Stay Ahead, Stay ONMINE

Inside OpenAI’s empire: A conversation with Karen Hao

Niall Firth: Hello, everyone, and welcome to this special edition of Roundtables. These are our subscriber-only events where you get to listen in to conversations between editors and reporters. Now, I’m delighted to say we’ve got an absolute cracker of an event today. I’m very happy to have our prodigal daughter, Karen Hao, a fabulous AI journalist, here with us to talk about her new book. Hello, Karen, how are you doing? Karen Hao: Good. Thank you so much for having me back, Niall.  Niall Firth: Lovely to have you. So I’m sure you all know Karen and that’s why you’re here. But to give you a quick, quick synopsis, Karen has a degree in mechanical engineering from MIT. She was MIT Technology Review’s senior editor for AI and has won countless awards, been cited in Congress, written for the Wall Street Journal and The Atlantic, and set up a series at the Pulitzer Center to teach journalists how to cover AI.  But most important of all, she’s here to discuss her new book, which I’ve got a copy of here, Empire of AI. The UK version is subtitled “Inside the reckless race for total domination,” and the US one, I believe, is “Dreams and nightmares in Sam Altman’s OpenAI.” It’s been an absolute sensation, a New York Times chart topper. An incredible feat of reporting—like 300 interviews, including 90 with people inside OpenAI. And it’s a brilliant look at not just OpenAI’s rise, and the character of Sam Altman, which is very interesting in its own right, but also a really astute look at what kind of AI we’re building and who holds the keys.  Karen, the core of the book, the rise and rise of OpenAI, was one of your first big features at MIT Technology Review. It’s a brilliant story that lifted the lid for the first time on what was going on at OpenAI … and they really hated it, right? Karen Hao: Yes, and first of all, thank you to everyone for being here. It’s always great to be home. I do still consider MIT Tech Review to be my journalistic home, and that story was—I only did it because Niall assigned it after I said, “Hey, it seems like OpenAI is kind of an interesting thing,” and he was like, you should profile them. And I had never written a profile about a company before, and I didn’t think that I would have it in me, and Niall believed that I would be able to do it. So it really didn’t happen other than because of you. I went into the piece with an open mind about—let me understand what OpenAI is. Let me take what they say at face value. They were founded as a nonprofit. They have this mission to ensure artificial general intelligence benefits all of humanity. What do they mean by that? How are they trying to achieve that ultimately? How are they striking this balance between mission-driven AI development and the need to raise money and capital?  And through the course of embedding within the company for three days, and then interviewing dozens of people outside the company or around the company … I came to realize that there was a fundamental disconnect between what they were publicly espousing and accumulating a lot of goodwill from and how they were operating. And that is what I ended up focusing my profile on, and that is why they were not very pleased. Niall Firth: And how have you seen OpenAI change even since you did the profile? That sort of misalignment feels like it’s got messier and more confusing in the years since. Karen Hao: Absolutely. I mean, it’s kind of remarkable that OpenAI, you could argue that they are now one of the most capitalistic corporations in Silicon Valley. They just raised $40 billion, in the largest-ever private fundraising round in tech industry history. They’re valued at $300 billion. And yet they still say that they are first and foremost a nonprofit.  I think this really gets to the heart of how much OpenAI has tried to position and reposition itself throughout its decade-long history, to ultimately play into the narratives that they think are going to do best with the public and with policymakers, in spite of what they might actually be doing in terms of developing their technologies and commercializing them. Niall Firth: You cite Sam Altman saying, you know, the race for AGI is what motivated a lot of this, and I’ll come back to that a bit before the end. But he talks about it as like the Manhattan Project for AI. You cite him quoting Oppenheimer (of course, you know, there’s no self-aggrandizing there): “Technology happens because it’s possible,” he says in the book.  And it feels to me like this is one of the themes of the book: the idea that technology doesn’t just happen because it comes along. It comes because of choices that people make. It’s not an inevitability that things are the way they are and that people are who they are. What they think is important—that influences the direction of travel. So what does this mean, in practice, if that’s the case? Karen Hao: With OpenAI in particular, they made a very key decision early on in their history that led to all of the AI technologies that we see dominating the marketplace and dominating headlines today. And that was a decision to try and advance AI progress through scaling the existing techniques that were available to them. At the time when OpenAI started, at the end of 2015, and then, when they made that decision, in roughly around 2017, this was a very unpopular perspective within the broader AI research field.  There were kind of two competing ideas about how to advance AI progress, or rather a spectrum of ideas, bookended by two extremes. One extreme being, we have all the techniques we need, and we should just aggressively scale. And the other one being that we don’t actually have the techniques we need. We need to continue innovating and doing fundamental AI research to get more breakthroughs. And largely the field assumed that this side of the spectrum [focusing on fundamental AI research] was the most likely approach for getting advancements, but OpenAI was anomalously committed to the other extreme—this idea that we can just take neural networks and pump ever more data, and train on ever larger supercomputers, larger than have ever been built in history. The reason why they made that decision was because they were competing against Google, which had a dominant monopoly on AI talent. And OpenAI knew that they didn’t necessarily have the ability to beat Google simply by trying to get research breakthroughs. That’s a very hard path. When you’re doing fundamental research, you never really know when the breakthrough might appear. It’s not a very linear line of progress, but scaling is sort of linear. As long as you just pump more data and more compute, you can get gains. And so they thought, we can just do this faster than anyone else. And that’s the way that we’re going to leap ahead of Google. And it particularly aligned with Sam Altman’s skillset, as well, because he is a once-in-a-generation fundraising talent, and when you’re going for scale to advance AI models, the primary bottleneck is capital. And so it was kind of a great fit for what he had to offer, which is, he knows how to accumulate capital, and he knows how to accumulate it very quickly. So that is ultimately how you can see that technology is a product of human choices and human perspectives. And they’re the specific skills and strengths that that team had at the time for how they wanted to move forward. Niall Firth: And to be fair, I mean, it works, right? It was amazing, fabulous. You know the breakthroughs that happened, GPT-2 to GPT-3, just from scale and data and compute, kind of were mind-blowing really, as we look back on it now. Karen Hao: Yeah, it is remarkable how much it did work, because there was a lot of skepticism about the idea that scale could lead to the kind of technical progress that we’ve seen. But one of my biggest critiques of this particular approach is that there’s also an extraordinary amount of costs that come with this particular pathway to getting more advancements. And there are many different pathways to advancing AI, so we could have actually gotten all of these benefits, and moving forward, we could continue to get more benefits from AI, without actually engaging in a hugely consumptive, hugely costly approach to its development. Niall Firth: Yeah, so in terms of consumptive, that’s something we’ve touched on here quite recently at MIT Technology Review, like the energy costs of AI. The data center costs are absolutely extraordinary, right? Like the data behind it is incredible. And it’s only gonna get worse in the next few years if we continue down this path, right?  Karen Hao: Yeah … so first of all, everyone should read the series that Tech Review put out, if you haven’t already, on the energy question, because it really does break down everything from what is the energy consumption of the smallest unit of interacting with these models, all the way up until the highest level.  The number that I have seen a lot, and that I’ve been repeating, is there was a McKinsey report that was looking at if we continue to just look at the pace at which data centers and supercomputers are being built and scaled, in the next five years, we would have to add two to six times the amount of energy consumed by California onto the grid. And most of that will have to be serviced by fossil fuels, because these data centers and supercomputers have to run 24/7, so we cannot rely solely on renewable energy. We do not have enough nuclear power capacity to power these colossal pieces of infrastructure. And so we’re already accelerating the climate crisis.  And we’re also accelerating a public-health crisis, the pumping of thousands of tons of air pollutants into the air from coal plants that are having their lives extended and methane gas turbines that are being built in service of powering these data centers. And in addition to that, there’s also an acceleration of the freshwater crisis, because these pieces of infrastructure have to be cooled with freshwater resources. It has to be fresh water, because if it’s any other type of water, it corrodes the equipment, it leads to bacterial growth. And Bloomberg recently had a story that showed that two-thirds of these data centers are actually going into water-scarce areas, into places where the communities already do not have enough fresh water at their disposal. So that is one dimension of many that I refer to when I say, the extraordinary costs of this particular pathway for AI development. Niall Firth: So in terms of costs and the extractive process of making AI, I wanted to give you the chance to talk about the other theme of the book, apart from just OpenAI’s explosion. It’s the colonial way of looking at the way AI is made: the empire. I’m saying this obviously because we’re here, but this is an idea that came out of reporting you started at MIT Technology Review and then continued into the book. Tell us about how this framing helps us understand how AI is made now. Karen Hao: Yeah, so this was a framing that I started thinking a lot about when I was working on the AI Colonialism series for Tech Review. It was a series of stories that looked at the way that, pre-ChatGPT, the commercialization of AI and its deployment into the world was already leading to entrenchment of historical inequities into the present day. And one example was a story that was about how facial recognition companies were swarming into South Africa to try and harvest more data from South Africa during a time when they were getting criticized for the fact that their technologies did not accurately recognize black faces. And the deployment of those facial recognition technologies into South Africa, into the streets of Johannesburg, was leading to what South African scholars were calling a recreation of a digital apartheid—the controlling of black bodies, movement of black people. And this idea really haunted me for a really long time. Through my reporting in that series, there were so many examples that I kept hitting upon of this thesis, that the AI industry was perpetuating. It felt like it was becoming this neocolonial force. And then, when ChatGPT came out, it became clear that this was just accelerating.  When you accelerate the scale of these technologies, and you start training them on the entirety of the Internet, and you start using these supercomputers that are the size of dozens—if not hundreds—of football fields. Then you really start talking about an extraordinary global level of extraction and exploitation that is happening to produce these technologies. And then the historical power imbalances become even more obvious.  And so there are four parallels that I draw in my book between what I have now termed empires of AI versus empires of old. The first one is that empires lay claim to resources that are not their own. So these companies are scraping all this data that is not their own, taking all the intellectual property that is not their own. The second is that empires exploit a lot of labor. So we see them moving to countries in the Global South or other economically vulnerable communities to contract workers to do some of the worst work in the development pipeline for producing these technologies—and also producing technologies that then inherently are labor-automating and engage in labor exploitation in and of themselves.  And the third feature is that the empires monopolize knowledge production. So, in the last 10 years, we’ve seen the AI industry monopolize more and more of the AI researchers in the world. So AI researchers are no longer contributing to open science, working in universities or independent institutions, and the effect on the research is what you would imagine would happen if most of the climate scientists in the world were being bankrolled by oil and gas companies. You would not be getting a clear picture, and we are not getting a clear picture, of the limitations of these technologies, or if there are better ways to develop these technologies. And the fourth and final feature is that empires always engage in this aggressive race rhetoric, where there are good empires and evil empires. And they, the good empire, have to be strong enough to beat back the evil empire, and that is why they should have unfettered license to consume all of these resources and exploit all of this labor. And if the evil empire gets the technology first, humanity goes to hell. But if the good empire gets the technology first, they’ll civilize the world, and humanity gets to go to heaven. So on many different levels, like the empire theme, I felt like it was the most comprehensive way to name exactly how these companies operate, and exactly what their impacts are on the world. Niall Firth: Yeah, brilliant. I mean, you talk about the evil empire. What happens if the evil empire gets it first? And what I mentioned at the top is AGI. For me, it’s almost like the extra character in the book all the way through. It’s sort of looming over everything, like the ghost at the feast, sort of saying like, this is the thing that motivates everything at OpenAI. This is the thing we’ve got to get to before anyone else gets to it.  There’s a bit in the book about how they’re talking internally at OpenAI, like, we’ve got to make sure that AGI is in US hands where it’s safe versus like anywhere else. And some of the international staff are openly like—that’s kind of a weird way to frame it, isn’t it? Why is the US version of AGI better than others?  So tell us a bit about how it drives what they do. And AGI isn’t an inevitable fact that’s just happening anyway, is it? It’s not even a thing yet. Karen Hao: There’s not even consensus around whether or not it’s even possible or what it even is. There was recently a New York Times story by Cade Metz that was citing a survey of long-standing AI researchers in the field, and 75% of them still think that we don’t have the techniques yet for reaching AGI, whatever that means. And the most classic definition or understanding of what AGI is, is being able to fully recreate human intelligence in software. But the problem is, we also don’t have scientific consensus around what human intelligence is. And so one of the aspects that I talk about a lot in the book is that, when there is a vacuum of shared meaning around this term, and what it would look like, when would we have arrived at it? What capabilities should we be evaluating these systems on to determine that we’ve gotten there? It can basically just be whatever OpenAI wants.  So it’s kind of just this ever-present goalpost that keeps shifting, depending on where the company wants to go. You know, they have a full range, a variety of different definitions that they’ve used throughout the years. In fact, they even have a joke internally: If you ask 13 OpenAI researchers what AGI is, you’ll get 15 definitions. So they are kind of self-aware that this is not really a real term and it doesn’t really have that much meaning.  But it does serve this purpose of creating a kind of quasi-religious fervor around what they’re doing, where people think that they have to keep driving towards this horizon, and that one day when they get there, it’s going to have a civilizationally transformative impact. And therefore, what else should you be working on in your life, but this? And who else should be working on it, but you?  And so it is their justification not just for continuing to push and scale and consume all these resources—because none of that consumption, none of that harm matters anymore if you end up hitting this destination. But they also use it as a way to develop their technologies in a very deeply anti-democratic way, where they say, we are the only people that have the expertise, that have the right to carefully control the development of this technology and usher it into the world. And we cannot let anyone else participate because it’s just too powerful of a technology. Niall Firth: You talk about the factions, particularly the religious framing. AGI has been around as a concept for a while—it was very niche, very kind of nerdy fun, really, to talk about—to suddenly become extremely mainstream. And they have the boomers versus doomers dichotomy. Where are you on that spectrum? Karen Hao: So the boomers are people who think that AGI is going to bring us to utopia, and the doomers think AGI is going to devastate all of humanity. And to me these are actually two sides of the same coin. They both believe that AGI is possible, and it’s imminent, and it’s going to change everything.  And I am not on this spectrum. I’m in a third space, which is the AI accountability space, which is rooted in the observation that these companies have accumulated an extraordinary amount of power, both economic and political power, to go back to the empire analogy.  Ultimately, the thing that we need to do in order to not return to an age of empire and erode a lot of democratic norms is to hold these companies accountable with all the tools at our disposal, and to recognize all the harms that they are already perpetuating through a misguided approach to AI development. Niall Firth: I’ve got a couple of questions from readers. I’m gonna try to pull them together a little bit because Abbas asks, what would post-imperial AI look like? And there was a question from Liam basically along the same lines. How do you make a more ethical version of AI that is not within this framework?  Karen Hao: We sort of already touched a little bit upon this idea. But there are so many different ways to develop AI. There are myriads of techniques throughout the history of AI development, which is decades long. There have been various shifts in the winds of which techniques ultimately rise and fall. And it isn’t based solely on the scientific or technical merit of any particular technique. Oftentimes certain techniques become more popular because of business reasons or because of the funder’s ideologies. And that’s sort of what we’re seeing today with the complete indexing of AI development on large-scale AI model development. And ultimately, these large-scale models … We talked about how it’s a remarkable technical leap, but in terms of social progress or economic progress, the benefits of these models have been kind of middling. And the way that I see us shifting to AI models that are going to be A) more beneficial and B) not so imperial is to refocus on task-specific AI systems that are tackling well-scoped challenges that inherently lend themselves to the strengths of AI systems that are inherently computational optimization problems.  So I’m talking about things like using AI to integrate more renewable energy into the grid. This is something that we definitely need. We need to more quickly accelerate our electrification of the grid, and one of the challenges of using more renewable energy is the unpredictability of it. And this is a key strength of AI technologies, being able to have predictive capabilities and optimization capabilities where you can match the energy generation of different renewables with the energy demands of different people that are drawing from the grid. Niall Firth: Quite a few people have been asking, in the chat, different versions of the same question. If you were an early-career AI scientist, or if you were involved in AI, what can you do yourself to bring about a more ethical version of AI? Do you have any power left, or is it too late?  Karen Hao: No, I don’t think it’s too late at all. I mean, as I’ve been talking with a lot of people just in the lay public, one of the biggest challenges that they have is they don’t have any alternatives for AI. They want the benefits of AI, but they also do not want to participate in a supply chain that is really harmful. And so the first question is, always, is there an alternative? Which tools do I shift to? And unfortunately, there just aren’t that many alternatives right now.  And so the first thing that I would say to early-career AI researchers and entrepreneurs is to build those alternatives, because there are plenty of people that are actually really excited about the possibility of switching to more ethical alternatives. And one of the analogies I often use is that we kind of need to do with the AI industry what happened with the fashion industry. There was also a lot of environmental exploitation, labor exploitation in the fashion industry, and there was enough consumer demand that it created new markets for ethical and sustainably sourced fashion. And so we kind of need to see just more options occupying that space. Niall Firth: Do you feel optimistic about the future? Or where do you sit? You know, things aren’t great as you spell them out now. Where’s the hope for us? Karen Hao: I am. I’m super optimistic. Part of the reason why I’m optimistic is because you know, a few years ago, when I started writing about AI at Tech Review, I remember people would say, wow, that’s a really niche beat. Do you have enough to write about?  And now, I mean, everyone is talking about AI, and I think that’s the first step to actually getting to a better place with AI development. The amount of public awareness and attention and scrutiny that is now going into how we develop these technologies, how we use these technologies, is really, really important. Like, we need to be having this public debate and that in and of itself is a significant step change from what we had before.  But the next step, and part of the reason why I wrote this book, is we need to convert the awareness into action, and people should take an active role. Every single person should feel that they have an active role in shaping the future of AI development, if you think about all of the different ways that you interface with the AI development supply chain and deployment supply chain—like you give your data or withhold your data. There are probably data centers that are being built around you right now. If you’re a parent, there’s some kind of AI policy being crafted at [your kid’s] school. There’s some kind of AI policy being crafted at your workplace. These are all what I consider sites of democratic contestation, where you can use those opportunities to assert your voice about how you want AI to be developed and deployed. If you do not want these companies to use certain kinds of data, push back when they just take the data.  I closed all of my personal social media accounts because I just did not like the fact that they were scraping my personal photos to train their generative AI models. I’ve seen parents and students and teachers start forming committees within schools to talk about what their AI policy should be and to draft it collectively as a community. Same with businesses. They’re doing the same thing. If we all kind of step up to play that active role, I am super optimistic that we’ll get to a better place. Niall Firth: Mark, in the chat, mentions the Māori story from New Zealand towards the end of your book, and that’s an example of sort of community-led AI in action, isn’t it? Karen Hao: Yeah. There was a community in New Zealand that really wanted to help revitalize the Māori language by building a speech recognition tool that could recognize Māori, and therefore be able to transcribe a rich repository of archival audio of their ancestors speaking Māori. And the first thing that they did when engaging in that project was they asked the community, do you want this AI tool?  Niall Firth: Imagine that. Karen Hao: I know! It’s such a radical concept, this idea of consent at every stage. But they first asked that; the community wholeheartedly said yes. They then engaged in a public education campaign to explain to people, okay, what does it take to develop an AI tool? Well, we are going to need data. We’re going to need audio transcription pairs to train this AI model. So then they ran a public contest in which they were able to get dozens, if not hundreds, of people in their community to donate data to this project. And then they made sure that when they developed the model, they actively explained to the community at every step how their data was being used, how it would be stored, how it would continue to be protected. And any other project that would use the data has to get permission and consent from the community first.  And so it was a completely democratic process, for whether they wanted the tool, how to develop the tool, and how the tool should continue to be used, and how their data should continue to be used over time. Niall Firth: Great. I know we’ve gone a bit over time. I’ve got two more things I’m going to ask you, basically putting together lots of questions people have asked in the chat about your view on what role regulations should play. What are your thoughts on that? Karen Hao: Yeah, I mean, in an ideal world where we actually had a functioning government, regulation should absolutely play a huge role. And it shouldn’t just be thinking about once an AI model is built, how to regulate that. But still thinking about the full supply chain of AI development, regulating the data and what’s allowed to be trained in these models, regulating the land use. And what pieces of land are allowed to build data centers? How much energy and water are the data centers allowed to consume? And also regulating the transparency. We don’t know what data is in these training data sets, and we don’t know the environmental costs of training these models. We don’t know how much water these data centers consume and that is all information that these companies actively withhold to prevent democratic processes from happening. So if there were one major intervention that regulators could have, it should be to dramatically increase the amount of transparency along the supply chain. Niall Firth: Okay, great. So just to bring it back around to OpenAI and Sam Altman to finish with. He famously sent an email around, didn’t he? After your original Tech Review story, saying this is not great. We don’t like this. And he didn’t want to speak to you for your book, either, did he? Karen Hao: No, he did not. Niall Firth: No. But imagine Sam Altman is in the chat here. He’s subscribed to Technology Review and is watching this Roundtables because he wants to know what you’re saying about him. If you could talk to him directly, what would you like to ask him?  Karen Hao: What degree of harm do you need to see in order to realize that you should take a different path?  Niall Firth: Nice, blunt, to the point. All right, Karen, thank you so much for your time.  Karen Hao: Thank you so much, everyone. MIT Technology Review Roundtables is a subscriber-only online event series where experts discuss the latest developments and what’s next in emerging technologies. Sign up to get notified about upcoming sessions.

Niall Firth: Hello, everyone, and welcome to this special edition of Roundtables. These are our subscriber-only events where you get to listen in to conversations between editors and reporters. Now, I’m delighted to say we’ve got an absolute cracker of an event today. I’m very happy to have our prodigal daughter, Karen Hao, a fabulous AI journalist, here with us to talk about her new book. Hello, Karen, how are you doing?

Karen Hao: Good. Thank you so much for having me back, Niall. 

Niall Firth: Lovely to have you. So I’m sure you all know Karen and that’s why you’re here. But to give you a quick, quick synopsis, Karen has a degree in mechanical engineering from MIT. She was MIT Technology Review’s senior editor for AI and has won countless awards, been cited in Congress, written for the Wall Street Journal and The Atlantic, and set up a series at the Pulitzer Center to teach journalists how to cover AI. 

But most important of all, she’s here to discuss her new book, which I’ve got a copy of here, Empire of AI. The UK version is subtitled “Inside the reckless race for total domination,” and the US one, I believe, is “Dreams and nightmares in Sam Altman’s OpenAI.”

It’s been an absolute sensation, a New York Times chart topper. An incredible feat of reporting—like 300 interviews, including 90 with people inside OpenAI. And it’s a brilliant look at not just OpenAI’s rise, and the character of Sam Altman, which is very interesting in its own right, but also a really astute look at what kind of AI we’re building and who holds the keys. 

Karen, the core of the book, the rise and rise of OpenAI, was one of your first big features at MIT Technology Review. It’s a brilliant story that lifted the lid for the first time on what was going on at OpenAI … and they really hated it, right?

Karen Hao: Yes, and first of all, thank you to everyone for being here. It’s always great to be home. I do still consider MIT Tech Review to be my journalistic home, and that story was—I only did it because Niall assigned it after I said, “Hey, it seems like OpenAI is kind of an interesting thing,” and he was like, you should profile them. And I had never written a profile about a company before, and I didn’t think that I would have it in me, and Niall believed that I would be able to do it. So it really didn’t happen other than because of you.

I went into the piece with an open mind about—let me understand what OpenAI is. Let me take what they say at face value. They were founded as a nonprofit. They have this mission to ensure artificial general intelligence benefits all of humanity. What do they mean by that? How are they trying to achieve that ultimately? How are they striking this balance between mission-driven AI development and the need to raise money and capital? 

And through the course of embedding within the company for three days, and then interviewing dozens of people outside the company or around the company … I came to realize that there was a fundamental disconnect between what they were publicly espousing and accumulating a lot of goodwill from and how they were operating. And that is what I ended up focusing my profile on, and that is why they were not very pleased.

Niall Firth: And how have you seen OpenAI change even since you did the profile? That sort of misalignment feels like it’s got messier and more confusing in the years since.

Karen Hao: Absolutely. I mean, it’s kind of remarkable that OpenAI, you could argue that they are now one of the most capitalistic corporations in Silicon Valley. They just raised $40 billion, in the largest-ever private fundraising round in tech industry history. They’re valued at $300 billion. And yet they still say that they are first and foremost a nonprofit. 

I think this really gets to the heart of how much OpenAI has tried to position and reposition itself throughout its decade-long history, to ultimately play into the narratives that they think are going to do best with the public and with policymakers, in spite of what they might actually be doing in terms of developing their technologies and commercializing them.

Niall Firth: You cite Sam Altman saying, you know, the race for AGI is what motivated a lot of this, and I’ll come back to that a bit before the end. But he talks about it as like the Manhattan Project for AI. You cite him quoting Oppenheimer (of course, you know, there’s no self-aggrandizing there): “Technology happens because it’s possible,” he says in the book. 

And it feels to me like this is one of the themes of the book: the idea that technology doesn’t just happen because it comes along. It comes because of choices that people make. It’s not an inevitability that things are the way they are and that people are who they are. What they think is important—that influences the direction of travel. So what does this mean, in practice, if that’s the case?

Karen Hao: With OpenAI in particular, they made a very key decision early on in their history that led to all of the AI technologies that we see dominating the marketplace and dominating headlines today. And that was a decision to try and advance AI progress through scaling the existing techniques that were available to them. At the time when OpenAI started, at the end of 2015, and then, when they made that decision, in roughly around 2017, this was a very unpopular perspective within the broader AI research field. 

There were kind of two competing ideas about how to advance AI progress, or rather a spectrum of ideas, bookended by two extremes. One extreme being, we have all the techniques we need, and we should just aggressively scale. And the other one being that we don’t actually have the techniques we need. We need to continue innovating and doing fundamental AI research to get more breakthroughs. And largely the field assumed that this side of the spectrum [focusing on fundamental AI research] was the most likely approach for getting advancements, but OpenAI was anomalously committed to the other extreme—this idea that we can just take neural networks and pump ever more data, and train on ever larger supercomputers, larger than have ever been built in history.

The reason why they made that decision was because they were competing against Google, which had a dominant monopoly on AI talent. And OpenAI knew that they didn’t necessarily have the ability to beat Google simply by trying to get research breakthroughs. That’s a very hard path. When you’re doing fundamental research, you never really know when the breakthrough might appear. It’s not a very linear line of progress, but scaling is sort of linear. As long as you just pump more data and more compute, you can get gains. And so they thought, we can just do this faster than anyone else. And that’s the way that we’re going to leap ahead of Google. And it particularly aligned with Sam Altman’s skillset, as well, because he is a once-in-a-generation fundraising talent, and when you’re going for scale to advance AI models, the primary bottleneck is capital.

And so it was kind of a great fit for what he had to offer, which is, he knows how to accumulate capital, and he knows how to accumulate it very quickly. So that is ultimately how you can see that technology is a product of human choices and human perspectives. And they’re the specific skills and strengths that that team had at the time for how they wanted to move forward.

Niall Firth: And to be fair, I mean, it works, right? It was amazing, fabulous. You know the breakthroughs that happened, GPT-2 to GPT-3, just from scale and data and compute, kind of were mind-blowing really, as we look back on it now.

Karen Hao: Yeah, it is remarkable how much it did work, because there was a lot of skepticism about the idea that scale could lead to the kind of technical progress that we’ve seen. But one of my biggest critiques of this particular approach is that there’s also an extraordinary amount of costs that come with this particular pathway to getting more advancements. And there are many different pathways to advancing AI, so we could have actually gotten all of these benefits, and moving forward, we could continue to get more benefits from AI, without actually engaging in a hugely consumptive, hugely costly approach to its development.

Niall Firth: Yeah, so in terms of consumptive, that’s something we’ve touched on here quite recently at MIT Technology Review, like the energy costs of AI. The data center costs are absolutely extraordinary, right? Like the data behind it is incredible. And it’s only gonna get worse in the next few years if we continue down this path, right? 

Karen Hao: Yeah … so first of all, everyone should read the series that Tech Review put out, if you haven’t already, on the energy question, because it really does break down everything from what is the energy consumption of the smallest unit of interacting with these models, all the way up until the highest level. 

The number that I have seen a lot, and that I’ve been repeating, is there was a McKinsey report that was looking at if we continue to just look at the pace at which data centers and supercomputers are being built and scaled, in the next five years, we would have to add two to six times the amount of energy consumed by California onto the grid. And most of that will have to be serviced by fossil fuels, because these data centers and supercomputers have to run 24/7, so we cannot rely solely on renewable energy. We do not have enough nuclear power capacity to power these colossal pieces of infrastructure. And so we’re already accelerating the climate crisis. 

And we’re also accelerating a public-health crisis, the pumping of thousands of tons of air pollutants into the air from coal plants that are having their lives extended and methane gas turbines that are being built in service of powering these data centers. And in addition to that, there’s also an acceleration of the freshwater crisis, because these pieces of infrastructure have to be cooled with freshwater resources. It has to be fresh water, because if it’s any other type of water, it corrodes the equipment, it leads to bacterial growth.

And Bloomberg recently had a story that showed that two-thirds of these data centers are actually going into water-scarce areas, into places where the communities already do not have enough fresh water at their disposal. So that is one dimension of many that I refer to when I say, the extraordinary costs of this particular pathway for AI development.

Niall Firth: So in terms of costs and the extractive process of making AI, I wanted to give you the chance to talk about the other theme of the book, apart from just OpenAI’s explosion. It’s the colonial way of looking at the way AI is made: the empire. I’m saying this obviously because we’re here, but this is an idea that came out of reporting you started at MIT Technology Review and then continued into the book. Tell us about how this framing helps us understand how AI is made now.

Karen Hao: Yeah, so this was a framing that I started thinking a lot about when I was working on the AI Colonialism series for Tech Review. It was a series of stories that looked at the way that, pre-ChatGPT, the commercialization of AI and its deployment into the world was already leading to entrenchment of historical inequities into the present day.

And one example was a story that was about how facial recognition companies were swarming into South Africa to try and harvest more data from South Africa during a time when they were getting criticized for the fact that their technologies did not accurately recognize black faces. And the deployment of those facial recognition technologies into South Africa, into the streets of Johannesburg, was leading to what South African scholars were calling a recreation of a digital apartheid—the controlling of black bodies, movement of black people.

And this idea really haunted me for a really long time. Through my reporting in that series, there were so many examples that I kept hitting upon of this thesis, that the AI industry was perpetuating. It felt like it was becoming this neocolonial force. And then, when ChatGPT came out, it became clear that this was just accelerating. 

When you accelerate the scale of these technologies, and you start training them on the entirety of the Internet, and you start using these supercomputers that are the size of dozens—if not hundreds—of football fields. Then you really start talking about an extraordinary global level of extraction and exploitation that is happening to produce these technologies. And then the historical power imbalances become even more obvious. 

And so there are four parallels that I draw in my book between what I have now termed empires of AI versus empires of old. The first one is that empires lay claim to resources that are not their own. So these companies are scraping all this data that is not their own, taking all the intellectual property that is not their own.

The second is that empires exploit a lot of labor. So we see them moving to countries in the Global South or other economically vulnerable communities to contract workers to do some of the worst work in the development pipeline for producing these technologies—and also producing technologies that then inherently are labor-automating and engage in labor exploitation in and of themselves. 

And the third feature is that the empires monopolize knowledge production. So, in the last 10 years, we’ve seen the AI industry monopolize more and more of the AI researchers in the world. So AI researchers are no longer contributing to open science, working in universities or independent institutions, and the effect on the research is what you would imagine would happen if most of the climate scientists in the world were being bankrolled by oil and gas companies. You would not be getting a clear picture, and we are not getting a clear picture, of the limitations of these technologies, or if there are better ways to develop these technologies.

And the fourth and final feature is that empires always engage in this aggressive race rhetoric, where there are good empires and evil empires. And they, the good empire, have to be strong enough to beat back the evil empire, and that is why they should have unfettered license to consume all of these resources and exploit all of this labor. And if the evil empire gets the technology first, humanity goes to hell. But if the good empire gets the technology first, they’ll civilize the world, and humanity gets to go to heaven. So on many different levels, like the empire theme, I felt like it was the most comprehensive way to name exactly how these companies operate, and exactly what their impacts are on the world.

Niall Firth: Yeah, brilliant. I mean, you talk about the evil empire. What happens if the evil empire gets it first? And what I mentioned at the top is AGI. For me, it’s almost like the extra character in the book all the way through. It’s sort of looming over everything, like the ghost at the feast, sort of saying like, this is the thing that motivates everything at OpenAI. This is the thing we’ve got to get to before anyone else gets to it. 

There’s a bit in the book about how they’re talking internally at OpenAI, like, we’ve got to make sure that AGI is in US hands where it’s safe versus like anywhere else. And some of the international staff are openly like—that’s kind of a weird way to frame it, isn’t it? Why is the US version of AGI better than others? 

So tell us a bit about how it drives what they do. And AGI isn’t an inevitable fact that’s just happening anyway, is it? It’s not even a thing yet.

Karen Hao: There’s not even consensus around whether or not it’s even possible or what it even is. There was recently a New York Times story by Cade Metz that was citing a survey of long-standing AI researchers in the field, and 75% of them still think that we don’t have the techniques yet for reaching AGI, whatever that means. And the most classic definition or understanding of what AGI is, is being able to fully recreate human intelligence in software. But the problem is, we also don’t have scientific consensus around what human intelligence is. And so one of the aspects that I talk about a lot in the book is that, when there is a vacuum of shared meaning around this term, and what it would look like, when would we have arrived at it? What capabilities should we be evaluating these systems on to determine that we’ve gotten there? It can basically just be whatever OpenAI wants. 

So it’s kind of just this ever-present goalpost that keeps shifting, depending on where the company wants to go. You know, they have a full range, a variety of different definitions that they’ve used throughout the years. In fact, they even have a joke internally: If you ask 13 OpenAI researchers what AGI is, you’ll get 15 definitions. So they are kind of self-aware that this is not really a real term and it doesn’t really have that much meaning. 

But it does serve this purpose of creating a kind of quasi-religious fervor around what they’re doing, where people think that they have to keep driving towards this horizon, and that one day when they get there, it’s going to have a civilizationally transformative impact. And therefore, what else should you be working on in your life, but this? And who else should be working on it, but you? 

And so it is their justification not just for continuing to push and scale and consume all these resources—because none of that consumption, none of that harm matters anymore if you end up hitting this destination. But they also use it as a way to develop their technologies in a very deeply anti-democratic way, where they say, we are the only people that have the expertise, that have the right to carefully control the development of this technology and usher it into the world. And we cannot let anyone else participate because it’s just too powerful of a technology.

Niall Firth: You talk about the factions, particularly the religious framing. AGI has been around as a concept for a while—it was very niche, very kind of nerdy fun, really, to talk about—to suddenly become extremely mainstream. And they have the boomers versus doomers dichotomy. Where are you on that spectrum?

Karen Hao: So the boomers are people who think that AGI is going to bring us to utopia, and the doomers think AGI is going to devastate all of humanity. And to me these are actually two sides of the same coin. They both believe that AGI is possible, and it’s imminent, and it’s going to change everything. 

And I am not on this spectrum. I’m in a third space, which is the AI accountability space, which is rooted in the observation that these companies have accumulated an extraordinary amount of power, both economic and political power, to go back to the empire analogy. 

Ultimately, the thing that we need to do in order to not return to an age of empire and erode a lot of democratic norms is to hold these companies accountable with all the tools at our disposal, and to recognize all the harms that they are already perpetuating through a misguided approach to AI development.

Niall Firth: I’ve got a couple of questions from readers. I’m gonna try to pull them together a little bit because Abbas asks, what would post-imperial AI look like? And there was a question from Liam basically along the same lines. How do you make a more ethical version of AI that is not within this framework? 

Karen Hao: We sort of already touched a little bit upon this idea. But there are so many different ways to develop AI. There are myriads of techniques throughout the history of AI development, which is decades long. There have been various shifts in the winds of which techniques ultimately rise and fall. And it isn’t based solely on the scientific or technical merit of any particular technique. Oftentimes certain techniques become more popular because of business reasons or because of the funder’s ideologies. And that’s sort of what we’re seeing today with the complete indexing of AI development on large-scale AI model development.

And ultimately, these large-scale models … We talked about how it’s a remarkable technical leap, but in terms of social progress or economic progress, the benefits of these models have been kind of middling. And the way that I see us shifting to AI models that are going to be A) more beneficial and B) not so imperial is to refocus on task-specific AI systems that are tackling well-scoped challenges that inherently lend themselves to the strengths of AI systems that are inherently computational optimization problems. 

So I’m talking about things like using AI to integrate more renewable energy into the grid. This is something that we definitely need. We need to more quickly accelerate our electrification of the grid, and one of the challenges of using more renewable energy is the unpredictability of it. And this is a key strength of AI technologies, being able to have predictive capabilities and optimization capabilities where you can match the energy generation of different renewables with the energy demands of different people that are drawing from the grid.

Niall Firth: Quite a few people have been asking, in the chat, different versions of the same question. If you were an early-career AI scientist, or if you were involved in AI, what can you do yourself to bring about a more ethical version of AI? Do you have any power left, or is it too late? 

Karen Hao: No, I don’t think it’s too late at all. I mean, as I’ve been talking with a lot of people just in the lay public, one of the biggest challenges that they have is they don’t have any alternatives for AI. They want the benefits of AI, but they also do not want to participate in a supply chain that is really harmful. And so the first question is, always, is there an alternative? Which tools do I shift to? And unfortunately, there just aren’t that many alternatives right now. 

And so the first thing that I would say to early-career AI researchers and entrepreneurs is to build those alternatives, because there are plenty of people that are actually really excited about the possibility of switching to more ethical alternatives. And one of the analogies I often use is that we kind of need to do with the AI industry what happened with the fashion industry. There was also a lot of environmental exploitation, labor exploitation in the fashion industry, and there was enough consumer demand that it created new markets for ethical and sustainably sourced fashion. And so we kind of need to see just more options occupying that space.

Niall Firth: Do you feel optimistic about the future? Or where do you sit? You know, things aren’t great as you spell them out now. Where’s the hope for us?

Karen Hao: I am. I’m super optimistic. Part of the reason why I’m optimistic is because you know, a few years ago, when I started writing about AI at Tech Review, I remember people would say, wow, that’s a really niche beat. Do you have enough to write about? 

And now, I mean, everyone is talking about AI, and I think that’s the first step to actually getting to a better place with AI development. The amount of public awareness and attention and scrutiny that is now going into how we develop these technologies, how we use these technologies, is really, really important. Like, we need to be having this public debate and that in and of itself is a significant step change from what we had before. 

But the next step, and part of the reason why I wrote this book, is we need to convert the awareness into action, and people should take an active role. Every single person should feel that they have an active role in shaping the future of AI development, if you think about all of the different ways that you interface with the AI development supply chain and deployment supply chain—like you give your data or withhold your data.

There are probably data centers that are being built around you right now. If you’re a parent, there’s some kind of AI policy being crafted at [your kid’s] school. There’s some kind of AI policy being crafted at your workplace. These are all what I consider sites of democratic contestation, where you can use those opportunities to assert your voice about how you want AI to be developed and deployed. If you do not want these companies to use certain kinds of data, push back when they just take the data. 

I closed all of my personal social media accounts because I just did not like the fact that they were scraping my personal photos to train their generative AI models. I’ve seen parents and students and teachers start forming committees within schools to talk about what their AI policy should be and to draft it collectively as a community. Same with businesses. They’re doing the same thing. If we all kind of step up to play that active role, I am super optimistic that we’ll get to a better place.

Niall Firth: Mark, in the chat, mentions the Māori story from New Zealand towards the end of your book, and that’s an example of sort of community-led AI in action, isn’t it?

Karen Hao: Yeah. There was a community in New Zealand that really wanted to help revitalize the Māori language by building a speech recognition tool that could recognize Māori, and therefore be able to transcribe a rich repository of archival audio of their ancestors speaking Māori. And the first thing that they did when engaging in that project was they asked the community, do you want this AI tool? 

Niall Firth: Imagine that.

Karen Hao: I know! It’s such a radical concept, this idea of consent at every stage. But they first asked that; the community wholeheartedly said yes. They then engaged in a public education campaign to explain to people, okay, what does it take to develop an AI tool? Well, we are going to need data. We’re going to need audio transcription pairs to train this AI model. So then they ran a public contest in which they were able to get dozens, if not hundreds, of people in their community to donate data to this project. And then they made sure that when they developed the model, they actively explained to the community at every step how their data was being used, how it would be stored, how it would continue to be protected. And any other project that would use the data has to get permission and consent from the community first. 

And so it was a completely democratic process, for whether they wanted the tool, how to develop the tool, and how the tool should continue to be used, and how their data should continue to be used over time.

Niall Firth: Great. I know we’ve gone a bit over time. I’ve got two more things I’m going to ask you, basically putting together lots of questions people have asked in the chat about your view on what role regulations should play. What are your thoughts on that?

Karen Hao: Yeah, I mean, in an ideal world where we actually had a functioning government, regulation should absolutely play a huge role. And it shouldn’t just be thinking about once an AI model is built, how to regulate that. But still thinking about the full supply chain of AI development, regulating the data and what’s allowed to be trained in these models, regulating the land use. And what pieces of land are allowed to build data centers? How much energy and water are the data centers allowed to consume? And also regulating the transparency. We don’t know what data is in these training data sets, and we don’t know the environmental costs of training these models. We don’t know how much water these data centers consume and that is all information that these companies actively withhold to prevent democratic processes from happening. So if there were one major intervention that regulators could have, it should be to dramatically increase the amount of transparency along the supply chain.

Niall Firth: Okay, great. So just to bring it back around to OpenAI and Sam Altman to finish with. He famously sent an email around, didn’t he? After your original Tech Review story, saying this is not great. We don’t like this. And he didn’t want to speak to you for your book, either, did he?

Karen Hao: No, he did not.

Niall Firth: No. But imagine Sam Altman is in the chat here. He’s subscribed to Technology Review and is watching this Roundtables because he wants to know what you’re saying about him. If you could talk to him directly, what would you like to ask him? 

Karen Hao: What degree of harm do you need to see in order to realize that you should take a different path? 

Niall Firth: Nice, blunt, to the point. All right, Karen, thank you so much for your time. 

Karen Hao: Thank you so much, everyone.

MIT Technology Review Roundtables is a subscriber-only online event series where experts discuss the latest developments and what’s next in emerging technologies. Sign up to get notified about upcoming sessions.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

TechnipFMC Sees Surge in Q2 Profit

TechnipFMC PLC has reported $285.5 million in adjusted net income for the second quarter, up 99.8 percent from the prior three-month period and 51.1 percent against Q2 2024. The adjusted diluted earnings per share of 68 cents beat the Zacks Consensus Estimate of $0.57. TechnipFMC kept its dividend at $0.05

Read More »

Backblaze adds cloud storage security protection features

Application Keys have received a significant boost, starting with Multi-Bucket Application Keys, which make it possible to create a single key that can be used for more than one specific cloud storage bucket. This enhancement provides more granular control over bucket access, reducing the attack surface.  Secondly, Backblaze is now

Read More »

Australia’s Cue Energy Posts Lower Production

Cue Energy Resources Ltd., which produces oil and gas in Australia, Indonesia and New Zealand, has reported an output of 148,300 barrels of oil equivalent (boe) for the fourth quarter of fiscal year 2025. That was down from 156,100 boe for the prior three-month period. Cue Energy derived over 1,900 barrels and 0.34 petajoules from Australia in the quarter ended June, up for liquids but down for gas. New Zealand production dropped to just over 19,000 barrels. In Indonesia, the Mahato block contributed over 52,000 barrels, up from fiscal Q3 2025; the Sampang production sharing contract (PSC) produced 215 barrels and 0.12 petajoules, both down sequentially. Cash receipts totaled AUD 11.1 million ($7.21 million), down from AUD 15.3 million for fiscal Q3 2025. “Net cash flow was impacted by higher cash outflow from accelerated drilling activities at Mahato and delayed receipts from a Maari oil sale, with proceeds received after quarter end”, Cue Energy said. “The company’s balance sheet remains in a strong position, with no debt and a cash balance of $10.8 million”. In Australia, the volume of gas sold “remained consistent with the previous period, with the recently drilled WM29 and WM30 wells continuing to outperform pre-drill expectations”, Cue Energy said without disclosing sale volume figures. “The Northern Gas Pipeline (NGP) remained open for most of the quarter, closing again at the end of June due to maintenance works affecting other NT [Northern Territory] gas supply. Under existing contract terms, when the NGP is closed, Cue’s east coast gas sales are redirected into the NT, including to the NT government, minimizing the impact of NGP outages. “Oil sales from Mereenie were partially constrained due to current offtake arrangements. As a result, four wells with lower gas-to-oil ratios have been temporarily shut in to reduce liquids volumes, leading to

Read More »

India’s Nayara Cuts Refinery Run Rate after EU Sanctions

Nayara Energy Ltd. is reducing run rates at its west India refinery as more domestic and global players spurn the refiner after the EU imposed sanctions on the company.  The 400,000 barrel-a-day Vadinar refinery is currently operating at about 70 percent to 80 percent, said the people, who asked not to be named due to the sensitivity of the matter. Across India, processors typically run plants at close to 100 percent of nameplate capacity, or over.  The lowered operations are due to mounting logistical issues and trading partners turning away from Nayara, making it difficult for the company to monetize and transport its refined output to customers. This week, local shipowners are reassessing their dealings with Nayara, citing pressure from mutual-insurance groups known as P&I clubs, said two shipbrokers who specialize in fixing tankers for Indian routes. Many ships plying Indian coastal routes rely on P&I clubs that are based in the UK and across Europe, which comply with EU sanctions.  Ships found to be handling Nayara cargoes and trades could lose coverage from western P&I groups, which largely represents European insurers. A company spokesperson didn’t immediately reply to email and phone message seeking comments. Nayara exports up to 30 percent of its oil-products output, and sells the balance to local markets through its network of petrol pumps and sales to state refiners, according to rating agency CareEdge. At least one ship, the Bourbon, is currently idling off the Indian coast after loading a Nayara fuel cargo from Vadinar port, ship-tracking data show. The tanker, owned by Mumbai-based Seven Islands Shipping and covered by UK-based NorthStandard P&I club, was meant to deliver diesel to Mangalore.  Shippers are monitoring the status of this vessel due to the sensitivities around its Nayara cargo and western P&I coverage. Seven Islands didn’t immediately reply to an email

Read More »

Macquarie Strategists Forecast USA Crude Inventory Build

In an oil and gas report sent to Rigzone by the Macquarie team late Monday, Macquarie strategists, including Walt Chancellor, revealed that they are forecasting that U.S. crude inventories will be up by 4.7 million barrels for the week ending July 25. “This follows a 3.2 million barrel draw in the prior week, with the crude balance realizing looser than our expectations,” the strategists said in the report. “For this week’s crude balance, from refineries, we model a small increase in crude runs (+0.1 million barrels per day) following a strong print last week,” they added. “Among net imports, we model a very large increase, with exports down (-0.6 million barrels per day) and imports up (+0.7 million barrels per day) on a nominal basis,” they continued. The strategists warned in the report that timing of cargoes remains a source of potential volatility in this week’s crude balance. “From implied domestic supply (prod.+adj.+transfers), we look for a small reduction (-0.1 million barrels per day) on a nominal basis this week,” the strategists went on to state in the report. “Rounding out the picture, we anticipate a small build in SPR [Strategic Petroleum Reserve] stocks (+0.2 million barrels) this week,” they added. The Macquarie strategists also highlighted in the report that, “among products”, they “look for small builds across the board (gasoline/ distillate/jet +0.3/+0.7/+0.1 million barrels)”. “We model implied demand for these three products at ~14.6 million barrels per day for the week ending July 25,” the strategists added in the report. In its latest weekly petroleum status report at the time of writing, which was released on July 23 and showed data for the week ending July 18, the U.S. Energy Information Administration (EIA) highlighted that U.S. commercial crude oil inventories, excluding those in the SPR, decreased by 3.2 million

Read More »

PTTEP Acquires Stake in Gulf of Thailand Asset from Chevron

Thailand’s PTT Exploration and Production Public Co. Ltd. (PTTEP) said it has acquired a 50 percent participating interest in Block A-18 of the Malaysia–Thailand Joint Development Area (MTJDA) for $450 million. The sellers, Hess (Bahamas) Limited and Hess Asia Holdings Inc., are subsidiaries of Chevron following the Chevron-Hess merger. The acquisition enhances PTTEP’s gas production volume, petroleum reserves, and increases its investment in the MTJDA from its existing 50 percent participating interest in Block B-17-01, the company said in a news release. Block A-18 currently produces 600 million standard cubic feet of natural gas per day (MMscfd) which is distributed equally to Thailand and Malaysia, the company said, adding that the 300 MMscfd supplied to Thailand accounts for six percent of the country’s domestic gas demand. PTTEP said it plans to develop additional production wells and wellhead platforms, as well as gas pipelines, to support a consistent and reliable gas supply. The MTJDA is located in the southern part of the Gulf of Thailand. Covering an area of approximately 2,800 square miles (7,250 square kilometers), it is a key source of natural gas and condensates for Thailand and Malaysia, according to the release. Block A-18 which includes Cakerawala, Bumi, Suriya, Bulan, and Bulan South fields, started production in 2005, while Block B-17-01 began production in 2010. The block includes Muda, Tapi, Tanjung, Amarit, Jengka, Melati, and Andalas fields, and currently produces approximately 300 MMscfd of natural gas for Thailand and Malaysia, the release said. “PTTEP is pleased to further expand our operations in the MTJDA, which is recognized for its petroleum potential and strategic significance to Thailand’s energy security. The acquisition also contributes to the company’s growth. Apart from the existing producing fields, Block A-18 includes several discovered gas fields awaiting development to unlock their full potential. Participation in Block

Read More »

ExxonMobil Transfers Operatorship of Bass Strait Assets to Woodside

Woodside Energy Group Ltd. will assume operatorship of the Gippsland Basin Joint Venture (GBJV) and Kipper Unit Joint Venture (KUJV), which account for 40 percent of natural gas supply in the Australian east coast market, from Exxon Mobil Corp., the Australian company said Tuesday. “Woodside and ExxonMobil’s equity interests in the assets and current decommissioning plans and provisions remain unchanged”, Woodside said in a statement online. ExxonMobil and Woodside equally own the GBJV. In the KUJV, ExxonMobil and Woodside each hold 32.5 percent while Japan’s Mitsui & Co. Ltd. owns 35 percent. The operatorship change covers the Bass Strait production assets, the Longford Gas Plant, the Long Island Point gas liquids processing facility and associated pipeline infrastructure. The GBJV and KUJV assets have a daily production capacity of 700 terajoules of gas, nearly 1,800 metric tons of liquefied petroleum gas, over 200 metric tons of ethane and about 2,200 metric tons of condensate, according to information on Woodside’s website. The parties anticipate completing the transaction next year, subject to regulatory approvals and other conditions. “As operator, Woodside will take on the responsibility for asset planning and execution activities, pursuing a value maximization strategy that targets further production and reliability improvements”, the statement said. In March 2022 Woodside announced further investment to deliver additional gas between 2023 and 2027. Several facilities have ceased production due to field depletion, according to Woodside. “This strategic move combines Woodside’s existing global operating capabilities with ExxonMobil’s highly experienced Bass Strait workforce who will transfer to Woodside, further strengthening Woodside’s overall operating expertise”, Woodside added. “Operatorship of a larger group of assets in Australia will create economies of scale which are expected to realize over $60 million in synergies for Woodside from the Bass Strait after deduction of transition and integration costs. “The agreement also creates flexibility

Read More »

Crude Futures Soar

Oil ended the session at the highest levels in over a month as President Donald Trump reiterated that the US may impose additional levies on Russia unless it reached a truce with Ukraine, stoking worries about tighter supplies. West Texas Intermediate oil settled at $69.21 a barrel while Brent settled above $72 a barrel, with both benchmarks at the highest since June. Speaking to reporters aboard Air Force One Tuesday, Trump warned of the potential for secondary sanctions if Moscow fails to reach a ceasefire within ten days. Asked if he was worried about the impact additional sanctions on Russia would have on the oil market, Trump said he was not concerned, suggesting that the US could ramp up its own energy production. “I don’t worry about it. We have so much oil in our country. We’ll just step it up, even further,” he said. This week, bullish options on the Brent crude benchmark flipped to a premium to bearish options for the first time in two weeks, signaling the optimistic sentiment extended beyond headline prices. “The new deadline caught many analysts by surprise and, if enforced, could tighten Russian crude and fuel supplies to the global market,” said Dennis Kissler, senior vice president for trading at BOK Financial Securities. Earlier Tuesday morning, Kremlin made it clear that President Vladimir Putin is unlikely to change course, after taking note of the US President’s threat. Trump’s warning follows the latest round of sanctions by the European Union targeting Russia, including penalties on India’s Nayara Energy, which has trimmed processing rates at a refinery as a result of the measures. Global markets are also focused on the US deadline to nail down trade deals by Aug. 1, and the upcoming OPEC+ meeting that will decide supply policy for September. Oil was already

Read More »

AI Deployments are Reshaping Intra-Data Center Fiber and Communications

Artificial Intelligence is fundamentally changing the way data centers are architected, with a particular focus on the demands placed on internal fiber and communications infrastructure. While much attention is paid to the fiber connections between data centers or to end-users, the real transformation is happening inside the data center itself, where AI workloads are driving unprecedented requirements for bandwidth, low latency, and scalable networking. Network Segmentation and Specialization Inside the modern AI data center, the once-uniform network is giving way to a carefully divided architecture that reflects the growing divergence between conventional cloud services and the voracious needs of AI. Where a single, all-purpose network once sufficed, operators now deploy two distinct fabrics, each engineered for its own unique mission. The front-end network remains the familiar backbone for external user interactions and traditional cloud applications. Here, Ethernet still reigns, with server-to-leaf links running at 25 to 50 gigabits per second and spine connections scaling to 100 Gbps. Traffic is primarily north-south, moving data between users and the servers that power web services, storage, and enterprise applications. This is the network most people still imagine when they think of a data center: robust, versatile, and built for the demands of the internet age. But behind this familiar façade, a new, far more specialized network has emerged, dedicated entirely to the demands of GPU-driven AI workloads. In this backend, the rules are rewritten. Port speeds soar to 400 or even 800 gigabits per second per GPU, and latency is measured in sub-microseconds. The traffic pattern shifts decisively east-west, as servers and GPUs communicate in parallel, exchanging vast datasets at blistering speeds to train and run sophisticated AI models. The design of this network is anything but conventional: fat-tree or hypercube topologies ensure that no single link becomes a bottleneck, allowing thousands of

Read More »

ABB and Applied Digital Build a Template for AI-Ready Data Centers

Toward the Future of AI Factories The ABB–Applied Digital partnership signals a shift in the fundamentals of data center development, where electrification strategy, hyperscale design and readiness, and long-term financial structuring are no longer separate tracks but part of a unified build philosophy. As Applied Digital pushes toward REIT status, the Ellendale campus becomes not just a development milestone but a cornerstone asset: a long-term, revenue-generating, AI-optimized property underpinned by industrial-grade power architecture. The 250 MW CoreWeave lease, with the option to expand to 400 MW, establishes a robust revenue base and validates the site’s design as AI-first, not cloud-retrofitted. At the same time, ABB is positioning itself as a leader in AI data center power architecture, setting a new benchmark for scalable, high-density infrastructure. Its HiPerGuard Medium Voltage UPS, backed by deep global manufacturing and engineering capabilities, reimagines power delivery for the AI era, bypassing the limitations of legacy low-voltage systems. More than a component provider, ABB is now architecting full-stack electrification strategies at the campus level, aiming to make this medium-voltage model the global standard for AI factories. What’s unfolding in North Dakota is a preview of what’s coming elsewhere: AI-ready campuses that marry investment-grade real estate with next-generation power infrastructure, built for a future measured in megawatts per rack, not just racks per row. As AI continues to reshape what data centers are and how they’re built, Ellendale may prove to be one of the key locations where the new standard was set.

Read More »

Amazon’s Project Rainier Sets New Standard for AI Supercomputing at Scale

Supersized Infrastructure for the AI Era As AWS deploys Project Rainier, it is scaling AI compute to unprecedented heights, while also laying down a decisive marker in the escalating arms race for hyperscale dominance. With custom Trainium2 silicon, proprietary interconnects, and vertically integrated data center architecture, Amazon joins a trio of tech giants, alongside Microsoft’s Project Stargate and Google’s TPUv5 clusters, who are rapidly redefining the future of AI infrastructure. But Rainier represents more than just another high-performance cluster. It arrives in a moment where the size, speed, and ambition of AI infrastructure projects have entered uncharted territory. Consider the past several weeks alone: On June 24, AWS detailed Project Rainier, calling it “a massive, one-of-its-kind machine” and noting that “the sheer size of the project is unlike anything AWS has ever attempted.” The New York Times reports that the primary Rainier campus in Indiana could include up to 30 data center buildings. Just two days later, Fermi America unveiled plans for the HyperGrid AI campus in Amarillo, Texas on a sprawling 5,769-acre site with potential for 11 gigawatts of power and 18 million square feet of AI data center capacity. And on July 1, Oracle projected $30 billion in annual revenue from a single OpenAI cloud deal, tied to the Project Stargate campus in Abilene, Texas. As Data Center Frontier founder Rich Miller has observed, the dial on data center development has officially been turned to 11. Once an aspirational concept, the gigawatt-scale campus is now materializing—15 months after Miller forecasted its arrival. “It’s hard to imagine data center projects getting any bigger,” he notes. “But there’s probably someone out there wondering if they can adjust the dial so it goes to 12.” Against this backdrop, Project Rainier represents not just financial investment but architectural intent. Like Microsoft’s Stargate buildout in

Read More »

Google and CTC Global Partner to Fast-Track U.S. Power Grid Upgrades

On June 17, 2025, Google and CTC Global announced a joint initiative to accelerate the deployment of high-capacity power transmission lines using CTC’s U.S.-manufactured ACCC® advanced conductors. The collaboration seeks to relieve grid congestion by rapidly upgrading existing infrastructure, enabling greater integration of clean energy, improving system resilience, and unlocking capacity for hyperscale data centers. The effort represents a rare convergence of corporate climate commitments, utility innovation, and infrastructure modernization aligned with the public interest. As part of the initiative, Google and CTC issued a Request for Information (RFI) with responses due by July 14. The RFI invites utilities, state energy authorities, and developers to nominate transmission line segments for potential fast-tracked upgrades. Selected projects will receive support in the form of technical assessments, financial assistance, and workforce development resources. While advanced conductor technologies like ACCC® can significantly improve the efficiency and capacity of existing transmission corridors, technological innovation alone cannot resolve the grid’s structural challenges. Building new or upgraded transmission lines in the U.S. often requires complex permitting from multiple federal, state, and local agencies, and frequently faces legal opposition, especially from communities invoking Not-In-My-Backyard (NIMBY) objections. Today, the average timeline to construct new interstate transmission infrastructure stretches between 10 and 12 years, an untenable lag in an era when grid reliability is under increasing stress. In 2024, the Federal Energy Regulatory Commission (FERC) reported that more than 2,600 gigawatts (GW) of clean energy and storage projects were stalled in the interconnection queue, waiting for sufficient transmission capacity. The consequences affect not only industrial sectors like data centers but also residential areas vulnerable to brownouts and peak load disruptions. What is the New Technology? At the center of the initiative is CTC Global’s ACCC® (Aluminum Conductor Composite Core) advanced conductor, a next-generation overhead transmission technology engineered to boost grid

Read More »

CoreSite’s Denver Power Play: Acquisition of Historic Carrier Hotel Supercharges Interconnection Capabilities

In this episode of the Data Center Frontier Show podcast, we unpack one of the most strategic data center real estate moves of 2025: CoreSite’s acquisition of the historic Denver Gas and Electric Building. With this transaction, CoreSite, an American Tower company, cements its leadership in the Rocky Mountain region’s interconnection landscape, expands its DE1 facility, and streamlines access to Google Cloud and the Any2Denver peering exchange. Podcast guests Yvonne Ng, CoreSite’s General Manager and Vice President for the Central Region, and Adam Post, SVP of Finance and Corporate Development, offer in-depth insights into the motivations behind the deal, the implications for regional cloud and network ecosystems, and what it means for Denver’s future as a cloud interconnection hub. Carrier Hotel to Cloud Hub Located at 910 15th Street in downtown Denver, the Denver Gas and Electric Building is widely known as the most network-dense facility in the region. Long the primary interconnection hub for the Rocky Mountains, the building has now been fully acquired by CoreSite, bringing ownership and operations of the DE1 data center under a single umbrella. “This is a strategic move to consolidate control and expand our capabilities,” said Ng. “By owning the building, we can modernize infrastructure more efficiently, double the space and power footprint of DE1, and deliver an unparalleled interconnection ecosystem.” The acquisition includes the facility’s operating businesses and over 100 customers. CoreSite will add approximately 3 critical megawatts (CMW) of data center capacity, nearly doubling DE1’s footprint. Interconnection in the AI Era As AI, multicloud strategies, and real-time workloads reshape enterprise architecture, interconnection has never been more vital. CoreSite’s move elevates Denver’s role in this transformation. With the deal, CoreSite becomes the only data center provider in the region offering direct connections to major cloud platforms, including the dedicated Google Cloud Platform

Read More »

Texas Senate Bill 6: A Bellwether On How States May Approach Data Center Energy Use

Texas isn’t the first state to begin attempting to regulate energy use statewide. The impact of this legislation could shape how other states, of which there are at least a dozen in process, could shape their own programs. What are Other States Doing? There’s a clear shift toward targeted utility regulation for mega-load data centers. States are increasingly requiring cost alignment, with large consumers bearing infrastructure costs rather than residential cross-subsidization and implementing specialized contract/tariff terms, taking advantage of these huge contracts to uniquely tailor each contract. These agreements are also being used to enforce environmental responsibility through reporting mandates and permitting. And for those estates still focusing on incentivization to draw data center business, coupling incentives with guardrails, balancing investment attraction with equitable distribution. What follows is a brief  overview of U.S. states that have enacted or proposed special utility regulations and requirements for data centers. The focus is  on tariffs, cost-allocation mechanisms, green mandates, billing structures, and transparency rules. California SB 57 (2025): Introduces a special electricity tariff for large users—including data centers—with embedded zero-carbon procurement targets, aiming to integrate grid reliability with emissions goals. AB 222 (2025): Targets consumption transparency, requiring data centers to report energy usage with a specific focus on AI-driven load. Broader California Public Utilities  actions: Proposals for efficiency mandates like airflow containment via Title 24; opening utility rate cases to analyze infrastructure cost recovery from large consumers. Georgia Public Service Commission  rule changes (January 2025): Georgia Power can impose minimum billing, longer contract durations, and special terms for customers with loads >100 MW—chiefly data centers. SB 34: Mandates that data centers either assume full infrastructure costs or pay equitably—not distributing these costs to residential users. Ohio AEP Ohio proposed in 2024: For loads >25 MW (data centers, crypto), demand minimum charges, 10-year contracts, and exit penalties before new infrastructure

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »