Stay Ahead, Stay ONMINE

Inside a new quest to save the “doomsday glacier”

The Thwaites glacier is a fortress larger than Florida, a wall of ice that reaches nearly 4,000 feet above the bedrock of West Antarctica, guarding the low-lying ice sheet behind it. But a strong, warm ocean current is weakening its foundations and accelerating its slide into the Amundsen Sea. Scientists fear the waters could topple the walls in the coming decades, kick-starting a runaway process that would crack up the West Antarctic Ice Sheet. That would mark the start of a global climate disaster. The glacier itself holds enough ice to raise ocean levels by more than two feet, which could flood coastlines and force tens of millions of people living in low-lying areas to abandon their homes. The loss of the entire ice sheet—which could still take centuries to unfold—would push up sea levels by 11 feet and redraw the contours of the continents. This is why Thwaites is known as the doomsday glacier—and why scientists are eager to understand just how likely such a collapse is, when it could happen, and if we have the power to stop it.  Scientists at MIT and Dartmouth College founded Arête Glacier Initiative last year in the hope of providing clearer answers to these questions. The nonprofit research organization will officially unveil itself, launch its website, and post requests for research proposals today, March 21, timed to coincide with the UN’s inaugural World Day for Glaciers, MIT Technology Review can report exclusively.  Arête will also announce it is issuing its first grants, each for around $200,000 over two years, to a pair of glacier researchers at the University of Wisconsin-Madison.  One of the organization’s main goals is to study the possibility of preventing the loss of giant glaciers, Thwaites in particular, by refreezing them to the bedrock. It would represent a radical intervention into the natural world, requiring a massive, expensive engineering project in a remote, treacherous environment.  But the hope is that such a mega-adaptation project could minimize the mass relocation of climate refugees, prevent much of the suffering and violence that would almost certainly accompany it, and help nations preserve trillions of dollars invested in high-rises, roads, homes, ports, and airports around the globe. “About a million people are displaced per centimeter of sea-level rise,” says Brent Minchew, an associate professor of geophysics at MIT, who cofounded Arête Glacier Initiative and will serve as its chief scientist. “If we’re able to bring that down, even by a few centimeters, then we would safeguard the homes of millions.” But some scientists believe the idea is an implausible, wildly expensive distraction, drawing money, expertise, time, and resources away from more essential polar research efforts.  “Sometimes we can get a little over-optimistic about what engineering can do,” says Twila Moon, deputy lead scientist at the National Snow and Ice Data Center at the University of Colorado Boulder. “Two possible futures” Minchew, who earned his PhD in geophysics at Caltech, says he was drawn to studying glaciers because they are rapidly transforming as the world warms, increasing the dangers of sea-level rise.  “But over the years, I became less content with simply telling a more dramatic story about how things were going and more open to asking the question of what can we do about it,” says Minchew, who will return to Caltech as a professor this summer. Last March, he cofounded Arête Glacier Initiative with Colin Meyer, an assistant professor of engineering at Dartmouth, in the hope of funding and directing research to improve scientific understanding of two big questions: How big a risk does sea-level rise pose in the coming decades, and can we minimize that risk? Brent Minchew, an MIT professor of geophysics, co-founded Arête Glacier Initiative and will serve as its chief scientist.COURTESY: BRENT MINCHEW “Philanthropic funding is needed to address both of these challenges, because there’s no private-sector funding for this kind of research and government funding is minuscule,” says Mike Schroepfer, the former Meta chief technology officer turned climate philanthropist, who provided funding to Arête through his new organization, Outlier Projects.  The nonprofit has now raised about $5 million from Outlier and other donors, including the Navigation Fund, the Kissick Family Foundation, the Sky Foundation, the Wedner Family Foundation, and the Grantham Foundation.  Minchew says they named the organization Arête, mainly because it’s the sharp mountain ridge between two valleys, generally left behind when a glacier carves out the cirques on either side. It directs the movement of the glacier and is shaped by it.  It’s meant to symbolize “two possible futures,” he says. “One where we do something; one where we do nothing.” Improving forecasts The somewhat reassuring news is that, even with rising global temperatures, it may still take thousands of years for the West Antarctic Ice Sheet to completely melt.  In addition, sea-level rise forecasts for this century generally range from as little as 0.28 meters (11 inches) to 1.10 meters (about three and a half feet), according to the latest UN climate panel report. The latter only occurs under a scenario with very high greenhouse gas emissions (SSP5-8.5), which significantly exceeds the pathway the world is now on. But there’s still a “low-likelihood” that ocean levels could surge nearly two meters (about six and a half feet) by 2100 that “cannot be excluded,” given “deep uncertainty linked to ice-sheet processes,” the report adds.  Two meters of sea-level rise could force nearly 190 million people to migrate away from the coasts, unless regions build dikes or other shoreline protections, according to some models. Many more people, mainly in the tropics, would face heightened flooding dangers. Much of the uncertainty over what will happen this century comes down to scientists’ limited understanding of how Antarctic ice sheets will respond to growing climate pressures. The initial goal of Arête Glacier Initiative is to help narrow the forecast ranges by improving our grasp of how Thwaites and other glaciers move, melt, and break apart. Gravity is the driving force nudging glaciers along the bedrock and reshaping them as they flow. But many of the variables that determine how fast they slide lie at the base. That includes the type of sediment the river of ice slides along; the size of the boulders and outcroppings it contorts around; and the warmth and strength of the ocean waters that lap at its face. In addition, heat rising from deep in the earth warms the ice closest to the ground, creating a lubricating layer of water that hastens the glacier’s slide. That acceleration, in turn, generates more frictional heat that melts still more of the ice, creating a self-reinforcing feedback effect. Minchew and Meyer are confident that the glaciology field is at a point where it could speed up progress in sea-level rise forecasting, thanks largely to improving observational tools that are producing more and better data. That includes a new generation of satellites orbiting the planet that can track the shifting shape of ice at the poles at far higher resolutions than in the recent past. Computer simulations of ice sheets, glaciers and sea ice are improving as well, thanks to growing computational resources and advancing machine learning techniques. On March 21, Arête will issue a request for proposals from research teams to contribute to an effort to collect, organize, and openly publish existing observational glacier data. Much of that expensively gathered information is currently inaccessible to researchers around the world, Minchew says. Colin Meyer, an assistant professor of engineering at Dartmouth, co-founded Arête Glacier Initiative. By funding teams working across these areas, Arête’s founders hope to help produce more refined ice-sheet models and narrower projections of sea-level rise. This improved understanding would help cities plan where to build new bridges, buildings, and homes, and to determine whether they’ll need to erect higher seawalls or raise their roads, Meyer says. It could also provide communities with more advance notice of the coming dangers, allowing them to relocate people and infrastructure to safer places through an organized process known as managed retreat. A radical intervention But the improved forecasts might also tell us that Thwaites is closer to tumbling into the ocean than we think, underscoring the importance of considering more drastic measures. One idea is to build berms or artificial islands to prop up fragile parts of glaciers, and to block the warm waters that rise from the deep ocean and melt them from below. Some researchers have also considered erecting giant, flexible curtains anchored to the seabed to achieve the latter effect. Others have looked at scattering highly reflective beads or other materials across ice sheets, or pumping ocean water onto them in the hopes it would freeze during the winter and reinforce the headwalls of the glaciers. But the concept of refreezing glaciers in place, know as a basal intervention, is gaining traction in scientific circles, in part because there’s a natural analogue for it. The glacier that stalled About 200 years ago, the Kamb Ice Stream, another glacier in West Antarctica that had been sliding about 350 meters (1,150 feet) per year, suddenly stalled. Glaciologists believe an adjacent ice stream intersected with the catchment area under the glacier, providing a path for the water running below it to flow out along the edge instead. That loss of fluid likely slowed down the Kamb Ice Stream, reduced the heat produced through friction, and allowed water at the surface to refreeze. The deceleration of the glacier sparked the idea that humans might be able to bring about that same phenomenon deliberately, perhaps by drilling a series of boreholes down to the bedrock and pumping up water from the bottom. Minchew himself has focused on a variation he believes could avoid much of the power use and heavy operating machinery hassles of that approach: slipping long tubular devices, known as thermosyphons, down nearly to the bottom of the boreholes.  These passive heat exchangers, which are powered only by the temperature differential between two areas, are commonly used to keep permafrost cold around homes, buildings and pipelines in Arctic regions. The hope is that we could deploy extremely long ones, stretching up to two kilometers and encased in steel pipe, to draw warm temperatures away from the bottom of the glacier, allowing the water below to freeze. Minchew says he’s in the process of producing refined calculations, but estimates that halting Thwaites could require drilling as many as 10,000 boreholes over a 100-square-kilometer area. He readily acknowledges that would be a huge undertaking, but provides two points of comparison to put such a project into context: Melting the necessary ice to create those holes would require roughly the amount of energy all US domestic flights consume from jet fuel in about two and a half hours. Or, it would produce about the same level of greenhouse gas emissions as constructing 10 kilometers of seawalls, a small fraction of the length the world would need to build if it can’t slow down the collapse of the ice sheets, he says. “Kick the system” One of Arête’s initial grantees is Marianne Haseloff, an assistant professor of geoscience at the University of Wisconsin-Madison. She studies the physical processes that govern the behavior of glaciers and is striving to more faithfully represent them in ice sheet models.  Haseloff says she will use those funds to develop mathematical methods that could more accurately determine what’s known as basal shear stress, or the resistance of the bed to sliding glaciers, based on satellite observations. That could help refine forecasts of how rapidly glaciers will slide into the ocean, in varying settings and climate conditions. Arête’s other initial grant will go to Lucas Zoet, an associate professor in the same department as Haseloff and the principal investigator with the Surface Processes group. He intends to use the funds to build the lab’s second “ring shear” device, the technical term for a simulated glacier. The existing device, which is the only one operating in the world, stands about eight feet tall and fills the better part of a walk-in freezer on campus. The core of the machine is a transparent drum filled with a ring of ice, sitting under pressure and atop a layer of sediment. It slowly spins for weeks at a time as sensors and cameras capture how the ice and earth move and deform. Lucas Zoet, an associate professor at the University of Wisconsin–Madison, stands in front of his lab’s “ring shear” device, a simulated glacier.ETHAN PARRISH The research team can select the sediment, topography, water pressure, temperature, and other conditions to match the environment of a real-world glacier of interest, be it Thwaites today—or Thwaites in 2100, under a high greenhouse gas emissions scenario.  Zoet says these experiments promise to improve our understanding of how glaciers move over different types of beds, and to refine an equation known as the slip law, which represents these glacier dynamics mathematically in computer models. The second machine will enable them to run more experiments and to conduct a specific kind that the current device can’t: a scaled-down, controlled version of the basal intervention. Zoet says the team will be able to drill tiny holes through the ice, then pump out water or transfer heat away from the bed. They can then observe whether the simulated glacier freezes to the base at those points and experiment with how many interventions, across how much space, are required to slow down its movement. It offers a way to test out different varieties of the basal intervention that is far easier and cheaper than using water drills to bore to the bottom of an actual glacier in Antarctica, Zoet says. The funding will allow the lab to explore a wide range of experiments, enabling them to “kick the system in a way we wouldn’t have before,” he adds. “Virtually impossible” The concept of glacier interventions is in its infancy. There are still considerable unknowns and uncertainties, including how much it would cost, how arduous the undertaking would be, and which approach would be most likely to work, or if any of them are feasible. “This is mostly a theoretical idea at this point,” says Katharine Ricke, an associate professor at the University of California, San Diego, who researches the international relations implications of geoengineering, among other topics. Conducting extensive field trials or moving forward with full-scale interventions may also require surmounting complex legal questions, she says. Antarctica isn’t owned by any nation, but it’s the subject of competing territorial claims among a number of countries and governed under a decades-old treaty to which dozens are a party. The basal intervention—refreezing the glacier to its bed—faces numerous technical hurdles that would make it “virtually impossible to execute,” Moon and dozens of other researchers argued in a recent preprint paper, “Safeguarding the polar regions from dangerous geoengineering.” Among other critiques, they stress that subglacial water systems are complex, dynamic, and interconnected, making it highly difficult to precisely identify and drill down to all the points that would be necessary to remove enough water or add enough heat to substantially slow down a massive glacier. Further, they argue that the interventions could harm polar ecosystems by adding contaminants, producing greenhouse gases, or altering the structure of the ice in ways that may even increase sea-level rise. “Overwhelmingly, glacial and polar geoengineering ideas do not make sense to pursue, in terms of the finances, the governance challenges, the impacts,” and the possibility of making matters worse, Moon says. “No easy path forward” But Douglas MacAyeal, professor emeritus of glaciology at the University of Chicago, says the basal intervention would have the lightest environmental impact among the competing ideas. He adds that nature has already provided an example of it working, and that much of the needed drilling and pumping technology is already in use in the oil industry. “I would say it’s the strongest approach at the starting gate,” he says, “but we don’t really know anything about it yet. The research still has to be done. It’s very cutting-edge.” Minchew readily acknowledges that there are big challenges and significant unknowns—and that some of these ideas may not work. But he says it’s well worth the effort to study the possibilities, in part because much of the research will also improve our understanding of glacier dynamics and the risks of sea-level rise—and in part because it’s only a question of when, not if, Thwaites will collapse. Even if the world somehow halted all greenhouse gas emissions tomorrow, the forces melting that fortress of ice will continue to do so.  So one way or another, the world will eventually need to make big, expensive, difficult interventions to protect people and infrastructure. The cost and effort of doing one project in Antarctica, he says, would be small compared to the global effort required to erect thousands of miles of seawalls, ratchet up homes, buildings, and roads, and relocate hundreds of millions of people. “One thing is challenging—and the other is even more challenging,” Minchew says. “There’s no easy path forward.”

The Thwaites glacier is a fortress larger than Florida, a wall of ice that reaches nearly 4,000 feet above the bedrock of West Antarctica, guarding the low-lying ice sheet behind it.

But a strong, warm ocean current is weakening its foundations and accelerating its slide into the Amundsen Sea. Scientists fear the waters could topple the walls in the coming decades, kick-starting a runaway process that would crack up the West Antarctic Ice Sheet.

That would mark the start of a global climate disaster. The glacier itself holds enough ice to raise ocean levels by more than two feet, which could flood coastlines and force tens of millions of people living in low-lying areas to abandon their homes.

The loss of the entire ice sheet—which could still take centuries to unfold—would push up sea levels by 11 feet and redraw the contours of the continents.

This is why Thwaites is known as the doomsday glacier—and why scientists are eager to understand just how likely such a collapse is, when it could happen, and if we have the power to stop it. 

Scientists at MIT and Dartmouth College founded Arête Glacier Initiative last year in the hope of providing clearer answers to these questions. The nonprofit research organization will officially unveil itself, launch its website, and post requests for research proposals today, March 21, timed to coincide with the UN’s inaugural World Day for Glaciers, MIT Technology Review can report exclusively. 

Arête will also announce it is issuing its first grants, each for around $200,000 over two years, to a pair of glacier researchers at the University of Wisconsin-Madison. 

One of the organization’s main goals is to study the possibility of preventing the loss of giant glaciers, Thwaites in particular, by refreezing them to the bedrock. It would represent a radical intervention into the natural world, requiring a massive, expensive engineering project in a remote, treacherous environment. 

But the hope is that such a mega-adaptation project could minimize the mass relocation of climate refugees, prevent much of the suffering and violence that would almost certainly accompany it, and help nations preserve trillions of dollars invested in high-rises, roads, homes, ports, and airports around the globe.

“About a million people are displaced per centimeter of sea-level rise,” says Brent Minchew, an associate professor of geophysics at MIT, who cofounded Arête Glacier Initiative and will serve as its chief scientist. “If we’re able to bring that down, even by a few centimeters, then we would safeguard the homes of millions.”

But some scientists believe the idea is an implausible, wildly expensive distraction, drawing money, expertise, time, and resources away from more essential polar research efforts. 

“Sometimes we can get a little over-optimistic about what engineering can do,” says Twila Moon, deputy lead scientist at the National Snow and Ice Data Center at the University of Colorado Boulder.

“Two possible futures”

Minchew, who earned his PhD in geophysics at Caltech, says he was drawn to studying glaciers because they are rapidly transforming as the world warms, increasing the dangers of sea-level rise. 

“But over the years, I became less content with simply telling a more dramatic story about how things were going and more open to asking the question of what can we do about it,” says Minchew, who will return to Caltech as a professor this summer.

Last March, he cofounded Arête Glacier Initiative with Colin Meyer, an assistant professor of engineering at Dartmouth, in the hope of funding and directing research to improve scientific understanding of two big questions: How big a risk does sea-level rise pose in the coming decades, and can we minimize that risk?

Brent Minchew, an MIT professor of geophysics, co-founded Arête Glacier Initiative and will serve as its chief scientist.
COURTESY: BRENT MINCHEW

“Philanthropic funding is needed to address both of these challenges, because there’s no private-sector funding for this kind of research and government funding is minuscule,” says Mike Schroepfer, the former Meta chief technology officer turned climate philanthropist, who provided funding to Arête through his new organization, Outlier Projects

The nonprofit has now raised about $5 million from Outlier and other donors, including the Navigation Fund, the Kissick Family Foundation, the Sky Foundation, the Wedner Family Foundation, and the Grantham Foundation. 

Minchew says they named the organization Arête, mainly because it’s the sharp mountain ridge between two valleys, generally left behind when a glacier carves out the cirques on either side. It directs the movement of the glacier and is shaped by it. 

It’s meant to symbolize “two possible futures,” he says. “One where we do something; one where we do nothing.”

Improving forecasts

The somewhat reassuring news is that, even with rising global temperatures, it may still take thousands of years for the West Antarctic Ice Sheet to completely melt. 

In addition, sea-level rise forecasts for this century generally range from as little as 0.28 meters (11 inches) to 1.10 meters (about three and a half feet), according to the latest UN climate panel report. The latter only occurs under a scenario with very high greenhouse gas emissions (SSP5-8.5), which significantly exceeds the pathway the world is now on.

But there’s still a “low-likelihood” that ocean levels could surge nearly two meters (about six and a half feet) by 2100 that “cannot be excluded,” given “deep uncertainty linked to ice-sheet processes,” the report adds. 

Two meters of sea-level rise could force nearly 190 million people to migrate away from the coasts, unless regions build dikes or other shoreline protections, according to some models. Many more people, mainly in the tropics, would face heightened flooding dangers.

Much of the uncertainty over what will happen this century comes down to scientists’ limited understanding of how Antarctic ice sheets will respond to growing climate pressures.

The initial goal of Arête Glacier Initiative is to help narrow the forecast ranges by improving our grasp of how Thwaites and other glaciers move, melt, and break apart.

Gravity is the driving force nudging glaciers along the bedrock and reshaping them as they flow. But many of the variables that determine how fast they slide lie at the base. That includes the type of sediment the river of ice slides along; the size of the boulders and outcroppings it contorts around; and the warmth and strength of the ocean waters that lap at its face.

In addition, heat rising from deep in the earth warms the ice closest to the ground, creating a lubricating layer of water that hastens the glacier’s slide. That acceleration, in turn, generates more frictional heat that melts still more of the ice, creating a self-reinforcing feedback effect.

Minchew and Meyer are confident that the glaciology field is at a point where it could speed up progress in sea-level rise forecasting, thanks largely to improving observational tools that are producing more and better data.

That includes a new generation of satellites orbiting the planet that can track the shifting shape of ice at the poles at far higher resolutions than in the recent past. Computer simulations of ice sheets, glaciers and sea ice are improving as well, thanks to growing computational resources and advancing machine learning techniques.

On March 21, Arête will issue a request for proposals from research teams to contribute to an effort to collect, organize, and openly publish existing observational glacier data. Much of that expensively gathered information is currently inaccessible to researchers around the world, Minchew says.

Colin Meyer, an assistant professor of engineering at Dartmouth, co-founded Arête Glacier Initiative.

By funding teams working across these areas, Arête’s founders hope to help produce more refined ice-sheet models and narrower projections of sea-level rise.

This improved understanding would help cities plan where to build new bridges, buildings, and homes, and to determine whether they’ll need to erect higher seawalls or raise their roads, Meyer says. It could also provide communities with more advance notice of the coming dangers, allowing them to relocate people and infrastructure to safer places through an organized process known as managed retreat.

A radical intervention

But the improved forecasts might also tell us that Thwaites is closer to tumbling into the ocean than we think, underscoring the importance of considering more drastic measures.

One idea is to build berms or artificial islands to prop up fragile parts of glaciers, and to block the warm waters that rise from the deep ocean and melt them from below. Some researchers have also considered erecting giant, flexible curtains anchored to the seabed to achieve the latter effect.

Others have looked at scattering highly reflective beads or other materials across ice sheets, or pumping ocean water onto them in the hopes it would freeze during the winter and reinforce the headwalls of the glaciers.

But the concept of refreezing glaciers in place, know as a basal intervention, is gaining traction in scientific circles, in part because there’s a natural analogue for it.

The glacier that stalled

About 200 years ago, the Kamb Ice Stream, another glacier in West Antarctica that had been sliding about 350 meters (1,150 feet) per year, suddenly stalled.

Glaciologists believe an adjacent ice stream intersected with the catchment area under the glacier, providing a path for the water running below it to flow out along the edge instead. That loss of fluid likely slowed down the Kamb Ice Stream, reduced the heat produced through friction, and allowed water at the surface to refreeze.

The deceleration of the glacier sparked the idea that humans might be able to bring about that same phenomenon deliberately, perhaps by drilling a series of boreholes down to the bedrock and pumping up water from the bottom.

Minchew himself has focused on a variation he believes could avoid much of the power use and heavy operating machinery hassles of that approach: slipping long tubular devices, known as thermosyphons, down nearly to the bottom of the boreholes. 

These passive heat exchangers, which are powered only by the temperature differential between two areas, are commonly used to keep permafrost cold around homes, buildings and pipelines in Arctic regions. The hope is that we could deploy extremely long ones, stretching up to two kilometers and encased in steel pipe, to draw warm temperatures away from the bottom of the glacier, allowing the water below to freeze.

Minchew says he’s in the process of producing refined calculations, but estimates that halting Thwaites could require drilling as many as 10,000 boreholes over a 100-square-kilometer area.

He readily acknowledges that would be a huge undertaking, but provides two points of comparison to put such a project into context: Melting the necessary ice to create those holes would require roughly the amount of energy all US domestic flights consume from jet fuel in about two and a half hours. Or, it would produce about the same level of greenhouse gas emissions as constructing 10 kilometers of seawalls, a small fraction of the length the world would need to build if it can’t slow down the collapse of the ice sheets, he says.

“Kick the system”

One of Arête’s initial grantees is Marianne Haseloff, an assistant professor of geoscience at the University of Wisconsin-Madison. She studies the physical processes that govern the behavior of glaciers and is striving to more faithfully represent them in ice sheet models. 

Haseloff says she will use those funds to develop mathematical methods that could more accurately determine what’s known as basal shear stress, or the resistance of the bed to sliding glaciers, based on satellite observations. That could help refine forecasts of how rapidly glaciers will slide into the ocean, in varying settings and climate conditions.

Arête’s other initial grant will go to Lucas Zoet, an associate professor in the same department as Haseloff and the principal investigator with the Surface Processes group.

He intends to use the funds to build the lab’s second “ring shear” device, the technical term for a simulated glacier.

The existing device, which is the only one operating in the world, stands about eight feet tall and fills the better part of a walk-in freezer on campus. The core of the machine is a transparent drum filled with a ring of ice, sitting under pressure and atop a layer of sediment. It slowly spins for weeks at a time as sensors and cameras capture how the ice and earth move and deform.

Lucas Zoet, an associate professor at the University of Wisconsin–Madison, stands in front of his lab’s “ring shear” device, a simulated glacier.
ETHAN PARRISH

The research team can select the sediment, topography, water pressure, temperature, and other conditions to match the environment of a real-world glacier of interest, be it Thwaites today—or Thwaites in 2100, under a high greenhouse gas emissions scenario. 

Zoet says these experiments promise to improve our understanding of how glaciers move over different types of beds, and to refine an equation known as the slip law, which represents these glacier dynamics mathematically in computer models.

The second machine will enable them to run more experiments and to conduct a specific kind that the current device can’t: a scaled-down, controlled version of the basal intervention.

Zoet says the team will be able to drill tiny holes through the ice, then pump out water or transfer heat away from the bed. They can then observe whether the simulated glacier freezes to the base at those points and experiment with how many interventions, across how much space, are required to slow down its movement.

It offers a way to test out different varieties of the basal intervention that is far easier and cheaper than using water drills to bore to the bottom of an actual glacier in Antarctica, Zoet says. The funding will allow the lab to explore a wide range of experiments, enabling them to “kick the system in a way we wouldn’t have before,” he adds.

“Virtually impossible”

The concept of glacier interventions is in its infancy. There are still considerable unknowns and uncertainties, including how much it would cost, how arduous the undertaking would be, and which approach would be most likely to work, or if any of them are feasible.

“This is mostly a theoretical idea at this point,” says Katharine Ricke, an associate professor at the University of California, San Diego, who researches the international relations implications of geoengineering, among other topics.

Conducting extensive field trials or moving forward with full-scale interventions may also require surmounting complex legal questions, she says. Antarctica isn’t owned by any nation, but it’s the subject of competing territorial claims among a number of countries and governed under a decades-old treaty to which dozens are a party.

The basal intervention—refreezing the glacier to its bed—faces numerous technical hurdles that would make it “virtually impossible to execute,” Moon and dozens of other researchers argued in a recent preprint paper, “Safeguarding the polar regions from dangerous geoengineering.”

Among other critiques, they stress that subglacial water systems are complex, dynamic, and interconnected, making it highly difficult to precisely identify and drill down to all the points that would be necessary to remove enough water or add enough heat to substantially slow down a massive glacier.

Further, they argue that the interventions could harm polar ecosystems by adding contaminants, producing greenhouse gases, or altering the structure of the ice in ways that may even increase sea-level rise.

“Overwhelmingly, glacial and polar geoengineering ideas do not make sense to pursue, in terms of the finances, the governance challenges, the impacts,” and the possibility of making matters worse, Moon says.

“No easy path forward”

But Douglas MacAyeal, professor emeritus of glaciology at the University of Chicago, says the basal intervention would have the lightest environmental impact among the competing ideas. He adds that nature has already provided an example of it working, and that much of the needed drilling and pumping technology is already in use in the oil industry.

“I would say it’s the strongest approach at the starting gate,” he says, “but we don’t really know anything about it yet. The research still has to be done. It’s very cutting-edge.”

Minchew readily acknowledges that there are big challenges and significant unknowns—and that some of these ideas may not work.

But he says it’s well worth the effort to study the possibilities, in part because much of the research will also improve our understanding of glacier dynamics and the risks of sea-level rise—and in part because it’s only a question of when, not if, Thwaites will collapse.

Even if the world somehow halted all greenhouse gas emissions tomorrow, the forces melting that fortress of ice will continue to do so. 

So one way or another, the world will eventually need to make big, expensive, difficult interventions to protect people and infrastructure. The cost and effort of doing one project in Antarctica, he says, would be small compared to the global effort required to erect thousands of miles of seawalls, ratchet up homes, buildings, and roads, and relocate hundreds of millions of people.

“One thing is challenging—and the other is even more challenging,” Minchew says. “There’s no easy path forward.”

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Chinese cyberspies target VMware vSphere for long-term persistence

Designed to work in virtualized environments The CISA, NSA, and Canadian Cyber Center analysts note that some of the BRICKSTORM samples are virtualization-aware and they create a virtual socket (VSOCK) interface that enables inter-VM communication and data exfiltration. The malware also checks the environment upon execution to ensure it’s running

Read More »

IBM boosts DNS protection for multicloud operations

“In addition to this DNS synchronization, you can publish DNS configurations to your Amazon Simple Storage Service (S3) bucket. As you implement DNS changes, the S3 bucket will automatically update. The ability to store multiple configurations in your S3 bucket allows you to choose the most appropriate restore point if

Read More »

Cloudflare firewall reacts badly to React exploit mitigation

During the same window, Downdetector saw a spike in problem reports for enterprise services including Shopify, Zoom, Claude AI, and Amazon Web Services, and a host of consumer services from games to dating apps. Cloudflare explained the outage on its service status page: “A change made to how Cloudflare’s Web

Read More »

BGN Plans Global Gas Push Ahead of New Supplies

Energy trader BGN is set to expand its fledgling natural gas business into a global portfolio with stakes in plants, vessels and pipelines.  The push comes as the market for liquefied natural gas is set to boom, with US exports ramping up and Qatar, another major producer, also adding output. While that’s likely to push prices lower, the wave of extra supplies is poised to create new trading opportunities. The firm is in talks to buy LNG on contracts as long as 15 years, as well as equity in U.S. export plants, the company’s co-heads of LNG, Ruben Mosquera Arias and Maria Eugenia Suardiaz, said in an interview in Istanbul on Thursday. BGN got its start in the market for liquefied petroleum gas and has amassed a fleet of about 40 ships. In recent years, it has expanded rapidly into crude, oil products and metals.    “In LNG, we would like to be present globally as well, from the Atlantic basin to Asia Pacific,” said Suardiaz, declining to provide details on the volume they plan to handle.  Producers are set to add a record 300 billion cubic meters of annual export capacity by 2030, the International Energy Agency wrote last month in a report. That’s poised to reshape the market after years of scarcity. “We want to capture this wave,” said Mosquera Arias.  The company is also applying for licenses to buy capacity in European pipelines. It expects to take delivery of its first newbuild LNG carriers in the next two years, although the executives declined to provide more details.  BGN started its LNG team in 2024 and sold spot cargoes to both Egypt and Germany earlier this year. In the summer, it struck a deal to supply as many as 42 shipments to the North African country, where it’s already a major

Read More »

Crude Finishes Higher on Short Covering

Oil gained, finishing the week positive as investors assessed the murky outlook for a cease-fire in Ukraine and as the commodity pushed past an important technical level. West Texas Intermediate rose 0.7% to settle above $60 a barrel, signaling that a risk premium persists as a peace deal between Russia and Ukraine remains elusive. Ukrainian negotiators continued talks with US officials in Florida for a second day, with Russia objecting to some of the points in a US-backed plan. The market is watching for progress on a settlement that could lower prices by potentially easing sanctions and boosting Russian oil flows just as an expected oversupply in the market starts to materialize. But an agreement appears distant: Ukraine took credit for an overnight attack on Russia’s Syzran refinery and the Temryuk seaport. Meanwhile, Washington reportedly lobbied European countries in an effort to block a plan to use Moscow’s frozen assets to back a massive loan for Ukraine. Adding to bullish momentum, WTI on Friday settled above its 50-day moving average, a key level of support for the commodity. Prices have also received a boost from algorithmic traders covering some of their bearish positions in recent sessions — and analysts say more buying could materialize in coming weeks. “This session should mark the first notable short covering program since algo selling activity exhausted itself, and the bar is low for subsequent CTA buying activity to hit the tapes over the coming week,” said Dan Ghali, a commodity strategist at TD Securities. Countering geopolitical risks, oversupply is putting downward pressure on prices globally. Saudi Aramco will reduce the price of its flagship Arab Light crude grade to the lowest level since 2021 for January, while Canadian oil has tumbled. And the number of crude oil rigs in the US rose by 6

Read More »

ITT Agrees to Buy Lone Star’s SPX Flow in $4.8B Deal

ITT Inc. has agreed to acquire industrial equipment manufacturer SPX Flow Inc. from Lone Star Funds in a $4.775 billion cash and stock deal. The deal will will consist of a combination of cash and $700 million in ITT common stock issued to Lone Star, according to a statement confirming an earlier report by Bloomberg News that the companies were nearing a deal. Charlotte, North Carolina-based SPX Flow makes products including valves and pumps under brands such as APV and Johnson Pump, as well as food processing equipment such as its Gerstenberg Schröder-branded butter maker. Lone Star Funds agreed in 2021 to take SPX Flow private for $3.8 billion including debt.  The SPX Flow acquisition is the largest ever by Stamford, Connecticut-based ITT, according to data compiled by Bloomberg. ITT’s shares have gained 28% this year, giving it a market value of $14.3 billion. ITT’s history dates to 1920, with its genesis as International Telephone and Telegraph, a provider of telephone switching equipment and services, according to the company’s website. In 1995, that conglomerate was split into three divisions, including the company that became the current manufacturer of components and technology for a range of transportation, industrial and energy markets. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

Energy Department Launches Breakthrough AI-Driven Biotechnology Platform at PNNL

Richland, Wash.—U.S. Secretary of Energy Chris Wright launched a new chapter to secure American leadership in autonomous biological discovery yesterday alongside scientists and private partners at Pacific Northwest National Laboratory (PNNL). As part of his visit to PNNL, Secretary Wright commissioned and signed the Anaerobic Microbial Phenotyping Platform (AMP2). PNNL scientists believe AMP2 will be the world’s largest autonomous-capable science system for anaerobic microbial experimentation. The platform supports the Trump Administration’s recently announced Genesis Mission, which calls on the Department of Energy (DOE) to transform American leadership in science and innovation with the development of artificial intelligence (AI). Built by Gingko Bioworks, AMP2 gives DOE scientists an unprecedented capability to explore the world of microbes—an invisible yet powerful workforce poised to boost biotech manufacturing as well as provide insights into basic life science questions. This first-of-its-kind capability will transform how the U.S. identifies, grows, and optimizes the use of microbes in days and weeks instead of years using automation and AI.  “President Trump launched the Genesis Mission to ensure American leadership in science and innovation,” said Secretary Chris Wright. “This ongoing public-private partnership at PNNL will help do exactly that in the field of biotechnology. By launching AI-enabled, autonomous platforms like AMP2, our DOE National Laboratories are driving scientific breakthroughs faster than ever before and ensuring the United States leads the world in technologies that will better human lives and secure our future.”  The AMP2 platform will serve as a prototype for DOE’s planned development of the larger Microbial Molecular Phenotyping Capability (M2PC). Together, the systems will establish the world’s largest autonomous microbial research infrastructure, and position the U.S. to lead in biotechnology, biomanufacturing, and next-generation materials innovation for decades to come. Secretary Wright visited PNNL as part of his ongoing tour of all 17 DOE National Laboratories. PNNL marks

Read More »

Chevron, Gorgon Partners OK $2B to Drill for More Gas

Chevron Corp’s Australian unit and its joint venture partners have reached a final investment decision to further develop the massive Gorgon natural gas project in Western Australia, it said in a statement on Friday. Chevron Australia and its partners — including Exxon Mobil Corp. and Shell Plc — will spend A$3 billion ($2 billion) connecting two offshore natural gas fields to existing infrastructure and processing facilities on Barrow Island as part of the Gorgon Stage 3 development, it said in the statement. Six wells will also be drilled.  Gorgon, on the remote Barrow Island in northwestern Australia, is the largest resource development in Australia’s history, and produces about 15.6 million tons of liquefied natural gas a year. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

USA Crude Oil Stocks Rise Week on Week

U.S. commercial crude oil inventories, excluding those in the Strategic Petroleum Reserve (SPR), increased by 0.6 million barrels from the week ending November 21 to the week ending November 28, the U.S. Energy Information Administration (EIA) highlighted in its latest weekly petroleum status report. That EIA report was released on December 3 and included data for the week ending November 28. It showed that crude oil stocks, not including the SPR, stood at 427.5 million barrels on November 28, 426.9 million barrels on November 21, and 423.4 million barrels on November 29, 2024. Crude oil in the SPR stood at 411.7 million barrels on November 28, 411.4 million barrels on November 21, and 391.8 million barrels on November 29, 2024, the report revealed. Total petroleum stocks – including crude oil, total motor gasoline, fuel ethanol, kerosene type jet fuel, distillate fuel oil, residual fuel oil, propane/propylene, and other oils – stood at 1.687 billion barrels on November 28, the report showed. Total petroleum stocks were up 5.5 million barrels week on week and up 58.5 million barrels year on year, the report pointed out. “At 427.5 million barrels, U.S. crude oil inventories are about three percent below the five year average for this time of year,” the EIA noted in its latest weekly petroleum status report. “Total motor gasoline inventories increased by 4.5 million barrels from last week and are about two percent below the five year average for this time of year. Finished gasoline and blending components inventories increased last week,” it added. “Distillate fuel inventories increased by 2.1 million barrels last week and are about seven percent below the five year average for this time of year. Propane/propylene inventories decreased 0.7 million barrels from last week and are about 15 percent above the five year average for this

Read More »

At the Crossroads of AI and the Edge: Inside 1623 Farnam’s Rising Role as a Midwest Interconnection Powerhouse

That was the thread that carried through our recent conversation for the DCF Show podcast, where Severn walked through the role Farnam now plays in AI-driven networking, multi-cloud connectivity, and the resurgence of regional interconnection as a core part of U.S. digital infrastructure. Aggregation, Not Proximity: The Practical Edge Severn is clear-eyed about what makes the edge work and what doesn’t. The idea that real content delivery could aggregate at the base of cell towers, he noted, has never been realistic. The traffic simply isn’t there. Content goes where the network already concentrates, and the network concentrates where carriers, broadband providers, cloud onramps, and CDNs have amassed critical mass. In Farnam’s case, that density has grown steadily since the building changed hands in 2018. At the time an “underappreciated asset,” the facility has since become a meeting point for more than 40 broadband providers and over 60 carriers, with major content operators and hyperscale platforms routing traffic directly through its MMRs. That aggregation effect feeds on itself; as more carrier and content traffic converges, more participants anchor themselves to the hub, increasing its gravitational pull. Geography only reinforces that position. Located on the 41st parallel, the building sits at the historical shortest-distance path for early transcontinental fiber routes. It also lies at the crossroads of major east–west and north–south paths that have made Omaha a natural meeting point for backhaul routes and hyperscale expansions across the Midwest. AI and the New Interconnection Economy Perhaps the clearest sign of Farnam’s changing role is the sheer volume of fiber entering the building. More than 5,000 new strands are being brought into the property, with another 5,000 strands being added internally within the Meet-Me Rooms in 2025 alone. These are not incremental upgrades—they are hyperscale-grade expansions driven by the demands of AI traffic,

Read More »

Schneider Electric’s $2.3 Billion in AI Power and Cooling Deals Sends Message to Data Center Sector

When Schneider Electric emerged from its 2025 North American Innovation Summit in Las Vegas last week with nearly $2.3 billion in fresh U.S. data center commitments, it didn’t just notch a big sales win. It arguably put a stake in the ground about who controls the AI power-and-cooling stack over the rest of this decade. Within a single news cycle, Schneider announced: Together, the deals total about $2.27 billion in U.S. data center infrastructure, a number Schneider confirmed in background with multiple outlets and which Reuters highlighted as a bellwether for AI-driven demand.  For the AI data center ecosystem, these contracts function like early-stage fuel supply deals for the power and cooling systems that underpin the “AI factory.” Supply Capacity Agreements: Locking in the AI Supply Chain Significantly, both deals are structured as supply capacity agreements, not traditional one-off equipment purchase orders. Under the SCA model, Schneider is committing dedicated manufacturing lines and inventory to these customers, guaranteeing output of power and cooling systems over a multi-year horizon. In return, Switch and Digital Realty are providing Schneider with forecastable volume and visibility at the scale of gigawatt-class campus build-outs.  A Schneider spokesperson told Reuters that the two contracts are phased across 2025 and 2026, underscoring that this arrangement is about pipeline, as opposed to a one-time backlog spike.  That structure does three important things for the market: Signals confidence that AI demand is durable.You don’t ring-fence billions of dollars of factory output for two customers unless you’re highly confident the AI load curve runs beyond the current GPU cycle. Pre-allocates power & cooling the way the industry pre-allocated GPUs.Hyperscalers and neoclouds have already spent two years locking up Nvidia and AMD capacity. These SCAs suggest power trains and thermal systems are joining chips on the list of constrained strategic resources.

Read More »

The Data Center Power Squeeze: Mapping the Real Limits of AI-Scale Growth

As we all know, the data center industry is at a crossroads. As artificial intelligence reshapes the already insatiable digital landscape, the demand for computing power is surging at a pace that outstrips the growth of the US electric grid. As engines of the AI economy, an estimated 1,000 new data centers1 are needed to process, store, and analyze the vast datasets that run everything from generative models to autonomous systems. But this transformation comes with a steep price and the new defining criteria for real estate: power. Our appetite for electricity is now the single greatest constraint on our expansion, threatening to stall the very innovation we enable. In 2024, US data centers consumed roughly 4% of the nation’s total electricity, a figure that is projected to triple by 2030, reaching 12% or more.2 For AI-driven hyperscale facilities, the numbers are even more staggering. With the largest planned data centers requiring gigawatts of power, enough to supply entire cities, the cumulative demand from all data centers is expected to reach 134 gigawatts by 2030, nearly three times the current load.​3 This presents a systemic challenge. The U.S. power grid, built for a different era, is struggling to keep pace. Utilities are reporting record interconnection requests, with some regions seeing demand projections that exceed their total system capacity by fivefold.4 In Virginia and Texas, the epicenters of data center expansion, grid operators are warning of tight supply-demand balances and the risk of blackouts during peak periods.5 The problem is not just the sheer volume of power needed, but the speed at which it must be delivered. Data center operators are racing to secure power for projects that could be online in as little as 18 months, but grid upgrades and new generation can take years, if not decades. The result

Read More »

The Future of Hyperscale: Neoverse Joins NVLink Fusion as SC25 Accelerates Rack-Scale AI Architectures

Neoverse’s Expanding Footprint and the Power-Efficiency Imperative With Neoverse deployments now approaching roughly 50% of all compute shipped into top hyperscalers in 2025 (representing more than a billion Arm cores) and with nation-scale AI campuses such as the Stargate project already anchored on Arm compute, the addition of NVLink Fusion becomes a pivotal extension of the Neoverse roadmap. Partners can now connect custom Arm CPUs to their preferred NVIDIA accelerators across a coherent, high-bandwidth, rack-scale fabric. Arm characterized the shift as a generational inflection point in data-center architecture, noting that “power—not FLOPs—is the bottleneck,” and that future design priorities hinge on maximizing “intelligence per watt.” Ian Buck, vice president and general manager of accelerated computing at NVIDIA, underscored the practical impact: “Folks building their own Arm CPU, or using an Arm IP, can actually have access to NVLink Fusion—be able to connect that Arm CPU to an NVIDIA GPU or to the rest of the NVLink ecosystem—and that’s happening at the racks and scale-up infrastructure.” Despite the expanded design flexibility, this is not being positioned as an open interconnect ecosystem. NVIDIA continues to control the NVLink Fusion fabric, and all connections ultimately run through NVIDIA’s architecture. For data-center planners, the SC25 announcement translates into several concrete implications: 1.   NVIDIA “Grace-style” Racks Without Buying Grace With NVLink Fusion now baked into Neoverse, hyperscalers and sovereign operators can design their own Arm-based control-plane or pre-processing CPUs that attach coherently to NVIDIA GPU domains—such as NVL72 racks or HGX B200/B300 systems—without relying on Grace CPUs. A rack-level architecture might now resemble: Custom Neoverse SoC for ingest, orchestration, agent logic, and pre/post-processing NVLink Fusion fabric Blackwell GPU islands and/or NVLink-attached custom accelerators (Marvell, MediaTek, others) This decouples CPU choice from NVIDIA’s GPU roadmap while retaining the full NVLink fabric. In practice, it also opens

Read More »

Flex’s Integrated Data Center Bet: How a Manufacturing Giant Plans to Reshape AI-Scale Infrastructure

At this year’s OCP Global Summit, Flex made a declaration that resonated across the industry: the era of slow, bespoke data center construction is over. AI isn’t just stressing the grid or forcing new cooling techniques—it’s overwhelming the entire design-build process. To meet this moment, Flex introduced a globally manufactured, fully integrated data center platform aimed directly at multi-gigawatt AI campuses. The company claims it can cut deployment timelines by as much as 30 percent by shifting integration upstream into the factory and unifying power, cooling, compute, and lifecycle services into pre-engineered modules. This is not a repositioning on the margins. Flex is effectively asserting that the future hyperscale data center will be manufactured like a complex industrial system, not built like a construction project. On the latest episode of The Data Center Frontier Show, we spoke with Rob Campbell, President of Flex Communications, Enterprise & Cloud, and Chris Butler, President of Flex Power, about why Flex believes this new approach is not only viable but necessary in the age of AI. The discussion revealed a company leaning heavily on its global manufacturing footprint, its cross-industry experience, and its expanding cooling and power technology stack to redefine what deployment speed and integration can look like at scale. AI Has Broken the Old Data Center Model From the outset, Campbell and Butler made clear that Flex’s strategy is a response to a structural shift. AI workloads no longer allow power, cooling, and compute to evolve independently. Densities have jumped so quickly—and thermals have risen so sharply—that the white space, gray space, and power yard are now interdependent engineering challenges. Higher chip TDPs, liquid-cooled racks approaching one to two megawatts, and the need to assemble entire campuses in record time have revealed deep fragility in traditional workflows. As Butler put it, AI

Read More »

Data Center Jobs: Engineering, Construction, Commissioning, Sales, Field Service and Facility Tech Jobs Available in Major Data Center Hotspots

Each month Data Center Frontier, in partnership with Pkaza, posts some of the hottest data center career opportunities in the market. Here’s a look at some of the latest data center jobs posted on the Data Center Frontier jobs board, powered by Pkaza Critical Facilities Recruiting. Looking for Data Center Candidates? Check out Pkaza’s Active Candidate / Featured Candidate Hotlist Data Center Facility Technician (All Shifts Available) Impact, TX This position is also available in: Ashburn, VA; Abilene, TX; Needham, MA and New York, NY. Navy Nuke / Military Vets leaving service accepted!  This opportunity is working with a leading mission-critical data center provider. This firm provides data center solutions custom-fit to the requirements of their client’s mission-critical operational facilities. They provide reliability of mission-critical facilities for many of the world’s largest organizations facilities supporting enterprise clients, colo providers and hyperscale companies. This opportunity provides a career-growth minded role with exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits. Electrical Commissioning Engineer Montvale, NJ This traveling position is also available in: New York, NY; White Plains, NY;  Richmond, VA; Ashburn, VA; Charlotte, NC; Atlanta, GA; Hampton, GA; Fayetteville, GA; New Albany, OH; Cedar Rapids, IA; Phoenix, AZ; Salt Lake City, UT; Dallas, TX or Chicago, IL. *** ALSO looking for a LEAD EE and ME CxA Agents and CxA PMs. *** Our client is an engineering design and commissioning company that has a national footprint and specializes in MEP critical facilities design. They provide design, commissioning, consulting and management expertise in the critical facilities space. They have a mindset to provide reliability, energy efficiency, sustainable design and LEED expertise when providing these consulting services for enterprise, colocation and hyperscale companies. This career-growth minded opportunity offers exciting projects with leading-edge technology and innovation as well as competitive salaries and

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »