Stay Ahead, Stay ONMINE

Inside OpenAI’s empire: A conversation with Karen Hao

Niall Firth: Hello, everyone, and welcome to this special edition of Roundtables. These are our subscriber-only events where you get to listen in to conversations between editors and reporters. Now, I’m delighted to say we’ve got an absolute cracker of an event today. I’m very happy to have our prodigal daughter, Karen Hao, a fabulous AI journalist, here with us to talk about her new book. Hello, Karen, how are you doing? Karen Hao: Good. Thank you so much for having me back, Niall.  Niall Firth: Lovely to have you. So I’m sure you all know Karen and that’s why you’re here. But to give you a quick, quick synopsis, Karen has a degree in mechanical engineering from MIT. She was MIT Technology Review’s senior editor for AI and has won countless awards, been cited in Congress, written for the Wall Street Journal and The Atlantic, and set up a series at the Pulitzer Center to teach journalists how to cover AI.  But most important of all, she’s here to discuss her new book, which I’ve got a copy of here, Empire of AI. The UK version is subtitled “Inside the reckless race for total domination,” and the US one, I believe, is “Dreams and nightmares in Sam Altman’s OpenAI.” It’s been an absolute sensation, a New York Times chart topper. An incredible feat of reporting—like 300 interviews, including 90 with people inside OpenAI. And it’s a brilliant look at not just OpenAI’s rise, and the character of Sam Altman, which is very interesting in its own right, but also a really astute look at what kind of AI we’re building and who holds the keys.  Karen, the core of the book, the rise and rise of OpenAI, was one of your first big features at MIT Technology Review. It’s a brilliant story that lifted the lid for the first time on what was going on at OpenAI … and they really hated it, right? Karen Hao: Yes, and first of all, thank you to everyone for being here. It’s always great to be home. I do still consider MIT Tech Review to be my journalistic home, and that story was—I only did it because Niall assigned it after I said, “Hey, it seems like OpenAI is kind of an interesting thing,” and he was like, you should profile them. And I had never written a profile about a company before, and I didn’t think that I would have it in me, and Niall believed that I would be able to do it. So it really didn’t happen other than because of you. I went into the piece with an open mind about—let me understand what OpenAI is. Let me take what they say at face value. They were founded as a nonprofit. They have this mission to ensure artificial general intelligence benefits all of humanity. What do they mean by that? How are they trying to achieve that ultimately? How are they striking this balance between mission-driven AI development and the need to raise money and capital?  And through the course of embedding within the company for three days, and then interviewing dozens of people outside the company or around the company … I came to realize that there was a fundamental disconnect between what they were publicly espousing and accumulating a lot of goodwill from and how they were operating. And that is what I ended up focusing my profile on, and that is why they were not very pleased. Niall Firth: And how have you seen OpenAI change even since you did the profile? That sort of misalignment feels like it’s got messier and more confusing in the years since. Karen Hao: Absolutely. I mean, it’s kind of remarkable that OpenAI, you could argue that they are now one of the most capitalistic corporations in Silicon Valley. They just raised $40 billion, in the largest-ever private fundraising round in tech industry history. They’re valued at $300 billion. And yet they still say that they are first and foremost a nonprofit.  I think this really gets to the heart of how much OpenAI has tried to position and reposition itself throughout its decade-long history, to ultimately play into the narratives that they think are going to do best with the public and with policymakers, in spite of what they might actually be doing in terms of developing their technologies and commercializing them. Niall Firth: You cite Sam Altman saying, you know, the race for AGI is what motivated a lot of this, and I’ll come back to that a bit before the end. But he talks about it as like the Manhattan Project for AI. You cite him quoting Oppenheimer (of course, you know, there’s no self-aggrandizing there): “Technology happens because it’s possible,” he says in the book.  And it feels to me like this is one of the themes of the book: the idea that technology doesn’t just happen because it comes along. It comes because of choices that people make. It’s not an inevitability that things are the way they are and that people are who they are. What they think is important—that influences the direction of travel. So what does this mean, in practice, if that’s the case? Karen Hao: With OpenAI in particular, they made a very key decision early on in their history that led to all of the AI technologies that we see dominating the marketplace and dominating headlines today. And that was a decision to try and advance AI progress through scaling the existing techniques that were available to them. At the time when OpenAI started, at the end of 2015, and then, when they made that decision, in roughly around 2017, this was a very unpopular perspective within the broader AI research field.  There were kind of two competing ideas about how to advance AI progress, or rather a spectrum of ideas, bookended by two extremes. One extreme being, we have all the techniques we need, and we should just aggressively scale. And the other one being that we don’t actually have the techniques we need. We need to continue innovating and doing fundamental AI research to get more breakthroughs. And largely the field assumed that this side of the spectrum [focusing on fundamental AI research] was the most likely approach for getting advancements, but OpenAI was anomalously committed to the other extreme—this idea that we can just take neural networks and pump ever more data, and train on ever larger supercomputers, larger than have ever been built in history. The reason why they made that decision was because they were competing against Google, which had a dominant monopoly on AI talent. And OpenAI knew that they didn’t necessarily have the ability to beat Google simply by trying to get research breakthroughs. That’s a very hard path. When you’re doing fundamental research, you never really know when the breakthrough might appear. It’s not a very linear line of progress, but scaling is sort of linear. As long as you just pump more data and more compute, you can get gains. And so they thought, we can just do this faster than anyone else. And that’s the way that we’re going to leap ahead of Google. And it particularly aligned with Sam Altman’s skillset, as well, because he is a once-in-a-generation fundraising talent, and when you’re going for scale to advance AI models, the primary bottleneck is capital. And so it was kind of a great fit for what he had to offer, which is, he knows how to accumulate capital, and he knows how to accumulate it very quickly. So that is ultimately how you can see that technology is a product of human choices and human perspectives. And they’re the specific skills and strengths that that team had at the time for how they wanted to move forward. Niall Firth: And to be fair, I mean, it works, right? It was amazing, fabulous. You know the breakthroughs that happened, GPT-2 to GPT-3, just from scale and data and compute, kind of were mind-blowing really, as we look back on it now. Karen Hao: Yeah, it is remarkable how much it did work, because there was a lot of skepticism about the idea that scale could lead to the kind of technical progress that we’ve seen. But one of my biggest critiques of this particular approach is that there’s also an extraordinary amount of costs that come with this particular pathway to getting more advancements. And there are many different pathways to advancing AI, so we could have actually gotten all of these benefits, and moving forward, we could continue to get more benefits from AI, without actually engaging in a hugely consumptive, hugely costly approach to its development. Niall Firth: Yeah, so in terms of consumptive, that’s something we’ve touched on here quite recently at MIT Technology Review, like the energy costs of AI. The data center costs are absolutely extraordinary, right? Like the data behind it is incredible. And it’s only gonna get worse in the next few years if we continue down this path, right?  Karen Hao: Yeah … so first of all, everyone should read the series that Tech Review put out, if you haven’t already, on the energy question, because it really does break down everything from what is the energy consumption of the smallest unit of interacting with these models, all the way up until the highest level.  The number that I have seen a lot, and that I’ve been repeating, is there was a McKinsey report that was looking at if we continue to just look at the pace at which data centers and supercomputers are being built and scaled, in the next five years, we would have to add two to six times the amount of energy consumed by California onto the grid. And most of that will have to be serviced by fossil fuels, because these data centers and supercomputers have to run 24/7, so we cannot rely solely on renewable energy. We do not have enough nuclear power capacity to power these colossal pieces of infrastructure. And so we’re already accelerating the climate crisis.  And we’re also accelerating a public-health crisis, the pumping of thousands of tons of air pollutants into the air from coal plants that are having their lives extended and methane gas turbines that are being built in service of powering these data centers. And in addition to that, there’s also an acceleration of the freshwater crisis, because these pieces of infrastructure have to be cooled with freshwater resources. It has to be fresh water, because if it’s any other type of water, it corrodes the equipment, it leads to bacterial growth. And Bloomberg recently had a story that showed that two-thirds of these data centers are actually going into water-scarce areas, into places where the communities already do not have enough fresh water at their disposal. So that is one dimension of many that I refer to when I say, the extraordinary costs of this particular pathway for AI development. Niall Firth: So in terms of costs and the extractive process of making AI, I wanted to give you the chance to talk about the other theme of the book, apart from just OpenAI’s explosion. It’s the colonial way of looking at the way AI is made: the empire. I’m saying this obviously because we’re here, but this is an idea that came out of reporting you started at MIT Technology Review and then continued into the book. Tell us about how this framing helps us understand how AI is made now. Karen Hao: Yeah, so this was a framing that I started thinking a lot about when I was working on the AI Colonialism series for Tech Review. It was a series of stories that looked at the way that, pre-ChatGPT, the commercialization of AI and its deployment into the world was already leading to entrenchment of historical inequities into the present day. And one example was a story that was about how facial recognition companies were swarming into South Africa to try and harvest more data from South Africa during a time when they were getting criticized for the fact that their technologies did not accurately recognize black faces. And the deployment of those facial recognition technologies into South Africa, into the streets of Johannesburg, was leading to what South African scholars were calling a recreation of a digital apartheid—the controlling of black bodies, movement of black people. And this idea really haunted me for a really long time. Through my reporting in that series, there were so many examples that I kept hitting upon of this thesis, that the AI industry was perpetuating. It felt like it was becoming this neocolonial force. And then, when ChatGPT came out, it became clear that this was just accelerating.  When you accelerate the scale of these technologies, and you start training them on the entirety of the Internet, and you start using these supercomputers that are the size of dozens—if not hundreds—of football fields. Then you really start talking about an extraordinary global level of extraction and exploitation that is happening to produce these technologies. And then the historical power imbalances become even more obvious.  And so there are four parallels that I draw in my book between what I have now termed empires of AI versus empires of old. The first one is that empires lay claim to resources that are not their own. So these companies are scraping all this data that is not their own, taking all the intellectual property that is not their own. The second is that empires exploit a lot of labor. So we see them moving to countries in the Global South or other economically vulnerable communities to contract workers to do some of the worst work in the development pipeline for producing these technologies—and also producing technologies that then inherently are labor-automating and engage in labor exploitation in and of themselves.  And the third feature is that the empires monopolize knowledge production. So, in the last 10 years, we’ve seen the AI industry monopolize more and more of the AI researchers in the world. So AI researchers are no longer contributing to open science, working in universities or independent institutions, and the effect on the research is what you would imagine would happen if most of the climate scientists in the world were being bankrolled by oil and gas companies. You would not be getting a clear picture, and we are not getting a clear picture, of the limitations of these technologies, or if there are better ways to develop these technologies. And the fourth and final feature is that empires always engage in this aggressive race rhetoric, where there are good empires and evil empires. And they, the good empire, have to be strong enough to beat back the evil empire, and that is why they should have unfettered license to consume all of these resources and exploit all of this labor. And if the evil empire gets the technology first, humanity goes to hell. But if the good empire gets the technology first, they’ll civilize the world, and humanity gets to go to heaven. So on many different levels, like the empire theme, I felt like it was the most comprehensive way to name exactly how these companies operate, and exactly what their impacts are on the world. Niall Firth: Yeah, brilliant. I mean, you talk about the evil empire. What happens if the evil empire gets it first? And what I mentioned at the top is AGI. For me, it’s almost like the extra character in the book all the way through. It’s sort of looming over everything, like the ghost at the feast, sort of saying like, this is the thing that motivates everything at OpenAI. This is the thing we’ve got to get to before anyone else gets to it.  There’s a bit in the book about how they’re talking internally at OpenAI, like, we’ve got to make sure that AGI is in US hands where it’s safe versus like anywhere else. And some of the international staff are openly like—that’s kind of a weird way to frame it, isn’t it? Why is the US version of AGI better than others?  So tell us a bit about how it drives what they do. And AGI isn’t an inevitable fact that’s just happening anyway, is it? It’s not even a thing yet. Karen Hao: There’s not even consensus around whether or not it’s even possible or what it even is. There was recently a New York Times story by Cade Metz that was citing a survey of long-standing AI researchers in the field, and 75% of them still think that we don’t have the techniques yet for reaching AGI, whatever that means. And the most classic definition or understanding of what AGI is, is being able to fully recreate human intelligence in software. But the problem is, we also don’t have scientific consensus around what human intelligence is. And so one of the aspects that I talk about a lot in the book is that, when there is a vacuum of shared meaning around this term, and what it would look like, when would we have arrived at it? What capabilities should we be evaluating these systems on to determine that we’ve gotten there? It can basically just be whatever OpenAI wants.  So it’s kind of just this ever-present goalpost that keeps shifting, depending on where the company wants to go. You know, they have a full range, a variety of different definitions that they’ve used throughout the years. In fact, they even have a joke internally: If you ask 13 OpenAI researchers what AGI is, you’ll get 15 definitions. So they are kind of self-aware that this is not really a real term and it doesn’t really have that much meaning.  But it does serve this purpose of creating a kind of quasi-religious fervor around what they’re doing, where people think that they have to keep driving towards this horizon, and that one day when they get there, it’s going to have a civilizationally transformative impact. And therefore, what else should you be working on in your life, but this? And who else should be working on it, but you?  And so it is their justification not just for continuing to push and scale and consume all these resources—because none of that consumption, none of that harm matters anymore if you end up hitting this destination. But they also use it as a way to develop their technologies in a very deeply anti-democratic way, where they say, we are the only people that have the expertise, that have the right to carefully control the development of this technology and usher it into the world. And we cannot let anyone else participate because it’s just too powerful of a technology. Niall Firth: You talk about the factions, particularly the religious framing. AGI has been around as a concept for a while—it was very niche, very kind of nerdy fun, really, to talk about—to suddenly become extremely mainstream. And they have the boomers versus doomers dichotomy. Where are you on that spectrum? Karen Hao: So the boomers are people who think that AGI is going to bring us to utopia, and the doomers think AGI is going to devastate all of humanity. And to me these are actually two sides of the same coin. They both believe that AGI is possible, and it’s imminent, and it’s going to change everything.  And I am not on this spectrum. I’m in a third space, which is the AI accountability space, which is rooted in the observation that these companies have accumulated an extraordinary amount of power, both economic and political power, to go back to the empire analogy.  Ultimately, the thing that we need to do in order to not return to an age of empire and erode a lot of democratic norms is to hold these companies accountable with all the tools at our disposal, and to recognize all the harms that they are already perpetuating through a misguided approach to AI development. Niall Firth: I’ve got a couple of questions from readers. I’m gonna try to pull them together a little bit because Abbas asks, what would post-imperial AI look like? And there was a question from Liam basically along the same lines. How do you make a more ethical version of AI that is not within this framework?  Karen Hao: We sort of already touched a little bit upon this idea. But there are so many different ways to develop AI. There are myriads of techniques throughout the history of AI development, which is decades long. There have been various shifts in the winds of which techniques ultimately rise and fall. And it isn’t based solely on the scientific or technical merit of any particular technique. Oftentimes certain techniques become more popular because of business reasons or because of the funder’s ideologies. And that’s sort of what we’re seeing today with the complete indexing of AI development on large-scale AI model development. And ultimately, these large-scale models … We talked about how it’s a remarkable technical leap, but in terms of social progress or economic progress, the benefits of these models have been kind of middling. And the way that I see us shifting to AI models that are going to be A) more beneficial and B) not so imperial is to refocus on task-specific AI systems that are tackling well-scoped challenges that inherently lend themselves to the strengths of AI systems that are inherently computational optimization problems.  So I’m talking about things like using AI to integrate more renewable energy into the grid. This is something that we definitely need. We need to more quickly accelerate our electrification of the grid, and one of the challenges of using more renewable energy is the unpredictability of it. And this is a key strength of AI technologies, being able to have predictive capabilities and optimization capabilities where you can match the energy generation of different renewables with the energy demands of different people that are drawing from the grid. Niall Firth: Quite a few people have been asking, in the chat, different versions of the same question. If you were an early-career AI scientist, or if you were involved in AI, what can you do yourself to bring about a more ethical version of AI? Do you have any power left, or is it too late?  Karen Hao: No, I don’t think it’s too late at all. I mean, as I’ve been talking with a lot of people just in the lay public, one of the biggest challenges that they have is they don’t have any alternatives for AI. They want the benefits of AI, but they also do not want to participate in a supply chain that is really harmful. And so the first question is, always, is there an alternative? Which tools do I shift to? And unfortunately, there just aren’t that many alternatives right now.  And so the first thing that I would say to early-career AI researchers and entrepreneurs is to build those alternatives, because there are plenty of people that are actually really excited about the possibility of switching to more ethical alternatives. And one of the analogies I often use is that we kind of need to do with the AI industry what happened with the fashion industry. There was also a lot of environmental exploitation, labor exploitation in the fashion industry, and there was enough consumer demand that it created new markets for ethical and sustainably sourced fashion. And so we kind of need to see just more options occupying that space. Niall Firth: Do you feel optimistic about the future? Or where do you sit? You know, things aren’t great as you spell them out now. Where’s the hope for us? Karen Hao: I am. I’m super optimistic. Part of the reason why I’m optimistic is because you know, a few years ago, when I started writing about AI at Tech Review, I remember people would say, wow, that’s a really niche beat. Do you have enough to write about?  And now, I mean, everyone is talking about AI, and I think that’s the first step to actually getting to a better place with AI development. The amount of public awareness and attention and scrutiny that is now going into how we develop these technologies, how we use these technologies, is really, really important. Like, we need to be having this public debate and that in and of itself is a significant step change from what we had before.  But the next step, and part of the reason why I wrote this book, is we need to convert the awareness into action, and people should take an active role. Every single person should feel that they have an active role in shaping the future of AI development, if you think about all of the different ways that you interface with the AI development supply chain and deployment supply chain—like you give your data or withhold your data. There are probably data centers that are being built around you right now. If you’re a parent, there’s some kind of AI policy being crafted at [your kid’s] school. There’s some kind of AI policy being crafted at your workplace. These are all what I consider sites of democratic contestation, where you can use those opportunities to assert your voice about how you want AI to be developed and deployed. If you do not want these companies to use certain kinds of data, push back when they just take the data.  I closed all of my personal social media accounts because I just did not like the fact that they were scraping my personal photos to train their generative AI models. I’ve seen parents and students and teachers start forming committees within schools to talk about what their AI policy should be and to draft it collectively as a community. Same with businesses. They’re doing the same thing. If we all kind of step up to play that active role, I am super optimistic that we’ll get to a better place. Niall Firth: Mark, in the chat, mentions the Māori story from New Zealand towards the end of your book, and that’s an example of sort of community-led AI in action, isn’t it? Karen Hao: Yeah. There was a community in New Zealand that really wanted to help revitalize the Māori language by building a speech recognition tool that could recognize Māori, and therefore be able to transcribe a rich repository of archival audio of their ancestors speaking Māori. And the first thing that they did when engaging in that project was they asked the community, do you want this AI tool?  Niall Firth: Imagine that. Karen Hao: I know! It’s such a radical concept, this idea of consent at every stage. But they first asked that; the community wholeheartedly said yes. They then engaged in a public education campaign to explain to people, okay, what does it take to develop an AI tool? Well, we are going to need data. We’re going to need audio transcription pairs to train this AI model. So then they ran a public contest in which they were able to get dozens, if not hundreds, of people in their community to donate data to this project. And then they made sure that when they developed the model, they actively explained to the community at every step how their data was being used, how it would be stored, how it would continue to be protected. And any other project that would use the data has to get permission and consent from the community first.  And so it was a completely democratic process, for whether they wanted the tool, how to develop the tool, and how the tool should continue to be used, and how their data should continue to be used over time. Niall Firth: Great. I know we’ve gone a bit over time. I’ve got two more things I’m going to ask you, basically putting together lots of questions people have asked in the chat about your view on what role regulations should play. What are your thoughts on that? Karen Hao: Yeah, I mean, in an ideal world where we actually had a functioning government, regulation should absolutely play a huge role. And it shouldn’t just be thinking about once an AI model is built, how to regulate that. But still thinking about the full supply chain of AI development, regulating the data and what’s allowed to be trained in these models, regulating the land use. And what pieces of land are allowed to build data centers? How much energy and water are the data centers allowed to consume? And also regulating the transparency. We don’t know what data is in these training data sets, and we don’t know the environmental costs of training these models. We don’t know how much water these data centers consume and that is all information that these companies actively withhold to prevent democratic processes from happening. So if there were one major intervention that regulators could have, it should be to dramatically increase the amount of transparency along the supply chain. Niall Firth: Okay, great. So just to bring it back around to OpenAI and Sam Altman to finish with. He famously sent an email around, didn’t he? After your original Tech Review story, saying this is not great. We don’t like this. And he didn’t want to speak to you for your book, either, did he? Karen Hao: No, he did not. Niall Firth: No. But imagine Sam Altman is in the chat here. He’s subscribed to Technology Review and is watching this Roundtables because he wants to know what you’re saying about him. If you could talk to him directly, what would you like to ask him?  Karen Hao: What degree of harm do you need to see in order to realize that you should take a different path?  Niall Firth: Nice, blunt, to the point. All right, Karen, thank you so much for your time.  Karen Hao: Thank you so much, everyone. MIT Technology Review Roundtables is a subscriber-only online event series where experts discuss the latest developments and what’s next in emerging technologies. Sign up to get notified about upcoming sessions.

Niall Firth: Hello, everyone, and welcome to this special edition of Roundtables. These are our subscriber-only events where you get to listen in to conversations between editors and reporters. Now, I’m delighted to say we’ve got an absolute cracker of an event today. I’m very happy to have our prodigal daughter, Karen Hao, a fabulous AI journalist, here with us to talk about her new book. Hello, Karen, how are you doing?

Karen Hao: Good. Thank you so much for having me back, Niall. 

Niall Firth: Lovely to have you. So I’m sure you all know Karen and that’s why you’re here. But to give you a quick, quick synopsis, Karen has a degree in mechanical engineering from MIT. She was MIT Technology Review’s senior editor for AI and has won countless awards, been cited in Congress, written for the Wall Street Journal and The Atlantic, and set up a series at the Pulitzer Center to teach journalists how to cover AI. 

But most important of all, she’s here to discuss her new book, which I’ve got a copy of here, Empire of AI. The UK version is subtitled “Inside the reckless race for total domination,” and the US one, I believe, is “Dreams and nightmares in Sam Altman’s OpenAI.”

It’s been an absolute sensation, a New York Times chart topper. An incredible feat of reporting—like 300 interviews, including 90 with people inside OpenAI. And it’s a brilliant look at not just OpenAI’s rise, and the character of Sam Altman, which is very interesting in its own right, but also a really astute look at what kind of AI we’re building and who holds the keys. 

Karen, the core of the book, the rise and rise of OpenAI, was one of your first big features at MIT Technology Review. It’s a brilliant story that lifted the lid for the first time on what was going on at OpenAI … and they really hated it, right?

Karen Hao: Yes, and first of all, thank you to everyone for being here. It’s always great to be home. I do still consider MIT Tech Review to be my journalistic home, and that story was—I only did it because Niall assigned it after I said, “Hey, it seems like OpenAI is kind of an interesting thing,” and he was like, you should profile them. And I had never written a profile about a company before, and I didn’t think that I would have it in me, and Niall believed that I would be able to do it. So it really didn’t happen other than because of you.

I went into the piece with an open mind about—let me understand what OpenAI is. Let me take what they say at face value. They were founded as a nonprofit. They have this mission to ensure artificial general intelligence benefits all of humanity. What do they mean by that? How are they trying to achieve that ultimately? How are they striking this balance between mission-driven AI development and the need to raise money and capital? 

And through the course of embedding within the company for three days, and then interviewing dozens of people outside the company or around the company … I came to realize that there was a fundamental disconnect between what they were publicly espousing and accumulating a lot of goodwill from and how they were operating. And that is what I ended up focusing my profile on, and that is why they were not very pleased.

Niall Firth: And how have you seen OpenAI change even since you did the profile? That sort of misalignment feels like it’s got messier and more confusing in the years since.

Karen Hao: Absolutely. I mean, it’s kind of remarkable that OpenAI, you could argue that they are now one of the most capitalistic corporations in Silicon Valley. They just raised $40 billion, in the largest-ever private fundraising round in tech industry history. They’re valued at $300 billion. And yet they still say that they are first and foremost a nonprofit. 

I think this really gets to the heart of how much OpenAI has tried to position and reposition itself throughout its decade-long history, to ultimately play into the narratives that they think are going to do best with the public and with policymakers, in spite of what they might actually be doing in terms of developing their technologies and commercializing them.

Niall Firth: You cite Sam Altman saying, you know, the race for AGI is what motivated a lot of this, and I’ll come back to that a bit before the end. But he talks about it as like the Manhattan Project for AI. You cite him quoting Oppenheimer (of course, you know, there’s no self-aggrandizing there): “Technology happens because it’s possible,” he says in the book. 

And it feels to me like this is one of the themes of the book: the idea that technology doesn’t just happen because it comes along. It comes because of choices that people make. It’s not an inevitability that things are the way they are and that people are who they are. What they think is important—that influences the direction of travel. So what does this mean, in practice, if that’s the case?

Karen Hao: With OpenAI in particular, they made a very key decision early on in their history that led to all of the AI technologies that we see dominating the marketplace and dominating headlines today. And that was a decision to try and advance AI progress through scaling the existing techniques that were available to them. At the time when OpenAI started, at the end of 2015, and then, when they made that decision, in roughly around 2017, this was a very unpopular perspective within the broader AI research field. 

There were kind of two competing ideas about how to advance AI progress, or rather a spectrum of ideas, bookended by two extremes. One extreme being, we have all the techniques we need, and we should just aggressively scale. And the other one being that we don’t actually have the techniques we need. We need to continue innovating and doing fundamental AI research to get more breakthroughs. And largely the field assumed that this side of the spectrum [focusing on fundamental AI research] was the most likely approach for getting advancements, but OpenAI was anomalously committed to the other extreme—this idea that we can just take neural networks and pump ever more data, and train on ever larger supercomputers, larger than have ever been built in history.

The reason why they made that decision was because they were competing against Google, which had a dominant monopoly on AI talent. And OpenAI knew that they didn’t necessarily have the ability to beat Google simply by trying to get research breakthroughs. That’s a very hard path. When you’re doing fundamental research, you never really know when the breakthrough might appear. It’s not a very linear line of progress, but scaling is sort of linear. As long as you just pump more data and more compute, you can get gains. And so they thought, we can just do this faster than anyone else. And that’s the way that we’re going to leap ahead of Google. And it particularly aligned with Sam Altman’s skillset, as well, because he is a once-in-a-generation fundraising talent, and when you’re going for scale to advance AI models, the primary bottleneck is capital.

And so it was kind of a great fit for what he had to offer, which is, he knows how to accumulate capital, and he knows how to accumulate it very quickly. So that is ultimately how you can see that technology is a product of human choices and human perspectives. And they’re the specific skills and strengths that that team had at the time for how they wanted to move forward.

Niall Firth: And to be fair, I mean, it works, right? It was amazing, fabulous. You know the breakthroughs that happened, GPT-2 to GPT-3, just from scale and data and compute, kind of were mind-blowing really, as we look back on it now.

Karen Hao: Yeah, it is remarkable how much it did work, because there was a lot of skepticism about the idea that scale could lead to the kind of technical progress that we’ve seen. But one of my biggest critiques of this particular approach is that there’s also an extraordinary amount of costs that come with this particular pathway to getting more advancements. And there are many different pathways to advancing AI, so we could have actually gotten all of these benefits, and moving forward, we could continue to get more benefits from AI, without actually engaging in a hugely consumptive, hugely costly approach to its development.

Niall Firth: Yeah, so in terms of consumptive, that’s something we’ve touched on here quite recently at MIT Technology Review, like the energy costs of AI. The data center costs are absolutely extraordinary, right? Like the data behind it is incredible. And it’s only gonna get worse in the next few years if we continue down this path, right? 

Karen Hao: Yeah … so first of all, everyone should read the series that Tech Review put out, if you haven’t already, on the energy question, because it really does break down everything from what is the energy consumption of the smallest unit of interacting with these models, all the way up until the highest level. 

The number that I have seen a lot, and that I’ve been repeating, is there was a McKinsey report that was looking at if we continue to just look at the pace at which data centers and supercomputers are being built and scaled, in the next five years, we would have to add two to six times the amount of energy consumed by California onto the grid. And most of that will have to be serviced by fossil fuels, because these data centers and supercomputers have to run 24/7, so we cannot rely solely on renewable energy. We do not have enough nuclear power capacity to power these colossal pieces of infrastructure. And so we’re already accelerating the climate crisis. 

And we’re also accelerating a public-health crisis, the pumping of thousands of tons of air pollutants into the air from coal plants that are having their lives extended and methane gas turbines that are being built in service of powering these data centers. And in addition to that, there’s also an acceleration of the freshwater crisis, because these pieces of infrastructure have to be cooled with freshwater resources. It has to be fresh water, because if it’s any other type of water, it corrodes the equipment, it leads to bacterial growth.

And Bloomberg recently had a story that showed that two-thirds of these data centers are actually going into water-scarce areas, into places where the communities already do not have enough fresh water at their disposal. So that is one dimension of many that I refer to when I say, the extraordinary costs of this particular pathway for AI development.

Niall Firth: So in terms of costs and the extractive process of making AI, I wanted to give you the chance to talk about the other theme of the book, apart from just OpenAI’s explosion. It’s the colonial way of looking at the way AI is made: the empire. I’m saying this obviously because we’re here, but this is an idea that came out of reporting you started at MIT Technology Review and then continued into the book. Tell us about how this framing helps us understand how AI is made now.

Karen Hao: Yeah, so this was a framing that I started thinking a lot about when I was working on the AI Colonialism series for Tech Review. It was a series of stories that looked at the way that, pre-ChatGPT, the commercialization of AI and its deployment into the world was already leading to entrenchment of historical inequities into the present day.

And one example was a story that was about how facial recognition companies were swarming into South Africa to try and harvest more data from South Africa during a time when they were getting criticized for the fact that their technologies did not accurately recognize black faces. And the deployment of those facial recognition technologies into South Africa, into the streets of Johannesburg, was leading to what South African scholars were calling a recreation of a digital apartheid—the controlling of black bodies, movement of black people.

And this idea really haunted me for a really long time. Through my reporting in that series, there were so many examples that I kept hitting upon of this thesis, that the AI industry was perpetuating. It felt like it was becoming this neocolonial force. And then, when ChatGPT came out, it became clear that this was just accelerating. 

When you accelerate the scale of these technologies, and you start training them on the entirety of the Internet, and you start using these supercomputers that are the size of dozens—if not hundreds—of football fields. Then you really start talking about an extraordinary global level of extraction and exploitation that is happening to produce these technologies. And then the historical power imbalances become even more obvious. 

And so there are four parallels that I draw in my book between what I have now termed empires of AI versus empires of old. The first one is that empires lay claim to resources that are not their own. So these companies are scraping all this data that is not their own, taking all the intellectual property that is not their own.

The second is that empires exploit a lot of labor. So we see them moving to countries in the Global South or other economically vulnerable communities to contract workers to do some of the worst work in the development pipeline for producing these technologies—and also producing technologies that then inherently are labor-automating and engage in labor exploitation in and of themselves. 

And the third feature is that the empires monopolize knowledge production. So, in the last 10 years, we’ve seen the AI industry monopolize more and more of the AI researchers in the world. So AI researchers are no longer contributing to open science, working in universities or independent institutions, and the effect on the research is what you would imagine would happen if most of the climate scientists in the world were being bankrolled by oil and gas companies. You would not be getting a clear picture, and we are not getting a clear picture, of the limitations of these technologies, or if there are better ways to develop these technologies.

And the fourth and final feature is that empires always engage in this aggressive race rhetoric, where there are good empires and evil empires. And they, the good empire, have to be strong enough to beat back the evil empire, and that is why they should have unfettered license to consume all of these resources and exploit all of this labor. And if the evil empire gets the technology first, humanity goes to hell. But if the good empire gets the technology first, they’ll civilize the world, and humanity gets to go to heaven. So on many different levels, like the empire theme, I felt like it was the most comprehensive way to name exactly how these companies operate, and exactly what their impacts are on the world.

Niall Firth: Yeah, brilliant. I mean, you talk about the evil empire. What happens if the evil empire gets it first? And what I mentioned at the top is AGI. For me, it’s almost like the extra character in the book all the way through. It’s sort of looming over everything, like the ghost at the feast, sort of saying like, this is the thing that motivates everything at OpenAI. This is the thing we’ve got to get to before anyone else gets to it. 

There’s a bit in the book about how they’re talking internally at OpenAI, like, we’ve got to make sure that AGI is in US hands where it’s safe versus like anywhere else. And some of the international staff are openly like—that’s kind of a weird way to frame it, isn’t it? Why is the US version of AGI better than others? 

So tell us a bit about how it drives what they do. And AGI isn’t an inevitable fact that’s just happening anyway, is it? It’s not even a thing yet.

Karen Hao: There’s not even consensus around whether or not it’s even possible or what it even is. There was recently a New York Times story by Cade Metz that was citing a survey of long-standing AI researchers in the field, and 75% of them still think that we don’t have the techniques yet for reaching AGI, whatever that means. And the most classic definition or understanding of what AGI is, is being able to fully recreate human intelligence in software. But the problem is, we also don’t have scientific consensus around what human intelligence is. And so one of the aspects that I talk about a lot in the book is that, when there is a vacuum of shared meaning around this term, and what it would look like, when would we have arrived at it? What capabilities should we be evaluating these systems on to determine that we’ve gotten there? It can basically just be whatever OpenAI wants. 

So it’s kind of just this ever-present goalpost that keeps shifting, depending on where the company wants to go. You know, they have a full range, a variety of different definitions that they’ve used throughout the years. In fact, they even have a joke internally: If you ask 13 OpenAI researchers what AGI is, you’ll get 15 definitions. So they are kind of self-aware that this is not really a real term and it doesn’t really have that much meaning. 

But it does serve this purpose of creating a kind of quasi-religious fervor around what they’re doing, where people think that they have to keep driving towards this horizon, and that one day when they get there, it’s going to have a civilizationally transformative impact. And therefore, what else should you be working on in your life, but this? And who else should be working on it, but you? 

And so it is their justification not just for continuing to push and scale and consume all these resources—because none of that consumption, none of that harm matters anymore if you end up hitting this destination. But they also use it as a way to develop their technologies in a very deeply anti-democratic way, where they say, we are the only people that have the expertise, that have the right to carefully control the development of this technology and usher it into the world. And we cannot let anyone else participate because it’s just too powerful of a technology.

Niall Firth: You talk about the factions, particularly the religious framing. AGI has been around as a concept for a while—it was very niche, very kind of nerdy fun, really, to talk about—to suddenly become extremely mainstream. And they have the boomers versus doomers dichotomy. Where are you on that spectrum?

Karen Hao: So the boomers are people who think that AGI is going to bring us to utopia, and the doomers think AGI is going to devastate all of humanity. And to me these are actually two sides of the same coin. They both believe that AGI is possible, and it’s imminent, and it’s going to change everything. 

And I am not on this spectrum. I’m in a third space, which is the AI accountability space, which is rooted in the observation that these companies have accumulated an extraordinary amount of power, both economic and political power, to go back to the empire analogy. 

Ultimately, the thing that we need to do in order to not return to an age of empire and erode a lot of democratic norms is to hold these companies accountable with all the tools at our disposal, and to recognize all the harms that they are already perpetuating through a misguided approach to AI development.

Niall Firth: I’ve got a couple of questions from readers. I’m gonna try to pull them together a little bit because Abbas asks, what would post-imperial AI look like? And there was a question from Liam basically along the same lines. How do you make a more ethical version of AI that is not within this framework? 

Karen Hao: We sort of already touched a little bit upon this idea. But there are so many different ways to develop AI. There are myriads of techniques throughout the history of AI development, which is decades long. There have been various shifts in the winds of which techniques ultimately rise and fall. And it isn’t based solely on the scientific or technical merit of any particular technique. Oftentimes certain techniques become more popular because of business reasons or because of the funder’s ideologies. And that’s sort of what we’re seeing today with the complete indexing of AI development on large-scale AI model development.

And ultimately, these large-scale models … We talked about how it’s a remarkable technical leap, but in terms of social progress or economic progress, the benefits of these models have been kind of middling. And the way that I see us shifting to AI models that are going to be A) more beneficial and B) not so imperial is to refocus on task-specific AI systems that are tackling well-scoped challenges that inherently lend themselves to the strengths of AI systems that are inherently computational optimization problems. 

So I’m talking about things like using AI to integrate more renewable energy into the grid. This is something that we definitely need. We need to more quickly accelerate our electrification of the grid, and one of the challenges of using more renewable energy is the unpredictability of it. And this is a key strength of AI technologies, being able to have predictive capabilities and optimization capabilities where you can match the energy generation of different renewables with the energy demands of different people that are drawing from the grid.

Niall Firth: Quite a few people have been asking, in the chat, different versions of the same question. If you were an early-career AI scientist, or if you were involved in AI, what can you do yourself to bring about a more ethical version of AI? Do you have any power left, or is it too late? 

Karen Hao: No, I don’t think it’s too late at all. I mean, as I’ve been talking with a lot of people just in the lay public, one of the biggest challenges that they have is they don’t have any alternatives for AI. They want the benefits of AI, but they also do not want to participate in a supply chain that is really harmful. And so the first question is, always, is there an alternative? Which tools do I shift to? And unfortunately, there just aren’t that many alternatives right now. 

And so the first thing that I would say to early-career AI researchers and entrepreneurs is to build those alternatives, because there are plenty of people that are actually really excited about the possibility of switching to more ethical alternatives. And one of the analogies I often use is that we kind of need to do with the AI industry what happened with the fashion industry. There was also a lot of environmental exploitation, labor exploitation in the fashion industry, and there was enough consumer demand that it created new markets for ethical and sustainably sourced fashion. And so we kind of need to see just more options occupying that space.

Niall Firth: Do you feel optimistic about the future? Or where do you sit? You know, things aren’t great as you spell them out now. Where’s the hope for us?

Karen Hao: I am. I’m super optimistic. Part of the reason why I’m optimistic is because you know, a few years ago, when I started writing about AI at Tech Review, I remember people would say, wow, that’s a really niche beat. Do you have enough to write about? 

And now, I mean, everyone is talking about AI, and I think that’s the first step to actually getting to a better place with AI development. The amount of public awareness and attention and scrutiny that is now going into how we develop these technologies, how we use these technologies, is really, really important. Like, we need to be having this public debate and that in and of itself is a significant step change from what we had before. 

But the next step, and part of the reason why I wrote this book, is we need to convert the awareness into action, and people should take an active role. Every single person should feel that they have an active role in shaping the future of AI development, if you think about all of the different ways that you interface with the AI development supply chain and deployment supply chain—like you give your data or withhold your data.

There are probably data centers that are being built around you right now. If you’re a parent, there’s some kind of AI policy being crafted at [your kid’s] school. There’s some kind of AI policy being crafted at your workplace. These are all what I consider sites of democratic contestation, where you can use those opportunities to assert your voice about how you want AI to be developed and deployed. If you do not want these companies to use certain kinds of data, push back when they just take the data. 

I closed all of my personal social media accounts because I just did not like the fact that they were scraping my personal photos to train their generative AI models. I’ve seen parents and students and teachers start forming committees within schools to talk about what their AI policy should be and to draft it collectively as a community. Same with businesses. They’re doing the same thing. If we all kind of step up to play that active role, I am super optimistic that we’ll get to a better place.

Niall Firth: Mark, in the chat, mentions the Māori story from New Zealand towards the end of your book, and that’s an example of sort of community-led AI in action, isn’t it?

Karen Hao: Yeah. There was a community in New Zealand that really wanted to help revitalize the Māori language by building a speech recognition tool that could recognize Māori, and therefore be able to transcribe a rich repository of archival audio of their ancestors speaking Māori. And the first thing that they did when engaging in that project was they asked the community, do you want this AI tool? 

Niall Firth: Imagine that.

Karen Hao: I know! It’s such a radical concept, this idea of consent at every stage. But they first asked that; the community wholeheartedly said yes. They then engaged in a public education campaign to explain to people, okay, what does it take to develop an AI tool? Well, we are going to need data. We’re going to need audio transcription pairs to train this AI model. So then they ran a public contest in which they were able to get dozens, if not hundreds, of people in their community to donate data to this project. And then they made sure that when they developed the model, they actively explained to the community at every step how their data was being used, how it would be stored, how it would continue to be protected. And any other project that would use the data has to get permission and consent from the community first. 

And so it was a completely democratic process, for whether they wanted the tool, how to develop the tool, and how the tool should continue to be used, and how their data should continue to be used over time.

Niall Firth: Great. I know we’ve gone a bit over time. I’ve got two more things I’m going to ask you, basically putting together lots of questions people have asked in the chat about your view on what role regulations should play. What are your thoughts on that?

Karen Hao: Yeah, I mean, in an ideal world where we actually had a functioning government, regulation should absolutely play a huge role. And it shouldn’t just be thinking about once an AI model is built, how to regulate that. But still thinking about the full supply chain of AI development, regulating the data and what’s allowed to be trained in these models, regulating the land use. And what pieces of land are allowed to build data centers? How much energy and water are the data centers allowed to consume? And also regulating the transparency. We don’t know what data is in these training data sets, and we don’t know the environmental costs of training these models. We don’t know how much water these data centers consume and that is all information that these companies actively withhold to prevent democratic processes from happening. So if there were one major intervention that regulators could have, it should be to dramatically increase the amount of transparency along the supply chain.

Niall Firth: Okay, great. So just to bring it back around to OpenAI and Sam Altman to finish with. He famously sent an email around, didn’t he? After your original Tech Review story, saying this is not great. We don’t like this. And he didn’t want to speak to you for your book, either, did he?

Karen Hao: No, he did not.

Niall Firth: No. But imagine Sam Altman is in the chat here. He’s subscribed to Technology Review and is watching this Roundtables because he wants to know what you’re saying about him. If you could talk to him directly, what would you like to ask him? 

Karen Hao: What degree of harm do you need to see in order to realize that you should take a different path? 

Niall Firth: Nice, blunt, to the point. All right, Karen, thank you so much for your time. 

Karen Hao: Thank you so much, everyone.

MIT Technology Review Roundtables is a subscriber-only online event series where experts discuss the latest developments and what’s next in emerging technologies. Sign up to get notified about upcoming sessions.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

IBM Power11 challenges x86 and GPU giants with security-first server strategy

The IBM Power Cyber Vault solution is designed to provide protection against cyberattacks such as data corruption and encryption with proactive immutable snapshots that are automatically captured, stored, and tested on a custom-defined schedule, IBM said. Power11 also uses NIST-approved built-in quantum-safe cryptography designed to help protect systems from harvest-now, decrypt-later attacks

Read More »

Delfin Midstream Moves Closer to FID for LNG Export Project in Louisiana

Delfin Midstream Inc. is moving closer to a positive final investment decision (FID) for its deepwater port project in Louisiana with the signing of two agreements. Delfin entered into an agreement with Siemens Energy Inc. to reserve manufacturing capacity for four SGT-750 gas turbine mechanical drive packages, the company said in a news release. The equipment will be used to drive the mixed-refrigerant compressors for Delfin’s liquefied natural gas (LNG) liquefaction system. Delfin said it also agreed to an Early Works program with Samsung Heavy Industries and Black & Veatch Inc. to further detail floating liquefied natural gas (FLNG) vessel design specifications as the basis for the lump-sum, turn-key engineering, procurement, construction, and integration (EPCI) contract and to prepare both contractors for the execution of the project. Financial terms of the contracts were not disclosed. The work will de-risk project execution and ensure both contractors are prepared for immediate project execution following a positive FID, expected in the fall of 2025, Delfin said. Delfin CEO Dudley Poston said, “This is an incredibly exciting time for the development of Delfin’s critical energy infrastructure project. Following the successful issuance of the deepwater port license by MARAD, all workstreams are on schedule and the project is currently on track for FID in the fall of 2025. By making this large investment to lock-in critical manufacturing capacity, we have secured our execution schedule with the anticipated delivery of our first FLNG vessel from Samsung Heavy Industries shipyard in 2029”. Siemens Energy executive board member Karim Amin said, “Siemens Energy is excited to support Delfin’s energy infrastructure project by providing the critical Gas Turbine Mechanical Drive packages the Company needs as it moves towards delivering the first offshore LNG project in the United States. The modular design, high power-to-weight ratio and ability to operate under

Read More »

Executives Reveal Where They See Henry Hub Price Landing in Future

Executives from oil and gas firms have revealed where they expect the Henry Hub natural gas price to be at various points in the future in the second quarter Dallas Fed Energy Survey, which was released recently. The survey asked participants what they expect Henry Hub natural gas prices to be in six months, one year, two years, and five years. Executives from 116 oil and gas firms answered this question and gave a mean response of $3.66 per million British thermal units (MMBtu) for the six month mark, $3.81 per MMBtu for the one year mark, $4.12 per MMBtu for the two year mark, and $4.50 per MMBtu for the five year mark, the survey showed. Executives from 117 oil and gas firms answered this question in the first quarter Dallas Fed Energy Survey and gave a mean response of $3.71 per MMBtu for the six month mark, $3.98 per MMBtu for the year mark, $4.30 per MMBtu for the two year mark, and $4.83 per MMBtu for the five year mark, that survey showed. The second quarter Dallas Fed Energy Survey also asked participants what they expect the Henry Hub price to be at the end of this year. Executives from 133 oil and gas firms answered this question and gave an average response of $3.66 per MMBtu, the survey highlighted. The low forecast was $1.75 per MMBtu, the high forecast was $5 per MMBtu, and the average Henry Hub natural gas daily spot price during the survey was $3.30 per MMBtu, the survey pointed out. Executives from 127 oil and gas firms answered this question in the first quarter Dallas Fed Energy Survey and gave an average response of $3.78 per MMBtu, that survey showed. The low forecast came in at $2 per MMBtu, the high forecast

Read More »

Trican to Acquire Tubing Services Firm Iron Horse

Calgary, Alberta-based Trican Well Service Ltd. said it has entered into an agreement to acquire privately owned fracturing and coiled tubing services provider Iron Horse Energy Services, which operates primarily in the Cardium, Charlie Lake, Mannville Stack, Viking, Montney and Shaunavon plays in the Western Canadian Sedimentary Basin (WCSB). Trican aims to acquire all of the issued and outstanding shares of Iron Horse for approximately $56.6 million (CAD 77.35 million) in cash and approximately 33.76 million common shares of Trican, the company said in a news release. Iron Horse “extends Trican’s fracturing footprint and adds industry-leading coiled tubing integrated fracturing expertise,” according to the release. The acquisition will add over four fracturing spreads and 10 coiled tubing units, which will augment Trican’s services offering throughout the WCSB across the drilling, completion, and production lifecycles, the company said. Following the acquisition, Iron Horse will operate as a wholly owned division of Trican, continuing to serve its existing customers while increasing its footprint with the support of Trican’s resources. Trican said it expects to retain all of the existing management and employees of Iron Horse. The acquisition is expected to close in the second half. Iron Horse Chairman and CEO Tom Coolen will be appointed to the board of directors of Trican after closing, according to the release. Other than Competition Act Approval, and TSX listing approval of the common shares of Trican to be issued pursuant to the Acquisition, no approval, order, consent of or filing with any government agency is required on the part of Iron Horse or Trican, in connection with the completion of the acquisition, Trican said. “Iron Horse is one of [the] few North American fracturing companies that has consistently demonstrated operational and financial performance that aligns with Trican. The acquisition will provide significant EBITDA, free cash

Read More »

Macquarie Strategists Forecast USA Crude Inventory Rise

In an oil and gas report sent to Rigzone by the Macquarie team on Tuesday, Macquarie strategists revealed that they are forecasting that U.S. crude inventories will be up by 2.7 million barrels for the week ending July 4. “This follows a 3.8 million barrel build in the prior week, with the crude balance realizing significantly looser than our expectations,” the strategists stated in the report. “For this week’s crude balance, from refineries, we model a minimal reduction in crude runs. Among net imports, we model a sharp reduction, with exports up (+0.7 million barrels per day) and imports down (-0.6 million barrels per day) on a nominal basis,” they added. In the report, the strategists warned that the timing of cargoes remains a source of potential volatility in this week’s crude balance. “From implied domestic supply (prod.+adj.+transfers), we look for a bounce (+1.2 million barrels) on a nominal basis this week,” the strategists went on to state in the report. “Rounding out the picture, we anticipate another small increase in SPR [Strategic Petroleum Reserve] stocks (+0.2 million barrels) this week,” they added. The Macquarie strategists also noted in the report that, “among products”, they “look for across the board builds (gasoline/distillate/ jet +1.0/+2.4/+1.1 million barrels)”. “We model implied demand for these three products at ~14.3 million barrels per day for the week ending July 4 amidst holiday effects,” they added. “On this front, while the week of July 4th typically sees a large reduction to distillate demand, the timing/magnitude of this impact could potentially be affected/reduced by the holiday falling on a Friday this year,” the strategists went on to note. In its latest weekly petroleum status report at the time of writing, which was released on July 2 and included data for the week ending June 27, the

Read More »

Hess Relinquishes Block 59 offshore Suriname after Failing to Find Partners

Hess Corp. decided to discontinue Block 59 exploration after failing to bring in new partners following Equinor ASA and Exxon Mobil Corp.’s withdrawal, Suriname’s national oil company said Tuesday. In July 2024 Norway’s majority state-owned Equinor and Texas-based ExxonMobil withdrew from the production sharing contract they signed July 2017 with New York City-based Hess. After 2D and 3D research that involved 6,000 kilometers (3,728.23 miles) and 9,000 square kilometers (3,474.92 square miles) respectively, ExxonMobil and Equinor deemed the risk for drilling an exploration well too high and transferred their stakes to Hess, according to Staatsolie Maatschappij Suriname NV. “Hess fulfilled its minimum work obligations and has decided not to move forward to the next phase of the exploration period, which concludes on 8 July 2025”, Staatsolie said in an online statement. Hess had failed to woo new partners to continue exploration, Staatsolie explained. PSC holders fully bear the costs and risks of exploration in the South American country, Staatsolie noted. Block 59 spanned about 11,480 square kilometers in waters 2,700-3,500 meters (8,858.27-11,482.94 feet) deep, according to Staatsolie. “Significant volumes are required for potential economically viable oilfield development in this block”, the statement said. “The area formerly designated as Block 59 will be incorporated into Staatsolie’s strategy to have as much of the offshore acreage under contract with international parties”, the statement said. “Currently, production sharing contracts are in place with a number of international oil and gas companies for the various blocks, covering approximately fifty percent of Suriname’s offshore”. In late 2024 ExxonMobil also exited Suriname’s Block 52 by transferring its 50 percent stake to partner Petroliam Nasional Bhd. (Petronas). “This withdrawal is part of ExxonMobil’s ongoing evaluation of assets in its global portfolio”, Staatsolie said in a press release November 20, 2024. “Staatsolie expects PETRONAS to continue the activities

Read More »

BP Appoints Shell Veteran to Board

BP PLC has appointed Simon Henry as a non-executive director to its board effective September 1, 2025. During his over 35 years with Shell, Henry held senior finance and management positions worldwide, serving as chief financial officer and board member from 2009 to 2017, BP noted. “The board will benefit from his deep and broad experience of the global upstream and downstream energy industry and his financial and commercial understanding of global markets, together with his extensive and varied board experience”, Helge Lund, chair of BP, said. BP said Henry possesses extensive expertise and experience in global finance, strategy, governance, and management. Henry currently serves as a non-executive director at Rio Tinto plc and Rio Tinto Ltd. In February, Rio Tinto said that he would step down from these positions in the second half of 2025. Just before BP’s announcement, Harbour Energy plc also said that Henry would resign from its board with immediate effect. BP also noted he had served as a director at Lloyds Banking Group plc and PetroChina Ltd. BP said non-executive director Pamela Daley had decided to step down from the BP board for personal reasons effective July 7, 2025. “On behalf of the board, I would like to thank Pam for her outstanding service over the past seven years”, Lund said. To contact the author, email [email protected] What do you think? We’d love to hear from you, join the conversation on the Rigzone Energy Network. The Rigzone Energy Network is a new social experience created for you and all energy professionals to Speak Up about our industry, share knowledge, connect with peers and industry insiders and engage in a professional community that will empower your career in energy. MORE FROM THIS AUTHOR

Read More »

CoreWeave acquires Core Scientific for $9B to power AI infrastructure push

Such a shift, analysts say, could offer short-term benefits for enterprises, particularly in cost and access, but also introduces new operational risks. “This acquisition may potentially lower enterprise pricing through lease cost elimination and annual savings, while improving GPU access via expanded power capacity, enabling faster deployment of Nvidia chipsets and systems,” said Charlie Dai, VP and principal analyst at Forrester. “However, service reliability risks persist during this crypto-to-AI retrofitting.” This also indicates that struggling vendors such as Core Scientific and similar have a way to cash out, according to Yugal Joshi, partner at Everest Group. “However, it does not materially impact the availability of Nvidia GPUs and similar for enterprises,” Joshi added. “Consolidation does impact the pricing power of vendors.” Concerns for enterprises Rising demand for AI-ready infrastructure can raise concerns among enterprises, particularly over access to power-rich data centers and future capacity constraints. “The biggest concern that CIOs should have with this acquisition is that mature data center infrastructure with dedicated power is an acquisition target,” said Hyoun Park, CEO and chief analyst at Amalgam Insights. “This may turn out to create challenges for CIOs currently collocating data workloads or seeking to keep more of their data loads on private data centers rather than in the cloud.”

Read More »

CoreWeave achieves a first with Nvidia GB300 NVL72 deployment

The deployment, Kimball said, “brings Dell quality to the commodity space. Wins like this really validate what Dell has been doing in reshaping its portfolio to accommodate the needs of the market — both in the cloud and the enterprise.” Although concerns were voiced last year that Nvidia’s next-generation Blackwell data center processors had significant overheating problems when they were installed in high-capacity server racks, he said that a repeat performance is unlikely. Nvidia, said Kimball “has been very disciplined in its approach with its GPUs and not shipping silicon until it is ready. And Dell almost doubles down on this maniacal quality focus. I don’t mean to sound like I have blind faith, but I’ve watched both companies over the last several years be intentional in delivering product in volume. Especially as the competitive market starts to shape up more strongly, I expect there is an extremely high degree of confidence in quality.” CoreWeave ‘has one purpose’ He said, “like Lambda Labs, Crusoe and others, [CoreWeave] seemingly has one purpose (for now): deliver GPU capacity to the market. While I expect these cloud providers will expand in services, I think for now the type of customer employing services is on the early adopter side of AI. From an enterprise perspective, I have to think that organizations well into their AI journey are the consumers of CoreWeave.”  “CoreWeave is also being utilized by a lot of the model providers and tech vendors playing in the AI space,” Kimball pointed out. “For instance, it’s public knowledge that Microsoft, OpenAI, Meta, IBM and others use CoreWeave GPUs for model training and more. It makes sense. These are the customers that truly benefit from the performance lift that we see from generation to generation.”

Read More »

Oracle to power OpenAI’s AGI ambitions with 4.5GW expansion

“For CIOs, this shift means more competition for AI infrastructure. Over the next 12–24 months, securing capacity for AI workloads will likely get harder, not easier. Though cost is coming down but demand is increasing as well, due to which CIOs must plan earlier and build stronger partnerships to ensure availability,” said Pareekh Jain, CEO at EIIRTrend & Pareekh Consulting. He added that CIOs should expect longer wait times for AI infrastructure. To mitigate this, they should lock in capacity through reserved instances, diversify across regions and cloud providers, and work with vendors to align on long-term demand forecasts.  “Enterprises stand to benefit from more efficient and cost-effective AI infrastructure tailored to specialized AI workloads, significantly lower their overall future AI-related investments and expenses. Consequently, CIOs face a critical task: to analyze and predict the diverse AI workloads that will prevail across their organizations, business units, functions, and employee personas in the future. This foresight will be crucial in prioritizing and optimizing AI workloads for either in-house deployment or outsourced infrastructure, ensuring strategic and efficient resource allocation,” said Neil Shah, vice president at Counterpoint Research. Strategic pivot toward AI data centers The OpenAI-Oracle deal comes in stark contrast to developments earlier this year. In April, AWS was reported to be scaling back its plans for leasing new colocation capacity — a move that AWS Vice President for global data centers Kevin Miller described as routine capacity management, not a shift in long-term expansion plans. Still, these announcements raised questions around whether the hyperscale data center boom was beginning to plateau. “This isn’t a slowdown, it’s a strategic pivot. The era of building generic data center capacity is over. The new global imperative is a race for specialized, high-density, AI-ready compute. Hyperscalers are not slowing down; they are reallocating their capital to

Read More »

Arista Buys VeloCloud to reboot SD-WANs amid AI infrastructure shift

What this doesn’t answer is how Arista Networks plans to add newer, security-oriented Secure Access Service Edge (SASE) capabilities to VeloCloud’s older SD-WAN technology. Post-acquisition, it still has only some of the building blocks necessary to achieve this. Mapping AI However, in 2025 there is always more going on with networking acquisitions than simply adding another brick to the wall, and in this case it’s the way AI is changing data flows across networks. “In the new AI era, the concepts of what comprises a user and a site in a WAN have changed fundamentally. The introduction of agentic AI even changes what might be considered a user,” wrote Arista Networks CEO, Jayshree Ullal, in a blog highlighting AI’s effect on WAN architectures. “In addition to people accessing data on demand, new AI agents will be deployed to access data independently, adapting over time to solve problems and enhance user productivity,” she said. Specifically, WANs needed modernization to cope with the effect AI traffic flows are having on data center traffic. Sanjay Uppal, now VP and general manager of the new VeloCloud Division at Arista Networks, elaborated. “The next step in SD-WAN is to identify, secure and optimize agentic AI traffic across that distributed enterprise, this time from all end points across to branches, campus sites, and the different data center locations, both public and private,” he wrote. “The best way to grab this opportunity was in partnership with a networking systems leader, as customers were increasingly looking for a comprehensive solution from LAN/Campus across the WAN to the data center.”

Read More »

Data center capacity continues to shift to hyperscalers

However, even though colocation and on-premises data centers will continue to lose share, they will still continue to grow. They just won’t be growing as fast as hyperscalers. So, it creates the illusion of shrinkage when it’s actually just slower growth. In fact, after a sustained period of essentially no growth, on-premises data center capacity is receiving a boost thanks to genAI applications and GPU infrastructure. “While most enterprise workloads are gravitating towards cloud providers or to off-premise colo facilities, a substantial subset are staying on-premise, driving a substantial increase in enterprise GPU servers,” said John Dinsdale, a chief analyst at Synergy Research Group.

Read More »

Oracle inks $30 billion cloud deal, continuing its strong push into AI infrastructure.

He pointed out that, in addition to its continued growth, OCI has a remaining performance obligation (RPO) — total future revenue expected from contracts not yet reported as revenue — of $138 billion, a 41% increase, year over year. The company is benefiting from the immense demand for cloud computing largely driven by AI models. While traditionally an enterprise resource planning (ERP) company, Oracle launched OCI in 2016 and has been strategically investing in AI and data center infrastructure that can support gigawatts of capacity. Notably, it is a partner in the $500 billion SoftBank-backed Stargate project, along with OpenAI, Arm, Microsoft, and Nvidia, that will build out data center infrastructure in the US. Along with that, the company is reportedly spending about $40 billion on Nvidia chips for a massive new data center in Abilene, Texas, that will serve as Stargate’s first location in the country. Further, the company has signaled its plans to significantly increase its investment in Abu Dhabi to grow out its cloud and AI offerings in the UAE; has partnered with IBM to advance agentic AI; has launched more than 50 genAI use cases with Cohere; and is a key provider for ByteDance, which has said it plans to invest $20 billion in global cloud infrastructure this year, notably in Johor, Malaysia. Ellison’s plan: dominate the cloud world CTO and co-founder Larry Ellison announced in a recent earnings call Oracle’s intent to become No. 1 in cloud databases, cloud applications, and the construction and operation of cloud data centers. He said Oracle is uniquely positioned because it has so much enterprise data stored in its databases. He also highlighted the company’s flexible multi-cloud strategy and said that the latest version of its database, Oracle 23ai, is specifically tailored to the needs of AI workloads. Oracle

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »