Stay Ahead, Stay ONMINE

I Tried Making my Own (Bad) LLM Benchmark to Cheat in Escape Rooms

Recently, DeepSeek announced their latest model, R1, and article after article came out praising its performance relative to cost, and how the release of such open-source models could genuinely change the course of LLMs forever. That is really exciting! And also, too big of a scope to write about… but when a model like DeepSeek […]

Recently, DeepSeek announced their latest model, R1, and article after article came out praising its performance relative to cost, and how the release of such open-source models could genuinely change the course of LLMs forever. That is really exciting! And also, too big of a scope to write about… but when a model like DeepSeek comes out of nowhere with a steel chair, boasting similar performance levels to other models, what does performance really mean in this context?

If you follow AI releases, you’ve seen this dance before. Every new model drops with its graphs showing how it’s somehow simultaneously better than GPT-4 on math problems while being smaller and more efficient. But what exactly are these benchmarks measuring? How are they created? And more importantly, how can we cut through the hype to create our own benchmarks for specific use cases?

I wanted to learn more about LLM Benchmarking.

Part 1: What is a Benchmark? (in 3 seconds)

TL:DR — The SATs (multiple, actually) for LLMs.

Part 1.1: What is a Benchmark? (in more than 3 seconds)

Before we dive into the nitty-gritty of specific benchmarks, let’s take a moment to unpack what we even mean by “LLM Benchmark.” Because calling them the “SATs for AI” feels both right and also slightly oversimplified.

LLM benchmarks are, at their core, structured tests used to measure how well large language models perform on certain tasks. These tasks can be anything from identifying if a statement is true or false, to summarizing a legal document, to generating valid Python functions. Think of them as curated obstacle courses specially designed by AI researchers to test every relevant muscle these models might have. These frameworks typically provide a dataset of inputs with known correct outputs, allowing for consistent comparison between models.

Modern benchmarks employ various evaluation methodologies. Classification metrics like accuracy work for tasks with discrete correct answers, while overlap-based metrics (BLEU, ROUGE) evaluate free-form text generation. Some benchmarks use functional testing for code generation, or employ other LLMs as judges to evaluate response quality.

A typical benchmark usually comes packaged as:

  • A standardized dataset of questions, prompts, or tasks (with correct or reference answers).
  • An evaluation protocol specifying how to measure success, like accuracy, F1 score, BLEU/ROUGE for text generation, or pass/fail rates for coding tasks.
  • A leaderboard or some form of comparative scoreboard, often with big flashy graphs.

Some really famous benchmarks include MMLU for testing multitask language understanding, TruthfulQA for assessing factual accuracy, and HumanEval for measuring coding capabilities. Results are pretty often published on public leaderboards, which let’s people perform some transparent comparison between different models.

From the DeepSeek paper: DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

What Makes a Good Benchmark?

  1. A Clear Task Definition: We want tasks that are unambiguous. The more straightforward and well-specified the challenge, the easier it is to trust the results.
  2. Data Integrity: The test set shouldn’t be floating around in the training data. Because if the model’s seen the exact same question 50 times before, the evaluation is about as useful as giving a math quiz to someone who already has the answer key.
  3. Quantifiable Metrics: You need a standard for scoring performance — like how many times the model’s code passes test cases or how close the generated summary is to a “ground-truth” summary.
  4. Task Diversity & Difficulty: If a benchmark is too easy, everyone just ACES it on day one, and we learn… well, nothing. If it’s too niche (like “We test only the model’s ability to count the digits of Pi for 20 minutes”), that’s also not so helpful.

Life Ain’t All about The Grades

Benchmarks capture only a slice of what LLMs can do. In the real world, your chatbot might need to juggle domain knowledge, keep track of conversation context, abide by your company’s policies, and produce fluent, non-offensive replies. No single standardized test out there fully covers that. As we’ll see in the upcoming case studies, the design and execution of a benchmark can heavily shape the picture you get of your model’s performance… and sometimes lead you astray if you’re not careful with how you measure success.

Now that we have a sense of what Llm Benchmarks are designed to accomplish (and where they might fall short), let’s explore a couple of examples to see how people actually build and use them in practice — with mixed results!

Case Study #1: Leetcode as an LLM Benchmark

As a student in the tech space, the word “Leetcode” popping up during my search for cool benchmarks raised by blood pressure by a statistically significant amount. Unlike Leetcode, which sucks, the paper “Performance Study of LLM-Generated Code on Leetcode” was very interesting — it asks a deceptively simple question: can we use Leetcode to benchmark LLM code generation? Their findings reveal both the promise and pitfalls of this approach.

The Benchmark Design

The researchers built a three-stage validation system. Local tests catch basic errors, Leetcode’s judge verifies correctness, and a custom benchmarking setup measures performance. This setup revealed something critical: benchmarking code performance is harder than it looks.

When they compared local measurements to Leetcode’s metrics, they found only a 0.28 correlation. Leetcode’s measurements showed much higher variation (0.089 vs 0.035 locally). Even worse, Leetcode’s rankings proved unstable — identical solutions could drop from the 77th to 54th percentile just based on submission timing.

A Performance Study of LLM-Generated Code on Leetcode,” In 28th International Conference on Evaluation and Assessment in Software Engineering (EASE 2024), Salerno, Italy (2024)

The Real Problems

Three major issues emerged that challenge Leetcode’s viability as a benchmark:

Data Contamination: Using public problems risks LLMs having seen the solutions during training. The researchers had to use only problems from 2023 to mitigate this.

Platform Instability: Leetcode’s metrics drift over time — memory measurements showed a -0.24 correlation with test date. This makes reproducible benchmarking nearly impossible.

Measurement Reliability: The weak correlation between local and platform measurements raises questions about what we’re actually testing.

What It Means for LLM Benchmarking

This study doesn’t just critique Leetcode — it highlights what we need in a code generation benchmark: reproducible measurements, reliable performance metrics, and guaranteed training-test separation. Until we have platforms built specifically for this purpose, we need to be extremely cautious about using competition platforms as benchmarks.

So! We know that not all benchmarks are viable benchmarks — what about a more mainstream one?

Case Study #2: SuperGLUE — Building a Better Language Understanding Benchmark

The SuperGLUE paper tackles a fascinating problem in AI benchmarking: what do you do when models get too good at your tests? When GLUE became insufficient (with models surpassing human performance), the researchers had to rethink how we measure language understanding.

The Benchmark Design

SuperGLUE’s core innovation is its task selection methodology. The researchers collected task proposals from the NLP community and filtered them through a rigorous process: each task needed clear evaluation metrics, public training data, and — most importantly — significant headroom between machine and human performance.

This resulted in eight tasks (I’ve simplified the table from the document here, it’s a little less readable but you should get the sense of what the questions are asking):

SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems, In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada (2019)

What makes these tasks special is their diversity in format. Unlike GLUE’s focus on sentence classification, SuperGLUE includes coreference resolution, reading comprehension, and more com plex reasoning tasks. Each task measures different aspects of language understanding while maintaining clear, quantifiable metrics.


Part 2: Let’s Build a Physical Reasoning Benchmark: To Cheat at Escape Rooms

After looking at some benchmarks like SuperGLUE and Leetcode, I had an idea: what if we tested LLMs on something completely different — physical reasoning… through escape room puzzles?

It’s a pretty valid idea — escape rooms poses possibilities and consequences for failure — screw up one too many puzzles, and your friends will think you’re pretty stupid, and relegate you to spectator duty. Luckily for us however, they (or the poor employees) don’t know that you can sneak a phone into an escape room — and you know just who to ask for the answers. Today, LLMs face off against the puzzles of a physical escape room.

Note: This is NOT a rigorous academic benchmark (please don’t cite this in papers, why would you even want to do that?), or even close to it, and it’s just supposed to be a fun way to test LLM benchmarking and evaluation. Please do not destroy my prompts, I am aware they are bad.

Why Physical Reasoning?

For real, though… most LLM benchmarks focus on linguistic tasks (like SuperGLUE) or code generation (like Leetcode). And for good reason — these are well-defined domains with clear evaluation metrics. But real-world problem solving often requires understanding physical principles and their interactions. The famous “Can GPT-4 do physics?” debates usually center around mathematical problem-solving, not practical physical reasoning.

Looking at existing benchmarks taught me a few key principles:

  1. Clear evaluation metrics are crucial (from SuperGLUE’s task-specific scores)
  2. Problems should have unambiguous solutions (from HumanEval’s test cases)
  3. The benchmark should test distinct capabilities (from MMLU’s subject categories)

Designing the Problems

I settled on escape room puzzles for two reasons. First, they naturally combine physical reasoning with clear goals. Second, they have unambiguous success conditions — either you solve it through the intended way, or you don’t. Third, and most importantly, they let me include “red herrings” — irrelevant items that test if the LLM can identify what matters physically. Fourth, I just really like doing escape rooms (did I mention that already?),

I am aware that this is more than two reasons, but if LLMs can’t count how many rs’ there are in strawberry, I’m allowed to mess up once in a while too.

Here’s how I structured the five core problems:

Fluid Dynamics (FLUID_001) (Ping pong ball stuck in a tube)

  • Tests understanding of buoyancy and fluid displacement
  • Inspired by classic physics problems but in practical context
  • Includes intentionally irrelevant items (like squishy food models)

Light Properties (UV_001) (UV light on a push numebr lock)

  • Tests understanding of UV fluorescence and material properties
  • Combines multiple physical principles (light, material science)
  • Requires understanding of environmental conditions

Mechanical Understanding (CIPHER_001) (A cipher ring)

  • Tests spatial reasoning and mechanical alignment
  • No red herrings — tests for correlating a dial to a cypher wheel
  • Requires understanding rotational symmetry

Force Application (VAC_001) (Can stuck in hole)

  • Tests understanding of vacuum forces and surface adhesion
  • Multiple possible solution approaches
  • Requires understanding force multiplication

Collaborative Physics (COLLAB_001) (Can two people shimmy a key?)

  • Tests understanding of physical constraints in multi-agent scenarios
  • Requires combining multiple physical principles
  • Tests understanding of tool creation and friction

Sounds really fancy… but it’s just some basic physical puzzles. You can access them on my GitHub.

The Technical Part

The benchmark implementation has three main components:

Problem Definition Layer

Problems are defined in a structured JSON format that enforces consistent evaluation:

{
    "problem_id": "FLUID_001",
    "setup": {
        "scenario": "A ping pong ball is at the bottom of a narrow tube...",
        "available_items": ["bottle of water", "squishy food models"...],
        "constraints": ["tube too narrow for manual retrieval"]
    },
    "physical_principles": ["buoyancy", "fluid displacement"],
    "red_herrings": ["squishy food models", "milk carton"],
    "solution": {
        "steps": ["pour water into tube", "allow ball to float"],
        "key_insights": ["water displaces air", "ping pong ball less dense"]
    }
}

This structure draws from SuperGLUE’s design — each component is clearly separated and machine-readable. The physical_principles field explicitly lists what’s being tested, while red_herrings helps in scoring the LLM’s ability to ignore irrelevant information.

2. Evaluation Framework

The evaluation system uses Python’s asyncio for concurrent testing, with retry logic for a little bit more API stability:

@retry(stop=stop_after_attempt(3), wait=wait_exponential(min=1, max=10))
async def evaluate_response(self, criteria: JudgingCriteria) -> Dict:
    """Evaluate a model's response using GPT-4 as judge."""
    async with aiohttp.ClientSession() as session:
        # ... evaluation logic

The scoring system looks at three components:

Physical Understanding Score (PUS) ∈ [0,2]

  • Measures understanding of relevant physical principles
  • Calculated as normalized sum of demonstrated principles

Solution Path Score (SPS) ∈ [0,2]

  • Evaluates completeness and correctness of solution steps
  • Considers practical feasibility of proposed solutions

Red Herring Handling (RHH) ∈ {0,1}

  • A Binary score for avoiding irrelevant items
  • Tests ability to focus on physically relevant factors

And yes, there are also so many other scoring methods, better and worse, that could be used! For example, RHH could be about how many irrelevant items are used in the solution, or it could be a measure of how viable the use is… the point is that picking these metrics are often times pretty arbitrary, but are very very important to making your benchmark is credible, which mine is very much not.

Additionally, I did not want to rewrite any code after. Sue me.

3. Model Interface Layer

The benchmark supports multiple LLM backends through a common interface:

class ModelInterface:
    """Interface for different LLM APIs."""
    async def generate_response(self, prompt: str) -> str:
        raise NotImplementedError
class GPT4Interface(ModelInterface):
    async def generate_response(self, prompt: str) -> str:
        # GPT-4 specific implementation
class ClaudeInterface(ModelInterface):
    async def generate_response(self, prompt: str) -> str:
        # Claude specific implementation

Two models… I can’t really afford any more, please understand.

Let’s Test It!

So after some refilling of API balances, I was ready to go. I ran the benchmark, and after totally not wasting credits on like, 5 different errors, the results were in. And they were… interesting! I used GPT4 and Claude 3.5 Haiku (I am aware these are not similarly spec-ed models) as our victims.

The Challenge: A can is stuck in a hole that almost exactly matches its volume. A combination is written on the bottom of the can that needs to be retrieved.

The inspiration
"VAC_001": {
        "problem_id": "VAC_001",
        "setup": {
            "available_items": [
                "ruler",
                "notebook",
                "suction cup",
                "UV light"
            ],
            "constraints": [
                "can fits too tightly for finger grip",
                "hole is same diameter as can",
                "can is clean and dry"
            ]
        },
        "physical_principles": [
            "vacuum suction",
            "surface adhesion",
            "force multiplication"
        ],
        "red_herrings": [
            "ruler",
            "notebook",
            "UV light"
        ],
        "solution": {
            "steps": [
                "inspect suction cup and can surface",
                "ensure can surface is clean",
                "firmly press suction cup onto can top",
                "create vacuum seal",
                "pull can out using suction cup"
            ],
            "key_insights": [
                "suction cup creates vacuum seal",
                "vacuum force allows extraction",
                "other items don't provide necessary force"
            ]
        }

GPT-4’s Solution

Physical Principles: The main physical principle involved in this solution is the concept of air pressure differential, which is the same principle that allows a suction cup to stick to a surface. Air pressure is higher on one side of the suction cup (outside) compared to the other (inside), and this difference in pressure causes the cup to stick to the surface.

Solution Steps:

  1. Attach the suction cup to the top of the can. The flat surface of the can should provide a good contact for the suction cup to adhere to.
  2. Once the suction cup is firmly attached, gently pull upwards. The air pressure differential should cause the suction cup (and thus the can) to be lifted out of the hole.
  3. Once the can is out of the hole, remove the suction cup from the top of the can.
  4. Use the UV light to illuminate the combination written on the bottom of the can. Some inks only become visible under UV light, which is why this step is necessary.
  5. Write down the combination on the notebook to ensure it’s not forgotten.

Required Items:

  • Suction cup: This is required to adhere to the can and pull it out of the hole, as the can fits too tightly for finger grip.
  • UV light: This is required to reveal the combination written on the bottom of the can, as it may be written in ink that only becomes visible under UV light.
  • Notebook: This is required to record the combination once it’s visible, ensuring it’s not forgotten.”

Not bad at all! GPT-4 manages to figure out the physical principle behind the solution (even if it is very wordy), and manages to step-by-step describe how to solve the problem. It does end up using the UV light and notebook, but that’s more of a problem on my end, not punishing the use of unnecessary items in the prompt enough. Also, the uses for these items seem decently reasonable… so why not!

Haiku-3.5’s Solution

Physical Principles: The key physical principles involved in this scenario are the concept of volume and the use of suction to extract the can from the hole. Since the can fits almost exactly into the hole, it is likely that the can is stuck due to the tight fit and the lack of any air gaps or space between the can and the hole. This tight fit creates a vacuum-like effect, making it difficult to grip and pull the can out.

Solution Steps:

  1. Measure the diameter of the can using the ruler. This will help determine the size of the hole and confirm that the can fits tightly within it.
  2. Inspect the bottom of the can to locate the combination written on it. Use the UV light to illuminate the bottom of the can and make the combination visible, if it is not already clearly visible.
  3. Attach the suction cup to the top of the can. The suction cup will create a temporary seal on the can’s surface, allowing you to grip and pull it out of the hole.
  4. Gently pull the can upwards using the suction cup. The suction force should be strong enough to overcome the vacuum-like effect and extract the can from the hole.
  5. Once the can is out, record the combination written on the bottom of the can in the notebook.

Required Items:

  • Ruler: To measure the diameter of the can and confirm the tight fit in the hole.
  • UV light: To illuminate the bottom of the can and make the combination visible, if it is not already clearly visible.
  • Suction cup: To create a temporary seal on the can’s surface and provide the necessary grip to pull the can out of the hole.
  • Notebook: To record the combination written on the bottom of the can.

On the other hand, Haiku’s solution was.. certainly a solution of all time.

First, it wants to measure the diameter of the can using the ruler??? To determine the size of the hole and confirm that the can fits tightly within it? Why would we need to do this? And do we need a ruler for that?

Second, it tells us to inspect the bottom of the can to locate the combination, when the entire problem is about not being able to pull the can out of the hole conventionally. This might just be an issue of order, but now I truly understand my friends’ feelings whenever I would tell them “just fix it man” to their numerous problems.

But it eventually does get the solution. So… not the worst.

Here’s a fancy radar graph of the results!

We see that both models are pretty similar in their capabilities, with GPT-4 being slightly better in physical understanding and solution path, and Haiku being slightly better in red herring handling. Overall though, both models kind of suck. Dang.

There are also only… 5 questions.

If you’d like to see the full breadth of questions, they’re on my GitHub.

LLM-as-a-Judge

By the way, the method I used to generate the evaluations, LLM-as-a-judge, has gained significant traction in the AI community, particularly after the work of Zheng et al. in their 2023 paper “Judging LLM-as-a-Judge.” The technique has proven remarkably effective, achieving over 80% agreement with human evaluators in tasks ranging from code assessment to dialogue quality evaluation!

Here’s where my experiment gets kind of cool (arguably, maybe, subjectively) — I used this methodology and had GPT-4 judge other LLMs’ physical reasoning abilities. Yes, I’m using an AI to judge other AIs.

Why does this work? Well, judging a response is actually a simpler task than generating one. When GPT-4 generates a solution to a physical puzzle, it needs to:

  • Understand the physical principles involved
  • Plan a sequence of steps
  • Consider all constraints
  • Generate a coherent explanation

But when judging, it only needs to check if specific criteria are met in an existing solution. The evaluation prompt is very focused:

def _create_evaluation_prompt(self, criteria: JudgingCriteria) -> str:
    return f"""You are an expert judge evaluating an LLM's understanding of physical reasoning puzzles.
Evaluate based on three criteria:
2. Physical Understanding Score (0-2): Does the solution correctly apply relevant physical principles?
3. Solution Path Score (0-2): Are the steps complete and feasible?
4. Red Herring Handling (0-1): Does it avoid using irrelevant items?
Scenario: {criteria.scenario}
Physical Principles Required: {criteria.correct_principles}
Solution Given: {criteria.model_response}
"""

To validate this approach, I followed the validation framework suggested by Zheng et al., performing spot-checks of GPT-4’s evaluations against my own judgments. Surprisingly (or perhaps unsurprisingly, given the broader research on LLM evaluation), it was remarkably consistent in identifying both correct physical understanding and flawed reasoning.

Is this perfect? Absolutely not. There’s something philosophically weird about using one LLM to evaluate another. But in practice, it can work surprisingly well — just like how I moan and groan about the visual presentation of a dish on Masterchef, while setting my kitchen aflame trying to microwave a hot dog.

What I Learned

Building this benchmark taught me several things about benchmark design:

Clear Metrics Matter: Even for complex tasks like physical reasoning, you need unambiguous scoring criteria.

Red Herrings Are Powerful: Including irrelevant items reveals a lot about an LLM’s reasoning process.

Context Control is Hard: Ensuring LLMs don’t “hallucinate” additional physical context is challenging.

Is this a perfect benchmark? Not even close. Please don’t rub it in. Is it scientifically rigorous? Definitely not. But it’s been a fascinating exploration into an aspect of LLM capabilities, and sometimes the best we can learn can come from just trying things out and seeing what happens.

Now, if you’ll excuse me, I will be sneaking in a phone with an internet connection into my next escape room, for reasons that I am legally unmotivated to disclose.

[1] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P. Xing, H. Zhang, J. E. Gonzalez, I. Stoica, “Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena,” Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS 2023), Datasets and Benchmarks Track (2023)

[2] T. Coignion, C. Quinton, R. Rouvoy, “A Performance Study of LLM-Generated Code on Leetcode,” In 28th International Conference on Evaluation and Assessment in Software Engineering (EASE 2024), Salerno, Italy (2024)

[3] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, S. R. Bowman, “SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems,” In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada (2019)

[5] DeepSeek-AI, D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, X. Zhang, X. Yu, Y. Wu, Z.F. Wu, Z. Gou, Z. Shao, Z. Li, Z. Gao et al., “DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning,” arXiv preprint arXiv:2501.12948 (2025)

[6] Unless otherwise stated, all images are created by the author.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Rust 1.93 updates bundled musl library to boost networking

The Rust team has unveiled Rust 1.93, the latest version of the programming language designed to create fast and safe system-level software. This release improves operations involving the DNS resolver for the musl implementation of the  C standard library. Linux binaries are expected to be more reliable for networking as

Read More »

Intel nabs Qualcomm veteran to lead GPU initiative

Intel has struggled for more than two decades to develop a successful GPU/accelerated computing strategy, going all the way back to the aughts and the ill-fated Larrabee effort.  Its most recent efforts centered around Ponte Vecchio and Gaudi chips, neither of which have gained any traction. Still, CEO Lip-Bu Tan

Read More »

New Relic extends observability into ChatGPT-hosted apps

New Relic’s cloud-based observability platform monitors applications and services in real time to provide insights into software, hardware, and cloud performance. The new capability extends the platform’s browser agent into the GPT iframe environment. It captures standard telemetry data, including latency and connectivity of an application within the GPT iframe.

Read More »

Crude Closes Higher on Iran, Cold Weather

Oil rose as traders factored in the possibility of US military action in Iran that could upend supplies from one of OPEC’s leading producers, and a massive winter storm in the US pushing up the price of refined products. West Texas Intermediate rose 2.9% to settle above $61, posting a fifth weekly gain. Prices rose after President Donald Trump revived his threats to use military force against Iran’s senior leadership, with a US Navy carrier strike group moving toward the Middle East. While Trump previously walked back pledges to attack the country, a renewed pressure campaign could add to oil’s geopolitical risk premium given Iran’s strategic importance to the industry. Adding to the concern and the geopolitically driven bullish momentum, the US is also pressuring Iraq to disarm Iran-backed militias, the Financial Times reported. Meanwhile, the Kremlin poured cold water on hopes of a breakthrough to end Russia’s war in Ukraine. An end to the conflict could limit supply disruptions and sanctions on Moscow’s crude. “The bottom line is that geopolitical headlines remain plentiful and uncertainty remains exceptionally high. Heading into the weekend, crude is likely to trade in whichever direction the headlines push it,” said Rebecca Babin, a senior energy trader at CIBC Private Wealth Group. “For now, recent shifts in military assets and official commentary appear to be leaning back toward renewed concerns over potential military action involving Iran,” Babin added. If the US strikes Iran, prompting a retaliation, it is unlikely but possible that the conflict will impact oil supplies, according to Rapidan Energy Group. The geopolitical analysis firm assigned a 20% probability to a “sustained and severe interruption” in energy production and flows in the region. Oil products such as diesel, which can be used as heating oil in the US Northeast, are also pushing higher

Read More »

SLB Predicts Worst Is Behind Global Oil Market

SLB, the world’s largest oilfield-services provider, raised its dividend and posted fourth-quarter earnings that beat estimates as activity in the Middle East and other key regions accelerated and its data-center business rapidly expanded. The worst may be behind the global oil market, Chief Executive Officer Olivier Le Peuch said in a statement, predicting a gradual ramp-up in drilling activity in major regions including OPEC countries after a supply glut sent crude prices tumbling last year. Deriving the bulk of its revenue from overseas markets, Houston-based SLB is often regarded as a bellwether for the global oil industry and its financial health. Shares rose by as much as 4.8% to $51.67, briefly hitting the highest price since April 2024 before paring gains. “As we move into 2026, we believe that the headwinds we experienced in key regions in 2025 are behind us,” Le Peuch said. “In particular, we expect rig activity in the Middle East to increase compared to today’s level, and our footprint in the region puts us in a strong position to benefit from this recovery.” The data-center business, which grew 121% from a year earlier, helped to shield the company from lower oil prices and geopolitical uncertainty, he added. SLB has also increased its focus on production and recovery services, which help drillers to boost efficiency and extract more crude at lower cost. SLB has been expanding into oilfield tech and other ancillary business lines to offset muted growth in traditional drilling and US shale activity.  SLB posted adjusted fourth-quarter earnings of 78 cents a share, surpassing analysts’ estimates of 74 cents. The company increased its quarterly divided 3.5% to 29.5 cents a share. The company’s global footprint positions it to benefit from US government efforts to revive Venezuelan oil production, Bloomberg Intelligence analyst Scott Levine wrote in

Read More »

France Boards Oil Tanker Linked to Russia Shadow Fleet

France’s navy boarded an oil tanker coming from Russia into the Mediterranean Sea, as part of a global crackdown on shadow fleet ships used to export sanctioned crude. The operation was carried out on the high seas, with the support of several of France’s allies, French President Emmanuel Macron said on X. The vessel – the Grinch – is subject to international sanctions and suspected of flying a false flag, he said.  The operation comes amid a step-up in pressure on the shadow fleet of aging tankers globally. The US has been seizing ships tied to Venezuela’s oil exports – one of which sought the shelter of the Russian flag – while European nations have long talked about tougher measures against aging ships sailing through their waters. “We are determined to uphold international law and to ensure the effective enforcement of sanctions,” Macron said. “The activities of the ‘shadow fleet’ contribute to financing the war of aggression against Ukraine.” A judicial investigation has been opened and the vessel has been diverted, Macron said. UN rules allow checks to be carried out on ships suspected of carrying false flags, according to a statement from the country’s administration for maritime affairs in the Mediterranean. The French navy said the tanker, which came from Murmansk on Russia’s Arctic coast, was boarded in the Alboran Sea, south of Spain, and taken to a mooring. The tanker was loaded with cargo at the time, vessel-tracking data compiled by Bloomberg show. While not giving a destination, it was sailing in the direction of the Suez Canal, a common waypoint for tankers taking Russian barrels to Asia. It disappeared from the industry’s digital tracking system on Wednesday, not long after passing Gibraltar. The Equasis international shipping database does not provide contact details for the manager of the Grinch. A clampdown on the shadow

Read More »

Natural Gas Prices Across the USA Surge

Natural gas prices for near-term delivery at regional trading hubs across the US jumped as the market braced for a historic winter storm that’s poised to send temperatures plummeting and boost demand for the heating fuel.  So-called cash prices for gas at the benchmark Henry Hub in Louisiana to be delivered over the weekend surged early Friday to $18.80 per million British thermal units, according to traders. That compares with $8.42 on Thursday. Spot prices at the SoCal Citygate hub in California traded as high as $8 per million Btu as gas volumes delivered via pipeline from the Permian Basin in West Texas to the West Coast have likely been reduced, traders said. That’s up from $4.42 on Thursday. This week’s surge has been driven by forecasts for below-normal temperatures across most of the country, threatening to boost gas consumption and drain inventories. The freeze — particularly in the southern gas-producing states — has raised concerns about water icing in pipelines, potentially disrupting output starting this weekend. US natural gas futures for February delivery, meanwhile, rose for a fourth straight day. They were up 6.3% to $5.362 per million Btu as of 9:22 a.m. in New York, heading for their biggest weekly gain in records going back to 1990. The shift in US weather forecasts came days after hedge funds turned more bearish on gas at the end of last week, leaving the market poised for a rally as traders rushed to close out those wagers. Gas prices briefly climbed above $5.50 per million Btu on Thursday, a level that a Citigroup Inc. analysis on Thursday showed would wipe out all shorts.  WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or

Read More »

USA Crude Oil Stocks Increase Week on Week

U.S. commercial crude oil inventories, excluding those in the Strategic Petroleum Reserve (SPR), increased by 3.6 million barrels from the week ending January 9 to the week ending January 16, the U.S. Energy Information Administration (EIA) highlighted in its latest weekly petroleum status report. Crude oil stocks, not including the SPR, stood at 426.0 million barrels on January 16, 422.4 million barrels on January 9, and 411.7 million barrels on January 17, 2025, the EIA report, which was released on January 22 and included data for the week ending January 16, showed. Crude oil in the SPR stood at 414.5 million barrels on January 16, 413.7 million barrels on January 9, and 394.6 million barrels on January 17, 2025, the report revealed. Total petroleum stocks – including crude oil, total motor gasoline, fuel ethanol, kerosene type jet fuel, distillate fuel oil, residual fuel oil, propane/propylene, and other oils – stood at 1.722 billion barrels on January 16, the report highlighted. Total petroleum stocks were up 8.3 million barrels week on week and up 100.3 million barrels year on year, the report pointed out. “At 426.0 million barrels, U.S. crude oil inventories are about two percent below the five year average for this time of year,” the EIA said in its latest weekly petroleum status report. “Total motor gasoline inventories increased by 6.0 million barrels from last week and are about five percent above the five year average for this time of year. Both finished gasoline and blending components inventories increased last week,” it added. “Distillate fuel inventories increased by 3.3 million barrels last week and are about one percent below the five year average for this time of year. Propane/propylene inventories decreased 2.1 million barrels from last week and are about 39 percent above the five year average for this

Read More »

Alaska LNG Secures Preliminary Deals with Suppliers, Offtakers

Glenfarne Group LLC said Thursday it had signed several preliminary agreements to source natural gas for and sell output from Alaska LNG, designed to also supply the domestic market, as well as conditionally awarded build contracts. Alaska LNG holds an Energy Department permit to export 20 million metric tons per annum (MMtpa) of LNG, or 2.55 billion cubic feet a day of natural gas equivalent according to Alaska LNG, to both FTA and non-FTA countries. The project secured the authorization November 2014 for the portion for countries with a free trade agreement (FTA) with the United States and August 2020 for the non-FTA portion. On December 11, 2025 the Federal Permitting Improvement Steering Council announced the completion of permit renewal for the project, which would process gas from the North Slope for both the domestic and overseas markets, following a review of environmental opinions. On Thursday Glenfarne said it has executed “gas sales precedent agreements” with Exxon Mobil Corp and Hilcorp Energy Co for the supply of gas from phase 1 of Alaska LNG. The Houston, Texas-based developer did not disclose any prospective contract volume. Glenfarne has a previous gas sales precedent agreement with Pantheon Resources PLC. “These agreements, which include pricing, contract length and other fundamental commercial terms, are a monumental step in achieving the decades-long objective of bringing the benefits of Alaska’s incredible North Slope reserves to Alaskans and to global markets”, said Adam Prestidge, Glenfarne president for Alaska LNG. Thursday’s statement also said Glenfarne had signed a letter of intent with Alaskan utility ENSTAR Natural Gas Co for a 30-year supply of LNG from the project. The volume under negotiation was not disclosed. Earlier this month it announced a letter of intent with Donlin Gold LLC of Novagold Resources Inc for a power plant for the Donlin gold

Read More »

Intel’s AI pivot could make lower-end PCs scarce in 2026

However, he noted, “CPUs are not being cannibalized by GPUs. Instead, they have become ‘chokepoints’ in AI infrastructure.” For instance, CPUs such as Granite Rapids are essential in GPU clusters, and for handling agentic AI workloads and orchestrating distributed inference. How pricing might increase for enterprises Ultimately, rapid demand for higher-end offerings resulted in foundry shortages of Intel 10/7 nodes, Bickley noted, which represent the bulk of the company’s production volume. He pointed out that it can take up to three quarters for new server wafers to move through the fab process, so Intel will be “under the gun” until at least Q2 2026, when it projects an increase in chip production. Meanwhile, manufacturing capacity for Xeon is currently sold out for 2026, with varying lead times by distributor, while custom silicon programs are seeing lead times of 6 to 8 months, with some orders rolling into 2027, Bickley said. In the data center, memory is the key bottleneck, with expected price increases of more than 65% year over year in 2026 and up to 25% for NAND Flash, he noted. Some specific products have already seen price inflation of over 1,000% since 2025, and new greenfield capacity for memory is not expected until 2027 or 2028. Moor’s Sag was a little more optimistic, forecasting that, on the client side, “memory prices will probably stabilize this year until more capacity comes online in 2027.” How enterprises can prepare Supplier diversification is the best solution for enterprises right now, Sag noted. While it might make things more complex, it also allows data center operators to better absorb price shocks because they can rebalance against suppliers who have either planned better or have more resilient supply chains.

Read More »

Reports of SATA’s demise are overblown, but the technology is aging fast

The SATA 1.0 interface made its debut in 2003. It was developed by a consortium consisting of Intel, Dell, and storage vendors like Seagate and Maxtor. It quickly advanced to SATA III in 2009, but there never was a SATA IV. There was just nibbling around the edges with incremental updates as momentum and emphasis shifted to PCI Express and NVMe. So is there any life to be had in the venerable SATA interface? Surprisingly, yes, say the analysts. “At a high level, yes, SATA for consumer is pretty much a dead end, although if you’re storing TB of photos and videos, it is still the least expensive option,” said Bob O’Donnell, president and chief analyst with TECHnalysis Research. Similarly for enterprise, for massive storage demands, the 20 and 30 TB SATA drives from companies like Seagate and WD are apparently still in wide use in cloud data centers for things like cold storage. “In fact, both of those companies are seeing recording revenues based, in part, on the demand for these huge, high-capacity low-cost drives,” he said. “SATA doesn’t make much sense anymore. It underperforms NVMe significantly,” said Rob Enderle, principal analyst with The Enderle Group. “It really doesn’t make much sense to continue make it given Samsung allegedly makes three to four times more margin on NVMe.” And like O’Donnell, Enderle sees continued life for SATA-based high-capacity hard drives. “There will likely be legacy makers doing SATA for some time. IT doesn’t flip technology quickly and SATA drives do wear out, so there will likely be those producing legacy SATA products for some time,” he said.

Read More »

DCN becoming the new WAN for AI-era applications

“DCN is increasingly treated as an end-to-end operating model that standardizes connectivity, security policy enforcement, and telemetry across users, the middle mile, and cloud/application edges,” Sanchez said. Dell’Oro defines DCN as platforms and services that deliver consistent connectivity, policy enforcement, and telemetry from users, across the WAN, to distributed cloud and application edges spanning branch sites, data centers and public clouds. The category is gaining relevance as hybrid architectures and AI-era traffic patterns increase the operational penalty for fragmented control planes. DCN buyers are moving beyond isolated upgrades and are prioritizing architectures that reduce operational seams across connectivity, security and telemetry so that incident response and change control can follow a single thread, according to Dell’Oro’s research. What makes DCN distinct is that it links user-to-application experience with where policy and visibility are enforced. This matters as application delivery paths become more dynamic and workloads shift between on-premises data centers, public cloud, and edge locations. The architectural requirement is eliminating handoffs between networking and security teams rather than optimizing individual network segments. Where DCN is growing the fastest Cloud/application edge is the fastest-growing DCN pillar. This segment deploys policy enforcement and telemetry collection points adjacent to workloads rather than backhauling traffic to centralized security stacks. “Multi-cloud remains a reality, but it is no longer the durable driver by itself,” Sanchez said. “Cloud/application edge is accelerating because enterprises are trying to make application paths predictable and secure across hybrid environments, and that requires pushing application-aware steering, policy enforcement, and unified telemetry closer to workloads.”

Read More »

Edged US Builds Waterless, High-Density AI Data Center Campuses at Scale

Edged US is targeting a narrow but increasingly valuable lane of the hyperscale AI infrastructure market: high-density compute delivered at speed, paired with a sustainability posture centered on waterless, closed-loop cooling and a portfolio-wide design PUE target of roughly 1.15. Two recent announcements illustrate the model. In Aurora, Illinois, Edged is developing a 72-MW facility purpose-built for AI training and inference, with liquid-to-chip cooling designed to support rack densities exceeding 200 kW. In Irving, Texas, a 24-MW campus expansion combines air-cooled densities above 120 kW per rack with liquid-to-chip capability reaching 400 kW. Taken together, the projects point to a consistent strategy: standardized, multi-building campuses in major markets; a vertically integrated technical stack with cooling at its core; and an operating model built around repeatable designs, modular systems, and readiness for rapidly escalating AI densities. A Campus-First Platform Strategy Edged US’s platform strategy is built around campus-scale expansion rather than one-off facilities. The company positions itself as a gigawatt-scale, AI-ready portfolio expanding across major U.S. metros through repeatable design targets and multi-building campuses: an emphasis that is deliberate and increasingly consequential. In Chicago/Aurora, Edged is developing a multi-building campus with an initial facility already online and a second 72-MW building under construction. Dallas/Irving follows the same playbook: the first facility opened in January 2025, with a second 24-MW building approved unanimously by the city. Taken together with developments in Atlanta, Chicago, Columbus, Dallas, Des Moines, Kansas City, and Phoenix, the footprint reflects a portfolio-first mindset rather than a collection of bespoke sites. This focus on campus-based expansion matters because the AI factory era increasingly rewards developers that can execute three things at once: Lock down power and land at scale. Standardize delivery across markets. Operate efficiently while staying aligned with community and regulatory expectations. Edged is explicitly selling the second

Read More »

CBRE’s 2026 Data Center Outlook: Demand Surges as Delivery Becomes the Constraint

The U.S. data center market is entering 2026 with fundamentals that remain unmatched across commercial real estate, but the nature of the dominant constraint has shifted. Demand is no longer gated by capital, connectivity, or even land. It is gated by the ability to deliver very large blocks of power, on aggressive timelines, at a predictable cost. According to the CBRE 2026 U.S. Real Estate Market Outlook as overseen by Gordon Dolven and Pat Lynch, the sector is on track to post another record year for leasing activity, even as vacancy remains at historic lows and pricing reaches all-time highs. What has changed is the scale at which demand now presents itself, and the difficulty of meeting it. Large-Block Leasing Rewrites the Economics AI-driven workloads are reshaping leasing dynamics in ways that break from prior hyperscale norms. Where 10-MW-plus deployments once commanded pricing concessions, CBRE now observes the opposite behavior: large, contiguous blocks of capacity are commanding premiums. Neocloud providers, GPU-as-a-service platforms and AI startups, many backed by aggressive capital deployment strategies, are actively competing for full-building and campus-scale capacity.  For operators, this is altering development and merchandising strategies. Rather than subdividing shells for flexibility, owners increasingly face a strategic choice: hold buildings intact to preserve optionality for single-tenant, high-density users who are willing to pay for scale. In effect, scale itself has become the scarce asset. Behind-the-Meter Power Moves to the Foreground For data centers, power availability meaning not just access, but certainty of delivery, is now the defining variable in the market.  CBRE notes accelerating adoption of behind-the-meter strategies as operators seek to bypass increasingly constrained utility timelines. On-site generation using natural gas, solar, wind, and battery storage is gaining traction, particularly in deregulated electricity markets where operators have more latitude to structure BYOP (bring your own power) solutions. 

Read More »

Blue Origin targets enterprise networks with a multi-terabit satellite connectivity plan

“It’s ideal for remote, sparse, or sensitive regions,” said Manish Rawat, analyst at TechInsights. “Key use cases include cloud-to-cloud links, data center replication, government, defense, and disaster recovery workloads. It supports rapid or temporary deployments and prioritizes fewer customers with high capacity, strict SLAs, and deep carrier integration.” Adoption, however, is expected to largely depend on the sector. For governments and organizations operating highly critical or sensitive infrastructure, where reliability and security outweigh cost considerations, this could be attractive as a redundancy option. “Banks, national security agencies, and other mission-critical operators may consider it as an alternate routing path,” Jain said. “For most enterprises, however, it is unlikely to replace terrestrial connectivity and would instead function as a supplementary layer.” Real-world performance Although satellite connectivity offers potential advantages, analysts note that questions remain around real-world performance. “TeraWave’s 6 Tbps refers to total constellation capacity, not per-user throughput, achieved via multiple optical inter-satellite links and ground gateways,” Rawat said. “Optical crosslinks provide high aggregate bandwidth but not a single terabit-class pipe. Performance lies between fiber and GEO satellites, with lower intercontinental latency than GEO but higher than fiber.” Operational factors could also affect network stability. Jitter is generally low, but handovers, rerouting, and weather conditions can introduce intermittent performance spikes. Packet loss is expected to remain modest but episodic, Rawat added.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »