Stay Ahead, Stay ONMINE

I Tried Making my Own (Bad) LLM Benchmark to Cheat in Escape Rooms

Recently, DeepSeek announced their latest model, R1, and article after article came out praising its performance relative to cost, and how the release of such open-source models could genuinely change the course of LLMs forever. That is really exciting! And also, too big of a scope to write about… but when a model like DeepSeek […]

Recently, DeepSeek announced their latest model, R1, and article after article came out praising its performance relative to cost, and how the release of such open-source models could genuinely change the course of LLMs forever. That is really exciting! And also, too big of a scope to write about… but when a model like DeepSeek comes out of nowhere with a steel chair, boasting similar performance levels to other models, what does performance really mean in this context?

If you follow AI releases, you’ve seen this dance before. Every new model drops with its graphs showing how it’s somehow simultaneously better than GPT-4 on math problems while being smaller and more efficient. But what exactly are these benchmarks measuring? How are they created? And more importantly, how can we cut through the hype to create our own benchmarks for specific use cases?

I wanted to learn more about LLM Benchmarking.

Part 1: What is a Benchmark? (in 3 seconds)

TL:DR — The SATs (multiple, actually) for LLMs.

Part 1.1: What is a Benchmark? (in more than 3 seconds)

Before we dive into the nitty-gritty of specific benchmarks, let’s take a moment to unpack what we even mean by “LLM Benchmark.” Because calling them the “SATs for AI” feels both right and also slightly oversimplified.

LLM benchmarks are, at their core, structured tests used to measure how well large language models perform on certain tasks. These tasks can be anything from identifying if a statement is true or false, to summarizing a legal document, to generating valid Python functions. Think of them as curated obstacle courses specially designed by AI researchers to test every relevant muscle these models might have. These frameworks typically provide a dataset of inputs with known correct outputs, allowing for consistent comparison between models.

Modern benchmarks employ various evaluation methodologies. Classification metrics like accuracy work for tasks with discrete correct answers, while overlap-based metrics (BLEU, ROUGE) evaluate free-form text generation. Some benchmarks use functional testing for code generation, or employ other LLMs as judges to evaluate response quality.

A typical benchmark usually comes packaged as:

  • A standardized dataset of questions, prompts, or tasks (with correct or reference answers).
  • An evaluation protocol specifying how to measure success, like accuracy, F1 score, BLEU/ROUGE for text generation, or pass/fail rates for coding tasks.
  • A leaderboard or some form of comparative scoreboard, often with big flashy graphs.

Some really famous benchmarks include MMLU for testing multitask language understanding, TruthfulQA for assessing factual accuracy, and HumanEval for measuring coding capabilities. Results are pretty often published on public leaderboards, which let’s people perform some transparent comparison between different models.

From the DeepSeek paper: DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

What Makes a Good Benchmark?

  1. A Clear Task Definition: We want tasks that are unambiguous. The more straightforward and well-specified the challenge, the easier it is to trust the results.
  2. Data Integrity: The test set shouldn’t be floating around in the training data. Because if the model’s seen the exact same question 50 times before, the evaluation is about as useful as giving a math quiz to someone who already has the answer key.
  3. Quantifiable Metrics: You need a standard for scoring performance — like how many times the model’s code passes test cases or how close the generated summary is to a “ground-truth” summary.
  4. Task Diversity & Difficulty: If a benchmark is too easy, everyone just ACES it on day one, and we learn… well, nothing. If it’s too niche (like “We test only the model’s ability to count the digits of Pi for 20 minutes”), that’s also not so helpful.

Life Ain’t All about The Grades

Benchmarks capture only a slice of what LLMs can do. In the real world, your chatbot might need to juggle domain knowledge, keep track of conversation context, abide by your company’s policies, and produce fluent, non-offensive replies. No single standardized test out there fully covers that. As we’ll see in the upcoming case studies, the design and execution of a benchmark can heavily shape the picture you get of your model’s performance… and sometimes lead you astray if you’re not careful with how you measure success.

Now that we have a sense of what Llm Benchmarks are designed to accomplish (and where they might fall short), let’s explore a couple of examples to see how people actually build and use them in practice — with mixed results!

Case Study #1: Leetcode as an LLM Benchmark

As a student in the tech space, the word “Leetcode” popping up during my search for cool benchmarks raised by blood pressure by a statistically significant amount. Unlike Leetcode, which sucks, the paper “Performance Study of LLM-Generated Code on Leetcode” was very interesting — it asks a deceptively simple question: can we use Leetcode to benchmark LLM code generation? Their findings reveal both the promise and pitfalls of this approach.

The Benchmark Design

The researchers built a three-stage validation system. Local tests catch basic errors, Leetcode’s judge verifies correctness, and a custom benchmarking setup measures performance. This setup revealed something critical: benchmarking code performance is harder than it looks.

When they compared local measurements to Leetcode’s metrics, they found only a 0.28 correlation. Leetcode’s measurements showed much higher variation (0.089 vs 0.035 locally). Even worse, Leetcode’s rankings proved unstable — identical solutions could drop from the 77th to 54th percentile just based on submission timing.

A Performance Study of LLM-Generated Code on Leetcode,” In 28th International Conference on Evaluation and Assessment in Software Engineering (EASE 2024), Salerno, Italy (2024)

The Real Problems

Three major issues emerged that challenge Leetcode’s viability as a benchmark:

Data Contamination: Using public problems risks LLMs having seen the solutions during training. The researchers had to use only problems from 2023 to mitigate this.

Platform Instability: Leetcode’s metrics drift over time — memory measurements showed a -0.24 correlation with test date. This makes reproducible benchmarking nearly impossible.

Measurement Reliability: The weak correlation between local and platform measurements raises questions about what we’re actually testing.

What It Means for LLM Benchmarking

This study doesn’t just critique Leetcode — it highlights what we need in a code generation benchmark: reproducible measurements, reliable performance metrics, and guaranteed training-test separation. Until we have platforms built specifically for this purpose, we need to be extremely cautious about using competition platforms as benchmarks.

So! We know that not all benchmarks are viable benchmarks — what about a more mainstream one?

Case Study #2: SuperGLUE — Building a Better Language Understanding Benchmark

The SuperGLUE paper tackles a fascinating problem in AI benchmarking: what do you do when models get too good at your tests? When GLUE became insufficient (with models surpassing human performance), the researchers had to rethink how we measure language understanding.

The Benchmark Design

SuperGLUE’s core innovation is its task selection methodology. The researchers collected task proposals from the NLP community and filtered them through a rigorous process: each task needed clear evaluation metrics, public training data, and — most importantly — significant headroom between machine and human performance.

This resulted in eight tasks (I’ve simplified the table from the document here, it’s a little less readable but you should get the sense of what the questions are asking):

SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems, In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada (2019)

What makes these tasks special is their diversity in format. Unlike GLUE’s focus on sentence classification, SuperGLUE includes coreference resolution, reading comprehension, and more com plex reasoning tasks. Each task measures different aspects of language understanding while maintaining clear, quantifiable metrics.


Part 2: Let’s Build a Physical Reasoning Benchmark: To Cheat at Escape Rooms

After looking at some benchmarks like SuperGLUE and Leetcode, I had an idea: what if we tested LLMs on something completely different — physical reasoning… through escape room puzzles?

It’s a pretty valid idea — escape rooms poses possibilities and consequences for failure — screw up one too many puzzles, and your friends will think you’re pretty stupid, and relegate you to spectator duty. Luckily for us however, they (or the poor employees) don’t know that you can sneak a phone into an escape room — and you know just who to ask for the answers. Today, LLMs face off against the puzzles of a physical escape room.

Note: This is NOT a rigorous academic benchmark (please don’t cite this in papers, why would you even want to do that?), or even close to it, and it’s just supposed to be a fun way to test LLM benchmarking and evaluation. Please do not destroy my prompts, I am aware they are bad.

Why Physical Reasoning?

For real, though… most LLM benchmarks focus on linguistic tasks (like SuperGLUE) or code generation (like Leetcode). And for good reason — these are well-defined domains with clear evaluation metrics. But real-world problem solving often requires understanding physical principles and their interactions. The famous “Can GPT-4 do physics?” debates usually center around mathematical problem-solving, not practical physical reasoning.

Looking at existing benchmarks taught me a few key principles:

  1. Clear evaluation metrics are crucial (from SuperGLUE’s task-specific scores)
  2. Problems should have unambiguous solutions (from HumanEval’s test cases)
  3. The benchmark should test distinct capabilities (from MMLU’s subject categories)

Designing the Problems

I settled on escape room puzzles for two reasons. First, they naturally combine physical reasoning with clear goals. Second, they have unambiguous success conditions — either you solve it through the intended way, or you don’t. Third, and most importantly, they let me include “red herrings” — irrelevant items that test if the LLM can identify what matters physically. Fourth, I just really like doing escape rooms (did I mention that already?),

I am aware that this is more than two reasons, but if LLMs can’t count how many rs’ there are in strawberry, I’m allowed to mess up once in a while too.

Here’s how I structured the five core problems:

Fluid Dynamics (FLUID_001) (Ping pong ball stuck in a tube)

  • Tests understanding of buoyancy and fluid displacement
  • Inspired by classic physics problems but in practical context
  • Includes intentionally irrelevant items (like squishy food models)

Light Properties (UV_001) (UV light on a push numebr lock)

  • Tests understanding of UV fluorescence and material properties
  • Combines multiple physical principles (light, material science)
  • Requires understanding of environmental conditions

Mechanical Understanding (CIPHER_001) (A cipher ring)

  • Tests spatial reasoning and mechanical alignment
  • No red herrings — tests for correlating a dial to a cypher wheel
  • Requires understanding rotational symmetry

Force Application (VAC_001) (Can stuck in hole)

  • Tests understanding of vacuum forces and surface adhesion
  • Multiple possible solution approaches
  • Requires understanding force multiplication

Collaborative Physics (COLLAB_001) (Can two people shimmy a key?)

  • Tests understanding of physical constraints in multi-agent scenarios
  • Requires combining multiple physical principles
  • Tests understanding of tool creation and friction

Sounds really fancy… but it’s just some basic physical puzzles. You can access them on my GitHub.

The Technical Part

The benchmark implementation has three main components:

Problem Definition Layer

Problems are defined in a structured JSON format that enforces consistent evaluation:

{
    "problem_id": "FLUID_001",
    "setup": {
        "scenario": "A ping pong ball is at the bottom of a narrow tube...",
        "available_items": ["bottle of water", "squishy food models"...],
        "constraints": ["tube too narrow for manual retrieval"]
    },
    "physical_principles": ["buoyancy", "fluid displacement"],
    "red_herrings": ["squishy food models", "milk carton"],
    "solution": {
        "steps": ["pour water into tube", "allow ball to float"],
        "key_insights": ["water displaces air", "ping pong ball less dense"]
    }
}

This structure draws from SuperGLUE’s design — each component is clearly separated and machine-readable. The physical_principles field explicitly lists what’s being tested, while red_herrings helps in scoring the LLM’s ability to ignore irrelevant information.

2. Evaluation Framework

The evaluation system uses Python’s asyncio for concurrent testing, with retry logic for a little bit more API stability:

@retry(stop=stop_after_attempt(3), wait=wait_exponential(min=1, max=10))
async def evaluate_response(self, criteria: JudgingCriteria) -> Dict:
    """Evaluate a model's response using GPT-4 as judge."""
    async with aiohttp.ClientSession() as session:
        # ... evaluation logic

The scoring system looks at three components:

Physical Understanding Score (PUS) ∈ [0,2]

  • Measures understanding of relevant physical principles
  • Calculated as normalized sum of demonstrated principles

Solution Path Score (SPS) ∈ [0,2]

  • Evaluates completeness and correctness of solution steps
  • Considers practical feasibility of proposed solutions

Red Herring Handling (RHH) ∈ {0,1}

  • A Binary score for avoiding irrelevant items
  • Tests ability to focus on physically relevant factors

And yes, there are also so many other scoring methods, better and worse, that could be used! For example, RHH could be about how many irrelevant items are used in the solution, or it could be a measure of how viable the use is… the point is that picking these metrics are often times pretty arbitrary, but are very very important to making your benchmark is credible, which mine is very much not.

Additionally, I did not want to rewrite any code after. Sue me.

3. Model Interface Layer

The benchmark supports multiple LLM backends through a common interface:

class ModelInterface:
    """Interface for different LLM APIs."""
    async def generate_response(self, prompt: str) -> str:
        raise NotImplementedError
class GPT4Interface(ModelInterface):
    async def generate_response(self, prompt: str) -> str:
        # GPT-4 specific implementation
class ClaudeInterface(ModelInterface):
    async def generate_response(self, prompt: str) -> str:
        # Claude specific implementation

Two models… I can’t really afford any more, please understand.

Let’s Test It!

So after some refilling of API balances, I was ready to go. I ran the benchmark, and after totally not wasting credits on like, 5 different errors, the results were in. And they were… interesting! I used GPT4 and Claude 3.5 Haiku (I am aware these are not similarly spec-ed models) as our victims.

The Challenge: A can is stuck in a hole that almost exactly matches its volume. A combination is written on the bottom of the can that needs to be retrieved.

The inspiration
"VAC_001": {
        "problem_id": "VAC_001",
        "setup": {
            "available_items": [
                "ruler",
                "notebook",
                "suction cup",
                "UV light"
            ],
            "constraints": [
                "can fits too tightly for finger grip",
                "hole is same diameter as can",
                "can is clean and dry"
            ]
        },
        "physical_principles": [
            "vacuum suction",
            "surface adhesion",
            "force multiplication"
        ],
        "red_herrings": [
            "ruler",
            "notebook",
            "UV light"
        ],
        "solution": {
            "steps": [
                "inspect suction cup and can surface",
                "ensure can surface is clean",
                "firmly press suction cup onto can top",
                "create vacuum seal",
                "pull can out using suction cup"
            ],
            "key_insights": [
                "suction cup creates vacuum seal",
                "vacuum force allows extraction",
                "other items don't provide necessary force"
            ]
        }

GPT-4’s Solution

Physical Principles: The main physical principle involved in this solution is the concept of air pressure differential, which is the same principle that allows a suction cup to stick to a surface. Air pressure is higher on one side of the suction cup (outside) compared to the other (inside), and this difference in pressure causes the cup to stick to the surface.

Solution Steps:

  1. Attach the suction cup to the top of the can. The flat surface of the can should provide a good contact for the suction cup to adhere to.
  2. Once the suction cup is firmly attached, gently pull upwards. The air pressure differential should cause the suction cup (and thus the can) to be lifted out of the hole.
  3. Once the can is out of the hole, remove the suction cup from the top of the can.
  4. Use the UV light to illuminate the combination written on the bottom of the can. Some inks only become visible under UV light, which is why this step is necessary.
  5. Write down the combination on the notebook to ensure it’s not forgotten.

Required Items:

  • Suction cup: This is required to adhere to the can and pull it out of the hole, as the can fits too tightly for finger grip.
  • UV light: This is required to reveal the combination written on the bottom of the can, as it may be written in ink that only becomes visible under UV light.
  • Notebook: This is required to record the combination once it’s visible, ensuring it’s not forgotten.”

Not bad at all! GPT-4 manages to figure out the physical principle behind the solution (even if it is very wordy), and manages to step-by-step describe how to solve the problem. It does end up using the UV light and notebook, but that’s more of a problem on my end, not punishing the use of unnecessary items in the prompt enough. Also, the uses for these items seem decently reasonable… so why not!

Haiku-3.5’s Solution

Physical Principles: The key physical principles involved in this scenario are the concept of volume and the use of suction to extract the can from the hole. Since the can fits almost exactly into the hole, it is likely that the can is stuck due to the tight fit and the lack of any air gaps or space between the can and the hole. This tight fit creates a vacuum-like effect, making it difficult to grip and pull the can out.

Solution Steps:

  1. Measure the diameter of the can using the ruler. This will help determine the size of the hole and confirm that the can fits tightly within it.
  2. Inspect the bottom of the can to locate the combination written on it. Use the UV light to illuminate the bottom of the can and make the combination visible, if it is not already clearly visible.
  3. Attach the suction cup to the top of the can. The suction cup will create a temporary seal on the can’s surface, allowing you to grip and pull it out of the hole.
  4. Gently pull the can upwards using the suction cup. The suction force should be strong enough to overcome the vacuum-like effect and extract the can from the hole.
  5. Once the can is out, record the combination written on the bottom of the can in the notebook.

Required Items:

  • Ruler: To measure the diameter of the can and confirm the tight fit in the hole.
  • UV light: To illuminate the bottom of the can and make the combination visible, if it is not already clearly visible.
  • Suction cup: To create a temporary seal on the can’s surface and provide the necessary grip to pull the can out of the hole.
  • Notebook: To record the combination written on the bottom of the can.

On the other hand, Haiku’s solution was.. certainly a solution of all time.

First, it wants to measure the diameter of the can using the ruler??? To determine the size of the hole and confirm that the can fits tightly within it? Why would we need to do this? And do we need a ruler for that?

Second, it tells us to inspect the bottom of the can to locate the combination, when the entire problem is about not being able to pull the can out of the hole conventionally. This might just be an issue of order, but now I truly understand my friends’ feelings whenever I would tell them “just fix it man” to their numerous problems.

But it eventually does get the solution. So… not the worst.

Here’s a fancy radar graph of the results!

We see that both models are pretty similar in their capabilities, with GPT-4 being slightly better in physical understanding and solution path, and Haiku being slightly better in red herring handling. Overall though, both models kind of suck. Dang.

There are also only… 5 questions.

If you’d like to see the full breadth of questions, they’re on my GitHub.

LLM-as-a-Judge

By the way, the method I used to generate the evaluations, LLM-as-a-judge, has gained significant traction in the AI community, particularly after the work of Zheng et al. in their 2023 paper “Judging LLM-as-a-Judge.” The technique has proven remarkably effective, achieving over 80% agreement with human evaluators in tasks ranging from code assessment to dialogue quality evaluation!

Here’s where my experiment gets kind of cool (arguably, maybe, subjectively) — I used this methodology and had GPT-4 judge other LLMs’ physical reasoning abilities. Yes, I’m using an AI to judge other AIs.

Why does this work? Well, judging a response is actually a simpler task than generating one. When GPT-4 generates a solution to a physical puzzle, it needs to:

  • Understand the physical principles involved
  • Plan a sequence of steps
  • Consider all constraints
  • Generate a coherent explanation

But when judging, it only needs to check if specific criteria are met in an existing solution. The evaluation prompt is very focused:

def _create_evaluation_prompt(self, criteria: JudgingCriteria) -> str:
    return f"""You are an expert judge evaluating an LLM's understanding of physical reasoning puzzles.
Evaluate based on three criteria:
2. Physical Understanding Score (0-2): Does the solution correctly apply relevant physical principles?
3. Solution Path Score (0-2): Are the steps complete and feasible?
4. Red Herring Handling (0-1): Does it avoid using irrelevant items?
Scenario: {criteria.scenario}
Physical Principles Required: {criteria.correct_principles}
Solution Given: {criteria.model_response}
"""

To validate this approach, I followed the validation framework suggested by Zheng et al., performing spot-checks of GPT-4’s evaluations against my own judgments. Surprisingly (or perhaps unsurprisingly, given the broader research on LLM evaluation), it was remarkably consistent in identifying both correct physical understanding and flawed reasoning.

Is this perfect? Absolutely not. There’s something philosophically weird about using one LLM to evaluate another. But in practice, it can work surprisingly well — just like how I moan and groan about the visual presentation of a dish on Masterchef, while setting my kitchen aflame trying to microwave a hot dog.

What I Learned

Building this benchmark taught me several things about benchmark design:

Clear Metrics Matter: Even for complex tasks like physical reasoning, you need unambiguous scoring criteria.

Red Herrings Are Powerful: Including irrelevant items reveals a lot about an LLM’s reasoning process.

Context Control is Hard: Ensuring LLMs don’t “hallucinate” additional physical context is challenging.

Is this a perfect benchmark? Not even close. Please don’t rub it in. Is it scientifically rigorous? Definitely not. But it’s been a fascinating exploration into an aspect of LLM capabilities, and sometimes the best we can learn can come from just trying things out and seeing what happens.

Now, if you’ll excuse me, I will be sneaking in a phone with an internet connection into my next escape room, for reasons that I am legally unmotivated to disclose.

[1] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P. Xing, H. Zhang, J. E. Gonzalez, I. Stoica, “Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena,” Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS 2023), Datasets and Benchmarks Track (2023)

[2] T. Coignion, C. Quinton, R. Rouvoy, “A Performance Study of LLM-Generated Code on Leetcode,” In 28th International Conference on Evaluation and Assessment in Software Engineering (EASE 2024), Salerno, Italy (2024)

[3] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, S. R. Bowman, “SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems,” In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada (2019)

[5] DeepSeek-AI, D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, X. Zhang, X. Yu, Y. Wu, Z.F. Wu, Z. Gou, Z. Shao, Z. Li, Z. Gao et al., “DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning,” arXiv preprint arXiv:2501.12948 (2025)

[6] Unless otherwise stated, all images are created by the author.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

F5 to acquire CalypsoAI for advanced AI security capabilities

CalypsoAI’s platform creates what the company calls an Inference Perimeter that protects across models, vendors, and environments. The offers several products including Inference Red Team, Inference Defend, and Inference Observe, which deliver adversarial testing, threat detection and prevention, and enterprise oversight, respectively, among other capabilities. CalypsoAI says its platform proactively

Read More »

HomeLM: A foundation model for ambient AI

Capabilities of a HomeLM What makes a foundation model like HomeLM powerful is its ability to learn generalizable representations of sensor streams, allowing them to be reused, recombined and adapted across diverse tasks. This fundamentally differs from traditional signal processing and machine learning pipelines in RF sensing, which are typically

Read More »

IEA Says World Must Spend $540B a Year Looking for Oil, Gas

The world needs to spend some $540 billion a year looking for oil and gas to maintain current output by 2050, according to the International Energy Agency.  While global spending is likely to hit $570 billion this year, the amount would be down slightly from 2024, Christophe McGlade, head of the IEA’s energy supply unit, said on a webinar. The outlook means that companies will need to tap reserves that haven’t yet been discovered, unless demand shifts away from fossil fuels. Its forecast is part of a report that analyzed more than 15,000 fields and how fast their output is declining. Without investment, global supply would fall by the combined production of Norway and Brazil — more than 5 million barrels a day — every year. That amount is around 40% higher than it was in 2010, partly because of more reliance on shale production, particularly from the US, which typically depletes faster than conventional reserves. The outlook matters because there’s little sign of oil demand peaking soon, meaning that elevated output will be needed for years to come. While a global oil surplus is forecast for this year and next, BP Plc this year projected that supply growth outside of the Organization of the Petroleum Exporting Countries from early 2026 would remain largely flat for 12 to 18 months. “In the case of oil, an absence of upstream investment would remove the equivalent of Brazil and Norway’s combined production each year from the global market balance,” IEA Executive Director Fatih Birol said in a statement. “The situation means that the industry has to run much faster just to stand still.” WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments

Read More »

Preparing for regulatory audits in an era of affordability scrutiny

Jim McMahon is a vice president and practice leader of Charles River Associates’ energy practice. Across the electric utility sector, regulatory audits are becoming more frequent, more detailed and more focused on the question of affordability. Rising customer bills, driven by fuel and purchased power volatility, transmission and distribution investment, and renewable integration costs, have made cost management a central point of regulatory and public interest. For electric utilities, this means audits are no longer just compliance exercises; they are reputational moments that can influence rate outcomes, regulatory relationships and public trust. Electric utilities that approach audits reactively often find themselves stretched thin, scrambling to assemble data, align narratives and respond to follow-up requests under time pressure. In contrast, those that prepare strategically not only navigate the process more smoothly but also use it to reinforce their credibility as responsible stewards of customer resources. A structured approach to audit readiness, such as the Audit Readiness Test, or ART, offers a roadmap for ensuring that preparation is not just about meeting requirements but about strengthening the organization’s position before, during and after the review. Why the strategic approach matters Audits are, at their core, about telling a story that is both evidence-based and credible. For electric utilities, the most effective audit narratives weave together data, policy and operational decisions, from resource planning and grid investments to rate case filings, into a cohesive account that demonstrates responsible stewardship of customer resources. This story must clearly connect operational and financial choices to measurable customer value, with particular emphasis on how these decisions support affordability. An audit is not simply a technical compliance review; it is also a test of how well the organization can explain why it made certain choices, how those choices were implemented and what tangible benefits they delivered. Regulators and

Read More »

AccuWeather Updates Atlantic Hurricane Season Forecast

In a media advisory sent to Rigzone by the AccuWeather team recently, AccuWeather said its hurricane experts are “slightly reducing the[ir] forecast for the highest potential number of named storms and hurricanes expected to develop [in the Atlantic] this season”.   AccuWeather now forecasts 13-16 named storms and six to nine hurricanes for the 2025 Atlantic hurricane season, the advisory noted, adding that this is the first update to the AccuWeather 2025 Atlantic Hurricane Season Forecast, which the advisory pointed out was first issued back in March.   The initial forecast, which was also sent to Rigzone by the AccuWeather team earlier this year, predicted 13-18 named storms in 2025. That forecast expected 7-10 of those storms to strengthen into hurricanes, and three to five of those storms to strengthen into major hurricanes. AccuWeather also noted in that forecast that its hurricane experts “predict that three to six storms can directly impact the U.S. this year”.  In its latest advisory, AccuWeather highlighted that the forecast for three to five major hurricanes and three to six direct impacts to the United States has not changed. It pointed out that there have been two direct impacts to the U.S. so far this year and said its hurricane experts are urging people, businesses, and officials near the coast and in inland areas that have been affected by hurricanes and tropical storms in recent years to remain prepared and vigilant. “AccuWeather hurricane experts are constantly refining and integrating new data into our predictions,” AccuWeather Lead Hurricane Expert Alex DaSilva said in the advisory. “Unusual surges of dry air, Saharan dust, disruptive wind shear, cooler water temperatures off the western coast of Africa, and other atmospheric conditions have hampered multiple tropical waves from developing into tropical storms or hurricanes, during what are typically the peak weeks

Read More »

Ring Energy CFO Steps Down

Ring Energy, Inc. said its chief financial officer Travis Thomas, has resigned effective immediately to pursue other opportunities. Thomas’ resignation was not the result of any disagreement on any financial or other matter related to the operations, policies, or practices of Ring Energy, the company said in a news release. Ring Energy Vice President of Accounting, Controller and Assistant Treasurer Rocky Kwon, has been appointed interim chief financial officer while the company conducts a search for a new CFO, according to the release. Kwon, who has been with Ring since 2021, previously held financial leadership positions at Earthstone Energy, Inc. and The AES Corporation, the release said. Ring Energy Chairman and CEO Paul McKinney said, “Ring is positioned for financial success with the skilled leadership of Rocky. I want to personally thank Travis for his five years of dedication and service to the Company and the executive management team, and I wish him great success in his future endeavors. With this leadership transition plan in place, Ring remains firmly committed to delivering shareholder value and advancing its strategic objectives, including its continued focus on debt reduction”. Meanwhile, Ring Energy said it established a debt reduction target of approximately $18 million for the third quarter. The company said it expects to have approximately $430 million in borrowings outstanding on its credit facility as of Sept. 30, down from $448 million in borrowings outstanding as of June 30. Ring Energy also noted that Warburg Pincus has recently exited its full common equity position in the company. McKinney said, “In response to the drop in oil prices experienced earlier this year, the Company responded by adjusting capital spending and other operational alternatives within our control to focus on maximizing free cash flow generation and paying down debt. We believe our debt reduction target

Read More »

EIA Sees NatGas Price Jumping Well Over $4 in 2026

The U.S. Energy Information Administration (EIA) projected that the Henry Hub spot price will average well above $4 per million British thermal units (MMBtu) next year in its latest short term energy outlook (STEO), which was released on September 9. According to its latest STEO, the EIA sees the Henry Hub natural gas spot price averaging $3.52 per MMBtu in 2025 and $4.28 per MMBtu in 2026. The commodity averaged $2.19 per MMBtu in 2024, the STEO showed. A quarterly breakdown included in the EIA’s latest STEO highlighted that the EIA expects the Henry Hub natural gas spot price to average $3.04 per MMBtu in the third quarter of 2025, $3.72 per MMBtu in the fourth quarter, $4.25 per MMBtu in the first quarter of next year, $3.64 per MMBtu in the second quarter, $4.26 per MMBtu in the third quarter, and $4.99 per MMBtu in the fourth quarter of 2026. In its previous STEO, which was released last month, the EIA projected that the Henry Hub natural gas spot price would average $3.61 per MMBtu in 2025 and $4.34 per MMBtu in 2026. That STEO saw the commodity averaging $3.25 per MMBtu in the third quarter of 2025, $3.87 per MMBtu in the fourth quarter, $4.35 per MMBtu in the first quarter of 2026, $3.69 per MMBtu in the second quarter, $4.29 per MMBtu in the third quarter, and $5.01 per MMBtu in the fourth quarter. “Natural gas inventories remain relatively high, and August ended with six percent more natural gas in storage compared with the five-year average,” the EIA said in its September STEO. “The Henry Hub spot price averaged $2.91 per MMBtu in August (10 percent below our August STEO estimate). Lower prices over this summer have been driven by robust production and reduced natural gas consumption

Read More »

Australia Approves Extension for Woodside-Operated NWS Project

The Australian government has granted environmental approval to the Woodside-operated North West Shelf (NWS) project extension. Minister for the Environment and Water Murray Watt said in a statement that the approval is subject to “48 strict conditions” to avoid and mitigate significant impacts on the Murujuga rock art, which forms part of Western Australia’s Dampier Archipelago. “Specifically, I have imposed conditions that will require a reduction in certain gas emissions below their current levels, in some cases by 60 percent by 2030 with ongoing reductions beyond that,” Watt said. The conditions should account for any new science achieved through the Murujuga Rock Art Monitoring Program and require the joint venture for the asset to comply with any air quality objectives and standards that are derived from the program, according to the statement. The project will be required to reduce its emissions every year and reach net zero greenhouse gas emissions by 2050. Woodside and the NWS joint venture said they welcomed the Australian government’s final decision to grant environmental approval for the project. The final government approval “followed an extensive assessment and appeal process and included rigorous conditions to manage the protection of cultural heritage,” Woodside COO Australia Liz Westcott said in a separate statement. “This final approval provides certainty for the ongoing operation of the North West Shelf Project, so it can continue to provide reliable energy supplies as it has for more than 40 years,” Westcott said. “Over this time, the North West Shelf Project has paid more than [AUD 40 billion] in royalties and excise, supported thousands of Australian jobs and contributed well over [AUD 300 million] to communities in the Pilbara through social investment initiatives and infrastructure support”. According to Woodside, the NWS project, one of the largest liquefied natural gas (LNG) projects in the world,

Read More »

Arista touts liquid cooling, optical tech to reduce power consumption for AI networking

Both technologies will likely find a role in future AI and optical networks, experts say, as both promise to reduce power consumption and support improved bandwidth density. Both have advantages and disadvantages as well – CPOs are more complex to deploy given the amount of technology included in a CPO package, whereas LPOs promise more simplicity.  Bechtolsheim said that LPO can provide an additional 20% power savings over other optical forms. Early tests show good receiver performance even under degraded conditions, though transmit paths remain sensitive to reflections and crosstalk at the connector level, Bechtolsheim added. At the recent Hot Interconnects conference, he said: “The path to energy-efficient optics is constrained by high-volume manufacturing,” stressing that advanced optics packaging remains difficult and risky without proven production scale.  “We are nonreligious about CPO, LPO, whatever it is. But we are religious about one thing, which is the ability to ship very high volumes in a very predictable fashion,” Bechtolsheim said at the investor event. “So, to put this in quantity numbers here, the industry expects to ship something like 50 million OSFP modules next calendar year. The current shipment rate of CPO is zero, okay? So going from zero to 50 million is just not possible. The supply chain doesn’t exist. So, even if the technology works and can be demonstrated in a lab, to get to the volume required to meet the needs of the industry is just an incredible effort.” “We’re all in on liquid cooling to reduce power, eliminating fan power, supporting the linear pluggable optics to reduce power and cost, increasing rack density, which reduces data center footprint and related costs, and most importantly, optimizing these fabrics for the AI data center use case,” Bechtolsheim added. “So what we call the ‘purpose-built AI data center fabric’ around Ethernet

Read More »

Network and cloud implications of agentic AI

The chain analogy is critical here. Realistic uses of AI agents will require core database access; what can possibly make an AI business case that isn’t tied to a company’s critical data? The four critical elements of these applications—the agent, the MCP server, the tools, and the data— are all dragged along with each other, and traffic on the network is the linkage in the chain. How much traffic is generated? Here, enterprises had another surprise. Enterprises told me that their initial view of their AI hosting was an “AI cluster” with a casual data link to their main data center network. With AI agents, they now see smaller AI servers actually installed within their primary data centers, and all the traffic AI creates, within the model and to and from it, now flows on the data center network. Vendors who told enterprises that AI networking would have a profound impact are proving correct. You can run a query or perform a task with an agent and have that task parse an entire database of thousands or millions of records. Someone not aware of what an agent application implies in terms of data usage can easily create as much traffic as a whole week’s normal access-and-update would create. Enough, they say, to impact network capacity and the QoE of other applications. And, enterprises remind us, if that traffic crosses in/out of the cloud, the cloud costs could skyrocket. About a third of the enterprises said that issues with AI agents generated enough traffic to create local congestion on the network or a blip in cloud costs large enough to trigger a financial review. MCP tool use by agents is also a major security and governance headache. Enterprises point out that MCP standards haven’t always required strong authentication, and they also

Read More »

There are 121 AI processor companies. How many will succeed?

The US currently leads in AI hardware and software, but China’s DeepSeek and Huawei continue to push advanced chips, India has announced an indigenous GPU program targeting production by 2029, and policy shifts in Washington are reshaping the playing field. In Q2, the rollback of export restrictions allowed US companies like Nvidia and AMD to strike multibillion-dollar deals in Saudi Arabia.  JPR categorizes vendors into five segments: IoT (ultra-low-power inference in microcontrollers or small SoCs); Edge (on-device or near-device inference in 1–100W range, used outside data centers); Automotive (distinct enough to break out from Edge); data center training; and data center inference. There is some overlap between segments as many vendors play in multiple segments. Of the five categories, inference has the most startups with 90. Peddie says the inference application list is “humongous,” with everything from wearable health monitors to smart vehicle sensor arrays, to personal items in the home, and every imaginable machine in every imaginable manufacturing and production line, plus robotic box movers and surgeons.  Inference also offers the most versatility. “Smart devices” in the past, like washing machines or coffee makers, could do basically one thing and couldn’t adapt to any changes. “Inference-based systems will be able to duck and weave, adjust in real time, and find alternative solutions, quickly,” said Peddie. Peddie said despite his apparent cynicism, this is an exciting time. “There are really novel ideas being tried like analog neuron processors, and in-memory processors,” he said.

Read More »

Data Center Jobs: Engineering, Construction, Commissioning, Sales, Field Service and Facility Tech Jobs Available in Major Data Center Hotspots

Each month Data Center Frontier, in partnership with Pkaza, posts some of the hottest data center career opportunities in the market. Here’s a look at some of the latest data center jobs posted on the Data Center Frontier jobs board, powered by Pkaza Critical Facilities Recruiting. Looking for Data Center Candidates? Check out Pkaza’s Active Candidate / Featured Candidate Hotlist (and coming soon free Data Center Intern listing). Data Center Critical Facility Manager Impact, TX There position is also available in: Cheyenne, WY; Ashburn, VA or Manassas, VA. This opportunity is working directly with a leading mission-critical data center developer / wholesaler / colo provider. This firm provides data center solutions custom-fit to the requirements of their client’s mission-critical operational facilities. They provide reliability of mission-critical facilities for many of the world’s largest organizations (enterprise and hyperscale customers). This career-growth minded opportunity offers exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits. Electrical Commissioning Engineer New Albany, OH This traveling position is also available in: Richmond, VA; Ashburn, VA; Charlotte, NC; Atlanta, GA; Hampton, GA; Fayetteville, GA; Cedar Rapids, IA; Phoenix, AZ; Dallas, TX or Chicago, IL. *** ALSO looking for a LEAD EE and ME CxA Agents and CxA PMs. *** Our client is an engineering design and commissioning company that has a national footprint and specializes in MEP critical facilities design. They provide design, commissioning, consulting and management expertise in the critical facilities space. They have a mindset to provide reliability, energy efficiency, sustainable design and LEED expertise when providing these consulting services for enterprise, colocation and hyperscale companies. This career-growth minded opportunity offers exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits.  Data Center Engineering Design ManagerAshburn, VA This opportunity is working directly with a leading mission-critical data center developer /

Read More »

Modernizing Legacy Data Centers for the AI Revolution with Schneider Electric’s Steven Carlini

As artificial intelligence workloads drive unprecedented compute density, the U.S. data center industry faces a formidable challenge: modernizing aging facilities that were never designed to support today’s high-density AI servers. In a recent Data Center Frontier podcast, Steven Carlini, Vice President of Innovation and Data Centers at Schneider Electric, shared his insights on how operators are confronting these transformative pressures. “Many of these data centers were built with the expectation they would go through three, four, five IT refresh cycles,” Carlini explains. “Back then, growth in rack density was moderate. Facilities were designed for 10, 12 kilowatts per rack. Now with systems like Nvidia’s Blackwell, we’re seeing 132 kilowatts per rack, and each rack can weigh 5,000 pounds.” The implications are seismic. Legacy racks, floor layouts, power distribution systems, and cooling infrastructure were simply not engineered for such extreme densities. “With densification, a lot of the power distribution, cooling systems, even the rack systems — the new servers don’t fit in those racks. You need more room behind the racks for power and cooling. Almost everything needs to be changed,” Carlini notes. For operators, the first questions are inevitably about power availability. At 132 kilowatts per rack, even a single cluster can challenge the limits of older infrastructure. Many facilities are conducting rigorous evaluations to decide whether retrofitting is feasible or whether building new sites is the more practical solution. Carlini adds, “You may have transformers spaced every hundred yards, twenty of them. Now, one larger transformer can replace that footprint, and power distribution units feed busways that supply each accelerated compute rack. The scale and complexity are unlike anything we’ve seen before.” Safety considerations also intensify with these densifications. “At 132 kilowatts, maintenance is still feasible,” Carlini says, “but as voltages rise, data centers are moving toward environments where

Read More »

Google Backs Advanced Nuclear at TVA’s Clinch River as ORNL Pushes Quantum Frontiers

Inside the Hermes Reactor Design Kairos Power’s Hermes reactor is based on its KP-FHR architecture — short for fluoride salt–cooled, high-temperature reactor. Unlike conventional water-cooled reactors, Hermes uses a molten salt mixture called FLiBe (lithium fluoride and beryllium fluoride) as a coolant. Because FLiBe operates at atmospheric pressure, the design eliminates the risk of high-pressure ruptures and allows for inherently safer operation. Fuel for Hermes comes in the form of TRISO particles rather than traditional enriched uranium fuel rods. Each TRISO particle is encapsulated within ceramic layers that function like miniature containment vessels. These particles can withstand temperatures above 1,600 °C — far beyond the reactor’s normal operating range of about 700 °C. In combination with the salt coolant, Hermes achieves outlet temperatures between 650–750 °C, enabling efficient power generation and potential industrial applications such as hydrogen production. Because the salt coolant is chemically stable and requires no pressurization, the reactor can shut down and dissipate heat passively, without external power or operator intervention. This passive safety profile differentiates Hermes from traditional light-water reactors and reflects the Generation IV industry focus on safer, modular designs. From Hermes-1 to Hermes-2: Iterative Nuclear Development The first step in Kairos’ roadmap is Hermes-1, a 35 MW thermal demonstration reactor now under construction at TVA’s Clinch River site under a 2023 NRC license. Hermes-1 is not designed to generate electricity but will validate reactor physics, fuel handling, licensing strategies, and construction techniques. Building on that experience, Hermes-2 will be a 50 MW electric reactor connected to TVA’s grid, with operations targeted for 2030. Under the agreement, TVA will purchase electricity from Hermes-2 and supply it to Google’s data centers in Tennessee and Alabama. Kairos describes its development philosophy as “iterative,” scaling incrementally rather than attempting to deploy large fleets of units at once. By

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »