the whole thing lasted a fraction of a second. To operate a fusion power plant, not only do you have to achieve net energy, but you also need to do that on a somewhat constant basis and—crucially—do it economically.
So in the wake of the NIF news, all eyes went to companies like Commonwealth, Helion, and Zap Energy. Who would be the first to demonstrate this milestone in a more commercially feasible reactor? Or better yet, who would be the first to get a power plant up and running?
So far, the answer is none of them.
To be fair, many fusion companies have made technical progress. Commonwealth has built and tested its high-temperature superconducting magnets and published research about that work. Zap Energy demonstrated three hours of continuous operation in its test system, a milestone validated by the US Department of Energy. Helion started construction of its power plant in Washington in July. (And that’s not to mention a thriving, publicly funded fusion industry in China.)
These are all important milestones, and these and other companies have seen many more. But as Ed Morse, a professor of nuclear engineering at Berkeley, summed it up to me: “They don’t have a reactor.” (He was speaking specifically about Commonwealth, but really, the same goes for the others.)
And yet, the money pours in. Commonwealth raised over $800 million in funding earlier this year. And now it’s got two big customers signed on to buy electricity from this future power plant.
Why buy electricity from a reactor that’s currently little more than ideas on paper? From the perspective of these particular potential buyers, such agreements can be something of a win-win, says Adam Stein, director of nuclear energy innovation at the Breakthrough Institute.
By putting a vote of confidence behind Commonwealth, Eni could help the fusion startup get the capital it needs to actually build its plant. The company also directly invests in Commonwealth, so it stands to benefit from success. Getting a good rate on the capital needed to build the plant could also mean the electricity is ultimately cheaper for Eni, Stein says.
Ultimately, fusion needs a lot of money. If fossil-fuel companies and tech giants want to provide it, all the better. One concern I have, though, is how outside observers are interpreting these big commitments.
US Energy Secretary Chris Wright has been loud about his support for fusion and his expectations of the technology. Earlier this month, he told the BBC that it will soon power the world.
He’s certainly not the first to have big dreams for fusion, and it is an exciting technology. But despite the jaw-dropping financial milestones, this industry is still very much in development.
And while Wright praises fusion, the Trump administration is slashing support for other energy technologies, including wind and solar power, and spreading disinformation about their safety, cost, and effectiveness.
To meet the growing electricity demand and cut emissions from the power sector, we’ll need a whole range of technologies. It’s a risk and a distraction to put all our hopes on an unproven energy tech when there are plenty of options that actually exist.
This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.