Stay Ahead, Stay ONMINE

How to build a better AI benchmark

It’s not easy being one of Silicon Valley’s favorite benchmarks.  SWE-Bench (pronounced “swee bench”) launched in November 2024 to evaluate an AI model’s coding skill, using more than 2,000 real-world programming problems pulled from the public GitHub repositories of 12 different Python-based projects.  In the months since then, it’s quickly become one of the most popular tests in AI. A SWE-Bench score has become a mainstay of major model releases from OpenAI, Anthropic, and Google—and outside of foundation models, the fine-tuners at AI firms are in constant competition to see who can rise above the pack. The top of the leaderboard is a pileup between three different fine tunings of Anthropic’s Claude Sonnet model and Amazon’s Q developer agent. Auto Code Rover—one of the Claude modifications—nabbed the number two spot in November, and was acquired just three months later. Despite all the fervor, this isn’t exactly a truthful assessment of which model is “better.” As the benchmark has gained prominence, “you start to see that people really want that top spot,” says John Yang, a researcher on the team that developed SWE-Bench at Princeton University. As a result, entrants have begun to game the system—which is pushing many others to wonder whether there’s a better way to actually measure AI achievement. Developers of these coding agents aren’t necessarily doing anything as straightforward cheating, but they’re crafting approaches that are too neatly tailored to the specifics of the benchmark. The initial SWE-Bench test set was limited to programs written in Python, which meant developers could gain an advantage by training their models exclusively on Python code. Soon, Yang noticed that high-scoring models would fail completely when tested on different programming languages—revealing an approach to the test that he describes as “gilded.” “It looks nice and shiny at first glance, but then you try to run it on a different language and the whole thing just kind of falls apart,” Yang says. “At that point, you’re not designing a software engineering agent. You’re designing to make a SWE-Bench agent, which is much less interesting.” The SWE-Bench issue is a symptom of a more sweeping—and complicated—problem in AI evaluation, and one that’s increasingly sparking heated debate: The benchmarks the industry uses to guide development are drifting further and further away from evaluating actual capabilities, calling their basic value into question. Making the situation worse, several benchmarks, most notably FrontierMath and Chatbot Arena, have recently come under heat for an alleged lack of transparency. Nevertheless, benchmarks still play a central role in model development, even if few experts are willing to take their results at face value. OpenAI cofounder Andrej Karpathy recently described the situation as “an evaluation crisis”: the industry has fewer trusted methods for measuring capabilities and no clear path to better ones.  “Historically, benchmarks were the way we evaluated AI systems,” says Vanessa Parli, director of research at Stanford University’s Institute for Human-Centered AI. “Is that the way we want to evaluate systems going forward? And if it’s not, what is the way?” A growing group of academics and AI researchers are making the case that the answer is to go smaller, trading sweeping ambition for an approach inspired by the social sciences. Specifically, they want to focus more on testing validity, which for quantitative social scientists refers to how well a given questionnaire measures what it’s claiming to measure—and, more fundamentally, whether what it is measuring has a coherent definition. That could cause trouble for benchmarks assessing hazily defined concepts like “reasoning” or “scientific knowledge”—and for developers aiming to reach the much-hyped goal of artificial general intelligence—but it would put the industry on firmer ground as it looks to prove the worth of individual models. “Taking validity seriously means asking folks in academia, industry, or wherever to show that their system does what they say it does,” says Abigail Jacobs, a University of Michigan professor who is a central figure in the new push for validity. “I think it points to a weakness in the AI world if they want to back off from showing that they can support their claim.” The limits of traditional testing If AI companies have been slow to respond to the growing failure of benchmarks, it’s partially because the test-scoring approach has been so effective for so long.  One of the biggest early successes of contemporary AI was the ImageNet challenge, a kind of antecedent to contemporary benchmarks. Released in 2010 as an open challenge to researchers, the database held more than 3 million images for AI systems to categorize into 1,000 different classes. Crucially, the test was completely agnostic to methods, and any successful algorithm quickly gained credibility regardless of how it worked. When an algorithm called AlexNet broke through in 2012, with a then unconventional form of GPU training, it became one of the foundational results of modern AI. Few would have guessed in advance that AlexNet’s convolutional neural nets would be the secret to unlocking image recognition—but after it scored well, no one dared dispute it. (One of AlexNet’s developers, Ilya Sutskever, would go on to cofound OpenAI.) A large part of what made this challenge so effective was that there was little practical difference between ImageNet’s object classification challenge and the actual process of asking a computer to recognize an image. Even if there were disputes about methods, no one doubted that the highest-scoring model would have an advantage when deployed in an actual image recognition system. But in the 12 years since, AI researchers have applied that same method-agnostic approach to increasingly general tasks. SWE-Bench is commonly used as a proxy for broader coding ability, while other exam-style benchmarks often stand in for reasoning ability. That broad scope makes it difficult to be rigorous about what a specific benchmark measures—which, in turn, makes it hard to use the findings responsibly.  Where things break down Anka Reuel, a PhD student who has been focusing on the benchmark problem as part of her research at Stanford, has become convinced the evaluation problem is the result of this push toward generality. “We’ve moved from task-specific models to general-purpose models,” Reuel says. “It’s not about a single task anymore but a whole bunch of tasks, so evaluation becomes harder.” Like the University of Michigan’s Jacobs, Reuel thinks “the main issue with benchmarks is validity, even more than the practical implementation,” noting: “That’s where a lot of things break down.” For a task as complicated as coding, for instance, it’s nearly impossible to incorporate every possible scenario into your problem set. As a result, it’s hard to gauge whether a model is scoring better because it’s more skilled at coding or because it has more effectively manipulated the problem set. And with so much pressure on developers to achieve record scores, shortcuts are hard to resist. For developers, the hope is that success on lots of specific benchmarks will add up to a generally capable model. But the techniques of agentic AI mean a single AI system can encompass a complex array of different models, making it hard to evaluate whether improvement on a specific task will lead to generalization. “There’s just many more knobs you can turn,” says Sayash Kapoor, a computer scientist at Princeton and a prominent critic of sloppy practices in the AI industry. “When it comes to agents, they have sort of given up on the best practices for evaluation.” In a paper from last July, Kapoor called out specific issues in how AI models were approaching the WebArena benchmark, designed by Carnegie Mellon University researchers in 2024 as a test of an AI agent’s ability to traverse the web. The benchmark consists of more than 800 tasks to be performed on a set of cloned websites mimicking Reddit, Wikipedia, and others. Kapoor and his team identified an apparent hack in the winning model, called STeP. STeP included specific instructions about how Reddit structures URLs, allowing STeP models to jump directly to a given user’s profile page (a frequent element of WebArena tasks). This shortcut wasn’t exactly cheating, but Kapoor sees it as “a serious misrepresentation of how well the agent would work had it seen the tasks in WebArena for the first time.” Because the technique was successful, though, a similar policy has since been adopted by OpenAI’s web agent Operator. (“Our evaluation setting is designed to assess how well an agent can solve tasks given some instruction about website structures and task execution,” an OpenAI representative said when reached for comment. “This approach is consistent with how others have used and reported results with WebArena.” STeP did not respond to a request for comment.) Further highlighting the problem with AI benchmarks, late last month Kapoor and a team of researchers wrote a paper that revealed significant problems in Chatbot Arena, the popular crowdsourced evaluation system. According to the paper, the leaderboard was being manipulated; many top foundation models were conducting undisclosed private testing and releasing their scores selectively. Today, even ImageNet itself, the mother of all benchmarks, has started to fall victim to validity problems. A 2023 study from researchers at the University of Washington and Google Research found that when ImageNet-winning algorithms were pitted against six real-world data sets, the architecture improvement “resulted in little to no progress,” suggesting that the external validity of the test had reached its limit. Going smaller For those who believe the main problem is validity, the best fix is reconnecting benchmarks to specific tasks. As Reuel puts it, AI developers “have to resort to these high-level benchmarks that are almost meaningless for downstream consumers, because the benchmark developers can’t anticipate the downstream task anymore.” So what if there was a way to help the downstream consumers identify this gap? In November 2024, Reuel launched a public ranking project called BetterBench, which rates benchmarks on dozens of different criteria, such as whether the code has been publicly documented. But validity is a central theme, with particular criteria challenging designers to spell out what capability their benchmark is testing and how it relates to the tasks that make up the benchmark. “You need to have a structural breakdown of the capabilities,” Reuel says. “What are the actual skills you care about, and how do you operationalize them into something we can measure?” The results are surprising. One of the highest-scoring benchmarks is also the oldest: the Arcade Learning Environment (ALE), established in 2013 as a way to test models’ ability to learn how to play a library of Atari 2600 games. One of the lowest-scoring is the Massive Multitask Language Understanding (MMLU) benchmark, a widely used test for general language skills; by the standards of BetterBench, the connection between the questions and the underlying skill was too poorly defined. BetterBench hasn’t meant much for the reputations of specific benchmarks, at least not yet; MMLU is still widely used, and ALE is still marginal. But the project has succeeded in pushing validity into the broader conversation about how to fix benchmarks. In April, Reuel quietly joined a new research group hosted by Hugging Face, the University of Edinburgh, and EleutherAI, where she’ll develop her ideas on validity and AI model evaluation with other figures in the field. (An official announcement is expected later this month.)  Irene Solaiman, Hugging Face’s head of global policy, says the group will focus on building valid benchmarks that go beyond measuring straightforward capabilities. “There’s just so much hunger for a good benchmark off the shelf that already works,” Solaiman says. “A lot of evaluations are trying to do too much.” Increasingly, the rest of the industry seems to agree. In a paper in March, researchers from Google, Microsoft, Anthropic, and others laid out a new framework for improving evaluations—with validity as the first step.  “AI evaluation science must,” the researchers argue, “move beyond coarse grained claims of ‘general intelligence’ towards more task-specific and real-world relevant measures of progress.”  Measuring the “squishy” things To help make this shift, some researchers are looking to the tools of social science. A February position paper argued that “evaluating GenAI systems is a social science measurement challenge,” specifically unpacking how the validity systems used in social measurements can be applied to AI benchmarking.  The authors, largely employed by Microsoft’s research branch but joined by academics from Stanford and the University of Michigan, point to the standards that social scientists use to measure contested concepts like ideology, democracy, and media bias. Applied to AI benchmarks, those same procedures could offer a way to measure concepts like “reasoning” and “math proficiency” without slipping into hazy generalizations. In the social science literature, it’s particularly important that metrics begin with a rigorous definition of the concept measured by the test. For instance, if the test is to measure how democratic a society is, it first needs to establish a definition for a “democratic society” and then establish questions that are relevant to that definition.  To apply this to a benchmark like SWE-Bench, designers would need to set aside the classic machine learning approach, which is to collect programming problems from GitHub and create a scheme to validate answers as true or false. Instead, they’d first need to define what the benchmark aims to measure (“ability to resolve flagged issues in software,” for instance), break that into subskills (different types of problems or types of program that the AI model can successfully process), and then finally assemble questions that accurately cover the different subskills. It’s a profound change from how AI researchers typically approach benchmarking—but for researchers like Jacobs, a coauthor on the February paper, that’s the whole point. “There’s a mismatch between what’s happening in the tech industry and these tools from social science,” she says. “We have decades and decades of thinking about how we want to measure these squishy things about humans.” Even though the idea has made a real impact in the research world, it’s been slow to influence the way AI companies are actually using benchmarks.  The last two months have seen new model releases from OpenAI, Anthropic, Google, and Meta, and all of them lean heavily on multiple-choice knowledge benchmarks like MMLU—the exact approach that validity researchers are trying to move past. After all, model releases are, for the most part, still about showing increases in general intelligence, and broad benchmarks continue to be used to back up those claims.  For some observers, that’s good enough. Benchmarks, Wharton professor Ethan Mollick says, are “bad measures of things, but also they’re what we’ve got.” He adds: “At the same time, the models are getting better. A lot of sins are forgiven by fast progress.” For now, the industry’s long-standing focus on artificial general intelligence seems to be crowding out a more focused validity-based approach. As long as AI models can keep growing in general intelligence, then specific applications don’t seem as compelling—even if that leaves practitioners relying on tools they no longer fully trust.  “This is the tightrope we’re walking,” says Hugging Face’s Solaiman. “It’s too easy to throw the system out, but evaluations are really helpful in understanding our models, even with these limitations.” Russell Brandom is a freelance writer covering artificial intelligence. He lives in Brooklyn with his wife and two cats. This story was supported by a grant from the Tarbell Center for AI Journalism.

It’s not easy being one of Silicon Valley’s favorite benchmarks. 

SWE-Bench (pronounced “swee bench”) launched in November 2024 to evaluate an AI model’s coding skill, using more than 2,000 real-world programming problems pulled from the public GitHub repositories of 12 different Python-based projects. 

In the months since then, it’s quickly become one of the most popular tests in AI. A SWE-Bench score has become a mainstay of major model releases from OpenAI, Anthropic, and Google—and outside of foundation models, the fine-tuners at AI firms are in constant competition to see who can rise above the pack. The top of the leaderboard is a pileup between three different fine tunings of Anthropic’s Claude Sonnet model and Amazon’s Q developer agent. Auto Code Rover—one of the Claude modifications—nabbed the number two spot in November, and was acquired just three months later.

Despite all the fervor, this isn’t exactly a truthful assessment of which model is “better.” As the benchmark has gained prominence, “you start to see that people really want that top spot,” says John Yang, a researcher on the team that developed SWE-Bench at Princeton University. As a result, entrants have begun to game the system—which is pushing many others to wonder whether there’s a better way to actually measure AI achievement.

Developers of these coding agents aren’t necessarily doing anything as straightforward cheating, but they’re crafting approaches that are too neatly tailored to the specifics of the benchmark. The initial SWE-Bench test set was limited to programs written in Python, which meant developers could gain an advantage by training their models exclusively on Python code. Soon, Yang noticed that high-scoring models would fail completely when tested on different programming languages—revealing an approach to the test that he describes as “gilded.”

“It looks nice and shiny at first glance, but then you try to run it on a different language and the whole thing just kind of falls apart,” Yang says. “At that point, you’re not designing a software engineering agent. You’re designing to make a SWE-Bench agent, which is much less interesting.”

The SWE-Bench issue is a symptom of a more sweeping—and complicated—problem in AI evaluation, and one that’s increasingly sparking heated debate: The benchmarks the industry uses to guide development are drifting further and further away from evaluating actual capabilities, calling their basic value into question. Making the situation worse, several benchmarks, most notably FrontierMath and Chatbot Arena, have recently come under heat for an alleged lack of transparency. Nevertheless, benchmarks still play a central role in model development, even if few experts are willing to take their results at face value. OpenAI cofounder Andrej Karpathy recently described the situation as “an evaluation crisis”: the industry has fewer trusted methods for measuring capabilities and no clear path to better ones. 

“Historically, benchmarks were the way we evaluated AI systems,” says Vanessa Parli, director of research at Stanford University’s Institute for Human-Centered AI. “Is that the way we want to evaluate systems going forward? And if it’s not, what is the way?”

A growing group of academics and AI researchers are making the case that the answer is to go smaller, trading sweeping ambition for an approach inspired by the social sciences. Specifically, they want to focus more on testing validity, which for quantitative social scientists refers to how well a given questionnaire measures what it’s claiming to measure—and, more fundamentally, whether what it is measuring has a coherent definition. That could cause trouble for benchmarks assessing hazily defined concepts like “reasoning” or “scientific knowledge”—and for developers aiming to reach the muchhyped goal of artificial general intelligence—but it would put the industry on firmer ground as it looks to prove the worth of individual models.

“Taking validity seriously means asking folks in academia, industry, or wherever to show that their system does what they say it does,” says Abigail Jacobs, a University of Michigan professor who is a central figure in the new push for validity. “I think it points to a weakness in the AI world if they want to back off from showing that they can support their claim.”

The limits of traditional testing

If AI companies have been slow to respond to the growing failure of benchmarks, it’s partially because the test-scoring approach has been so effective for so long. 

One of the biggest early successes of contemporary AI was the ImageNet challenge, a kind of antecedent to contemporary benchmarks. Released in 2010 as an open challenge to researchers, the database held more than 3 million images for AI systems to categorize into 1,000 different classes.

Crucially, the test was completely agnostic to methods, and any successful algorithm quickly gained credibility regardless of how it worked. When an algorithm called AlexNet broke through in 2012, with a then unconventional form of GPU training, it became one of the foundational results of modern AI. Few would have guessed in advance that AlexNet’s convolutional neural nets would be the secret to unlocking image recognition—but after it scored well, no one dared dispute it. (One of AlexNet’s developers, Ilya Sutskever, would go on to cofound OpenAI.)

A large part of what made this challenge so effective was that there was little practical difference between ImageNet’s object classification challenge and the actual process of asking a computer to recognize an image. Even if there were disputes about methods, no one doubted that the highest-scoring model would have an advantage when deployed in an actual image recognition system.

But in the 12 years since, AI researchers have applied that same method-agnostic approach to increasingly general tasks. SWE-Bench is commonly used as a proxy for broader coding ability, while other exam-style benchmarks often stand in for reasoning ability. That broad scope makes it difficult to be rigorous about what a specific benchmark measures—which, in turn, makes it hard to use the findings responsibly. 

Where things break down

Anka Reuel, a PhD student who has been focusing on the benchmark problem as part of her research at Stanford, has become convinced the evaluation problem is the result of this push toward generality. “We’ve moved from task-specific models to general-purpose models,” Reuel says. “It’s not about a single task anymore but a whole bunch of tasks, so evaluation becomes harder.”

Like the University of Michigan’s Jacobs, Reuel thinks “the main issue with benchmarks is validity, even more than the practical implementation,” noting: “That’s where a lot of things break down.” For a task as complicated as coding, for instance, it’s nearly impossible to incorporate every possible scenario into your problem set. As a result, it’s hard to gauge whether a model is scoring better because it’s more skilled at coding or because it has more effectively manipulated the problem set. And with so much pressure on developers to achieve record scores, shortcuts are hard to resist.

For developers, the hope is that success on lots of specific benchmarks will add up to a generally capable model. But the techniques of agentic AI mean a single AI system can encompass a complex array of different models, making it hard to evaluate whether improvement on a specific task will lead to generalization. “There’s just many more knobs you can turn,” says Sayash Kapoor, a computer scientist at Princeton and a prominent critic of sloppy practices in the AI industry. “When it comes to agents, they have sort of given up on the best practices for evaluation.”

In a paper from last July, Kapoor called out specific issues in how AI models were approaching the WebArena benchmark, designed by Carnegie Mellon University researchers in 2024 as a test of an AI agent’s ability to traverse the web. The benchmark consists of more than 800 tasks to be performed on a set of cloned websites mimicking Reddit, Wikipedia, and others. Kapoor and his team identified an apparent hack in the winning model, called STeP. STeP included specific instructions about how Reddit structures URLs, allowing STeP models to jump directly to a given user’s profile page (a frequent element of WebArena tasks).

This shortcut wasn’t exactly cheating, but Kapoor sees it as “a serious misrepresentation of how well the agent would work had it seen the tasks in WebArena for the first time.” Because the technique was successful, though, a similar policy has since been adopted by OpenAI’s web agent Operator. (“Our evaluation setting is designed to assess how well an agent can solve tasks given some instruction about website structures and task execution,” an OpenAI representative said when reached for comment. “This approach is consistent with how others have used and reported results with WebArena.” STeP did not respond to a request for comment.)

Further highlighting the problem with AI benchmarks, late last month Kapoor and a team of researchers wrote a paper that revealed significant problems in Chatbot Arena, the popular crowdsourced evaluation system. According to the paper, the leaderboard was being manipulated; many top foundation models were conducting undisclosed private testing and releasing their scores selectively.

Today, even ImageNet itself, the mother of all benchmarks, has started to fall victim to validity problems. A 2023 study from researchers at the University of Washington and Google Research found that when ImageNet-winning algorithms were pitted against six real-world data sets, the architecture improvement “resulted in little to no progress,” suggesting that the external validity of the test had reached its limit.

Going smaller

For those who believe the main problem is validity, the best fix is reconnecting benchmarks to specific tasks. As Reuel puts it, AI developers “have to resort to these high-level benchmarks that are almost meaningless for downstream consumers, because the benchmark developers can’t anticipate the downstream task anymore.” So what if there was a way to help the downstream consumers identify this gap?

In November 2024, Reuel launched a public ranking project called BetterBench, which rates benchmarks on dozens of different criteria, such as whether the code has been publicly documented. But validity is a central theme, with particular criteria challenging designers to spell out what capability their benchmark is testing and how it relates to the tasks that make up the benchmark.

“You need to have a structural breakdown of the capabilities,” Reuel says. “What are the actual skills you care about, and how do you operationalize them into something we can measure?”

The results are surprising. One of the highest-scoring benchmarks is also the oldest: the Arcade Learning Environment (ALE), established in 2013 as a way to test models’ ability to learn how to play a library of Atari 2600 games. One of the lowest-scoring is the Massive Multitask Language Understanding (MMLU) benchmark, a widely used test for general language skills; by the standards of BetterBench, the connection between the questions and the underlying skill was too poorly defined.

BetterBench hasn’t meant much for the reputations of specific benchmarks, at least not yet; MMLU is still widely used, and ALE is still marginal. But the project has succeeded in pushing validity into the broader conversation about how to fix benchmarks. In April, Reuel quietly joined a new research group hosted by Hugging Face, the University of Edinburgh, and EleutherAI, where she’ll develop her ideas on validity and AI model evaluation with other figures in the field. (An official announcement is expected later this month.) 

Irene Solaiman, Hugging Face’s head of global policy, says the group will focus on building valid benchmarks that go beyond measuring straightforward capabilities. “There’s just so much hunger for a good benchmark off the shelf that already works,” Solaiman says. “A lot of evaluations are trying to do too much.”

Increasingly, the rest of the industry seems to agree. In a paper in March, researchers from Google, Microsoft, Anthropic, and others laid out a new framework for improving evaluations—with validity as the first step. 

“AI evaluation science must,” the researchers argue, “move beyond coarse grained claims of ‘general intelligence’ towards more task-specific and real-world relevant measures of progress.” 

Measuring the “squishy” things

To help make this shift, some researchers are looking to the tools of social science. A February position paper argued that “evaluating GenAI systems is a social science measurement challenge,” specifically unpacking how the validity systems used in social measurements can be applied to AI benchmarking. 

The authors, largely employed by Microsoft’s research branch but joined by academics from Stanford and the University of Michigan, point to the standards that social scientists use to measure contested concepts like ideology, democracy, and media bias. Applied to AI benchmarks, those same procedures could offer a way to measure concepts like “reasoning” and “math proficiency” without slipping into hazy generalizations.

In the social science literature, it’s particularly important that metrics begin with a rigorous definition of the concept measured by the test. For instance, if the test is to measure how democratic a society is, it first needs to establish a definition for a “democratic society” and then establish questions that are relevant to that definition. 

To apply this to a benchmark like SWE-Bench, designers would need to set aside the classic machine learning approach, which is to collect programming problems from GitHub and create a scheme to validate answers as true or false. Instead, they’d first need to define what the benchmark aims to measure (“ability to resolve flagged issues in software,” for instance), break that into subskills (different types of problems or types of program that the AI model can successfully process), and then finally assemble questions that accurately cover the different subskills.

It’s a profound change from how AI researchers typically approach benchmarking—but for researchers like Jacobs, a coauthor on the February paper, that’s the whole point. “There’s a mismatch between what’s happening in the tech industry and these tools from social science,” she says. “We have decades and decades of thinking about how we want to measure these squishy things about humans.”

Even though the idea has made a real impact in the research world, it’s been slow to influence the way AI companies are actually using benchmarks. 

The last two months have seen new model releases from OpenAI, Anthropic, Google, and Meta, and all of them lean heavily on multiple-choice knowledge benchmarks like MMLU—the exact approach that validity researchers are trying to move past. After all, model releases are, for the most part, still about showing increases in general intelligence, and broad benchmarks continue to be used to back up those claims. 

For some observers, that’s good enough. Benchmarks, Wharton professor Ethan Mollick says, are “bad measures of things, but also they’re what we’ve got.” He adds: “At the same time, the models are getting better. A lot of sins are forgiven by fast progress.”

For now, the industry’s long-standing focus on artificial general intelligence seems to be crowding out a more focused validity-based approach. As long as AI models can keep growing in general intelligence, then specific applications don’t seem as compelling—even if that leaves practitioners relying on tools they no longer fully trust. 

“This is the tightrope we’re walking,” says Hugging Face’s Solaiman. “It’s too easy to throw the system out, but evaluations are really helpful in understanding our models, even with these limitations.”

Russell Brandom is a freelance writer covering artificial intelligence. He lives in Brooklyn with his wife and two cats.

This story was supported by a grant from the Tarbell Center for AI Journalism.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

US lets China buy semiconductor design software again

The reversal marks a dramatic shift from the aggressive stance the Trump administration took in May, when it imposed sweeping restrictions on electronic design automation (EDA) software — the critical tools needed to design advanced semiconductors.  A short-lived stoppage  The restrictions had targeted what analysts called the “upstream” of chip

Read More »

Hardcoded root credentials in Cisco Unified CM trigger max-severity alert

The affected products-Cisco Unified CM and Unified CM SME–are core components of enterprise telephony infrastructure, widely deployed across government agencies, financial institutions, and large corporations to manage voice, video, and messaging at scale. A flaw in these systems could allow attackers to compromise an organization’s communications, letting them log in

Read More »

Angola Raises Diesel Price by 33 Pct, Third Increase This Year

Angola raised the diesel price by 33%, the third increase this year as authorities press ahead with fuel-subsidy cuts that have been encouraged by the International Monetary Fund. The price will rise to 400 kwanzas ($0.43) per liter on Friday from 300 kwanza previously, the Petroleum Derivatives Regulatory Institute said in a statement late Thursday. The increase is part of a “gradual adjustment of fuel prices,” it said. Previous hikes were announced in March and April. The IRDP said prices of other fuels, including gasoline and liquefied-petroleum gas, will remain unchanged in Angola, Africa’s third-largest oil producer. The IMF said in February that Angola should do more to eliminate subsidies that cost about $3 billion last year — similar to the amount the government spent on health and education last year. The latest hike follows an IMF-World Bank review of Angola’s financial system that ended last month. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

OPEC+ Moves Meeting to Saturday as Group Weighs Another Hike

Key OPEC+ members brought forward to Saturday an online meeting where they’re set to consider a fourth bumper oil production increase, delegates said.  Saudi Arabia and its partners have been discussing another output hike of 411,000 barrels a day for August as their base-case scenario as they seek to recoup lost market share. The video-conference was moved one day earlier because of scheduling issues, said the officials, who asked not to be identified since the change isn’t yet public.   The Organization of the Petroleum Exporting Countries has roiled markets in recent months by speeding up the return of halted output, despite faltering demand and an impending surplus. Their strategy shift is dragging crude prices lower, offering relief to consumers and playing into calls from US President Donald Trump for cheaper fuel. Eight major OPEC+ members have already agreed to restart 411,000 barrels a day in May, June and July, triple the rate they initially scheduled. Officials have said that Riyadh is eager to revive more idle production as quickly as possible to regain market share ceded to US shale drillers and other rivals. The kingdom’s pivot away from years of supply restraint aimed at shoring up crude prices has upended traders’ assumptions about what role the OPEC+ alliance will continue to play in world oil markets. Brent crude futures traded near $68 a barrel in London on Friday. The international benchmark plunged 12% last week as a tentative truce between Israel and Iran allayed fears over the threat to Middle East energy exports.    Further OPEC+ increases threaten to create a glut. Global oil inventories have been building at a brisk clip of around 1 million barrels a day in recent months as demand cools in China and supplies continue to swell across the Americas.  Markets are headed for a substantial surplus later this year,

Read More »

Methane Emission Tracking Satellite Lost in Space, EDF Says

Methane emissions tracking satellite MethaneSAT lost contact with mission operations, and it is “likely not recoverable,” the Environmental Defense Fund (EDF) said in a statement. “After pursuing all options to restore communications, we learned this morning that the satellite has lost power,” the EDF said. “The engineering team is conducting a thorough investigation into the loss of communication. This is expected to take time. We will share what we learn,” the nonprofit organization added. Launched in March 2024, MethaneSAT had been collecting methane emissions data over the past year. It was one of the most advanced methane tracking satellites in space, measuring methane emissions in oil and gas producing regions across the world, according to the statement. “The mission has been a remarkable success in terms of scientific and technological accomplishment, and for its lasting influence on both industry and regulators worldwide,” the EDF said. “Thanks to MethaneSAT, we have gained critical insight about the distribution and volume of methane being released from oil and gas production areas. We have also developed an unprecedented capability to interpret the measurements from space and translate them into volumes of methane released. This capacity will be valuable to other missions,” the organization continued. MethaneSAT had the ability to monitor both high-emitting methane sources and small sources spread over a wide area, according to the release. It is designed to measure regions at intervals under seven days, regularly monitoring roughly 50 major regions accounting for more than 80 percent of global oil and gas production, according to an earlier statement. “The advanced spectrometers developed specifically for MethaneSAT met or exceeded all expectations throughout the mission. In combination with the mission algorithms and software, we showed that the highly sensitive instrument could see total methane emissions, even at low levels, over wide areas, including both

Read More »

How Has USA Energy Use Changed Since 1776?

A new analysis piece published on the U.S. Energy Information Administration (EIA) website recently, which was penned by Mickey Francis, Program Manager and Lead Economist for the EIA’s State Energy Data System, has outlined how U.S. energy use has changed since the Declaration of Independence was signed in 1776. The piece highlighted that, according to the EIA’s monthly energy review, in 2024, the U.S. consumed about 94 quadrillion British thermal units (quads) of energy. Fossil fuels – namely petroleum, natural gas, and coal – made up 82 percent of total U.S. energy consumption last year, the piece pointed out, adding that non-fossil fuel energy accounted for the other 18 percent. Petroleum remained the most-consumed fuel in the United States, the piece stated, outlining that this has been the case for the past 75 years. It also highlighted that, last year, nuclear energy consumption exceeded coal consumption for the first time ever. The analysis piece went on to note that, when the Declaration of Independence was signed in 1776, wood was the largest source of energy in the United States. “Used for heating, cooking, and lighting, wood remained the largest U.S. energy source until the late 1800s, when coal consumption became more common,” it added. “Wood energy is still consumed, mainly by industrial lumber and paper plants that burn excess wood waste to generate electricity,” it continued. The piece went on to highlight that coal was the largest source of U.S. energy for about 65 years, from 1885 until 1950. “Early uses of coal included many purposes that are no longer common, such as in stoves for home heating and in engines for trains and ships. Since the 1960s, nearly all coal consumed in the United States has been for electricity generation,” the piece said. The analysis piece went on to state that petroleum has

Read More »

Ocean Installer Awarded EPCI Contract for Var Energi’s Balder Project

Subsea services firm Ocean Installer has been awarded a fast-track engineering, procurement, construction and installation (EPCI) contract by Var Energi for further development of the Balder Phase VI project for the further development of the Balder area in the North Sea. This project is part of Var Energi’s hub development strategy in the Balder area, which is centered around the newly installed Jotun floating production storage and offloading vessel (FPSO), Ocean Installer said in a news release. Ocean Installer said it will execute subsea umbilicals, risers, and flowlines (SURF) activities including the fabrication and installation of flexible flowlines and umbilicals. Financial details of the contract were not disclosed. The project is scheduled to deliver first oil by the end of 2026, reinforcing both companies’ shared commitment to efficient development of subsea tie-backs on the Norwegian Continental Shelf (NCS), according to the release. “Var Energi is a key customer for Ocean Installer and the wider Moreld group. It’s exciting to see that Ocean Installer signs a new contract within the same week that the Jotun FPSO starts producing first oil as part of the Balder Future project, in which Ocean Installer has played a key role,” Moreld CEO Geir Austigard said. The contract is called off under the strategic partnership contract entered into with Vår Energi in June 2022. It is also a continuation of a multi-year collaboration between Vår Energi and Ocean Installer in the Balder area, where Ocean Installer has been engaged since 2019, the release said. “We are happy that Vår Energi continues to place their trust in us. Subsea tiebacks have been the core of our business for 14 years, and as the NCS transitions to more marginal fields, our expertise is valuable in enabling faster and more cost-efficient developments. Working together with Vår Energi to utilize

Read More »

ADNOC Drilling Wins $800MM Contract for Fracking Services

ADNOC Drilling Company said it was awarded a contract valued at up to $800 million by ADNOC Onshore for the provision of integrated hydraulic fracturing services for conventional and tight reservoirs. The five-year agreement is set to begin in the third quarter, ADNOC Drilling said in a news release. The contract’s scope of work supports ADNOC’s strategic goal to accelerate the development of conventional and tight reservoirs across the United Arab Emirates (UAE) and includes the design, execution, and evaluation of multistage hydraulic fracturing treatments, which will be deployed across a wide range of assets in Abu Dhabi, according to the release. Fracturing services for conventional and tight reservoirs are used to enhance the flow of oil or gas through existing natural pathways and optimize production by improving flow rates, the company said. ADNOC Drilling said it plans to “deploy advanced technologies throughout the project to maximize efficiency and performance”. Proprietary fracturing simulation software will be used to optimize every stage of the operation, increasing flow rates and overall hydrocarbon recovery. Intelligent fluid systems will adapt dynamically in real-time to reservoir conditions, improving fracture efficiency and reducing environmental impact, while automated pumping units and blending systems will enhance safety, streamline operations and reduce the need for on-site manpower, the company stated. ADNOC Drilling’s new CEO, Abdulla Ateya Al Messabi, said, “This significant contract is a powerful endorsement of ADNOC Drilling’s expanding capabilities and our trusted partnership with ADNOC Onshore. It reflects our ability to deliver high-impact, technologically advanced fracturing services that will help unlock the UAE’s energy potential. As we continue our transformation, we are proud to support the nation’s strategic energy goals and reinforce our position as a leader in integrated drilling and completion solutions”. The award “further reinforces ADNOC Drilling’s leadership in high-tech oilfield services, combining next-generation equipment,

Read More »

CoreWeave achieves a first with Nvidia GB300 NVL72 deployment

The deployment, Kimball said, “brings Dell quality to the commodity space. Wins like this really validate what Dell has been doing in reshaping its portfolio to accommodate the needs of the market — both in the cloud and the enterprise.” Although concerns were voiced last year that Nvidia’s next-generation Blackwell data center processors had significant overheating problems when they were installed in high-capacity server racks, he said that a repeat performance is unlikely. Nvidia, said Kimball “has been very disciplined in its approach with its GPUs and not shipping silicon until it is ready. And Dell almost doubles down on this maniacal quality focus. I don’t mean to sound like I have blind faith, but I’ve watched both companies over the last several years be intentional in delivering product in volume. Especially as the competitive market starts to shape up more strongly, I expect there is an extremely high degree of confidence in quality.” CoreWeave ‘has one purpose’ He said, “like Lambda Labs, Crusoe and others, [CoreWeave] seemingly has one purpose (for now): deliver GPU capacity to the market. While I expect these cloud providers will expand in services, I think for now the type of customer employing services is on the early adopter side of AI. From an enterprise perspective, I have to think that organizations well into their AI journey are the consumers of CoreWeave.”  “CoreWeave is also being utilized by a lot of the model providers and tech vendors playing in the AI space,” Kimball pointed out. “For instance, it’s public knowledge that Microsoft, OpenAI, Meta, IBM and others use CoreWeave GPUs for model training and more. It makes sense. These are the customers that truly benefit from the performance lift that we see from generation to generation.”

Read More »

Oracle to power OpenAI’s AGI ambitions with 4.5GW expansion

“For CIOs, this shift means more competition for AI infrastructure. Over the next 12–24 months, securing capacity for AI workloads will likely get harder, not easier. Though cost is coming down but demand is increasing as well, due to which CIOs must plan earlier and build stronger partnerships to ensure availability,” said Pareekh Jain, CEO at EIIRTrend & Pareekh Consulting. He added that CIOs should expect longer wait times for AI infrastructure. To mitigate this, they should lock in capacity through reserved instances, diversify across regions and cloud providers, and work with vendors to align on long-term demand forecasts.  “Enterprises stand to benefit from more efficient and cost-effective AI infrastructure tailored to specialized AI workloads, significantly lower their overall future AI-related investments and expenses. Consequently, CIOs face a critical task: to analyze and predict the diverse AI workloads that will prevail across their organizations, business units, functions, and employee personas in the future. This foresight will be crucial in prioritizing and optimizing AI workloads for either in-house deployment or outsourced infrastructure, ensuring strategic and efficient resource allocation,” said Neil Shah, vice president at Counterpoint Research. Strategic pivot toward AI data centers The OpenAI-Oracle deal comes in stark contrast to developments earlier this year. In April, AWS was reported to be scaling back its plans for leasing new colocation capacity — a move that AWS Vice President for global data centers Kevin Miller described as routine capacity management, not a shift in long-term expansion plans. Still, these announcements raised questions around whether the hyperscale data center boom was beginning to plateau. “This isn’t a slowdown, it’s a strategic pivot. The era of building generic data center capacity is over. The new global imperative is a race for specialized, high-density, AI-ready compute. Hyperscalers are not slowing down; they are reallocating their capital to

Read More »

Arista Buys VeloCloud to reboot SD-WANs amid AI infrastructure shift

What this doesn’t answer is how Arista Networks plans to add newer, security-oriented Secure Access Service Edge (SASE) capabilities to VeloCloud’s older SD-WAN technology. Post-acquisition, it still has only some of the building blocks necessary to achieve this. Mapping AI However, in 2025 there is always more going on with networking acquisitions than simply adding another brick to the wall, and in this case it’s the way AI is changing data flows across networks. “In the new AI era, the concepts of what comprises a user and a site in a WAN have changed fundamentally. The introduction of agentic AI even changes what might be considered a user,” wrote Arista Networks CEO, Jayshree Ullal, in a blog highlighting AI’s effect on WAN architectures. “In addition to people accessing data on demand, new AI agents will be deployed to access data independently, adapting over time to solve problems and enhance user productivity,” she said. Specifically, WANs needed modernization to cope with the effect AI traffic flows are having on data center traffic. Sanjay Uppal, now VP and general manager of the new VeloCloud Division at Arista Networks, elaborated. “The next step in SD-WAN is to identify, secure and optimize agentic AI traffic across that distributed enterprise, this time from all end points across to branches, campus sites, and the different data center locations, both public and private,” he wrote. “The best way to grab this opportunity was in partnership with a networking systems leader, as customers were increasingly looking for a comprehensive solution from LAN/Campus across the WAN to the data center.”

Read More »

Data center capacity continues to shift to hyperscalers

However, even though colocation and on-premises data centers will continue to lose share, they will still continue to grow. They just won’t be growing as fast as hyperscalers. So, it creates the illusion of shrinkage when it’s actually just slower growth. In fact, after a sustained period of essentially no growth, on-premises data center capacity is receiving a boost thanks to genAI applications and GPU infrastructure. “While most enterprise workloads are gravitating towards cloud providers or to off-premise colo facilities, a substantial subset are staying on-premise, driving a substantial increase in enterprise GPU servers,” said John Dinsdale, a chief analyst at Synergy Research Group.

Read More »

Oracle inks $30 billion cloud deal, continuing its strong push into AI infrastructure.

He pointed out that, in addition to its continued growth, OCI has a remaining performance obligation (RPO) — total future revenue expected from contracts not yet reported as revenue — of $138 billion, a 41% increase, year over year. The company is benefiting from the immense demand for cloud computing largely driven by AI models. While traditionally an enterprise resource planning (ERP) company, Oracle launched OCI in 2016 and has been strategically investing in AI and data center infrastructure that can support gigawatts of capacity. Notably, it is a partner in the $500 billion SoftBank-backed Stargate project, along with OpenAI, Arm, Microsoft, and Nvidia, that will build out data center infrastructure in the US. Along with that, the company is reportedly spending about $40 billion on Nvidia chips for a massive new data center in Abilene, Texas, that will serve as Stargate’s first location in the country. Further, the company has signaled its plans to significantly increase its investment in Abu Dhabi to grow out its cloud and AI offerings in the UAE; has partnered with IBM to advance agentic AI; has launched more than 50 genAI use cases with Cohere; and is a key provider for ByteDance, which has said it plans to invest $20 billion in global cloud infrastructure this year, notably in Johor, Malaysia. Ellison’s plan: dominate the cloud world CTO and co-founder Larry Ellison announced in a recent earnings call Oracle’s intent to become No. 1 in cloud databases, cloud applications, and the construction and operation of cloud data centers. He said Oracle is uniquely positioned because it has so much enterprise data stored in its databases. He also highlighted the company’s flexible multi-cloud strategy and said that the latest version of its database, Oracle 23ai, is specifically tailored to the needs of AI workloads. Oracle

Read More »

Datacenter industry calls for investment after EU issues water consumption warning

CISPE’s response to the European Commission’s report warns that the resulting regulatory uncertainty could hurt the region’s economy. “Imposing new, standalone water regulations could increase costs, create regulatory fragmentation, and deter investment. This risks shifting infrastructure outside the EU, undermining both sustainability and sovereignty goals,” CISPE said in its latest policy recommendation, Advancing water resilience through digital innovation and responsible stewardship. “Such regulatory uncertainty could also reduce Europe’s attractiveness for climate-neutral infrastructure investment at a time when other regions offer clear and stable frameworks for green data growth,” it added. CISPE’s recommendations are a mix of regulatory harmonization, increased investment, and technological improvement. Currently, water reuse regulation is directed towards agriculture. Updated regulation across the bloc would encourage more efficient use of water in industrial settings such as datacenters, the asosciation said. At the same time, countries struggling with limited public sector budgets are not investing enough in water infrastructure. This could only be addressed by tapping new investment by encouraging formal public-private partnerships (PPPs), it suggested: “Such a framework would enable the development of sustainable financing models that harness private sector innovation and capital, while ensuring robust public oversight and accountability.” Nevertheless, better water management would also require real-time data gathered through networks of IoT sensors coupled to AI analytics and prediction systems. To that end, cloud datacenters were less a drain on water resources than part of the answer: “A cloud-based approach would allow water utilities and industrial users to centralize data collection, automate operational processes, and leverage machine learning algorithms for improved decision-making,” argued CISPE.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »