Stay Ahead, Stay ONMINE

Inside a new quest to save the “doomsday glacier”

The Thwaites glacier is a fortress larger than Florida, a wall of ice that reaches nearly 4,000 feet above the bedrock of West Antarctica, guarding the low-lying ice sheet behind it. But a strong, warm ocean current is weakening its foundations and accelerating its slide into the Amundsen Sea. Scientists fear the waters could topple the walls in the coming decades, kick-starting a runaway process that would crack up the West Antarctic Ice Sheet. That would mark the start of a global climate disaster. The glacier itself holds enough ice to raise ocean levels by more than two feet, which could flood coastlines and force tens of millions of people living in low-lying areas to abandon their homes. The loss of the entire ice sheet—which could still take centuries to unfold—would push up sea levels by 11 feet and redraw the contours of the continents. This is why Thwaites is known as the doomsday glacier—and why scientists are eager to understand just how likely such a collapse is, when it could happen, and if we have the power to stop it.  Scientists at MIT and Dartmouth College founded Arête Glacier Initiative last year in the hope of providing clearer answers to these questions. The nonprofit research organization will officially unveil itself, launch its website, and post requests for research proposals today, March 21, timed to coincide with the UN’s inaugural World Day for Glaciers, MIT Technology Review can report exclusively.  Arête will also announce it is issuing its first grants, each for around $200,000 over two years, to a pair of glacier researchers at the University of Wisconsin-Madison.  One of the organization’s main goals is to study the possibility of preventing the loss of giant glaciers, Thwaites in particular, by refreezing them to the bedrock. It would represent a radical intervention into the natural world, requiring a massive, expensive engineering project in a remote, treacherous environment.  But the hope is that such a mega-adaptation project could minimize the mass relocation of climate refugees, prevent much of the suffering and violence that would almost certainly accompany it, and help nations preserve trillions of dollars invested in high-rises, roads, homes, ports, and airports around the globe. “About a million people are displaced per centimeter of sea-level rise,” says Brent Minchew, an associate professor of geophysics at MIT, who cofounded Arête Glacier Initiative and will serve as its chief scientist. “If we’re able to bring that down, even by a few centimeters, then we would safeguard the homes of millions.” But some scientists believe the idea is an implausible, wildly expensive distraction, drawing money, expertise, time, and resources away from more essential polar research efforts.  “Sometimes we can get a little over-optimistic about what engineering can do,” says Twila Moon, deputy lead scientist at the National Snow and Ice Data Center at the University of Colorado Boulder. “Two possible futures” Minchew, who earned his PhD in geophysics at Caltech, says he was drawn to studying glaciers because they are rapidly transforming as the world warms, increasing the dangers of sea-level rise.  “But over the years, I became less content with simply telling a more dramatic story about how things were going and more open to asking the question of what can we do about it,” says Minchew, who will return to Caltech as a professor this summer. Last March, he cofounded Arête Glacier Initiative with Colin Meyer, an assistant professor of engineering at Dartmouth, in the hope of funding and directing research to improve scientific understanding of two big questions: How big a risk does sea-level rise pose in the coming decades, and can we minimize that risk? Brent Minchew, an MIT professor of geophysics, co-founded Arête Glacier Initiative and will serve as its chief scientist.COURTESY: BRENT MINCHEW “Philanthropic funding is needed to address both of these challenges, because there’s no private-sector funding for this kind of research and government funding is minuscule,” says Mike Schroepfer, the former Meta chief technology officer turned climate philanthropist, who provided funding to Arête through his new organization, Outlier Projects.  The nonprofit has now raised about $5 million from Outlier and other donors, including the Navigation Fund, the Kissick Family Foundation, the Sky Foundation, the Wedner Family Foundation, and the Grantham Foundation.  Minchew says they named the organization Arête, mainly because it’s the sharp mountain ridge between two valleys, generally left behind when a glacier carves out the cirques on either side. It directs the movement of the glacier and is shaped by it.  It’s meant to symbolize “two possible futures,” he says. “One where we do something; one where we do nothing.” Improving forecasts The somewhat reassuring news is that, even with rising global temperatures, it may still take thousands of years for the West Antarctic Ice Sheet to completely melt.  In addition, sea-level rise forecasts for this century generally range from as little as 0.28 meters (11 inches) to 1.10 meters (about three and a half feet), according to the latest UN climate panel report. The latter only occurs under a scenario with very high greenhouse gas emissions (SSP5-8.5), which significantly exceeds the pathway the world is now on. But there’s still a “low-likelihood” that ocean levels could surge nearly two meters (about six and a half feet) by 2100 that “cannot be excluded,” given “deep uncertainty linked to ice-sheet processes,” the report adds.  Two meters of sea-level rise could force nearly 190 million people to migrate away from the coasts, unless regions build dikes or other shoreline protections, according to some models. Many more people, mainly in the tropics, would face heightened flooding dangers. Much of the uncertainty over what will happen this century comes down to scientists’ limited understanding of how Antarctic ice sheets will respond to growing climate pressures. The initial goal of Arête Glacier Initiative is to help narrow the forecast ranges by improving our grasp of how Thwaites and other glaciers move, melt, and break apart. Gravity is the driving force nudging glaciers along the bedrock and reshaping them as they flow. But many of the variables that determine how fast they slide lie at the base. That includes the type of sediment the river of ice slides along; the size of the boulders and outcroppings it contorts around; and the warmth and strength of the ocean waters that lap at its face. In addition, heat rising from deep in the earth warms the ice closest to the ground, creating a lubricating layer of water that hastens the glacier’s slide. That acceleration, in turn, generates more frictional heat that melts still more of the ice, creating a self-reinforcing feedback effect. Minchew and Meyer are confident that the glaciology field is at a point where it could speed up progress in sea-level rise forecasting, thanks largely to improving observational tools that are producing more and better data. That includes a new generation of satellites orbiting the planet that can track the shifting shape of ice at the poles at far higher resolutions than in the recent past. Computer simulations of ice sheets, glaciers and sea ice are improving as well, thanks to growing computational resources and advancing machine learning techniques. On March 21, Arête will issue a request for proposals from research teams to contribute to an effort to collect, organize, and openly publish existing observational glacier data. Much of that expensively gathered information is currently inaccessible to researchers around the world, Minchew says. Colin Meyer, an assistant professor of engineering at Dartmouth, co-founded Arête Glacier Initiative. By funding teams working across these areas, Arête’s founders hope to help produce more refined ice-sheet models and narrower projections of sea-level rise. This improved understanding would help cities plan where to build new bridges, buildings, and homes, and to determine whether they’ll need to erect higher seawalls or raise their roads, Meyer says. It could also provide communities with more advance notice of the coming dangers, allowing them to relocate people and infrastructure to safer places through an organized process known as managed retreat. A radical intervention But the improved forecasts might also tell us that Thwaites is closer to tumbling into the ocean than we think, underscoring the importance of considering more drastic measures. One idea is to build berms or artificial islands to prop up fragile parts of glaciers, and to block the warm waters that rise from the deep ocean and melt them from below. Some researchers have also considered erecting giant, flexible curtains anchored to the seabed to achieve the latter effect. Others have looked at scattering highly reflective beads or other materials across ice sheets, or pumping ocean water onto them in the hopes it would freeze during the winter and reinforce the headwalls of the glaciers. But the concept of refreezing glaciers in place, know as a basal intervention, is gaining traction in scientific circles, in part because there’s a natural analogue for it. The glacier that stalled About 200 years ago, the Kamb Ice Stream, another glacier in West Antarctica that had been sliding about 350 meters (1,150 feet) per year, suddenly stalled. Glaciologists believe an adjacent ice stream intersected with the catchment area under the glacier, providing a path for the water running below it to flow out along the edge instead. That loss of fluid likely slowed down the Kamb Ice Stream, reduced the heat produced through friction, and allowed water at the surface to refreeze. The deceleration of the glacier sparked the idea that humans might be able to bring about that same phenomenon deliberately, perhaps by drilling a series of boreholes down to the bedrock and pumping up water from the bottom. Minchew himself has focused on a variation he believes could avoid much of the power use and heavy operating machinery hassles of that approach: slipping long tubular devices, known as thermosyphons, down nearly to the bottom of the boreholes.  These passive heat exchangers, which are powered only by the temperature differential between two areas, are commonly used to keep permafrost cold around homes, buildings and pipelines in Arctic regions. The hope is that we could deploy extremely long ones, stretching up to two kilometers and encased in steel pipe, to draw warm temperatures away from the bottom of the glacier, allowing the water below to freeze. Minchew says he’s in the process of producing refined calculations, but estimates that halting Thwaites could require drilling as many as 10,000 boreholes over a 100-square-kilometer area. He readily acknowledges that would be a huge undertaking, but provides two points of comparison to put such a project into context: Melting the necessary ice to create those holes would require roughly the amount of energy all US domestic flights consume from jet fuel in about two and a half hours. Or, it would produce about the same level of greenhouse gas emissions as constructing 10 kilometers of seawalls, a small fraction of the length the world would need to build if it can’t slow down the collapse of the ice sheets, he says. “Kick the system” One of Arête’s initial grantees is Marianne Haseloff, an assistant professor of geoscience at the University of Wisconsin-Madison. She studies the physical processes that govern the behavior of glaciers and is striving to more faithfully represent them in ice sheet models.  Haseloff says she will use those funds to develop mathematical methods that could more accurately determine what’s known as basal shear stress, or the resistance of the bed to sliding glaciers, based on satellite observations. That could help refine forecasts of how rapidly glaciers will slide into the ocean, in varying settings and climate conditions. Arête’s other initial grant will go to Lucas Zoet, an associate professor in the same department as Haseloff and the principal investigator with the Surface Processes group. He intends to use the funds to build the lab’s second “ring shear” device, the technical term for a simulated glacier. The existing device, which is the only one operating in the world, stands about eight feet tall and fills the better part of a walk-in freezer on campus. The core of the machine is a transparent drum filled with a ring of ice, sitting under pressure and atop a layer of sediment. It slowly spins for weeks at a time as sensors and cameras capture how the ice and earth move and deform. Lucas Zoet, an associate professor at the University of Wisconsin–Madison, stands in front of his lab’s “ring shear” device, a simulated glacier.ETHAN PARRISH The research team can select the sediment, topography, water pressure, temperature, and other conditions to match the environment of a real-world glacier of interest, be it Thwaites today—or Thwaites in 2100, under a high greenhouse gas emissions scenario.  Zoet says these experiments promise to improve our understanding of how glaciers move over different types of beds, and to refine an equation known as the slip law, which represents these glacier dynamics mathematically in computer models. The second machine will enable them to run more experiments and to conduct a specific kind that the current device can’t: a scaled-down, controlled version of the basal intervention. Zoet says the team will be able to drill tiny holes through the ice, then pump out water or transfer heat away from the bed. They can then observe whether the simulated glacier freezes to the base at those points and experiment with how many interventions, across how much space, are required to slow down its movement. It offers a way to test out different varieties of the basal intervention that is far easier and cheaper than using water drills to bore to the bottom of an actual glacier in Antarctica, Zoet says. The funding will allow the lab to explore a wide range of experiments, enabling them to “kick the system in a way we wouldn’t have before,” he adds. “Virtually impossible” The concept of glacier interventions is in its infancy. There are still considerable unknowns and uncertainties, including how much it would cost, how arduous the undertaking would be, and which approach would be most likely to work, or if any of them are feasible. “This is mostly a theoretical idea at this point,” says Katharine Ricke, an associate professor at the University of California, San Diego, who researches the international relations implications of geoengineering, among other topics. Conducting extensive field trials or moving forward with full-scale interventions may also require surmounting complex legal questions, she says. Antarctica isn’t owned by any nation, but it’s the subject of competing territorial claims among a number of countries and governed under a decades-old treaty to which dozens are a party. The basal intervention—refreezing the glacier to its bed—faces numerous technical hurdles that would make it “virtually impossible to execute,” Moon and dozens of other researchers argued in a recent preprint paper, “Safeguarding the polar regions from dangerous geoengineering.” Among other critiques, they stress that subglacial water systems are complex, dynamic, and interconnected, making it highly difficult to precisely identify and drill down to all the points that would be necessary to remove enough water or add enough heat to substantially slow down a massive glacier. Further, they argue that the interventions could harm polar ecosystems by adding contaminants, producing greenhouse gases, or altering the structure of the ice in ways that may even increase sea-level rise. “Overwhelmingly, glacial and polar geoengineering ideas do not make sense to pursue, in terms of the finances, the governance challenges, the impacts,” and the possibility of making matters worse, Moon says. “No easy path forward” But Douglas MacAyeal, professor emeritus of glaciology at the University of Chicago, says the basal intervention would have the lightest environmental impact among the competing ideas. He adds that nature has already provided an example of it working, and that much of the needed drilling and pumping technology is already in use in the oil industry. “I would say it’s the strongest approach at the starting gate,” he says, “but we don’t really know anything about it yet. The research still has to be done. It’s very cutting-edge.” Minchew readily acknowledges that there are big challenges and significant unknowns—and that some of these ideas may not work. But he says it’s well worth the effort to study the possibilities, in part because much of the research will also improve our understanding of glacier dynamics and the risks of sea-level rise—and in part because it’s only a question of when, not if, Thwaites will collapse. Even if the world somehow halted all greenhouse gas emissions tomorrow, the forces melting that fortress of ice will continue to do so.  So one way or another, the world will eventually need to make big, expensive, difficult interventions to protect people and infrastructure. The cost and effort of doing one project in Antarctica, he says, would be small compared to the global effort required to erect thousands of miles of seawalls, ratchet up homes, buildings, and roads, and relocate hundreds of millions of people. “One thing is challenging—and the other is even more challenging,” Minchew says. “There’s no easy path forward.”

The Thwaites glacier is a fortress larger than Florida, a wall of ice that reaches nearly 4,000 feet above the bedrock of West Antarctica, guarding the low-lying ice sheet behind it.

But a strong, warm ocean current is weakening its foundations and accelerating its slide into the Amundsen Sea. Scientists fear the waters could topple the walls in the coming decades, kick-starting a runaway process that would crack up the West Antarctic Ice Sheet.

That would mark the start of a global climate disaster. The glacier itself holds enough ice to raise ocean levels by more than two feet, which could flood coastlines and force tens of millions of people living in low-lying areas to abandon their homes.

The loss of the entire ice sheet—which could still take centuries to unfold—would push up sea levels by 11 feet and redraw the contours of the continents.

This is why Thwaites is known as the doomsday glacier—and why scientists are eager to understand just how likely such a collapse is, when it could happen, and if we have the power to stop it. 

Scientists at MIT and Dartmouth College founded Arête Glacier Initiative last year in the hope of providing clearer answers to these questions. The nonprofit research organization will officially unveil itself, launch its website, and post requests for research proposals today, March 21, timed to coincide with the UN’s inaugural World Day for Glaciers, MIT Technology Review can report exclusively. 

Arête will also announce it is issuing its first grants, each for around $200,000 over two years, to a pair of glacier researchers at the University of Wisconsin-Madison. 

One of the organization’s main goals is to study the possibility of preventing the loss of giant glaciers, Thwaites in particular, by refreezing them to the bedrock. It would represent a radical intervention into the natural world, requiring a massive, expensive engineering project in a remote, treacherous environment. 

But the hope is that such a mega-adaptation project could minimize the mass relocation of climate refugees, prevent much of the suffering and violence that would almost certainly accompany it, and help nations preserve trillions of dollars invested in high-rises, roads, homes, ports, and airports around the globe.

“About a million people are displaced per centimeter of sea-level rise,” says Brent Minchew, an associate professor of geophysics at MIT, who cofounded Arête Glacier Initiative and will serve as its chief scientist. “If we’re able to bring that down, even by a few centimeters, then we would safeguard the homes of millions.”

But some scientists believe the idea is an implausible, wildly expensive distraction, drawing money, expertise, time, and resources away from more essential polar research efforts. 

“Sometimes we can get a little over-optimistic about what engineering can do,” says Twila Moon, deputy lead scientist at the National Snow and Ice Data Center at the University of Colorado Boulder.

“Two possible futures”

Minchew, who earned his PhD in geophysics at Caltech, says he was drawn to studying glaciers because they are rapidly transforming as the world warms, increasing the dangers of sea-level rise. 

“But over the years, I became less content with simply telling a more dramatic story about how things were going and more open to asking the question of what can we do about it,” says Minchew, who will return to Caltech as a professor this summer.

Last March, he cofounded Arête Glacier Initiative with Colin Meyer, an assistant professor of engineering at Dartmouth, in the hope of funding and directing research to improve scientific understanding of two big questions: How big a risk does sea-level rise pose in the coming decades, and can we minimize that risk?

Brent Minchew, an MIT professor of geophysics, co-founded Arête Glacier Initiative and will serve as its chief scientist.
COURTESY: BRENT MINCHEW

“Philanthropic funding is needed to address both of these challenges, because there’s no private-sector funding for this kind of research and government funding is minuscule,” says Mike Schroepfer, the former Meta chief technology officer turned climate philanthropist, who provided funding to Arête through his new organization, Outlier Projects

The nonprofit has now raised about $5 million from Outlier and other donors, including the Navigation Fund, the Kissick Family Foundation, the Sky Foundation, the Wedner Family Foundation, and the Grantham Foundation. 

Minchew says they named the organization Arête, mainly because it’s the sharp mountain ridge between two valleys, generally left behind when a glacier carves out the cirques on either side. It directs the movement of the glacier and is shaped by it. 

It’s meant to symbolize “two possible futures,” he says. “One where we do something; one where we do nothing.”

Improving forecasts

The somewhat reassuring news is that, even with rising global temperatures, it may still take thousands of years for the West Antarctic Ice Sheet to completely melt. 

In addition, sea-level rise forecasts for this century generally range from as little as 0.28 meters (11 inches) to 1.10 meters (about three and a half feet), according to the latest UN climate panel report. The latter only occurs under a scenario with very high greenhouse gas emissions (SSP5-8.5), which significantly exceeds the pathway the world is now on.

But there’s still a “low-likelihood” that ocean levels could surge nearly two meters (about six and a half feet) by 2100 that “cannot be excluded,” given “deep uncertainty linked to ice-sheet processes,” the report adds. 

Two meters of sea-level rise could force nearly 190 million people to migrate away from the coasts, unless regions build dikes or other shoreline protections, according to some models. Many more people, mainly in the tropics, would face heightened flooding dangers.

Much of the uncertainty over what will happen this century comes down to scientists’ limited understanding of how Antarctic ice sheets will respond to growing climate pressures.

The initial goal of Arête Glacier Initiative is to help narrow the forecast ranges by improving our grasp of how Thwaites and other glaciers move, melt, and break apart.

Gravity is the driving force nudging glaciers along the bedrock and reshaping them as they flow. But many of the variables that determine how fast they slide lie at the base. That includes the type of sediment the river of ice slides along; the size of the boulders and outcroppings it contorts around; and the warmth and strength of the ocean waters that lap at its face.

In addition, heat rising from deep in the earth warms the ice closest to the ground, creating a lubricating layer of water that hastens the glacier’s slide. That acceleration, in turn, generates more frictional heat that melts still more of the ice, creating a self-reinforcing feedback effect.

Minchew and Meyer are confident that the glaciology field is at a point where it could speed up progress in sea-level rise forecasting, thanks largely to improving observational tools that are producing more and better data.

That includes a new generation of satellites orbiting the planet that can track the shifting shape of ice at the poles at far higher resolutions than in the recent past. Computer simulations of ice sheets, glaciers and sea ice are improving as well, thanks to growing computational resources and advancing machine learning techniques.

On March 21, Arête will issue a request for proposals from research teams to contribute to an effort to collect, organize, and openly publish existing observational glacier data. Much of that expensively gathered information is currently inaccessible to researchers around the world, Minchew says.

Colin Meyer, an assistant professor of engineering at Dartmouth, co-founded Arête Glacier Initiative.

By funding teams working across these areas, Arête’s founders hope to help produce more refined ice-sheet models and narrower projections of sea-level rise.

This improved understanding would help cities plan where to build new bridges, buildings, and homes, and to determine whether they’ll need to erect higher seawalls or raise their roads, Meyer says. It could also provide communities with more advance notice of the coming dangers, allowing them to relocate people and infrastructure to safer places through an organized process known as managed retreat.

A radical intervention

But the improved forecasts might also tell us that Thwaites is closer to tumbling into the ocean than we think, underscoring the importance of considering more drastic measures.

One idea is to build berms or artificial islands to prop up fragile parts of glaciers, and to block the warm waters that rise from the deep ocean and melt them from below. Some researchers have also considered erecting giant, flexible curtains anchored to the seabed to achieve the latter effect.

Others have looked at scattering highly reflective beads or other materials across ice sheets, or pumping ocean water onto them in the hopes it would freeze during the winter and reinforce the headwalls of the glaciers.

But the concept of refreezing glaciers in place, know as a basal intervention, is gaining traction in scientific circles, in part because there’s a natural analogue for it.

The glacier that stalled

About 200 years ago, the Kamb Ice Stream, another glacier in West Antarctica that had been sliding about 350 meters (1,150 feet) per year, suddenly stalled.

Glaciologists believe an adjacent ice stream intersected with the catchment area under the glacier, providing a path for the water running below it to flow out along the edge instead. That loss of fluid likely slowed down the Kamb Ice Stream, reduced the heat produced through friction, and allowed water at the surface to refreeze.

The deceleration of the glacier sparked the idea that humans might be able to bring about that same phenomenon deliberately, perhaps by drilling a series of boreholes down to the bedrock and pumping up water from the bottom.

Minchew himself has focused on a variation he believes could avoid much of the power use and heavy operating machinery hassles of that approach: slipping long tubular devices, known as thermosyphons, down nearly to the bottom of the boreholes. 

These passive heat exchangers, which are powered only by the temperature differential between two areas, are commonly used to keep permafrost cold around homes, buildings and pipelines in Arctic regions. The hope is that we could deploy extremely long ones, stretching up to two kilometers and encased in steel pipe, to draw warm temperatures away from the bottom of the glacier, allowing the water below to freeze.

Minchew says he’s in the process of producing refined calculations, but estimates that halting Thwaites could require drilling as many as 10,000 boreholes over a 100-square-kilometer area.

He readily acknowledges that would be a huge undertaking, but provides two points of comparison to put such a project into context: Melting the necessary ice to create those holes would require roughly the amount of energy all US domestic flights consume from jet fuel in about two and a half hours. Or, it would produce about the same level of greenhouse gas emissions as constructing 10 kilometers of seawalls, a small fraction of the length the world would need to build if it can’t slow down the collapse of the ice sheets, he says.

“Kick the system”

One of Arête’s initial grantees is Marianne Haseloff, an assistant professor of geoscience at the University of Wisconsin-Madison. She studies the physical processes that govern the behavior of glaciers and is striving to more faithfully represent them in ice sheet models. 

Haseloff says she will use those funds to develop mathematical methods that could more accurately determine what’s known as basal shear stress, or the resistance of the bed to sliding glaciers, based on satellite observations. That could help refine forecasts of how rapidly glaciers will slide into the ocean, in varying settings and climate conditions.

Arête’s other initial grant will go to Lucas Zoet, an associate professor in the same department as Haseloff and the principal investigator with the Surface Processes group.

He intends to use the funds to build the lab’s second “ring shear” device, the technical term for a simulated glacier.

The existing device, which is the only one operating in the world, stands about eight feet tall and fills the better part of a walk-in freezer on campus. The core of the machine is a transparent drum filled with a ring of ice, sitting under pressure and atop a layer of sediment. It slowly spins for weeks at a time as sensors and cameras capture how the ice and earth move and deform.

Lucas Zoet, an associate professor at the University of Wisconsin–Madison, stands in front of his lab’s “ring shear” device, a simulated glacier.
ETHAN PARRISH

The research team can select the sediment, topography, water pressure, temperature, and other conditions to match the environment of a real-world glacier of interest, be it Thwaites today—or Thwaites in 2100, under a high greenhouse gas emissions scenario. 

Zoet says these experiments promise to improve our understanding of how glaciers move over different types of beds, and to refine an equation known as the slip law, which represents these glacier dynamics mathematically in computer models.

The second machine will enable them to run more experiments and to conduct a specific kind that the current device can’t: a scaled-down, controlled version of the basal intervention.

Zoet says the team will be able to drill tiny holes through the ice, then pump out water or transfer heat away from the bed. They can then observe whether the simulated glacier freezes to the base at those points and experiment with how many interventions, across how much space, are required to slow down its movement.

It offers a way to test out different varieties of the basal intervention that is far easier and cheaper than using water drills to bore to the bottom of an actual glacier in Antarctica, Zoet says. The funding will allow the lab to explore a wide range of experiments, enabling them to “kick the system in a way we wouldn’t have before,” he adds.

“Virtually impossible”

The concept of glacier interventions is in its infancy. There are still considerable unknowns and uncertainties, including how much it would cost, how arduous the undertaking would be, and which approach would be most likely to work, or if any of them are feasible.

“This is mostly a theoretical idea at this point,” says Katharine Ricke, an associate professor at the University of California, San Diego, who researches the international relations implications of geoengineering, among other topics.

Conducting extensive field trials or moving forward with full-scale interventions may also require surmounting complex legal questions, she says. Antarctica isn’t owned by any nation, but it’s the subject of competing territorial claims among a number of countries and governed under a decades-old treaty to which dozens are a party.

The basal intervention—refreezing the glacier to its bed—faces numerous technical hurdles that would make it “virtually impossible to execute,” Moon and dozens of other researchers argued in a recent preprint paper, “Safeguarding the polar regions from dangerous geoengineering.”

Among other critiques, they stress that subglacial water systems are complex, dynamic, and interconnected, making it highly difficult to precisely identify and drill down to all the points that would be necessary to remove enough water or add enough heat to substantially slow down a massive glacier.

Further, they argue that the interventions could harm polar ecosystems by adding contaminants, producing greenhouse gases, or altering the structure of the ice in ways that may even increase sea-level rise.

“Overwhelmingly, glacial and polar geoengineering ideas do not make sense to pursue, in terms of the finances, the governance challenges, the impacts,” and the possibility of making matters worse, Moon says.

“No easy path forward”

But Douglas MacAyeal, professor emeritus of glaciology at the University of Chicago, says the basal intervention would have the lightest environmental impact among the competing ideas. He adds that nature has already provided an example of it working, and that much of the needed drilling and pumping technology is already in use in the oil industry.

“I would say it’s the strongest approach at the starting gate,” he says, “but we don’t really know anything about it yet. The research still has to be done. It’s very cutting-edge.”

Minchew readily acknowledges that there are big challenges and significant unknowns—and that some of these ideas may not work.

But he says it’s well worth the effort to study the possibilities, in part because much of the research will also improve our understanding of glacier dynamics and the risks of sea-level rise—and in part because it’s only a question of when, not if, Thwaites will collapse.

Even if the world somehow halted all greenhouse gas emissions tomorrow, the forces melting that fortress of ice will continue to do so. 

So one way or another, the world will eventually need to make big, expensive, difficult interventions to protect people and infrastructure. The cost and effort of doing one project in Antarctica, he says, would be small compared to the global effort required to erect thousands of miles of seawalls, ratchet up homes, buildings, and roads, and relocate hundreds of millions of people.

“One thing is challenging—and the other is even more challenging,” Minchew says. “There’s no easy path forward.”

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

AI and greed cause a massive spike in memory prices

TrendForce says that as of 2Q25, HBM3e still commanded a price premium more than four times that of DDR5, so it’s hard to fault the memory manufacturers for wanting to make a buck. However, as DDR5 prices continue to rise, the gap between the two is projected to narrow significantly

Read More »

Palo Alto Networks readies security for AI-first world

Palo Alto has articulated the value of a security platform for several years. But now, given the speed at which AI is moving, the value shifts from cost consolidation to agility. With AI, most customers don’t know what their future operating environment will look like, and a platform approach lets

Read More »

Strategists Forecast 6MM Barrel WoW USA Crude Stock Build

In an oil and gas report sent to Rigzone this week by the Macquarie team, Macquarie strategists, including Walt Chancellor, revealed that they are forecasting that U.S. crude inventories will be up by 6.2 million barrels for the week ending October 31. “This follows a 6.9 million barrel draw in the prior week, with the crude balance realizing significantly tighter than our expectations,” the strategists said in the report. “For this week’s balance, from refineries, we model a moderate increase in crude runs (+0.4 million barrels per day),” they added. “Among net imports, we model a large increase, with exports lower (-0.6 million barrels per day) and imports higher (+0.8 million barrels per day) on a nominal basis,” they continued. In the report, the strategists noted that the timing of cargoes remains a source of potential volatility in this week’s crude balance. “From implied domestic supply (prod.+adj.+transfers), we look for a bounce (+0.8 million barrels per day) on a nominal basis this week,” the analysts went on to state in the report. “Rounding out the picture, we anticipate a similar increase (+0.5 million barrels) in SPR [Strategic Petroleum Reserve] stocks this week,” they noted. The strategists also said in the report that, “among products” they “look for draws in gasoline (-2.5 million barrels) and distillate (-4.7 million barrels), with jet stocks up (+0.8 million barrels)”. “We model implied demand for these three products at ~14.6 million barrels per day for the week ending October 31,” they added. In its latest weekly petroleum status report at the time of writing, which was released on October 29 and included data for the week ending October 24, the U.S. Energy Information Administration (EIA) highlighted that U.S. commercial crude oil inventories, excluding those in the SPR, decreased by 6.9 million barrels from the week

Read More »

ADNOC Set to Join Argentina LNG

Abu Dhabi National Oil Co PJSC (ADNOC) signed Tuesday a “non-binding framework agreement” to invest in YPF SA and Eni SpA’s project to export up to 12 million metric tons per annum (MMtpa) of natural gas from the Vaca Muerta field onshore Argentina. ADNOC through its global investment arm XRG will “evaluate participation” in Argentina LNG, XRG said in an online statement. “By joining forces with Eni’s world-class FLNG [floating liquefied natural gas] capabilities and YPF’s proven upstream leadership, we aim to set new benchmarks for innovation, scale and reliability in the international gas market”, said XRG international president for gas Mohamed Al Aryani. Italy’s state-backed Eni said separately the agreement signed Tuesday at the ADIPEC energy forum in Abu Dhabi paves the way for a “joint development agreement”. Last month Eni and Argentina’s state-owned YPF signed a “final technical project description”, bringing Argentina LNG closer to a final investment decision. “The project involves the production, processing, transportation and liquefaction of gas for export through two floating gas liquefaction units with a capacity of six MTPA (million tons per year, equivalent to approximately 9 billion cubic meters of gas per year) each, in addition to the valorization and export of associated liquids”, Eni said in a press release October 10. “Today’s agreement follows the head of agreement signed by the two companies in June 2025”. Announcing its initial agreement with YPF, Eni said June 6 Argentina LNG has plans to expand to 30 MMtpa by 2030. XRG added, “The non-binding framework agreement, signed during ADIPEC 2025, follows XRG’s recent investments in Mozambique’s Rovuma Basin, Block-1 Turkmenistan, Arcius Energy in Egypt, Absheron in Azerbaijan and the Rio Grande LNG project in the United States, reinforcing its ambition to become a leading global gas player”. ADNOC’s Gas Ambitions XRG aims to build

Read More »

Russia in Talks with Turkey to Maintain Gas Flows

Russia and Turkey are in talks to keep up the volumes of gas supplies from Gazprom PJSC as they negotiate the renewal of two major pipeline supply deals, according to people familiar with the matter.  The contracts between Russia’s gas giant and Turkey’s state company Botas for combined deliveries of as much as 21.75 billion cubic meters a year are set to expire on Dec. 31. Russia and Turkey are negotiating to keep the annual flows at about 22 billion cubic meters, the people said, asking not to be identified as the information isn’t public. Gazprom didn’t immediately respond to a Bloomberg request for comment sent during a public holiday in Russia. Turkey’s Energy Ministry didn’t comment. Botas didn’t reply to a query seeking comment. Gas market watchers have been questioning the future of Russian gas flows to Turkey amid growing pressure from US President Donald Trump’s administration to curb energy purchases that help the Kremlin fund its war on Ukraine. Following US sanctions on Russia’s two biggest oil producers last month, Turkey’s oil refiners have started cutting imports of Russian crude.  Turkey has previously pushed back on Western efforts to stop it from buying Russian gas, which is mostly traded through long-term contracts via extensive pipeline connections between the two countries. In September, however, Turkey agreed to a string of contracts to buy liquefied natural gas, including from the US. With Turkey’s own production from the Black Sea set to grow, it may end up with more gas than it needs.  Turkey’s large market has been a lifeline for Gazprom, which has all but lost the European gas market after the war triggered a push for diversification of supplies. This should give Turkey leverage to negotiate discounts in a renewal of supply deals.  Last year, Gazprom shipped 21.6 billion

Read More »

‘Disappointing’ Results for Melbana at Cuban Well

Melbana Energy Ltd said Wednesday flow testing at the Amistad-2 well in Cuba’s onshore Block 9 had failed to recover oil. “The testing of Amistad-2 is disappointing given the well was up-dip of known oil, but this can occur in the early-stage appraisal and development of new oilfields”, Melbana executive chair Andrew Purcell said in an online statement. “Oil shows were muted during the drilling, perhaps because the reservoir drilling fluid we have designed for these formations was in balance and doing its job, but well logs indicated good reservoir quality and reasonable oil saturation. Flow testing confirmed excellent reservoir quality, given the high rate of fluid recovery, but oil was residual at that location. “The rate of drilling was also quicker than prognosed, allowing us to continue drilling the encountered formation much deeper than originally planned”. The Sydney, Australia-based company exceeded its target total depth of 1,125 meters (3,690.94 feet) and reached 2,000 meters. Amistad-2 sits about 850 meters southwest and 200 meters up-dip of the already producing Alameda-2, also in Block 9, according to Melbana. However, pressure data from the latest drilling campaign “indicates that the reservoirs at the Amistad-2 location are not in communication with those at the Alameda-2 location”, Wednesday’s statement said. “Given the results of Amistad-2 consideration is now being given to Amistad-11 replacing Amistad-3 as the next well. This would be a shallow production well located on Pad 1, where good production characteristics have previously been obtained (peak flow of 1,903 bopd at a sustained rate of 1,235 bopd)”, Melbana added. “Production operations in Amistad-1 have been temporarily halted to prepare for the drilling of this well in case the joint operation approves this course of action”. Block 9 spans 2,344 square kilometers (905.02 square miles) on the north coast of Cuba, 140 kilometers

Read More »

Shell Commits to Long-Term Purchase from Ruwais LNG

Abu Dhabi National Oil Co PJSC (ADNOC) said Tuesday it has signed a 15-year deal with Shell PLC to supply the British company up to one million metric tons per annum (MMtpa) of liquefied natural gas (LNG) from the Ruwais LNG project in the United Arab Emirates. “Signed during ADIPEC, the deal marks ADNOC’s first long-term LNG sales agreement with Shell and the eighth long-term offtake agreement secured for the Ruwais LNG project”, ADNOC said in a press release. “This SPA [sale and purchase agreement] converts a previous heads of agreement into a definitive agreement and marks a significant step in ADNOC’s efforts to rapidly commercialize the Ruwais LNG project. “With this latest agreement, more than eight MMtpa of the project’s planned 9.6 MMtpa capacity is now secured through long-term deals with customers across Asia and Europe, just 16 months after the project’s final investment decision in July 2024”. Fatema Al Nuaimi, chief executive of ADNOC gas processing and sales arm ADNOC Gas PLC, said, “While the industry can take up to four or five years to market such volumes, Ruwais is advancing at record pace”. “In parallel, construction, contractor mobilization and site works are all on track for commissioning by the end of 2028”, Al Nuaimi added. The export plant in Al Ruwais Industrial City is planned to have two trains, each with a production capacity of 4.8 MMtpa. Targeted to be put into production 2028, the facility would more than double ADNOC’s LNG capacity. Shell already holds a 10 percent stake in the project through Shell Overseas Holdings Ltd, ADNOC confirmed Tuesday. Last year ADNOC penned separate agreements farming out a total of 40 percent in Ruwais LNG to Shell, BP PLC, Mitsui & Co Ltd and TotalEnergies SE. Japan’s Mitsui also penned an offtake of 600,000 metric tons a year,

Read More »

Oil Retreats on Strong Greenback

Oil fell, halting a four-session run of gains, pressured by a strong dollar and a backdrop of oversupply. West Texas Intermediate fell 0.8% to settle below $61 a barrel on Tuesday. A global equities rally hit a speed bump amid concerns about lofty valuations while the greenback climbed to the highest in more than five months, weighing on crude and other dollar-denominated commodities. Oil declined because of “the dollar funding stress and the second-order effect on global liquidity and, in turn, global growth,” said Jon Byrne, an analyst at Strategas Securities. The Organization of the Petroleum Exporting Countries and its allies said over the weekend they planned to hold back from lifting production quotas in the first quarter. The decision came as market observers brace for what is expected to be a global crude glut. The US oil benchmark has retreated almost 16% this year as OPEC+ and non-member nations ramped up production. Prices rebounded from five-month lows when the US recently announced sanctions on Rosneft PJSC and Lukoil PJSC, Russia’s two biggest oil companies, but have since surrendered some of those advances. Russian seaborne crude shipments fell sharply in the wake of the sanctions, dropping by the most since January 2024, according to data tracked by Bloomberg. Cargo discharges have been hit even harder than loadings, with oil held in tanker ships surging. Still, some are skeptical the restrictions will stop Russian oil from finding buyers. “Down the line, you will see that more and more of the disrupted Russian oil, one way or another, finds its way to the market,” Torbjörn Törnqvist, chief executive officer of Gunvor Group, said during an interview on Tuesday. “It always does somehow.” Eni SpA CEO Claudio Descalzi said Monday that any concerns about oversupply will be short-lived, the latest comments by an

Read More »

Space: The final frontier for data processing

There are, however, a couple of reasons why data centers in space are being considered. There are plenty of reports about how the increased amount of AI processing is affecting power consumption within data centers; the World Economic Forum has estimated that the power required to handle AI is increasing at a rate of between 26% and 36% annually. Therefore, it is not surprising that organizations are looking at other options. But an even more pressing reason for orbiting data centers is to handle the amount of data that is being produced by existing satellites, Judge said. “Essentially, satellites are gathering a lot more data than can be sent to earth, because downlinks are a bottleneck,” he noted. “With AI capacity in orbit, they could potentially analyze more of this data, extract more useful information, and send insights back to earth. My overall feeling is that any more data processing in space is going to be driven by space processing needs.” And China may already be ahead of the game. Last year, Guoxing Aerospace  launched 12 satellites, forming a space-based computing network dubbed the Three-Body Computing Constellation. When completed, it will contain 2,800 satellites, all handling the orchestration and processing of data, taking edge computing to a new dimension.

Read More »

Meta’s $27B Hyperion Campus: A New Blueprint for AI Infrastructure Finance

At the end of October, Meta announced a joint venture with funds managed by Blue Owl Capital to finance, develop, and operate the previously announced “Hyperion” project, a multi-building AI megacampus in Richland Parish, Louisiana. Under the new JV structure, Blue Owl will own 80 percent and Meta 20 percent, though Meta had announced the project long before Blue Owl’s involvement was confirmed. The venture anticipates roughly $27 billion in total development costs for the buildings and the long-lived power, cooling, and connectivity infrastructure. Blue Owl contributed about $7 billion in cash at formation; Meta received a $3 billion one-time distribution and contributed land and construction-in-progress to the vehicle. Rachel Peterson, VP of Data Centers at Meta, noted that construction on the project is already well underway, with thousands of workers on-site. Structuring Capital and Control Media coverage from Reuters and others characterizes the financing package as one of the largest private-capital deals ever for a single industrial campus, with debt placements led by PIMCO and additional institutional investors. Meta keeps the project largely off its balance sheet through the joint venture while retaining the development and property-management role and serving as the anchor tenant for the campus. The JV allows Meta to smooth its capital expenditures and manage risk while maintaining execution control over its most ambitious AI site to date. The structure incorporates lease agreements and a residual-value guarantee, according to Kirkland & Ellis (Blue Owl’s counsel), enabling lenders and equity holders to underwrite a very large, long-duration asset with multiple exit paths. For Blue Owl, Hyperion represents a utility-like digital-infrastructure platform with contracted cash flows to a single A-tier counterparty: a hyperscaler running mission-critical AI workloads for training and inference. As Barron’s and MarketWatch have noted, the deal underscores Wall Street’s ongoing appetite for AI-infrastructure investments at

Read More »

ZincFive targets AI data centers with new energy system

The system is engineered to absorb sharp transient loads from GPU clusters and AI training environments, while also providing reliable runtime support for conventional IT operations. By managing dynamic power at the UPS level, it reduces strain on upstream infrastructure, lowers capital expenditures (CAPEX), and improves grid interactions, according to ZincFive. “With BC 2 AI, we are delivering a safe, sustainable, and future-ready power solution designed to handle the most demanding AI workloads while continuing to support traditional IT backup. This is a defining moment not just for ZincFive, but for the entire data center industry as it adapts to the AI era,” Tod Higinbotham, CEO of ZincFive, said in a statement. Another benefit is its smaller design. Competing solutions can require two to four times more space to meet AI’s power surges, which can be up to 150% of UPS rated capacity. With BC 2 AI’s minimal footprint expansion, power can be handled more efficiently, ZincFive stated.

Read More »

Cisco centralizes customer experience around AI

The idea is to make sure enterprises are effectively choosing, implementing, and using the technologies they purchase to achieve their business goals, according to the company. Cisco CX offers a suite of services to help customers optimize their network infrastructure, security, collaboration, cloud and data center operations – from planning and design to implementation and maintenance. “For too long, the delivery of services has been fragmented, with support and professional services using different tools optimized for specific functions or lifecycle stages. This has led to a fragmented experience where customers, partners, and Cisco teams spend more time on data collection and tool maintenance than on high-value analysis,” wrote Bhaskar Jayakrishnan, senior vice president of engineering with the Cisco CX group in a blog about the new technology.  “Historically, the handoffs between these stages have been inefficient. Designs are interpreted by humans and then converted into code. Operational data is manually analyzed to inform optimizations. This process is slow, error-prone, and loses critical context at every step.” “Cisco IQ represents a shift from this tool-centric model to an intelligence-centric one. It is a multi-persona system, serving customers, partners, and our own services teams through an API-first architecture. Our objective is to turn decades of institutional knowledge into a living, adaptive system that makes your infrastructure smarter, more resilient, and more secure,” Jayakrishnan wrote.

Read More »

Data Center Jobs: Engineering, Construction, Commissioning, Sales, Field Service and Facility Tech Jobs Available in Major Data Center Hotspots

Each month Data Center Frontier, in partnership with Pkaza, posts some of the hottest data center career opportunities in the market. Here’s a look at some of the latest data center jobs posted on the Data Center Frontier jobs board, powered by Pkaza Critical Facilities Recruiting. Looking for Data Center Candidates? Check out Pkaza’s Active Candidate / Featured Candidate Hotlist Data Center Facility Technician (All Shifts Available) Impact, TX This position is also available in: Ashburn, VA; Abilene, TX; Needham, MA and New York, NY.  Navy Nuke / Military Vets leaving service accepted! This opportunity is working with a leading mission-critical data center provider. This firm provides data center solutions custom-fit to the requirements of their client’s mission-critical operational facilities. They provide reliability of mission-critical facilities for many of the world’s largest organizations facilities supporting enterprise clients, colo providers and hyperscale companies. This opportunity provides a career-growth minded role with exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits. Electrical Commissioning Engineer Montvale, NJ This traveling position is also available in: New York, NY; White Plains, NY;  Richmond, VA; Ashburn, VA; Charlotte, NC; Atlanta, GA; Hampton, GA; Fayetteville, GA; New Albany, OH; Cedar Rapids, IA; Phoenix, AZ; Dallas, TX or Chicago IL *** ALSO looking for a LEAD EE and ME CxA Agents and CxA PMs. *** Our client is an engineering design and commissioning company that has a national footprint and specializes in MEP critical facilities design. They provide design, commissioning, consulting and management expertise in the critical facilities space. They have a mindset to provide reliability, energy efficiency, sustainable design and LEED expertise when providing these consulting services for enterprise, colocation and hyperscale companies. This career-growth minded opportunity offers exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits. Data Center MEP Construction

Read More »

NVIDIA at GTC 2025: Building the AI Infrastructure of Everything

Omniverse DSX Blueprint Unveiled Also at the conference, NVIDIA released a blueprint for how other firms should build massive, gigascale AI data centers, or AI factories, in which Oracle, Microsoft, Google, and other leading tech firms are investing billions. The most powerful and efficient of those, company representatives said, will include NVIDIA chips and software. A new NVIDIA AI Factory Research Center in Virginia will use that technology. This new “mega” Omniverse DSX Blueprint is a comprehensive, open blueprint for designing and operating gigawatt-scale AI factories. It combines design, simulation, and operations across factory facilities, hardware, and software. • The blueprint expands to include libraries for building factory-scale digital twins, with Siemens’ Digital Twin software first to support the blueprint and FANUC and Foxconn Fii first to connect their robot models. • Belden, Caterpillar, Foxconn, Lucid Motors, Toyota, Taiwan Semiconductor Manufacturing Co. (TSMC), and Wistron build Omniverse factory digital twins to accelerate AI-driven manufacturing. • Agility Robotics, Amazon Robotics, Figure, and Skild AI build a collaborative robot workforce using NVIDIA’s three-computer architecture. NVIDIA Quantum Gains  And then there’s quantum computing. It can help data centers become more energy-efficient and faster with specific tasks such as optimization and AI model training. Conversely, the unique infrastructure needs of quantum computers, such as power, cooling, and error correction, are driving the development of specialized quantum data centers. Huang said it’s now possible to make one logical qubit, or quantum bit, that’s coherent, stable, and error corrected.  However, these qubits—the units of information enabling quantum computers to process information in ways ordinary computers can’t—are “incredibly fragile,” creating a need for powerful technology to do quantum error correction and infer the qubit’s state. To connect quantum and GPU computing, Huang announced the release of NVIDIA NVQLink — a quantum‑GPU interconnect that enables real‑time CUDA‑Q calls from quantum

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »