
That creates the primary network issue for AI agents, which is dealing with implicit and creeping data. There’s a singular important difference between an AI agent component and an ordinary software component. Software is explicit in its use of data. The programming includes data identification. AI is implicit in its data use; the model was trained on data, and there may well be some API linkage to databases that aren’t obvious to the user of the model. It’s also often true that when an agentic component is used, it’s determined that additional data resources are needed. Are all these resources in the same place? Probably not.
The enterprises with the most experience with AI agents say it would be smart to expect some data center network upgrades to link agents to databases, and if the agents are distributed away from the data center, it may be necessary to improve the agent sites’ connection to the corporate VPN. As agents evolve into real-time applications, this requires they also be proximate to the real-time system they support (a factory or warehouse), so the data center, the users, and any real-time process pieces all pull at the source of hosting to optimize latency. Obviously, they can’t all be moved into one place, so the network has to make a broad and efficient set of connections. That efficiency demands QoS guarantees on latency as well as on availability.
It’s in the area of availability, with a secondary focus on QoS attributes like latency, that the most agent-experienced enterprises see potential new service opportunities. Right now, these tend to exist within a fairly small circle—a plant, a campus, perhaps a city or town—but over time, key enterprises say that their new-service interest could span a metro area. They point out that the real-time edge applications tend to exist where multiple facilities are close enough to be interdependent but too separated for wires, Wi-Fi, or even private 5G to be useful.





















