Stay Ahead, Stay ONMINE

Inside the most dangerous asteroid hunt ever

If you were told that the odds of something were 3.1%, it really wouldn’t seem like much. But for the people charged with protecting our planet, it was huge.  On February 18, astronomers determined that a 130- to 300-foot-long asteroid had a 3.1% chance of crashing into Earth in 2032. Never had an asteroid of such dangerous dimensions stood such a high chance of striking the planet. For those following this developing story in the news, the revelation was unnerving. For many scientists and engineers, though, it turned out to be—despite its seriousness—a little bit exciting. While possible impact locations included patches of empty ocean, the space rock, called 2024 YR4, also had several densely populated cities in its possible crosshairs, including Mumbai, Lagos, and Bogotá. If the asteroid did in fact hit such a metropolis, the best-case scenario was severe damage; the worst case was outright, total ruin. And for the first time, a group of United Nations–backed researchers began to have high-level discussions about the fate of the world: If this asteroid was going to hit the planet, what sort of spaceflight mission might be able to stop it? Would they ram a spacecraft into it to deflect it? Would they use nuclear weapons to try to swat it away or obliterate it completely?  At the same time, planetary defenders all over the world crewed their battle stations to see if we could avoid that fate—and despite the sometimes taxing new demands on their psyches and schedules, they remained some of the coolest customers in the galaxy. “I’ve had to cancel an appointment saying, I cannot come—I have to save the planet,” says Olivier Hainaut, an astronomer at the European Southern Observatory and one of those who tracked down 2024 YR4.  Then, just as quick as history was made, experts declared that the danger had passed. On February 24, asteroid trackers issued the all-clear: Earth would be spared, just as many planetary defense researchers had felt assured it would.  How did they do it? What was it like to track the rising (and rising and rising) danger of this asteroid, and to ultimately determine that it’d miss us? This is the inside story of how, over a span of just two months, a sprawling network of global astronomers found, followed, mapped, planned for, and finally dismissed 2024 YR4, the most dangerous asteroid ever found—all under the tightest of timelines and, for just a moment, with the highest of stakes.  “It was not an exercise,” says Hainaut. This was the real thing: “We really [had] to get it right.” IN THE BEGINNING December 27, 2024 THE ASTEROID TERRESTRIAL-IMPACT LAST ALERT SYSTEM, HAWAII Long ago, an asteroid in the space-rock highway between Mars and Jupiter felt a disturbance in the force: the gravitational pull of Jupiter itself, king of the planets. After some wobbling back and forth, this asteroid was thrown out of the belt, skipped around the sun, and found itself on an orbit that overlapped with Earth’s own.  “I was the first one to see the detections of it,” Larry Denneau, of the University of Hawai‘i, recalls. “A tiny white pixel on a black background.”  Denneau is one of the principal investigators at the NASA-funded Asteroid Terrestrial-impact Last Alert System (ATLAS) telescopic network. It may have been just two days after Christmas, but as usual, he followed procedure as if it were any other day of the year and sent the observations of the tiny pixel onward to another NASA-funded facility, the Minor Planet Center (MPC) in Cambridge, Massachusetts.  There’s an alternate reality in which none of this happened. Fortunately, in our timeline, various space agencies—chiefly NASA, but also the European Space Agency and the Japan Aerospace Exploration Agency—invest millions of dollars every year in asteroid-spotting efforts.  And while multiple nations host observatories capable of performing this work, the US clearly leads the way: Its planetary defense program provides funding to a suite of telescopic facilities solely dedicated to identifying potentially hazardous space rocks. (At least, it leads the way for the moment. The White House’s proposal for draconian budget cuts to NASA and the National Science Foundation mean that several observatories and space missions linked to planetary defense are facing funding losses or outright terminations.)  Astronomers working at these observatories are tasked with finding threatening asteroids before they find us—because you can’t fight what you can’t see. “They are the first line of planetary defense,” says Kelly Fast, the acting planetary defense officer at NASA’s Planetary Defense Coordination Office in Washington, DC. ATLAS is one part of this skywatching project, and it consists of four telescopes: two in Hawaii, one in Chile, and another in South Africa. They don’t operate the way you’d think, with astronomers peering through them all night. Instead, they operate “completely robotically and automatically,” says Denneau. Driven by coding scripts that he and his colleagues have developed, these mechanical eyes work in harmony to watch out for any suspicious space rocks. Astronomers usually monitor their survey of the sky from a remote location. ATLAS telescopes are small, so they can’t see particularly distant objects. But they have a wide field of view, allowing them to see large patches of space at any one moment. “As long as the weather is good, we’re constantly monitoring the night sky, from the North Pole to the South Pole,” says Denneau.  Larry Denneau, a principal investigator at the Asteroid Terrestrial-impact Last Alert System telescopic network.COURTESY PHOTO If they detect the starlight reflecting off a moving object, an operator, such as Denneau, gets an alert and visually verifies that the object is real and not some sort of imaging artifact. When a suspected asteroid (or comet) is identified, the observations are sent to the MPC, which is home to a bulletin board featuring (among other things) orbital data on all known asteroids and comets.  If the object isn’t already listed, a new discovery is announced, and other astronomers can perform follow-up observations.  In just the past few years, ATLAS has detected more than 1,200 asteroids with near-Earth orbits. Finding ultimately harmless space rocks is routine work—so much so that when the new near-Earth asteroid was spotted by ATLAS’s Chilean telescope that December day, it didn’t even raise any eyebrows.  Denneau had simply been sitting at home, doing some late-night work on his computer. At the time, of course, he didn’t know that his telescope had just spied what would soon become a history-making asteroid—one that could alter the future of the planet. The MPC quickly confirmed the new space rock hadn’t already been “found,” and astronomers gave it a provisional designation: 2024 YR4.  CATALINA SKY SURVEY, ARIZONA Around the same time, the discovery was shared with another NASA-funded facility: the Catalina Sky Survey, a nest of three telescopes in the Santa Catalina Mountains north of Tucson that works out of the University of Arizona. “We run a very tight operation,” says Kacper Wierzchoś, one of its comet and asteroid spotters. Unlike ATLAS, these telescopes (although aided by automation) often have an in-person astronomer available to quickly alter the surveys in real time. “We run a very tight operation,” says Kacper Wierzchoś, one of the comet and asteroid spotters at the Catalina Sky Survey north of Tucson, Arizona. COURTESY PHOTO So when Catalina was alerted about what its peers at ATLAS had spotted, staff deployed its Schmidt telescope—a smaller one that excels at seeing bright objects moving extremely quickly. As they fed their own observations of 2024 YR4 to the MPC, Catalina engineer David Rankin looked back over imagery from the previous days and found the new asteroid lurking in a night-sky image taken on December 26. Around then, ATLAS also realized that it had caught sight of 2024 YR4 in a photograph from December 25.  The combined observations confirmed it: The asteroid had made its closest approach to Earth on Christmas Day, meaning it was already heading back out into space. But where, exactly, was this space rock going? Where would it end up after it swung around the sun?  CENTER FOR NEAR-EARTH OBJECT STUDIES, CALIFORNIA  If the answer to that question was Earth, Davide Farnocchia would be one of the first to know. You could say he’s one of NASA’s watchers on the wall.  And he’s remarkably calm about his duties. When he first heard about 2024 YR4, he barely flinched. It was just another asteroid drifting through space not terribly far from Earth. It was another box to be ticked. Once it was logged by the MPC, it was Farnocchia’s job to try to plot out 2024 YR4’s possible paths through space, checking to see if any of them overlapped with our planet’s. He works at NASA’s Center for Near-Earth Object Studies (CNEOS) in California, where he’s partly responsible for keeping track of all the known asteroids and comets in the solar system. “We have 1.4 million objects to deal with,” he says, matter-of-factly.  In the past, astronomers would have had to stitch together multiple images of this asteroid and plot out its possible trajectories. Today, fortunately, Farnocchia has some help: He oversees the digital brain Sentry, an autonomous system he helped code. (Two other facilities in Italy perform similar work: the European Space Agency’s Near-Earth Object Coordination Centre, or NEOCC, and the privately owned Near-Earth Objects Dynamics Site, or NEODyS.) To chart their courses, Sentry uses every new observation of every known asteroid or comet listed on the MPC to continuously refine the orbits of all those objects, using the immutable laws of gravity and the gravitational influences of any planets, moons, or other sizable asteroids they pass. A recent update to the software means that even the ever-so-gentle push afforded by sunlight is accounted for. That allows Sentry to confidently project the motions of all these objects at least a century into the future.  Davide Farnocchia, who helps track all the known asteroids and comets in the solar system at NASA’s Center for Near-Earth Object Studies.COURTESY PHOTO Almost all newly discovered asteroids are quickly found to pose no impact risk. But those that stand even an infinitesimally small chance of smashing into our planet within the next 100 years are placed on the Sentry Risk List until additional observations can rule out those awful possibilities. Better safe than sorry.  In late December, with just a limited set of data, Sentry concluded that there was a non-negligible chance 2024 YR4 would strike Earth in 2032. Aegis, the equivalent software at Europe’s NEOCC site, agreed. No bother. More observations would very likely remove 2024 YR4 from the Risk List. Just another day at the office for Farnocchia. It’s worth noting that an asteroid heading toward Earth isn’t always a problem. Small rocks burn up in the planet’s atmosphere several times a day; you’ve probably seen one already this year, on a moonless night. But above a certain size, these rocks turn from innocuous shooting stars into nuclear-esque explosions.  Reflected starlight is great for initially spotting asteroids, but it’s a terrible way to determine how big they are. A large, dull rock reflects as much light as a bright, tiny rock, making them appear the same to many telescopes. And that’s a problem, considering that a rock around 30 feet long will explode loudly but inconsequentially in Earth’s atmosphere, while a 3,000-foot-long asteroid would slam into the ground and cause devastation on a global scale, imperiling all of civilization. Roughly speaking, if you double the size of an asteroid, it becomes eight times more energetic upon impact—so finding out the size of an Earthbound asteroid is of paramount importance. In those first few hours after it was discovered, and before anyone knew how shiny or dull its surface was, 2024 YR4 was estimated by astronomers to be as small as 65 feet across or as large as 500 feet. An object of the former size would blow up in mid-air, shattering windows over many miles and likely injuring thousands of people. At the latter size it would vaporize the heart of any city it struck, turning solid rock and metal into liquid and vapor, while its blast wave would devastate the rest of it, killing hundreds of thousands or even millions in the process.  So now the question was: Just how big was 2024 YR4? REFINING THE PICTURE Mid-January 2025 VERY LARGE TELESCOPE, CHILE Understandably dissatisfied with that level of imprecision, the European Southern Observatory’s Very Large Telescope (VLT), high up on the Cerro Paranal mountain in Chile’s Atacama Desert, entered the chat. As the name suggests, this flagship facility is vast, and it’s capable of really zooming in on distant objects. Or to put it another way: “The VLT is the largest, biggest, best telescope in the world,” says Hainaut, one of the facility’s operators, who usually commands it from half a world away in Germany.   In reality, the VLT—which lends a hand to the European Space Agency in its asteroid-hunting duties—is actually made up of four massive telescopes, each fixed on four separate corners of the sky. They can be combined to act as a huge light bucket, allowing astronomers to see very faint asteroids. Four additional, smaller, movable telescopes can also team up with their bigger siblings to provide remarkably high-resolution images of even the stealthiest space rocks.  With so much tech to oversee, the control room of the VLT looks a bit like the inside of the Death Star. “You have eight consoles, each of them with a dozen screens. It’s big, it’s large, it’s spectacular,” says Hainaut.  In mid-January, the European Space Agency asked the VLT to study several asteroids that had somewhat suspicious near-Earth orbits—including 2024 YR4. With just a few lines of code, the VLT could easily train its sharp eyes on an asteroid like 2024 YR4, allowing astronomers to narrow down its size range. It was found to be at least 130 feet long (big enough to cause major damage in a city) and as much as 300 feet (able to annihilate one). January 29, 2025 INTERNATIONAL ASTEROID WARNING NETWORK Marco Fenucci, a near-Earth-object dynamicist at the European Space Agency’s Near-Earth Object Coordination Centre.COURTESY PHOTO By the end of the month, there was no mistaking it: 2024 YR4 stood a greater than 1% chance of impacting Earth on December 22, 2032.  “It’s not something you see very often,” says Marco Fenucci, a near-Earth-object dynamicist at NEOCC. He admits that although it was “a serious thing,” this escalation was also “exciting to see”—something straight out of a sci-fi flick. Sentry and Aegis, along with the systems at NEODyS, had been checking one another’s calculations. “There was a lot of care,” says Farnocchia, who explains that even though their programs worked wonders, their predictions were manually verified by multiple experts. When a rarity like 2024 YR4 comes along, he says, “you kind of switch gears, and you start being more cautious. You start screening everything that comes in.” At this point, the klaxon emanating from these three data centers pushed the International Asteroid Warning Network (IAWN), a UN-backed planetary defense awareness group, to issue a public alert to the world’s governments: The planet may be in peril. For the most part, it was at this moment that the media—and the wider public—became aware of the threat. Earth, we may have a problem. Denneau, along with plenty of other astronomers, received an urgent email from Fast at NASA’s Planetary Defense Coordination Office, requesting that all capable observatories track this hazardous asteroid. But there was one glaring problem. When 2024 YR4 was discovered on December 27, it was already two days after it had made its closest approach to Earth. And since it was heading back out into the shadows of space, it was quickly fading from sight. Once it gets too faint, “there’s not much ATLAS can do,” Denneau says. By the time of IAWN’s warning, planetary defenders had just weeks to try to track 2024 YR4 and refine the odds of its hitting Earth before they’d lose it to the darkness.  And if their scopes failed, the odds of an Earth impact would have stayed uncomfortably high until 2028, when the asteroid was due to make another flyby of the planet. That’d be just four short years before the space rock might actually hit. “In that situation, we would have been … in trouble,” says NEOCC’s Fenucci. The hunt was on. PREPARING FOR THE WORST February 5 and February 6, 2025 SPACE MISSION PLANNING ADVISORY GROUP, AUSTRIA In early February, spaceflight mission specialists, including those at the UN-supported Space Mission Planning Advisory Group in Vienna, began high-level talks designed to sketch out ways in which 2024 YR4 could be either deflected away from Earth or obliterated—you know, just in case. A range of options were available—including ramming it with several uncrewed spacecraft or assaulting it with nuclear weapons—but there was no silver bullet in this situation. Nobody had ever launched a nuclear explosive device into deep space before, and the geopolitical ramifications of any nuclear-armed nations doing so in the present day would prove deeply unwelcome. Asteroids are also extremely odd objects; some, perhaps including 2024 YR4, are less like single chunks of rock and more akin to multiple cliffs flying in formation. Hit an asteroid like that too hard and you could fail to deflect it—and instead turn an Earthbound cannonball into a spray of shotgun pellets.  It’s safe to say that early on, experts were concerned about whether they could prevent a potential disaster. Crucially, eight years was not actually much time to plan something of this scale. So they were keen to better pinpoint how likely, or unlikely, it was that 2024 YR4 was going to collide with the planet before any complex space mission planning began in earnest.  The people involved with these talks—from physicists at some of America’s most secretive nuclear weapons research laboratories to spaceflight researchers over in Europe—were not feeling close to anything resembling panic. But “the timeline was really short,” admits Hainaut. So there was an unprecedented tempo to their discussions. This wasn’t a drill. This was the real deal. What would they do to defend the planet if an asteroid impact couldn’t be ruled out? Luckily, over the next few days, a handful of new observations came in. Each helped Sentry, Aegis, and the system at NEODyS rule out more of 2024 YR4’s possible future orbits. Unluckily, Earth remained a potential port of call for this pesky asteroid—and over time, our planet made up a higher proportion of those remaining possibilities. That meant that the odds of an Earth impact “started bubbling up,” says Denneau.  EVA REDAMONTI By February 6, they jumped to 2.3%—a one-in-43 chance of an impact.  “How much anxiety someone should feel over that—it’s hard to say,” Denneau says, with a slight shrug.  In the past, several elephantine asteroids have been found to stand a small chance of careening unceremoniously into the planet. Such incidents tend to follow a pattern. As more observations come in and the asteroid’s orbit becomes better known, an Earth impact trajectory remains a possibility while other outlying orbits are removed from the calculations—so for a time, the odds of an impact rise. Finally, with enough observations in hand, it becomes clear that the space rock will miss our world entirely, and the impact odds plummet to zero. Astronomers expected this to repeat itself with 2024 YR4. But there was no guarantee. There’s no escaping the fact that one day, sooner or later, scientists will discover a dangerous asteroid that will punch Earth in the face—and raze a city in the process.  After all, asteroids capable of trashing a city have found their way to Earth plenty of times before, and not just in the very distant past. In 1908, an 800-square-mile patch of forest in Siberia—one that was, fortunately, very sparsely populated—was decimated by a space rock just 180 feet long. It didn’t even hit the ground; it exploded in midair with the force of a 15-megaton blast. But only one other asteroid comparable in size to 2024 YR4 had its 2.3% figure beat: in 2004, Apophis—capable of causing continental-scale damage—had (briefly) stood a 2.7% chance of impacting Earth in 2029. Rapidly approaching uncharted waters, the powers that be at NASA decided to play a space-based wild card: the James Webb Space Telescope, or JWST. THE JAMES WEBB SPACE TELESCOPE, DEEP SPACE, ONE MILLION MILES FROM EARTH A large dull asteroid reflects the same amount of light as a small shiny one, but that doesn’t mean astronomers sizing up an asteroid are helpless. If you view both asteroids in the infrared, the larger one glows brighter than the smaller one no matter the surface coating—making infrared, or the thermal part of the electromagnetic spectrum, a much better gauge of a space rock’s proportions.  Observatories on Earth do have infrared capabilities, but our planet’s atmosphere gets in their way, making it hard for them to offer highly accurate readings of an asteroid’s size.  But the James Webb Space Telescope (JWST), hanging out in space, doesn’t have that problem.  Asteroid 2024 YR4 is the smallest object targeted by JWST to date, and one of the smallest objects to have its size directly measured. Observations were taken using both its NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) to study the thermal properties of the asteroid.NASA, ESA, CSA, A. RIVKIN (APL), A. PAGAN (STSCI) This observatory, which sits at a gravitationally stable point about a million miles from Earth, is polymathic. Its sniper-like scope can see in the infrared and allows it to peer at the edge of the observable universe, meaning it can study galaxies that formed not long after the Big Bang. It can even look at the light passing through the atmospheres of distant planets to ascertain their chemical makeups. And its remarkably sharp eye means it can also track the thermal glow of an asteroid long after all ground-based telescopes lose sight of it. In a fortuitous bit of timing, by the moment 2024 YR4 came along, planetary defenders had recently reasoned that JWST could theoretically be used to track ominous asteroids using its own infrared scope, should the need arise. So after IAWN’s warning went out, operators of JWST ran an analysis: Though the asteroid would vanish from most scopes by late March, this one might be able to see the rock until sometime in May, which would allow researchers to greatly refine their assessment of the asteroid’s orbit and its odds of making Earth impact. Understanding 2024 YR4’s trajectory was important, but “the size was the main motivator,” says Andy Rivkin, an astronomer at Johns Hopkins University’s Applied Physics Laboratory, who led the proposal to use JWST to observe the asteroid. The hope was that even if the impact odds remained high until 2028, JWST would find that 2024 YR4 was on the smaller side of the 130-to-300-feet size range—meaning it would still be a danger, but a far less catastrophic one.  The JWST proposal was accepted by NASA on February 5. But the earliest it could conduct its observations was early March. And time really wasn’t on Earth’s side. February 7, 2025 GEMINI SOUTH TELESCOPE, CHILE “At this point, [2024 YR4] was too faint for the Catalina telescopes,” says Catalina’s Wierzchoś. “In our opinion, this was a big deal.”  So Wierzchoś and his colleagues put in a rare emergency request to commandeer the Gemini Observatory, an internationally funded and run facility featuring two large, eagle-eyed telescopes—one in Chile and one atop Hawaii’s Mauna Kea volcano. Their request was granted, and on February 7, they trained the Chile-based Gemini South telescope onto 2024 YR4.  This composite image was captured using the Gemini Multi-Object Spectrograph (GMOS), by a team of astronomers. The hazy dot at the center is asteroid 2024 YR4. The odds of Earth impact dropped ever so slightly, to 2.2% —a minor, but still welcome, development.  Mid-February 2025 MAGDALENA RIDGE OBSERVATORY, NEW MEXICO By this point, the roster of 2024 YR4 hunters also included the tiny team operating the Magdalena Ridge Observatory (MRO), which sits atop a tranquil mountain in New Mexico. “It’s myself and my husband,” says Eileen Ryan, the MRO director. “We’re the only two astronomers running the telescope. We have a daytime technician. It’s kind of a mom-and-pop organization.”  Still, the scope shouldn’t be underestimated. “We can see maybe a cell-phone-size object that’s illuminated at geosynchronous orbit,” Ryan says, referring to objects 22,000 miles away. But its most impressive feature is its mobility. While other observatories have slowly swiveling telescopes, MRO’s scope can move like the wind. “We can track the fastest objects,” she says, with a grin—noting that the telescope was built in part to watch missiles for the US Air Force. Its agility and long-distance vision explain why the Space Force is one of MRO’s major clients: It can be used to spy on satellites and spacecraft anywhere from low Earth orbit right out to the lunar regions. And that meant spying on the super-speedy, super-sneaky 2024 YR4 wasn’t a problem for MRO, whose own observations were vital in refining the asteroid’s impact odds. Eileen Ryan, the director of the Magdalena Ridge Observatory in New Mexico.COURTESY PHOTO Then, in mid-February, MRO and all ground-based observatories came up against an unsolvable problem: The full moon was out, shining so brightly that it blinded any telescope that dared point at the night sky. “During the full moon, the observatories couldn’t observe for a week or so,” says NEOCC’s Fenucci. To most of us, the moon is a beautiful silvery orb. But to astronomers, it’s a hostile actor. “We abhor the moon,” says Denneau.  All any of them could do was wait. Those tracking 2024 YR4 vacillated between being animated and slightly trepidatious. The thought that the asteroid could still stand a decent chance of impacting Earth after it faded from view did weigh a little on their minds.  Nevertheless, Farnocchia maintained his characteristic sangfroid throughout. “I try to stress about the things I can control,” he says. “All we can do is to explain what the situation is, and that we need new data to say more.” February 18, 2025 CENTER FOR NEAR-EARTH OBJECT STUDIES, CALIFORNIA  As the full moon finally faded into a crescent of light, the world’s largest telescopes sprang back into action for one last shot at glory. “The dark time came again,” says Hainaut, with a smile. New observations finally began to trickle in, and Sentry, Aegis, and NEODyS readjusted their forecasts. It wasn’t great news: The odds of an Earth impact in 2032 jumped up to 3.1%, officially making 2024 YR4 the most dangerous asteroid ever discovered. This declaration made headlines across the world—and certainly made the curious public sit up and wonder if they had yet another apocalyptic concern to fret about. But, as ever, the asteroid hunters held fast in their prediction that sooner or later—ideally sooner—more observations would cause those impact odds to drop.  “We kept at it,” says Ryan. But time was running short; they started to “search for out-of-the-box ways to image this asteroid,” says Fenucci.  Planetary defense researchers soon realized that 2024 YR4 wasn’t too far away from NASA’s Lucy spacecraft, a planetary science mission making a series of flybys of various asteroids. If Lucy could be redirected to catch up to 2024 YR4 instead, it would give humanity its best look at the rock, allowing Sentry and company to confirm or dispel our worst fears.  Sadly, NASA ran the numbers, and it proved to be a nonstarter: 2024 YR4 was too speedy and too far for Lucy to pursue.  It was really starting to look as if JWST would be the last, best hope to track 2024 YR4.  A CHANGE OF FATE February 19, 2025 VERY LARGE TELESCOPE, CHILE and MAGDALENA RIDGE OBSERVATORY, NEW MEXICO Just one day after 2024 YR made history, the VLT, MRO, and others caught sight of it again, and Sentry, Aegis, and NEODyS voraciously consumed their new data.  The odds of an Earth impact suddenly dropped to 1.5%.  Astronomers didn’t really have time to react to the possibility that this was a good sign—they just kept sending their observations onward. February 20, 2025 SUBARU TELESCOPE, HAWAII Yet another observatory had been itching to get into the game for weeks, but it wasn’t until February 20 that Tsuyoshi Terai, an astronomer at Japan’s Subaru Telescope, sitting atop Mauna Kea, finally caught 2024 YR4 shifting between the stars. He added his data to the stream. And all of a sudden, the asteroid lost its lethal luster. The odds of its hitting Earth were now just 0.3%.  At this point, you might expect that all those tracking it would be in a single control room somewhere, eyes glued to their screens, watching the odds drop before bursting into cheers and rapturous applause. But no—the astronomers who had spent so long observing this asteroid remained scattered across the globe. And instead of erupting into cheers, they exchanged modestly worded emails of congratulations—the digital equivalent of a nod or a handshake. In late February, data from Tsuyoshi Terai, an astronomer at Japan’s Subaru Telescope, which sits atop Mauna Kea, confirmed that 2024 YR4 was not so lethal after all. “It was a relief,” says Terai. “I was very pleased that our data contributed to put an end to the risk of 2024 YR4.”  February 24, 2025 INTERNATIONAL ASTEROID WARNING NETWORK Just a few days later, and thanks to a litany of observations continuing to flood in, IAWN issued the all-clear. This once-ominous asteroid’s odds of inconveniencing our planet were at 0.004%—one in 25,000. Today, the odds of an Earth impact in 2032 are exactly zero. “It was kinda fun while it lasted,” says Denneau.  Planetary defenders may have had a blast defending the world, but these astronomers still took the cosmic threat deeply seriously—and never once took their eyes off the prize. “In my mind, the observers and orbit teams were the stars of this story,” says Fast, NASA’s acting planetary defense officer. Farnocchia shrugs off the entire thing. “It was the expected outcome,” he says. “We just didn’t know when that would happen.” Looking back on it now, though, some 2024 YR4 trackers are allowing themselves to dwell on just how close this asteroid came to being a major danger. “It’s wild to watch it all play out,” says Denneau. “We were weeks away from having to spin up some serious mitigation planning.” But there was no need to work out how the save the world. It turned out that 2024 YR4 was never a threat to begin with—it just took a while to check.  And these experiences in handling a dicey space rock will only serve to make the world a safer place to live. One day, an asteroid very much like 2024 YR4 will be seen heading straight for Earth. And those tasked with tracking it will be officially battle-tested, and better prepared than ever to do what needs to be done. A POSTSCRIPT March 27, 2025 JAMES WEBB SPACE TELESCOPE, DEEP SPACE, ONE MILLION MILES FROM EARTH But the story of 2024 YR4 is not quite over—in fact, if this were a movie, it would have an after-credits scene. After the Earth-impact odds fell off a cliff, JWST went ahead with its observations in March anyway. It found out that 2024 YR4 was 200 feet across—so large that a direct strike on a city would have proved horrifically lethal. Earth just didn’t have to worry about it anymore.  But the moon might. Thanks in part to JWST, astronomers calculated a 3.8% chance that 2024 YR4 will impact the lunar surface in 2032. Additional JWST observations in May bumped those odds up slightly, to 4.3%, and the orbit can no longer be refined until the asteroid’s next Earth flyby in 2028.  “It may hit the moon!” says Denneau. “Everybody’s still very excited about that.”  A lunar collision would give astronomers a wonderful opportunity not only to study the physics of an asteroid impact, but also to demonstrate to the public just how good they are at precisely predicting the future motions of potentially lethal space rocks. “It’s a thing we can plan for without having to defend the Earth,” says Denneau. If 2024 YR4 is truly going to smash into the moon, the impact—likely on the side facing Earth—would unleash an explosion equivalent to hundreds of nuclear bombs. An expansive crater would be carved out in the blink of an eye, and a shower of debris would erupt in all directions.  None of this supersonic wreckage would pose any danger to Earth, but it would look spectacular: You’d be able to see the bright flash of the impact from terra firma with the naked eye. “If that does happen, it’ll be amazing,” says Denneau. It will be a spectacular way to see the saga of 2024 YR4—once a mere speck on his computer screen—come to an explosive end, from a front-row seat. Robin George Andrews is an award-winning science journalist and doctor of volcanoes based in London. He regularly writes about the Earth, space, and planetary sciences, and is the author of two critically acclaimed books: Super Volcanoes (2021) and How to Kill An Asteroid (2024).

If you were told that the odds of something were 3.1%, it really wouldn’t seem like much. But for the people charged with protecting our planet, it was huge. 

On February 18, astronomers determined that a 130- to 300-foot-long asteroid had a 3.1% chance of crashing into Earth in 2032. Never had an asteroid of such dangerous dimensions stood such a high chance of striking the planet. For those following this developing story in the news, the revelation was unnerving. For many scientists and engineers, though, it turned out to be—despite its seriousness—a little bit exciting.

While possible impact locations included patches of empty ocean, the space rock, called 2024 YR4, also had several densely populated cities in its possible crosshairs, including Mumbai, Lagos, and Bogotá. If the asteroid did in fact hit such a metropolis, the best-case scenario was severe damage; the worst case was outright, total ruin. And for the first time, a group of United Nations–backed researchers began to have high-level discussions about the fate of the world: If this asteroid was going to hit the planet, what sort of spaceflight mission might be able to stop it? Would they ram a spacecraft into it to deflect it? Would they use nuclear weapons to try to swat it away or obliterate it completely

At the same time, planetary defenders all over the world crewed their battle stations to see if we could avoid that fate—and despite the sometimes taxing new demands on their psyches and schedules, they remained some of the coolest customers in the galaxy. “I’ve had to cancel an appointment saying, I cannot come—I have to save the planet,” says Olivier Hainaut, an astronomer at the European Southern Observatory and one of those who tracked down 2024 YR4. 

Then, just as quick as history was made, experts declared that the danger had passed. On February 24, asteroid trackers issued the all-clear: Earth would be spared, just as many planetary defense researchers had felt assured it would. 

How did they do it? What was it like to track the rising (and rising and rising) danger of this asteroid, and to ultimately determine that it’d miss us?

This is the inside story of how, over a span of just two months, a sprawling network of global astronomers found, followed, mapped, planned for, and finally dismissed 2024 YR4, the most dangerous asteroid ever found—all under the tightest of timelines and, for just a moment, with the highest of stakes. 

“It was not an exercise,” says Hainaut. This was the real thing: “We really [had] to get it right.”


IN THE BEGINNING

December 27, 2024

THE ASTEROID TERRESTRIAL-IMPACT LAST ALERT SYSTEM, HAWAII

Long ago, an asteroid in the space-rock highway between Mars and Jupiter felt a disturbance in the force: the gravitational pull of Jupiter itself, king of the planets. After some wobbling back and forth, this asteroid was thrown out of the belt, skipped around the sun, and found itself on an orbit that overlapped with Earth’s own. 

“I was the first one to see the detections of it,” Larry Denneau, of the University of Hawai‘i, recalls. “A tiny white pixel on a black background.” 

Denneau is one of the principal investigators at the NASA-funded Asteroid Terrestrial-impact Last Alert System (ATLAS) telescopic network. It may have been just two days after Christmas, but as usual, he followed procedure as if it were any other day of the year and sent the observations of the tiny pixel onward to another NASA-funded facility, the Minor Planet Center (MPC) in Cambridge, Massachusetts. 

There’s an alternate reality in which none of this happened. Fortunately, in our timeline, various space agencies—chiefly NASA, but also the European Space Agency and the Japan Aerospace Exploration Agency—invest millions of dollars every year in asteroid-spotting efforts. 

And while multiple nations host observatories capable of performing this work, the US clearly leads the way: Its planetary defense program provides funding to a suite of telescopic facilities solely dedicated to identifying potentially hazardous space rocks. (At least, it leads the way for the moment. The White House’s proposal for draconian budget cuts to NASA and the National Science Foundation mean that several observatories and space missions linked to planetary defense are facing funding losses or outright terminations.) 

Astronomers working at these observatories are tasked with finding threatening asteroids before they find us—because you can’t fight what you can’t see. “They are the first line of planetary defense,” says Kelly Fast, the acting planetary defense officer at NASA’s Planetary Defense Coordination Office in Washington, DC.

ATLAS is one part of this skywatching project, and it consists of four telescopes: two in Hawaii, one in Chile, and another in South Africa. They don’t operate the way you’d think, with astronomers peering through them all night. Instead, they operate “completely robotically and automatically,” says Denneau. Driven by coding scripts that he and his colleagues have developed, these mechanical eyes work in harmony to watch out for any suspicious space rocks. Astronomers usually monitor their survey of the sky from a remote location.

ATLAS telescopes are small, so they can’t see particularly distant objects. But they have a wide field of view, allowing them to see large patches of space at any one moment. “As long as the weather is good, we’re constantly monitoring the night sky, from the North Pole to the South Pole,” says Denneau. 

Larry Denneau
Larry Denneau, a principal investigator at the Asteroid Terrestrial-impact Last Alert System telescopic network.
COURTESY PHOTO

If they detect the starlight reflecting off a moving object, an operator, such as Denneau, gets an alert and visually verifies that the object is real and not some sort of imaging artifact. When a suspected asteroid (or comet) is identified, the observations are sent to the MPC, which is home to a bulletin board featuring (among other things) orbital data on all known asteroids and comets. 

If the object isn’t already listed, a new discovery is announced, and other astronomers can perform follow-up observations. 

In just the past few years, ATLAS has detected more than 1,200 asteroids with near-Earth orbits. Finding ultimately harmless space rocks is routine work—so much so that when the new near-Earth asteroid was spotted by ATLAS’s Chilean telescope that December day, it didn’t even raise any eyebrows. 

Denneau had simply been sitting at home, doing some late-night work on his computer. At the time, of course, he didn’t know that his telescope had just spied what would soon become a history-making asteroid—one that could alter the future of the planet.

The MPC quickly confirmed the new space rock hadn’t already been “found,” and astronomers gave it a provisional designation: 2024 YR4

CATALINA SKY SURVEY, ARIZONA

Around the same time, the discovery was shared with another NASA-funded facility: the Catalina Sky Survey, a nest of three telescopes in the Santa Catalina Mountains north of Tucson that works out of the University of Arizona. “We run a very tight operation,” says Kacper Wierzchoś, one of its comet and asteroid spotters. Unlike ATLAS, these telescopes (although aided by automation) often have an in-person astronomer available to quickly alter the surveys in real time.

“We run a very tight operation,” says Kacper Wierzchoś, one of the comet and asteroid spotters at the Catalina Sky Survey north of Tucson, Arizona.
COURTESY PHOTO

So when Catalina was alerted about what its peers at ATLAS had spotted, staff deployed its Schmidt telescope—a smaller one that excels at seeing bright objects moving extremely quickly. As they fed their own observations of 2024 YR4 to the MPC, Catalina engineer David Rankin looked back over imagery from the previous days and found the new asteroid lurking in a night-sky image taken on December 26. Around then, ATLAS also realized that it had caught sight of 2024 YR4 in a photograph from December 25. 

The combined observations confirmed it: The asteroid had made its closest approach to Earth on Christmas Day, meaning it was already heading back out into space. But where, exactly, was this space rock going? Where would it end up after it swung around the sun? 

CENTER FOR NEAR-EARTH OBJECT STUDIES, CALIFORNIA 

If the answer to that question was Earth, Davide Farnocchia would be one of the first to know. You could say he’s one of NASA’s watchers on the wall. 

And he’s remarkably calm about his duties. When he first heard about 2024 YR4, he barely flinched. It was just another asteroid drifting through space not terribly far from Earth. It was another box to be ticked.

Once it was logged by the MPC, it was Farnocchia’s job to try to plot out 2024 YR4’s possible paths through space, checking to see if any of them overlapped with our planet’s. He works at NASA’s Center for Near-Earth Object Studies (CNEOS) in California, where he’s partly responsible for keeping track of all the known asteroids and comets in the solar system. “We have 1.4 million objects to deal with,” he says, matter-of-factly. 

In the past, astronomers would have had to stitch together multiple images of this asteroid and plot out its possible trajectories. Today, fortunately, Farnocchia has some help: He oversees the digital brain Sentry, an autonomous system he helped code. (Two other facilities in Italy perform similar work: the European Space Agency’s Near-Earth Object Coordination Centre, or NEOCC, and the privately owned Near-Earth Objects Dynamics Site, or NEODyS.)

To chart their courses, Sentry uses every new observation of every known asteroid or comet listed on the MPC to continuously refine the orbits of all those objects, using the immutable laws of gravity and the gravitational influences of any planets, moons, or other sizable asteroids they pass. A recent update to the software means that even the ever-so-gentle push afforded by sunlight is accounted for. That allows Sentry to confidently project the motions of all these objects at least a century into the future. 

Davide Farnoccia
Davide Farnocchia, who helps track all the known asteroids and comets in the solar system at NASA’s Center for Near-Earth Object Studies.
COURTESY PHOTO

Almost all newly discovered asteroids are quickly found to pose no impact risk. But those that stand even an infinitesimally small chance of smashing into our planet within the next 100 years are placed on the Sentry Risk List until additional observations can rule out those awful possibilities. Better safe than sorry. 

In late December, with just a limited set of data, Sentry concluded that there was a non-negligible chance 2024 YR4 would strike Earth in 2032. Aegis, the equivalent software at Europe’s NEOCC site, agreed. No bother. More observations would very likely remove 2024 YR4 from the Risk List. Just another day at the office for Farnocchia.

It’s worth noting that an asteroid heading toward Earth isn’t always a problem. Small rocks burn up in the planet’s atmosphere several times a day; you’ve probably seen one already this year, on a moonless night. But above a certain size, these rocks turn from innocuous shooting stars into nuclear-esque explosions. 

Reflected starlight is great for initially spotting asteroids, but it’s a terrible way to determine how big they are. A large, dull rock reflects as much light as a bright, tiny rock, making them appear the same to many telescopes. And that’s a problem, considering that a rock around 30 feet long will explode loudly but inconsequentially in Earth’s atmosphere, while a 3,000-foot-long asteroid would slam into the ground and cause devastation on a global scale, imperiling all of civilization. Roughly speaking, if you double the size of an asteroid, it becomes eight times more energetic upon impact—so finding out the size of an Earthbound asteroid is of paramount importance.

In those first few hours after it was discovered, and before anyone knew how shiny or dull its surface was, 2024 YR4 was estimated by astronomers to be as small as 65 feet across or as large as 500 feet. An object of the former size would blow up in mid-air, shattering windows over many miles and likely injuring thousands of people. At the latter size it would vaporize the heart of any city it struck, turning solid rock and metal into liquid and vapor, while its blast wave would devastate the rest of it, killing hundreds of thousands or even millions in the process. 

So now the question was: Just how big was 2024 YR4?


REFINING THE PICTURE

Mid-January 2025

VERY LARGE TELESCOPE, CHILE

Understandably dissatisfied with that level of imprecision, the European Southern Observatory’s Very Large Telescope (VLT), high up on the Cerro Paranal mountain in Chile’s Atacama Desert, entered the chat. As the name suggests, this flagship facility is vast, and it’s capable of really zooming in on distant objects. Or to put it another way: “The VLT is the largest, biggest, best telescope in the world,” says Hainaut, one of the facility’s operators, who usually commands it from half a world away in Germany.  

In reality, the VLT—which lends a hand to the European Space Agency in its asteroid-hunting duties—is actually made up of four massive telescopes, each fixed on four separate corners of the sky. They can be combined to act as a huge light bucket, allowing astronomers to see very faint asteroids. Four additional, smaller, movable telescopes can also team up with their bigger siblings to provide remarkably high-resolution images of even the stealthiest space rocks. 

With so much tech to oversee, the control room of the VLT looks a bit like the inside of the Death Star. “You have eight consoles, each of them with a dozen screens. It’s big, it’s large, it’s spectacular,” says Hainaut. 

In mid-January, the European Space Agency asked the VLT to study several asteroids that had somewhat suspicious near-Earth orbits—including 2024 YR4. With just a few lines of code, the VLT could easily train its sharp eyes on an asteroid like 2024 YR4, allowing astronomers to narrow down its size range. It was found to be at least 130 feet long (big enough to cause major damage in a city) and as much as 300 feet (able to annihilate one).

January 29, 2025

INTERNATIONAL ASTEROID WARNING NETWORK
Marco Fenucci
Marco Fenucci, a near-Earth-object dynamicist at the European Space Agency’s Near-Earth Object Coordination Centre.
COURTESY PHOTO

By the end of the month, there was no mistaking it: 2024 YR4 stood a greater than 1% chance of impacting Earth on December 22, 2032. 

“It’s not something you see very often,” says Marco Fenucci, a near-Earth-object dynamicist at NEOCC. He admits that although it was “a serious thing,” this escalation was also “exciting to see”—something straight out of a sci-fi flick.

Sentry and Aegis, along with the systems at NEODyS, had been checking one another’s calculations. “There was a lot of care,” says Farnocchia, who explains that even though their programs worked wonders, their predictions were manually verified by multiple experts. When a rarity like 2024 YR4 comes along, he says, “you kind of switch gears, and you start being more cautious. You start screening everything that comes in.”

At this point, the klaxon emanating from these three data centers pushed the International Asteroid Warning Network (IAWN), a UN-backed planetary defense awareness group, to issue a public alert to the world’s governments: The planet may be in peril. For the most part, it was at this moment that the media—and the wider public—became aware of the threat. Earth, we may have a problem.

Denneau, along with plenty of other astronomers, received an urgent email from Fast at NASA’s Planetary Defense Coordination Office, requesting that all capable observatories track this hazardous asteroid. But there was one glaring problem. When 2024 YR4 was discovered on December 27, it was already two days after it had made its closest approach to Earth. And since it was heading back out into the shadows of space, it was quickly fading from sight.

Once it gets too faint, “there’s not much ATLAS can do,” Denneau says. By the time of IAWN’s warning, planetary defenders had just weeks to try to track 2024 YR4 and refine the odds of its hitting Earth before they’d lose it to the darkness. 

And if their scopes failed, the odds of an Earth impact would have stayed uncomfortably high until 2028, when the asteroid was due to make another flyby of the planet. That’d be just four short years before the space rock might actually hit.

“In that situation, we would have been … in trouble,” says NEOCC’s Fenucci.

The hunt was on.


PREPARING FOR THE WORST

February 5 and February 6, 2025

SPACE MISSION PLANNING ADVISORY GROUP, AUSTRIA

In early February, spaceflight mission specialists, including those at the UN-supported Space Mission Planning Advisory Group in Vienna, began high-level talks designed to sketch out ways in which 2024 YR4 could be either deflected away from Earth or obliterated—you know, just in case.

A range of options were available—including ramming it with several uncrewed spacecraft or assaulting it with nuclear weapons—but there was no silver bullet in this situation. Nobody had ever launched a nuclear explosive device into deep space before, and the geopolitical ramifications of any nuclear-armed nations doing so in the present day would prove deeply unwelcome. Asteroids are also extremely odd objects; some, perhaps including 2024 YR4, are less like single chunks of rock and more akin to multiple cliffs flying in formation. Hit an asteroid like that too hard and you could fail to deflect it—and instead turn an Earthbound cannonball into a spray of shotgun pellets. 

It’s safe to say that early on, experts were concerned about whether they could prevent a potential disaster. Crucially, eight years was not actually much time to plan something of this scale. So they were keen to better pinpoint how likely, or unlikely, it was that 2024 YR4 was going to collide with the planet before any complex space mission planning began in earnest. 

The people involved with these talks—from physicists at some of America’s most secretive nuclear weapons research laboratories to spaceflight researchers over in Europe—were not feeling close to anything resembling panic. But “the timeline was really short,” admits Hainaut. So there was an unprecedented tempo to their discussions. This wasn’t a drill. This was the real deal. What would they do to defend the planet if an asteroid impact couldn’t be ruled out?

Luckily, over the next few days, a handful of new observations came in. Each helped Sentry, Aegis, and the system at NEODyS rule out more of 2024 YR4’s possible future orbits. Unluckily, Earth remained a potential port of call for this pesky asteroid—and over time, our planet made up a higher proportion of those remaining possibilities. That meant that the odds of an Earth impact “started bubbling up,” says Denneau. 

a telescope in each of the four corners points to an asteroid

EVA REDAMONTI

By February 6, they jumped to 2.3%—a one-in-43 chance of an impact. 

“How much anxiety someone should feel over that—it’s hard to say,” Denneau says, with a slight shrug. 

In the past, several elephantine asteroids have been found to stand a small chance of careening unceremoniously into the planet. Such incidents tend to follow a pattern. As more observations come in and the asteroid’s orbit becomes better known, an Earth impact trajectory remains a possibility while other outlying orbits are removed from the calculations—so for a time, the odds of an impact rise. Finally, with enough observations in hand, it becomes clear that the space rock will miss our world entirely, and the impact odds plummet to zero.

Astronomers expected this to repeat itself with 2024 YR4. But there was no guarantee. There’s no escaping the fact that one day, sooner or later, scientists will discover a dangerous asteroid that will punch Earth in the face—and raze a city in the process. 

After all, asteroids capable of trashing a city have found their way to Earth plenty of times before, and not just in the very distant past. In 1908, an 800-square-mile patch of forest in Siberia—one that was, fortunately, very sparsely populated—was decimated by a space rock just 180 feet long. It didn’t even hit the ground; it exploded in midair with the force of a 15-megaton blast.

But only one other asteroid comparable in size to 2024 YR4 had its 2.3% figure beat: in 2004, Apophis—capable of causing continental-scale damage—had (briefly) stood a 2.7% chance of impacting Earth in 2029.

Rapidly approaching uncharted waters, the powers that be at NASA decided to play a space-based wild card: the James Webb Space Telescope, or JWST.

THE JAMES WEBB SPACE TELESCOPE, DEEP SPACE, ONE MILLION MILES FROM EARTH

A large dull asteroid reflects the same amount of light as a small shiny one, but that doesn’t mean astronomers sizing up an asteroid are helpless. If you view both asteroids in the infrared, the larger one glows brighter than the smaller one no matter the surface coating—making infrared, or the thermal part of the electromagnetic spectrum, a much better gauge of a space rock’s proportions. 

Observatories on Earth do have infrared capabilities, but our planet’s atmosphere gets in their way, making it hard for them to offer highly accurate readings of an asteroid’s size. 

But the James Webb Space Telescope (JWST), hanging out in space, doesn’t have that problem. 

A collage of three images showing the black expanse of space. Two-thirds of the collage is taken up by the black background sprinkled with small, blurry galaxies in orange, blue, and white. There are two images in a column at the right side of the collage. On the right side of the main image, not far from the top, a very faint dot is outlined with a white square. At the right, there are two zoomed in views of this area. The top box is labeled NIRCam and shows a fuzzy dot at the center of the inset. The bottom box is labeled MIRI and shows a fuzzy pinkish dot.
Asteroid 2024 YR4 is the smallest object targeted by JWST to date, and one of the smallest objects to have its size directly measured. Observations were taken using both its NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) to study the thermal properties of the asteroid.
NASA, ESA, CSA, A. RIVKIN (APL), A. PAGAN (STSCI)

This observatory, which sits at a gravitationally stable point about a million miles from Earth, is polymathic. Its sniper-like scope can see in the infrared and allows it to peer at the edge of the observable universe, meaning it can study galaxies that formed not long after the Big Bang. It can even look at the light passing through the atmospheres of distant planets to ascertain their chemical makeups. And its remarkably sharp eye means it can also track the thermal glow of an asteroid long after all ground-based telescopes lose sight of it.

In a fortuitous bit of timing, by the moment 2024 YR4 came along, planetary defenders had recently reasoned that JWST could theoretically be used to track ominous asteroids using its own infrared scope, should the need arise. So after IAWN’s warning went out, operators of JWST ran an analysis: Though the asteroid would vanish from most scopes by late March, this one might be able to see the rock until sometime in May, which would allow researchers to greatly refine their assessment of the asteroid’s orbit and its odds of making Earth impact.

Understanding 2024 YR4’s trajectory was important, but “the size was the main motivator,” says Andy Rivkin, an astronomer at Johns Hopkins University’s Applied Physics Laboratory, who led the proposal to use JWST to observe the asteroid. The hope was that even if the impact odds remained high until 2028, JWST would find that 2024 YR4 was on the smaller side of the 130-to-300-feet size range—meaning it would still be a danger, but a far less catastrophic one. 

The JWST proposal was accepted by NASA on February 5. But the earliest it could conduct its observations was early March. And time really wasn’t on Earth’s side.

February 7, 2025

GEMINI SOUTH TELESCOPE, CHILE

“At this point, [2024 YR4] was too faint for the Catalina telescopes,” says Catalina’s Wierzchoś. “In our opinion, this was a big deal.” 

So Wierzchoś and his colleagues put in a rare emergency request to commandeer the Gemini Observatory, an internationally funded and run facility featuring two large, eagle-eyed telescopes—one in Chile and one atop Hawaii’s Mauna Kea volcano. Their request was granted, and on February 7, they trained the Chile-based Gemini South telescope onto 2024 YR4. 

This composite image was captured using the Gemini Multi-Object Spectrograph (GMOS), by a team of astronomers. The hazy dot at the center is asteroid 2024 YR4.

The odds of Earth impact dropped ever so slightly, to 2.2% —a minor, but still welcome, development. 

Mid-February 2025

MAGDALENA RIDGE OBSERVATORY, NEW MEXICO

By this point, the roster of 2024 YR4 hunters also included the tiny team operating the Magdalena Ridge Observatory (MRO), which sits atop a tranquil mountain in New Mexico.

“It’s myself and my husband,” says Eileen Ryan, the MRO director. “We’re the only two astronomers running the telescope. We have a daytime technician. It’s kind of a mom-and-pop organization.” 

Still, the scope shouldn’t be underestimated. “We can see maybe a cell-phone-size object that’s illuminated at geosynchronous orbit,” Ryan says, referring to objects 22,000 miles away. But its most impressive feature is its mobility. While other observatories have slowly swiveling telescopes, MRO’s scope can move like the wind. “We can track the fastest objects,” she says, with a grin—noting that the telescope was built in part to watch missiles for the US Air Force. Its agility and long-distance vision explain why the Space Force is one of MRO’s major clients: It can be used to spy on satellites and spacecraft anywhere from low Earth orbit right out to the lunar regions. And that meant spying on the super-speedy, super-sneaky 2024 YR4 wasn’t a problem for MRO, whose own observations were vital in refining the asteroid’s impact odds.

Eileen Ryan
Eileen Ryan, the director of the Magdalena Ridge Observatory in New Mexico.
COURTESY PHOTO

Then, in mid-February, MRO and all ground-based observatories came up against an unsolvable problem: The full moon was out, shining so brightly that it blinded any telescope that dared point at the night sky. “During the full moon, the observatories couldn’t observe for a week or so,” says NEOCC’s Fenucci. To most of us, the moon is a beautiful silvery orb. But to astronomers, it’s a hostile actor. “We abhor the moon,” says Denneau. 

All any of them could do was wait. Those tracking 2024 YR4 vacillated between being animated and slightly trepidatious. The thought that the asteroid could still stand a decent chance of impacting Earth after it faded from view did weigh a little on their minds. 

Nevertheless, Farnocchia maintained his characteristic sangfroid throughout. “I try to stress about the things I can control,” he says. “All we can do is to explain what the situation is, and that we need new data to say more.”

February 18, 2025

CENTER FOR NEAR-EARTH OBJECT STUDIES, CALIFORNIA 

As the full moon finally faded into a crescent of light, the world’s largest telescopes sprang back into action for one last shot at glory. “The dark time came again,” says Hainaut, with a smile.

New observations finally began to trickle in, and Sentry, Aegis, and NEODyS readjusted their forecasts. It wasn’t great news: The odds of an Earth impact in 2032 jumped up to 3.1%, officially making 2024 YR4 the most dangerous asteroid ever discovered.

This declaration made headlines across the world—and certainly made the curious public sit up and wonder if they had yet another apocalyptic concern to fret about. But, as ever, the asteroid hunters held fast in their prediction that sooner or later—ideally sooner—more observations would cause those impact odds to drop. 

“We kept at it,” says Ryan. But time was running short; they started to “search for out-of-the-box ways to image this asteroid,” says Fenucci. 

Planetary defense researchers soon realized that 2024 YR4 wasn’t too far away from NASA’s Lucy spacecraft, a planetary science mission making a series of flybys of various asteroids. If Lucy could be redirected to catch up to 2024 YR4 instead, it would give humanity its best look at the rock, allowing Sentry and company to confirm or dispel our worst fears. 

Sadly, NASA ran the numbers, and it proved to be a nonstarter: 2024 YR4 was too speedy and too far for Lucy to pursue. 

It was really starting to look as if JWST would be the last, best hope to track 2024 YR4. 


A CHANGE OF FATE

February 19, 2025

VERY LARGE TELESCOPE, CHILE and MAGDALENA RIDGE OBSERVATORY, NEW MEXICO

Just one day after 2024 YR made history, the VLT, MRO, and others caught sight of it again, and Sentry, Aegis, and NEODyS voraciously consumed their new data. 

The odds of an Earth impact suddenly dropped to 1.5%

Astronomers didn’t really have time to react to the possibility that this was a good sign—they just kept sending their observations onward.

February 20, 2025

SUBARU TELESCOPE, HAWAII

Yet another observatory had been itching to get into the game for weeks, but it wasn’t until February 20 that Tsuyoshi Terai, an astronomer at Japan’s Subaru Telescope, sitting atop Mauna Kea, finally caught 2024 YR4 shifting between the stars. He added his data to the stream.

And all of a sudden, the asteroid lost its lethal luster. The odds of its hitting Earth were now just 0.3%. 

At this point, you might expect that all those tracking it would be in a single control room somewhere, eyes glued to their screens, watching the odds drop before bursting into cheers and rapturous applause. But no—the astronomers who had spent so long observing this asteroid remained scattered across the globe. And instead of erupting into cheers, they exchanged modestly worded emails of congratulations—the digital equivalent of a nod or a handshake.

Dr. Tsuyoshi Tera at a workstation with many monitors
In late February, data from Tsuyoshi Terai, an astronomer at Japan’s Subaru Telescope, which sits atop Mauna Kea, confirmed that 2024 YR4 was not so lethal after all.

“It was a relief,” says Terai. “I was very pleased that our data contributed to put an end to the risk of 2024 YR4.” 

February 24, 2025

INTERNATIONAL ASTEROID WARNING NETWORK

Just a few days later, and thanks to a litany of observations continuing to flood in, IAWN issued the all-clear. This once-ominous asteroid’s odds of inconveniencing our planet were at 0.004%—one in 25,000. Today, the odds of an Earth impact in 2032 are exactly zero.

“It was kinda fun while it lasted,” says Denneau. 

Planetary defenders may have had a blast defending the world, but these astronomers still took the cosmic threat deeply seriously—and never once took their eyes off the prize. “In my mind, the observers and orbit teams were the stars of this story,” says Fast, NASA’s acting planetary defense officer.

Farnocchia shrugs off the entire thing. “It was the expected outcome,” he says. “We just didn’t know when that would happen.”

Looking back on it now, though, some 2024 YR4 trackers are allowing themselves to dwell on just how close this asteroid came to being a major danger. “It’s wild to watch it all play out,” says Denneau. “We were weeks away from having to spin up some serious mitigation planning.” But there was no need to work out how the save the world. It turned out that 2024 YR4 was never a threat to begin with—it just took a while to check. 

And these experiences in handling a dicey space rock will only serve to make the world a safer place to live. One day, an asteroid very much like 2024 YR4 will be seen heading straight for Earth. And those tasked with tracking it will be officially battle-tested, and better prepared than ever to do what needs to be done.


A POSTSCRIPT

March 27, 2025

JAMES WEBB SPACE TELESCOPE, DEEP SPACE, ONE MILLION MILES FROM EARTH

But the story of 2024 YR4 is not quite over—in fact, if this were a movie, it would have an after-credits scene.

After the Earth-impact odds fell off a cliff, JWST went ahead with its observations in March anyway. It found out that 2024 YR4 was 200 feet across—so large that a direct strike on a city would have proved horrifically lethal. Earth just didn’t have to worry about it anymore. 

But the moon might. Thanks in part to JWST, astronomers calculated a 3.8% chance that 2024 YR4 will impact the lunar surface in 2032. Additional JWST observations in May bumped those odds up slightly, to 4.3%, and the orbit can no longer be refined until the asteroid’s next Earth flyby in 2028. 

“It may hit the moon!” says Denneau. “Everybody’s still very excited about that.” 

A lunar collision would give astronomers a wonderful opportunity not only to study the physics of an asteroid impact, but also to demonstrate to the public just how good they are at precisely predicting the future motions of potentially lethal space rocks. “It’s a thing we can plan for without having to defend the Earth,” says Denneau.

If 2024 YR4 is truly going to smash into the moon, the impact—likely on the side facing Earth—would unleash an explosion equivalent to hundreds of nuclear bombs. An expansive crater would be carved out in the blink of an eye, and a shower of debris would erupt in all directions. 

None of this supersonic wreckage would pose any danger to Earth, but it would look spectacular: You’d be able to see the bright flash of the impact from terra firma with the naked eye.

“If that does happen, it’ll be amazing,” says Denneau. It will be a spectacular way to see the saga of 2024 YR4—once a mere speck on his computer screen—come to an explosive end, from a front-row seat.

Robin George Andrews is an award-winning science journalist and doctor of volcanoes based in London. He regularly writes about the Earth, space, and planetary sciences, and is the author of two critically acclaimed books: Super Volcanoes (2021) and How to Kill An Asteroid (2024).

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

US lets China buy semiconductor design software again

The reversal marks a dramatic shift from the aggressive stance the Trump administration took in May, when it imposed sweeping restrictions on electronic design automation (EDA) software — the critical tools needed to design advanced semiconductors.  A short-lived stoppage  The restrictions had targeted what analysts called the “upstream” of chip

Read More »

Hardcoded root credentials in Cisco Unified CM trigger max-severity alert

The affected products-Cisco Unified CM and Unified CM SME–are core components of enterprise telephony infrastructure, widely deployed across government agencies, financial institutions, and large corporations to manage voice, video, and messaging at scale. A flaw in these systems could allow attackers to compromise an organization’s communications, letting them log in

Read More »

United Energy LNG, Power LNG Merge to Scale Up Modular Infrastructure

United Energy LNG and Power LNG signed Monday a merger agreement to form “a scalable small-scale LNG platform serving industrial, power, and transport markets across North America”. United Energy LNG will survive as the expanded entity, immediately overseeing three liquefied natural gas (LNG) production sites in “advanced stages of development”, a joint statement said. The projects have an estimated capital of $240-270 million. Concurrently United Energy LNG announced the start of the first phase of front-end loading (FEL-1), or early planning work, for the first project site, in Houston, Texas. It said the second project is “underway” in a confidential location while the third site, in Independence, Kansas, is scheduled to begin FEL-1 this month. United Energy LNG plans to achieve financial close on the projects by the first quarter of 2026. It expects to commission the projects by the first quarter of 2027. “The company is actively engaging with feedgas suppliers, utilities, and logistics providers to build out a nationwide virtual LNG delivery network”, the statement said. “The company estimates that its addressable domestic market exceeds 2 billion cubic feet equivalent annually, representing a $3+ billion opportunity in underserved power, transport, and industrial sectors”. The combined entity targets a liquefaction capacity of “up to 540,000 MTPA at full deployment”, the companies said. “While the majors are focused on megaprojects, we’re deploying modular, nimble solutions that get LNG to the people and industries who need it now”, said United Energy LNG chief executive Brian Guinn. Power LNG chief executive Austin Terry said, “This merger represents the alignment of speed, innovation, and execution. By combining our development and operational expertise with United Energy’s capital platform, we’re unlocking a scalable model for delivering LNG where it’s needed most”. The companies said, “Unlike traditional LNG developments requiring multi-billion-dollar investments and long permitting timelines,

Read More »

NW Natural Holdings Adds Two Board Members

Natural gas and water utility NW Natural Holding Co. (NW Natural Holdings) and its subsidiary Northwest Natural Gas Co. (NW Natural) have appointed the chief of a construction firm and a sportswear executive as directors. Peter Bragdon, executive vice president, chief administrative officer and general counsel of Columbia Sportswear Co., will serve as an independent director at Portland, Oregon-based NW Natural Holdings effective July 12. NW Natural also named Bragdon to its board of directors from the same date, as well as Hoffman Construction Co. president and chief executive Dave Drinkward effective June 30. “They are both leaders at respected, industry-leading companies and their insights will be invaluable as the company continues to grow”, NW Natural Holdings board chair Malia H. Wasson said in an online statement. “We greatly value both Peter and Dave’s contributions to our local Pacific Northwest community, which is in line with NW Natural’s core values”. Bragdon has served in his current roles at Columbia since 2015. Previously he served as chief of staff at Oregon’s gubernatorial office from January 2003 to June 2004. Currently Bragdon serves as board chair at the Oregon Community Foundation. He also serves on the boards of the World Federation of the Sporting Goods Industry and the Footwear Distributors and Retailers of America, as well as the board of trustees of Reed College. Bragdon received a Juris Doctorate from Stanford Law School, a Master of Studies in Law degree from Yale Law School and a Bachelor of Arts (BA) degree from Amherst College, according to NW Natural Holdings. Drinkward has held his current positions at Hoffman since November 2018. Drinkward also serves on the boards of several organizations including the ACE Mentor Program of America, Meals on Wheels People and the Oregon Business Council. He is also a trustee of Willamette

Read More »

How Close Did Iran Come to Shutting Strait of Hormuz?

It appears that Iran was not very close to trying to block shipping through the Strait of Hormuz.  That’s what Edward L. Morse, Senior Advisor and Commodities Strategist at Hartree Partners LP, and previously the Global Head of Commodity Research at Citi Group, told Rigzone in an exclusive interview recently. “Iran’s position in the Middle East and in the global market has deteriorated significantly since the October 7 Hamas attacks in Southern Israel, which Iran with no question helped to orchestrate,” Morse said. “It has lost effective utility of all of its external proxies. It has lost its position in a number of countries almost completely … It has lost its air defense completely. And it … [has] seen its vulnerability to its control over the domestic economy, including the availability of natural gas for power generation and industry as summer demand was starting to surge,” he added. “On top of that the combination of Israeli and particularly U.S. attacks have reduced the possibility of significant assistance from the two outside powers tha[t]… have been their main global backers – Russia and China,” he continued. “The former has limited ability to provide arms given its situation vis-à-vis Ukraine while the later has absolutely no interest in seeing a disruption of critical supplies through the Strait of Hormuz,” Morse went on to state. “In short, a shutting of flows through the Strait would actually be an existential threat to Iran, and a threat to do that is not only not a critical element of its national security, it is a direct danger to its existence,” he highlighted. When asked how high oil prices would have climbed if Iran had shut the Strait, Morse told Rigzone that it is close to impossible to see how much oil prices would have increased had Iran shut

Read More »

DNO Signs Offtake Agreement to Supply Norwegian Gas to ENGIE

DNO ASA said its Norwegian operating subsidiaries have entered into an offtake agreement with France’s ENGIE SA for the company’s Norwegian gas production. The offtake agreement covers the entirety of DNO’s Norwegian gas production following its acquisition of Sval Energi Group AS, the company said in a news release. The four-year agreement is effective October 1 and “offers premium pricing,” DNO said. Related to the agreement, DNO said it has entered into an offtake financing facility with an undisclosed U.S. bank for up to $500 million. Under the facility, the bank finances DNO the value of up to 270 days of scheduled gas production based on future gas sales receivables. The all-in interest rate for drawn amounts under the facility is “significantly below” conventional reserve-based lending (RBL) terms available to DNO, with no charges for undrawn amounts, DNO said, adding that there are no financial covenants related to the facility. Proceeds from the offtake financing facility will be used to replace Sval Energi’s existing similar facilities as well as for general corporate purposes, DNO stated. “We have received strong interest by buyers to prepurchase our enlarged North Sea production of 80,000 barrels of oil equivalent per day split about equally between oil and gas,” DNO Executive Chairman Bijan Mossavar-Rahmani said. “These three-way transactions are made possible because buyers are eager to lock in secure supplies of Norwegian oil and gas and U.S. banks, in particular, have significantly stepped up fossil fuel lending,” he added. DNO said it has repaid and will not renew over $ 600 million in RBLs across its North Sea subsidiaries, “given [the] availability of attractive offtake financing terms”. In addition, the company has borrowed $300 million under a one-year bank bridge loan “to add more arrows to our quiver,” Mossavar-Rahmani said. Separately, DNO is also in

Read More »

Great British Energy Gets Permanent CEO

A release posted on the UK government website on Monday announced that Dan McGrail has been appointed as the permanent Chief Executive Officer of Great British Energy. McGrail will be based in Scotland, working from the Aberdeen headquarters, on a permanent contract with Great British Energy, the release noted, highlighting that he took up the post of interim CEO in March on secondment from RenewableUK. “His appointment brings world class private sector experience to Great British Energy, with the former Chief Executive of RenewableUK and CEO of Siemens Engines now leading the UK’s publicly owned clean power revolution,” the UK government release stated. “Under his stewardship as interim CEO for the last four months, he has helped rapidly set up the company,” the release added. “This includes announcing GBP 1 billion ($1.36 billion) for Great British Energy to invest in clean energy supply chains such as electric cables and floating offshore wind platforms to ensure the clean energy revolution is built here in Britain,” it continued. In the release, McGrail said, “it is a privilege to take on the CEO role permanently and lead Great British Energy from our Aberdeen HQ at such a pivotal moment”.  “We are already delivering for British people, with schools and hospitals set to benefit from cheaper energy bills,” he added. “We will now focus on scaling up as Britain’s publicly owned energy company, making strategic investments that drive forward the government’s clean power mission and give people a stake in clean energy,” he went on to state. UK Energy Secretary Ed Miliband said in the release, “Dan has been a visionary leader as Great British Energy’s interim CEO and will bring world class private sector experience to our publicly owned clean power company”.  “Great British Energy is at the heart of our clean power mission and Plan for Change and is investing in clean

Read More »

Iberdrola Approves Supplemental Dividend for 2024

Iberdrola SA will distribute EUR 0.409 ($0.48) per share as a supplementary dividend for 2024, raising total shareholder remuneration for last year’s results to EUR 0.645 gross per unit. The total 2024 distribution represents a 15.6 percent increase from the previous year, the Spanish multinational power utility said in an online statement. “Investors will have three options: to receive the amount corresponding to their supplementary dividend (EUR 0.409 gross per share) in cash; to sell their rights on the market; or to obtain new bonus shares from the group free of charge”, Iberdrola said. “These three options are not mutually exclusive, so shareholders can choose one of the alternatives or combine them”. Iberdrola had already paid an interim dividend of EUR 0.231 gross per share in January, followed by an “engagement dividend” of EUR 0.005 gross per share that the company pledged for reaching a quorum of 70 percent of its share capital at the meeting of shareholders last May. “Iberdrola is ahead of schedule in meeting its commitment to establish a dividend of between EUR 0.61 and EUR 0.66 per share in 2026”, it said. Iberdrola scheduled July 23 for the release of its results for the first half of 2025. For the first quarter (Q1) it had reported EUR 12.86 billion in revenue, up 1.5 percent from the same three-month period last year. However, net profit fell to EUR 2 billion, or EUR 0,302 per share – compared to EUR 2.76 billion for Q1 2025. Earnings before interest, taxes, depreciation and amortization (EBITDA) dropped from EUR 5.86 billion for Q1 2024 to EUR 4.64 billion for Q1 2025. “Excluding the capital gains from the divestment of thermal generation assets in the first quarter of 2024, net profit increased by 26 percent and EBITDA increased by 12 percent”, Iberdrola said

Read More »

CoreWeave acquires Core Scientific for $9B to power AI infrastructure push

Such a shift, analysts say, could offer short-term benefits for enterprises, particularly in cost and access, but also introduces new operational risks. “This acquisition may potentially lower enterprise pricing through lease cost elimination and annual savings, while improving GPU access via expanded power capacity, enabling faster deployment of Nvidia chipsets and systems,” said Charlie Dai, VP and principal analyst at Forrester. “However, service reliability risks persist during this crypto-to-AI retrofitting.” This also indicates that struggling vendors such as Core Scientific and similar have a way to cash out, according to Yugal Joshi, partner at Everest Group. “However, it does not materially impact the availability of Nvidia GPUs and similar for enterprises,” Joshi added. “Consolidation does impact the pricing power of vendors.” Concerns for enterprises Rising demand for AI-ready infrastructure can raise concerns among enterprises, particularly over access to power-rich data centers and future capacity constraints. “The biggest concern that CIOs should have with this acquisition is that mature data center infrastructure with dedicated power is an acquisition target,” said Hyoun Park, CEO and chief analyst at Amalgam Insights. “This may turn out to create challenges for CIOs currently collocating data workloads or seeking to keep more of their data loads on private data centers rather than in the cloud.”

Read More »

CoreWeave achieves a first with Nvidia GB300 NVL72 deployment

The deployment, Kimball said, “brings Dell quality to the commodity space. Wins like this really validate what Dell has been doing in reshaping its portfolio to accommodate the needs of the market — both in the cloud and the enterprise.” Although concerns were voiced last year that Nvidia’s next-generation Blackwell data center processors had significant overheating problems when they were installed in high-capacity server racks, he said that a repeat performance is unlikely. Nvidia, said Kimball “has been very disciplined in its approach with its GPUs and not shipping silicon until it is ready. And Dell almost doubles down on this maniacal quality focus. I don’t mean to sound like I have blind faith, but I’ve watched both companies over the last several years be intentional in delivering product in volume. Especially as the competitive market starts to shape up more strongly, I expect there is an extremely high degree of confidence in quality.” CoreWeave ‘has one purpose’ He said, “like Lambda Labs, Crusoe and others, [CoreWeave] seemingly has one purpose (for now): deliver GPU capacity to the market. While I expect these cloud providers will expand in services, I think for now the type of customer employing services is on the early adopter side of AI. From an enterprise perspective, I have to think that organizations well into their AI journey are the consumers of CoreWeave.”  “CoreWeave is also being utilized by a lot of the model providers and tech vendors playing in the AI space,” Kimball pointed out. “For instance, it’s public knowledge that Microsoft, OpenAI, Meta, IBM and others use CoreWeave GPUs for model training and more. It makes sense. These are the customers that truly benefit from the performance lift that we see from generation to generation.”

Read More »

Oracle to power OpenAI’s AGI ambitions with 4.5GW expansion

“For CIOs, this shift means more competition for AI infrastructure. Over the next 12–24 months, securing capacity for AI workloads will likely get harder, not easier. Though cost is coming down but demand is increasing as well, due to which CIOs must plan earlier and build stronger partnerships to ensure availability,” said Pareekh Jain, CEO at EIIRTrend & Pareekh Consulting. He added that CIOs should expect longer wait times for AI infrastructure. To mitigate this, they should lock in capacity through reserved instances, diversify across regions and cloud providers, and work with vendors to align on long-term demand forecasts.  “Enterprises stand to benefit from more efficient and cost-effective AI infrastructure tailored to specialized AI workloads, significantly lower their overall future AI-related investments and expenses. Consequently, CIOs face a critical task: to analyze and predict the diverse AI workloads that will prevail across their organizations, business units, functions, and employee personas in the future. This foresight will be crucial in prioritizing and optimizing AI workloads for either in-house deployment or outsourced infrastructure, ensuring strategic and efficient resource allocation,” said Neil Shah, vice president at Counterpoint Research. Strategic pivot toward AI data centers The OpenAI-Oracle deal comes in stark contrast to developments earlier this year. In April, AWS was reported to be scaling back its plans for leasing new colocation capacity — a move that AWS Vice President for global data centers Kevin Miller described as routine capacity management, not a shift in long-term expansion plans. Still, these announcements raised questions around whether the hyperscale data center boom was beginning to plateau. “This isn’t a slowdown, it’s a strategic pivot. The era of building generic data center capacity is over. The new global imperative is a race for specialized, high-density, AI-ready compute. Hyperscalers are not slowing down; they are reallocating their capital to

Read More »

Arista Buys VeloCloud to reboot SD-WANs amid AI infrastructure shift

What this doesn’t answer is how Arista Networks plans to add newer, security-oriented Secure Access Service Edge (SASE) capabilities to VeloCloud’s older SD-WAN technology. Post-acquisition, it still has only some of the building blocks necessary to achieve this. Mapping AI However, in 2025 there is always more going on with networking acquisitions than simply adding another brick to the wall, and in this case it’s the way AI is changing data flows across networks. “In the new AI era, the concepts of what comprises a user and a site in a WAN have changed fundamentally. The introduction of agentic AI even changes what might be considered a user,” wrote Arista Networks CEO, Jayshree Ullal, in a blog highlighting AI’s effect on WAN architectures. “In addition to people accessing data on demand, new AI agents will be deployed to access data independently, adapting over time to solve problems and enhance user productivity,” she said. Specifically, WANs needed modernization to cope with the effect AI traffic flows are having on data center traffic. Sanjay Uppal, now VP and general manager of the new VeloCloud Division at Arista Networks, elaborated. “The next step in SD-WAN is to identify, secure and optimize agentic AI traffic across that distributed enterprise, this time from all end points across to branches, campus sites, and the different data center locations, both public and private,” he wrote. “The best way to grab this opportunity was in partnership with a networking systems leader, as customers were increasingly looking for a comprehensive solution from LAN/Campus across the WAN to the data center.”

Read More »

Data center capacity continues to shift to hyperscalers

However, even though colocation and on-premises data centers will continue to lose share, they will still continue to grow. They just won’t be growing as fast as hyperscalers. So, it creates the illusion of shrinkage when it’s actually just slower growth. In fact, after a sustained period of essentially no growth, on-premises data center capacity is receiving a boost thanks to genAI applications and GPU infrastructure. “While most enterprise workloads are gravitating towards cloud providers or to off-premise colo facilities, a substantial subset are staying on-premise, driving a substantial increase in enterprise GPU servers,” said John Dinsdale, a chief analyst at Synergy Research Group.

Read More »

Oracle inks $30 billion cloud deal, continuing its strong push into AI infrastructure.

He pointed out that, in addition to its continued growth, OCI has a remaining performance obligation (RPO) — total future revenue expected from contracts not yet reported as revenue — of $138 billion, a 41% increase, year over year. The company is benefiting from the immense demand for cloud computing largely driven by AI models. While traditionally an enterprise resource planning (ERP) company, Oracle launched OCI in 2016 and has been strategically investing in AI and data center infrastructure that can support gigawatts of capacity. Notably, it is a partner in the $500 billion SoftBank-backed Stargate project, along with OpenAI, Arm, Microsoft, and Nvidia, that will build out data center infrastructure in the US. Along with that, the company is reportedly spending about $40 billion on Nvidia chips for a massive new data center in Abilene, Texas, that will serve as Stargate’s first location in the country. Further, the company has signaled its plans to significantly increase its investment in Abu Dhabi to grow out its cloud and AI offerings in the UAE; has partnered with IBM to advance agentic AI; has launched more than 50 genAI use cases with Cohere; and is a key provider for ByteDance, which has said it plans to invest $20 billion in global cloud infrastructure this year, notably in Johor, Malaysia. Ellison’s plan: dominate the cloud world CTO and co-founder Larry Ellison announced in a recent earnings call Oracle’s intent to become No. 1 in cloud databases, cloud applications, and the construction and operation of cloud data centers. He said Oracle is uniquely positioned because it has so much enterprise data stored in its databases. He also highlighted the company’s flexible multi-cloud strategy and said that the latest version of its database, Oracle 23ai, is specifically tailored to the needs of AI workloads. Oracle

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »