Stay Ahead, Stay ONMINE

Introduction to Minimum Cost Flow Optimization in Python

Minimum cost flow optimization minimizes the cost of moving flow through a network of nodes and edges. Nodes include sources (supply) and sinks (demand), with different costs and capacity limits. The aim is to find the least costly way to move volume from sources to sinks while adhering to all capacity limitations. Applications Applications of […]

Minimum cost flow optimization minimizes the cost of moving flow through a network of nodes and edges. Nodes include sources (supply) and sinks (demand), with different costs and capacity limits. The aim is to find the least costly way to move volume from sources to sinks while adhering to all capacity limitations.

Applications

Applications of minimum cost flow optimization are vast and varied, spanning multiple industries and sectors. This approach is crucial in logistics and supply chain management, where it is used to minimize transportation costs while ensuring timely delivery of goods. In telecommunications, it helps in optimizing the routing of data through networks to reduce latency and improve bandwidth utilization. The energy sector leverages minimum cost flow optimization to efficiently distribute electricity through power grids, reducing losses and operational costs. Urban planning and infrastructure development also benefit from this optimization technique, as it assists in designing efficient public transportation systems and water distribution networks.

Example

Below is a simple flow optimization example:

The image above illustrates a minimum cost flow optimization problem with six nodes and eight edges. Nodes A and B serve as sources, each with a supply of 50 units, while nodes E and F act as sinks, each with a demand of 40 units. Every edge has a maximum capacity of 25 units, with variable costs indicated in the image. The objective of the optimization is to allocate flow on each edge to move the required units from nodes A and B to nodes E and F, respecting the edge capacities at the lowest possible cost.

Node F can only receive supply from node B. There are two paths: directly or through node D. The direct path has a cost of 2, while the indirect path via D has a combined cost of 3. Thus, 25 units (the maximum edge capacity) are moved directly from B to F. The remaining 15 units are routed via B -D-F to meet the demand.

Currently, 40 out of 50 units have been transferred from node B, leaving a remaining supply of 10 units that can be moved to node E. The available pathways for supplying node E include: A-E and B-E with a cost of 3, A-C-E with a cost of 4, and B-C-E with a cost of 5. Consequently, 25 units are transported from A-E (limited by the edge capacity) and 10 units from B-E (limited by the remaining supply at node B). To meet the demand of 40 units at node E, an additional 5 units are moved via A-C-E, resulting in no flow being allocated to the B-C pathway.

Mathematical formulation

I introduce two mathematical formulations of minimum cost flow optimization:

1. LP (linear program) with continuous variables only

2. MILP (mixed integer linear program) with continuous and discrete variables

I am using following definitions:

Definitions

LP formulation

This formulation only contains decision variables that are continuous, meaning they can have any value as long as all constraints are fulfilled. Decision variables are in this case the flow variables x(u, v) of all edges.

The objective function describes how the costs that are supposed to be minimized are calculated. In this case it is defined as the flow multiplied with the variable cost summed up over all edges:

Constraints are conditions that must be satisfied for the solution to be valid, ensuring that the flow does not exceed capacity limitations.

First, all flows must be non-negative and not exceed to edge capacities:

Flow conservation constraints ensure that the same amount of flow that goes into a node has to come out of the node. These constraints are applied to all nodes that are neither sources nor sinks:

For source and sink nodes the difference of out flow and in flow is smaller or equal the supply of the node:

If v is a source the difference of outflow minus inflow must not exceed the supply s(v). In case v is a sink node we do not allow that more than -s(v) can flow into the node than out of the node (for sinks s(v) is negative).

MILP

Additionally, to the continuous variables of the LP formulation, the MILP formulation also contains discreate variables that can only have specific values. Discrete variables allow to restrict the number of used nodes or edges to certain values. It can also be used to introduce fixed costs for using nodes or edges. In this article I show how to add fixed costs. It is important to note that adding discrete decision variables makes it much more difficult to find an optimal solution, hence this formulation should only be used if a LP formulation is not possible.

The objective function is defined as:

With three terms: variable cost of all edges, fixed cost of all edges, and fixed cost of all nodes.

The maximum flow that can be allocated to an edge depends on the edge’s capacity, the edge selection variable, and the origin node selection variable:

This equation ensures that flow can only be assigned to edges if the edge selection variable and the origin node selection variable are 1.

The flow conservation constraints are equivalent to the LP problem.

Implementation

In this section I explain how to implement a MILP optimization in Python. You can find the code in this repo.

Libraries

To build the flow network, I used NetworkX which is an excellent library (https://networkx.org/) for working with graphs. There are many interesting articles that demonstrate how powerful and easy to use NetworkX is to work with graphs, i.a. customizing NetworkX GraphsNetworkX: Code Demo for Manipulating SubgraphsSocial Network Analysis with NetworkX: A Gentle Introduction.

One important aspect when building an optimization is to make sure that the input is correctly defined. Even one small error can make the problem infeasible or can lead to an unexpected solution. To avoid this, I used Pydantic to validate the user input and raise any issues at the earliest possible stage. This article gives an easy to understand introduction to Pydantic.

To transform the defined network into a mathematical optimization problem I used PuLP. Which allows to define all variables and constraint in an intuitive way. This library also has the advantage that it can use many different solvers in a simple pug-and-play fashion. This article provides good introduction to this library.

Defining nodes and edges

The code below shows how nodes are defined:

from pydantic import BaseModel, model_validator
from typing import Optional

# node and edge definitions
class Node(BaseModel, frozen=True):
    """
    class of network node with attributes:
    name: str - name of node
    demand: float - demand of node (if node is sink)
    supply: float - supply of node (if node is source)
    capacity: float - maximum flow out of node
    type: str - type of node
    x: float - x-coordinate of node
    y: float - y-coordinate of node
    fixed_cost: float - cost of selecting node
    """
    name: str
    demand: Optional[float] = 0.0
    supply: Optional[float] = 0.0
    capacity: Optional[float] = float('inf')
    type: Optional[str] = None
    x: Optional[float] = 0.0
    y: Optional[float] = 0.0
    fixed_cost: Optional[float] = 0.0

    @model_validator(mode='after')
    def validate(self):
        """
        validate if node definition are correct
        """
        # check that demand is non-negative
        if self.demand < 0 or self.demand == float('inf'): raise ValueError('demand must be non-negative and finite')
        # check that supply is non-negative
        if self.supply < 0: raise ValueError('supply must be non-negative')
        # check that capacity is non-negative
        if self.capacity < 0: raise ValueError('capacity must be non-negative')
        # check that fixed_cost is non-negative
        if self.fixed_cost < 0: raise ValueError('fixed_cost must be non-negative')
        return self

Nodes are defined through the Node class which is inherited from Pydantic’s BaseModel. This enables an automatic validation that ensures that all properties are defined with the correct datatype whenever a new object is created. In this case only the name is a required input, all other properties are optional, if they are not provided the specified default value is assigned to them. By setting the “frozen” parameter to True I made all properties immutable, meaning they cannot be changed after the object has been initialized.

The validate method is executed after the object has been initialized and applies more checks to ensure the provided values are as expected. Specifically it checks that demand, supply, capacity, variable cost and fixed cost are not negative. Furthermore, it also does not allow infinite demand as this would lead to an infeasible optimization problem.

These checks look trivial, however their main benefit is that they will trigger an error at the earliest possible stage when an input is incorrect. Thus, they prevent creating a optimization model that is incorrect. Exploring why a model cannot be solved would be much more time consuming as there are many factors that would need to be analyzed, while such “trivial” input error may not be the first aspect to investigate.

Edges are implemented as follows:

class Edge(BaseModel, frozen=True):
"""
class of edge between two nodes with attributes:
origin: 'Node' - origin node of edge
destination: 'Node' - destination node of edge
capacity: float - maximum flow through edge
variable_cost: float - cost per unit flow through edge
fixed_cost: float - cost of selecting edge
"""
origin: Node
destination: Node
capacity: Optional[float] = float('inf')
variable_cost: Optional[float] = 0.0
fixed_cost: Optional[float] = 0.0

@model_validator(mode='after')
def validate(self):
"""
validate of edge definition is correct
"""
# check that node names are different
if self.origin.name == self.destination.name: raise ValueError('origin and destination names must be different')
# check that capacity is non-negative
if self.capacity < 0: raise ValueError('capacity must be non-negative')
# check that variable_cost is non-negative
if self.variable_cost < 0: raise ValueError('variable_cost must be non-negative')
# check that fixed_cost is non-negative
if self.fixed_cost < 0: raise ValueError('fixed_cost must be non-negative')
return self

The required inputs are an origin node and a destination node object. Additionally, capacity, variable cost and fixed cost can be provided. The default value for capacity is infinity which means if no capacity value is provided it is assumed the edge does not have a capacity limitation. The validation ensures that the provided values are non-negative and that origin node name and the destination node name are different.

Initialization of flowgraph object

To define the flowgraph and optimize the flow I created a new class called FlowGraph that is inherited from NetworkX’s DiGraph class. By doing this I can add my own methods that are specific to the flow optimization and at the same time use all methods DiGraph provides:

from networkx import DiGraph
from pulp import LpProblem, LpVariable, LpMinimize, LpStatus

class FlowGraph(DiGraph):
    """
    class to define and solve minimum cost flow problems
    """
    def __init__(self, nodes=[], edges=[]):
        """
        initialize FlowGraph object
        :param nodes: list of nodes
        :param edges: list of edges
        """
        # initialialize digraph
        super().__init__(None)

        # add nodes and edges
        for node in nodes: self.add_node(node)
        for edge in edges: self.add_edge(edge)


    def add_node(self, node):
        """
        add node to graph
        :param node: Node object
        """
        # check if node is a Node object
        if not isinstance(node, Node): raise ValueError('node must be a Node object')
        # add node to graph
        super().add_node(node.name, demand=node.demand, supply=node.supply, capacity=node.capacity, type=node.type, 
                         fixed_cost=node.fixed_cost, x=node.x, y=node.y)
        
    
    def add_edge(self, edge):    
        """
        add edge to graph
        @param edge: Edge object
        """   
        # check if edge is an Edge object
        if not isinstance(edge, Edge): raise ValueError('edge must be an Edge object')
        # check if nodes exist
        if not edge.origin.name in super().nodes: self.add_node(edge.origin)
        if not edge.destination.name in super().nodes: self.add_node(edge.destination)

        # add edge to graph
        super().add_edge(edge.origin.name, edge.destination.name, capacity=edge.capacity, 
                         variable_cost=edge.variable_cost, fixed_cost=edge.fixed_cost)

FlowGraph is initialized by providing a list of nodes and edges. The first step is to initialize the parent class as an empty graph. Next, nodes and edges are added via the methods add_node and add_edge. These methods first check if the provided element is a Node or Edge object. If this is not the case an error will be raised. This ensures that all elements added to the graph have passed the validation of the previous section. Next, the values of these objects are added to the Digraph object. Note that the Digraph class also uses add_node and add_edge methods to do so. By using the same method name I am overwriting these methods to ensure that whenever a new element is added to the graph it must be added through the FlowGraph methods which validate the object type. Thus, it is not possible to build a graph with any element that has not passed the validation tests.

Initializing the optimization problem

The method below converts the network into an optimization model, solves it, and retrieves the optimized values.

  def min_cost_flow(self, verbose=True):
        """
        run minimum cost flow optimization
        @param verbose: bool - print optimization status (default: True)
        @return: status of optimization
        """
        self.verbose = verbose

        # get maximum flow
        self.max_flow = sum(node['demand'] for _, node in super().nodes.data() if node['demand'] > 0)

        start_time = time.time()
        # create LP problem
        self.prob = LpProblem("FlowGraph.min_cost_flow", LpMinimize)
        # assign decision variables
        self._assign_decision_variables()
        # assign objective function
        self._assign_objective_function()
        # assign constraints
        self._assign_constraints()
        if self.verbose: print(f"Model creation time: {time.time() - start_time:.2f} s")

        start_time = time.time()
        # solve LP problem
        self.prob.solve()
        solve_time = time.time() - start_time

        # get status
        status = LpStatus[self.prob.status]

        if verbose:
            # print optimization status
            if status == 'Optimal':
                # get objective value
                objective = self.prob.objective.value()
                print(f"Optimal solution found: {objective:.2f} in {solve_time:.2f} s")
            else:
                print(f"Optimization status: {status} in {solve_time:.2f} s")
        
        # assign variable values
        self._assign_variable_values(status=='Optimal')

        return status

Pulp’s LpProblem is initialized, the constant LpMinimize defines it as a minimization problem — meaning it is supposed to minimize the value of the objective function. In the following lines all decision variables are initialized, the objective function as well as all constraints are defined. These methods will be explained in the following sections.

Next, the problem is solved, in this step the optimal value of all decision variables is determined. Following the status of the optimization is retrieved. When the status is “Optimal” an optimal solution could be found other statuses are “Infeasible” (it is not possible to fulfill all constraints), “Unbounded” (the objective function can have an arbitrary low values), and “Undefined” meaning the problem definition is not complete. In case no optimal solution was found the problem definition needs to be reviewed.

Finally, the optimized values of all variables are retrieved and assigned to the respective nodes and edges.

Defining decision variables

All decision variables are initialized in the method below:

   def _assign_variable_values(self, opt_found):
        """
        assign decision variable values if optimal solution found, otherwise set to None
        @param opt_found: bool - if optimal solution was found
        """
        # assign edge values        
        for _, _, edge in super().edges.data():
            # initialize values
            edge['flow'] = None
            edge['selected'] = None
            # check if optimal solution found
            if opt_found and edge['flow_var'] is not None:                    
                edge['flow'] = edge['flow_var'].varValue                    

                if edge['selection_var'] is not None: 
                    edge['selected'] = edge['selection_var'].varValue

        # assign node values
        for _, node in super().nodes.data():
            # initialize values
            node['selected'] = None
            if opt_found:                
                # check if node has selection variable
                if node['selection_var'] is not None: 
                    node['selected'] = node['selection_var'].varValue

First it iterates through all edges and assigns continuous decision variables if the edge capacity is greater than 0. Furthermore, if fixed costs of the edge are greater than 0 a binary decision variable is defined as well. Next, it iterates through all nodes and assigns binary decision variables to nodes with fixed costs. The total number of continuous and binary decision variables is counted and printed at the end of the method.

Defining objective

After all decision variables have been initialized the objective function can be defined:

    def _assign_objective_function(self):
        """
        define objective function
        """
        objective = 0
 
        # add edge costs
        for _, _, edge in super().edges.data():
            if edge['selection_var'] is not None: objective += edge['selection_var'] * edge['fixed_cost']
            if edge['flow_var'] is not None: objective += edge['flow_var'] * edge['variable_cost']
        
        # add node costs
        for _, node in super().nodes.data():
            # add node selection costs
            if node['selection_var'] is not None: objective += node['selection_var'] * node['fixed_cost']

        self.prob += objective, 'Objective',

The objective is initialized as 0. Then for each edge fixed costs are added if the edge has a selection variable, and variable costs are added if the edge has a flow variable. For all nodes with selection variables fixed costs are added to the objective as well. At the end of the method the objective is added to the LP object.

Defining constraints

All constraints are defined in the method below:

  def _assign_constraints(self):
        """
        define constraints
        """
        # count of contraints
        constr_count = 0
        # add capacity constraints for edges with fixed costs
        for origin_name, destination_name, edge in super().edges.data():
            # get capacity
            capacity = edge['capacity'] if edge['capacity'] < float('inf') else self.max_flow
            rhs = capacity
            if edge['selection_var'] is not None: rhs *= edge['selection_var']
            self.prob += edge['flow_var'] <= rhs, f"capacity_{origin_name}-{destination_name}",
            constr_count += 1
            
            # get origin node
            origin_node = super().nodes[origin_name]
            # check if origin node has a selection variable
            if origin_node['selection_var'] is not None:
                rhs = capacity * origin_node['selection_var'] 
                self.prob += (edge['flow_var'] <= rhs, f"node_selection_{origin_name}-{destination_name}",)
                constr_count += 1

        total_demand = total_supply = 0
        # add flow conservation constraints
        for node_name, node in super().nodes.data():
            # aggregate in and out flows
            in_flow = 0
            for _, _, edge in super().in_edges(node_name, data=True):
                if edge['flow_var'] is not None: in_flow += edge['flow_var']
            
            out_flow = 0
            for _, _, edge in super().out_edges(node_name, data=True):
                if edge['flow_var'] is not None: out_flow += edge['flow_var']

            # add node capacity contraint
            if node['capacity'] < float('inf'):
                self.prob += out_flow = demand - supply
                rhs = node['demand'] - node['supply']
                self.prob += in_flow - out_flow >= rhs, f"flow_balance_{node_name}",
            constr_count += 1

            # update total demand and supply
            total_demand += node['demand']
            total_supply += node['supply']

        if self.verbose:
            print(f"Constraints: {constr_count}")
            print(f"Total supply: {total_supply}, Total demand: {total_demand}")

First, capacity constraints are defined for each edge. If the edge has a selection variable the capacity is multiplied with this variable. In case there is no capacity limitation (capacity is set to infinity) but there is a selection variable, the selection variable is multiplied with the maximum flow that has been calculated by aggregating the demand of all nodes. An additional constraint is added in case the edge’s origin node has a selection variable. This constraint means that flow can only come out of this node if the selection variable is set to 1.

Following, the flow conservation constraints for all nodes are defined. To do so the total in and outflow of the node is calculated. Getting all in and outgoing edges can easily be done by using the in_edges and out_edges methods of the DiGraph class. If the node has a capacity limitation the maximum outflow will be constraint by that value. For the flow conservation it is necessary to check if the node is either a source or sink node or a transshipment node (demand equals supply). In the first case the difference between inflow and outflow must be greater or equal the difference between demand and supply while in the latter case in and outflow must be equal.

The total number of constraints is counted and printed at the end of the method.

Retrieving optimized values

After running the optimization, the optimized variable values can be retrieved with the following method:

    def _assign_variable_values(self, opt_found):
        """
        assign decision variable values if optimal solution found, otherwise set to None
        @param opt_found: bool - if optimal solution was found
        """
        # assign edge values        
        for _, _, edge in super().edges.data():
            # initialize values
            edge['flow'] = None
            edge['selected'] = None
            # check if optimal solution found
            if opt_found and edge['flow_var'] is not None:                    
                edge['flow'] = edge['flow_var'].varValue                    

                if edge['selection_var'] is not None: 
                    edge['selected'] = edge['selection_var'].varValue

        # assign node values
        for _, node in super().nodes.data():
            # initialize values
            node['selected'] = None
            if opt_found:                
                # check if node has selection variable
                if node['selection_var'] is not None: 
                    node['selected'] = node['selection_var'].varValue 

This method iterates through all edges and nodes, checks if decision variables have been assigned and adds the decision variable value via varValue to the respective edge or node.

Demo

To demonstrate how to apply the flow optimization I created a supply chain network consisting of 2 factories, 4 distribution centers (DC), and 15 markets. All goods produced by the factories have to flow through one distribution center until they can be delivered to the markets.

Supply chain problem

Node properties were defined:

Node definitions

Ranges mean that uniformly distributed random numbers were generated to assign these properties. Since Factories and DCs have fixed costs the optimization also needs to decide which of these entities should be selected.

Edges are generated between all Factories and DCs, as well as all DCs and Markets. The variable cost of edges is calculated as the Euclidian distance between origin and destination node. Capacities of edges from Factories to DCs are set to 350 while from DCs to Markets are set to 100.

The code below shows how the network is defined and how the optimization is run:

# Define nodes
factories = [Node(name=f'Factory {i}', supply=700, type='Factory', fixed_cost=100, x=random.uniform(0, 2),
                  y=random.uniform(0, 1)) for i in range(2)]
dcs = [Node(name=f'DC {i}', fixed_cost=25, capacity=500, type='DC', x=random.uniform(0, 2), 
            y=random.uniform(0, 1)) for i in range(4)]
markets = [Node(name=f'Market {i}', demand=random.randint(1, 100), type='Market', x=random.uniform(0, 2), 
                y=random.uniform(0, 1)) for i in range(15)]

# Define edges
edges = []
# Factories to DCs
for factory in factories:
    for dc in dcs:
        distance = ((factory.x - dc.x)**2 + (factory.y - dc.y)**2)**0.5
        edges.append(Edge(origin=factory, destination=dc, capacity=350, variable_cost=distance))

# DCs to Markets
for dc in dcs:
    for market in markets:
        distance = ((dc.x - market.x)**2 + (dc.y - market.y)**2)**0.5
        edges.append(Edge(origin=dc, destination=market, capacity=100, variable_cost=distance))

# Create FlowGraph
G = FlowGraph(edges=edges)

G.min_cost_flow()

The output of flow optimization is as follows:

Variable types: 68 continuous, 6 binary
Constraints: 161
Total supply: 1400.0, Total demand: 909.0
Model creation time: 0.00 s
Optimal solution found: 1334.88 in 0.23 s

The problem consists of 68 continuous variables which are the edges’ flow variables and 6 binary decision variables which are the selection variables of the Factories and DCs. There are 161 constraints in total which consist of edge and node capacity constraints, node selection constraints (edges can only have flow if the origin node is selected), and flow conservation constraints. The next line shows that the total supply is 1400 which is higher than the total demand of 909 (if the demand was higher than the supply the problem would be infeasible). Since this is a small optimization problem, the time to define the optimization model was less than 0.01 seconds. The last line shows that an optimal solution with an objective value of 1335 could be found in 0.23 seconds.

Additionally, to the code I described in this post I also added two methods that visualize the optimized solution. The code of these methods can also be found in the repo.

Flow graph

All nodes are located by their respective x and y coordinates. The node and edge size is relative to the total volume that is flowing through. The edge color refers to its utilization (flow over capacity). Dashed lines show edges without flow allocation.

In the optimal solution both Factories were selected which is inevitable as the maximum supply of one Factory is 700 and the total demand is 909. However, only 3 of the 4 DCs are used (DC 0 has not been selected).

In general the plot shows the Factories are supplying the nearest DCs and DCs the nearest Markets. However, there are a few exceptions to this observation: Factory 0 also supplies DC 3 although Factory 1 is nearer. This is due to the capacity constraints of the edges which only allow to move at most 350 units per edge. However, the closest Markets to DC 3 have a slightly higher demand, hence Factory 0 is moving additional units to DC 3 to meet that demand. Although Market 9 is closest to DC 3 it is supplied by DC 2. This is because DC 3 would require an additional supply from Factory 0 to supply this market and since the total distance from Factory 0 over DC 3 is longer than the distance from Factory 0 through DC 2, Market 9 is supplied via the latter route.

Another way to visualize the results is via a Sankey diagram which focuses on visualizing the flows of the edges:

Sankey flow diagram

The colors represent the edges’ utilizations with lowest utilizations in green changing to yellow and red for the highest utilizations. This diagram shows very well how much flow goes through each node and edge. It highlights the flow from Factory 0 to DC 3 and also that Market 13 is supplied by DC 2 and DC 1.

Summary

Minimum cost flow optimizations can be a very helpful tool in many domains like logistics, transportation, telecommunication, energy sector and many more. To apply this optimization it is important to translate a physical system into a mathematical graph consisting of nodes and edges. This should be done in a way to have as few discrete (e.g. binary) decision variables as necessary as those make it significantly more difficult to find an optimal solution. By combining Python’s NetworkX, Pulp and Pydantic libraries I built an flow optimization class that is intuitive to initialize and at the same time follows a generalized formulation which allows to apply it in many different use cases. Graph and flow diagrams are very helpful to understand the solution found by the optimizer.

If not otherwise stated all images were created by the author.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Nissan, SK On announce $661M EV battery supply deal

Dive Brief: Nissan Motor Corp. and SK On inked a battery agreement to bolster the automaker’s electric vehicle production in North America, according to a Wednesday press release. Under the $661 million deal, the battery manufacturer will supply Nissan with roughly 100 GWh of high-nickel batteries from 2028 to 2033.

Read More »

Nvidia launches research center to accelerate quantum computing breakthrough

The new research center aims to tackle quantum computing’s most significant challenges, including qubit noise reduction and the transformation of experimental quantum processors into practical devices. “By combining quantum processing units (QPUs) with state-of-the-art GPU technology, Nvidia hopes to accelerate the timeline to practical quantum computing applications,” the statement added.

Read More »

Keysight network packet brokers gain AI-powered features

The technology has matured considerably since then. Over the last five years, Singh said that most of Keysight’s NPB customers are global Fortune 500 organizations that have large network visibility practices. Meaning they deploy a lot of packet brokers with capabilities ranging anywhere from one gigabit networking at the edge,

Read More »

Adding, managing and deleting groups on Linux

$ sudo groupadd -g 1111 techs In this case, a specific group ID (1111) is being assigned. Omit the -g option to use the next available group ID (e.g., sudo groupadd techs). Once a group is added, you will find it in the /etc/group file. $ grep techs /etc/grouptechs:x:1111: Adding

Read More »

Power Moves: New renewables managing director for PX Group and more

Tracy Wilson-Long has been appointed to Teesside-based PX Group as its new managing director for power and renewables. Originally from Teesside, Wilson-Long brings a wealth of experience to the role, having previously held strategic leadership positions at BP, working on global large-scale projects across North America, Europe, Asia, and Africa. Most recently she has worked in the Canadian clean technology space, helping start-ups advance to commercialisation, with a key focus and expertise in the developing hydrogen market. Tracy succeeds Neil Grimley, who has been with PX Group for over three decades and has shown outstanding, dedication and contribution, most recently in his leadership role building the power and renewables portfolio. He will now transition to the role of group business development director, where he will leverage his extensive experience to drive growth in fuels, terminals, and major net zero projects. Wilson-Long said: “PX Group’s vision, strategy and culture are a fantastic fit for me, I’m really looking forward to getting out to all our sites, meeting our people and customers, whilst learning all about the diverse operations in our business. I’m looking forward to working with PX Group’s talented team to unlock new possibilities.” PX Group recently scored a major contract win as it landed an operations and maintenance deal for the Tees Renewable Energy Plant (Tees REP). © Supplied by EnerMechEnerMech head of regional management in the Asia Pacific region Jason Jeow. Jason Jeow has been promoted to head Aberdeen-based EnerMech’s regional management in the Asia Pacific region. Jeow joined EnerMech in February as vice-president for Asia Pacific and will take on responsibility for managing relationships with regulatory bodies and environmental agencies as well as collaborate with business lines and local leaders to ensure adherence to high HSE standards and the safety of EnerMech personnel. EnerMech CEO Charles ‘Chuck’

Read More »

USA Crude Oil Inventories Rise Week on Week

U.S. commercial crude oil inventories, excluding those in the Strategic Petroleum Reserve (SPR), increased by 1.7 million barrels from the week ending March 7 to the week ending March 14, the U.S. Energy Information Administration (EIA) highlighted in its latest weekly petroleum status report. That report was released on March 19 and included data for the week ending March 14. This EIA report showed that crude oil stocks, not including the SPR, stood at 437.0 million barrels on March 14, 435.2 million barrels on March 7, and 445.0 million barrels on March 15, 2024. Crude oil in the SPR stood at 395.9 million barrels on March 14, 395.6 million barrels on March 7, and 362.3 million barrels on March 15, 2024, the report outlined. The EIA report highlighted that data may not add up to totals due to independent rounding. Total petroleum stocks – including crude oil, total motor gasoline, fuel ethanol, kerosene type jet fuel, distillate fuel oil, residual fuel oil, propane/propylene, and other oils – stood at 1.596 billion barrels on March 14, the report showed. Total petroleum stocks were up 1.9 million barrels week on week and up 22.5 million barrels year on year, the report revealed. “At 437.0 million barrels, U.S. crude oil inventories are about five percent below the five year average for this time of year,” the EIA said in its latest weekly petroleum status report. “Total motor gasoline inventories decreased by 0.5 million barrels from last week and are two percent above the five year average for this time of year. Finished gasoline inventories and blending components inventories both decreased last week,” it added. “Distillate fuel inventories decreased by 2.8 million barrels last week and are about six percent below the five year average for this time of year. Propane/propylene inventories decreased by

Read More »

Ceres Power strikes ‘record’ 2024

Fuel cell and electrolyser company Ceres Power generated record revenues and orders which narrowed losses in 2024, according to its final results for the year to 31 December. “This past year has been a record,” the company’s chief executive Phil Caldwell said on a call on Friday. “Looking ahead to next year… if we can get similar performance in 2025, that would also be a very good year.” The Horsham-based company’s revenues more than doubled over the year to £51.9 million, up from £22.3m a year earlier. Its gross margin rose to 77%, with gross profit nearly quadrupling to £40.2m, up from £13.6m in 2023. Healthy sales of services and licences and increased profitability meant pre-tax losses for the year halved to £25.9m, from a £53.6m loss in the prior year. Caldwell attributed the results, including a record order book of £112.8m for the period, to “progress” that the company has made with its partners. The firm signed three “significant” partner licence agreements in the year, although it was also disappointed” that its shareholder Bosch announced in February it would cease production of the firm’s fuel cells and divest its minority stake. During the period, Ceres signed two new manufacturing licensees, Taiwan-based Delta Electronics and Denso in Japan, together with India’s electrolyser company Thermax. “What that does is that builds out our market share and really where this business becomes profitable is, as those partners get to market and we’ve started to get products in the market, that’s where we get royalties and that’s what really drives the business forwards,” he said. “So, making progress with existing partners and also adding new partners to that is really how we grow the business.” First hydrogen production This fiscal year, the fuel cell and electrolyser company said it expects to reach initial

Read More »

UK net zero innovators to showcase pioneering tech in Aberdeen

Leading energy technology companies from across the UK will head to Aberdeen in April for the Net Zero Innovators conference at the P&J Live. Organised by the Net Zero Technology Centre (NZTC), the event comes amid a multibillion-pound boom in the UK’s energy transition sector. Taking place on 3 April, the conference will feature 50 exhibiting startups including previous participants from the NZTC TechX Accelerator programme. Firms including Frontier Robotics, Wastewater Fuels and JET Connectivity will showcase their innovations, alongside a series of panel discussions. Technologies on display range from renewables to energy storage, carbon capture, hydrogen, alternative fuels and industrial decarbonisation. Since its launch, the Aberdeen-headquartered NZTC has co-invested £420 million in technology development and demonstration projects. Jointly funded by the UK and Scottish governments as part of the Aberdeen City Region Deal, the NZTC said its investment programme has created 1,550 direct jobs in Scotland. Net Zero Innovators NZTC chief acceleration officer Mark Anderson said events like the Net Zero Innovators conference “are about more than just ideas”. “They’re about bringing people together and driving real change,” he said. “As our first-ever Net Zero Innovators conference, this event is a major step forward in our journey to connect the brightest minds and most impactful innovations with their potential customers and backers in the energy industry. © Supplied by NZTCNZTC TechX director Mark Anderson. “It’s happening at an exciting time for Scotland’s net zero economy, which is growing at the fastest rate in the UK.” Anderson said the conference will demonstration how collaboration can “accelerate the transition to net zero” and boost “not also sustainability but also the economy”. “We’re thrilled to bring together experts and innovators who, through our TechX Accelerator, are turning cutting-edge ideas into scalable, commercial solutions,” he said. “These startups are making a real impact

Read More »

US deploys record energy storage in 2024, but Trump policies cloud outlook: WoodMac/ACP

Dive Brief: U.S. energy storage installations reached 12.3 GW/37.1 GWh in 2024 despite a 20% year-over-year drop in the fourth quarter, Wood Mackenzie and the American Clean Power Association said Wednesday. The full-year 2024 and Q1 2025 Energy Storage Monitor projected 15 GW/48 GWh of energy storage deployments in 2025, a 25% increase over 2024, due to strong growth in the utility-scale segment and an expected 47% jump in the residential segment. But state and federal policy uncertainty cloud the medium-term outlook for energy storage, resulting in a 27-GW gap between Wood Mackenzie’s five-year “high” and “low” cases, the report said.  Dive Insight: U.S. energy storage deployments rose 34% from 2023 to 2024, and all three energy storage segments Wood Mackenzie tracks saw double-digit growth. The utility-scale segment grew 32% to 33.7 GWh, while the residential segment jumped 64% to just over 3 GWh and the community-scale, commercial and industrial segment rose 11% to 370 MWh, Wood Mackenzie said. The residential and CCI segments saw strong growth in Q4 2024, but utility-scale deployments fell 28%, resulting in a decline in total deployments during the quarter. Development delays in late 2024 pushed about 2 GW of projects originally expected for last year into 2025, boosting Wood Mackenzie’s 2025 forecast for utility-scale deployments by 11% from the previous quarter. Q4 2024 saw a noticeable increase in installations outside California and Texas, the United States’ largest energy storage markets. The two states accounted for 61% of deployments in the fourth quarter, a 30% drop from Q3 2024, as New Mexico (400 MW), Oregon (292 MW), Arizona (185 MW) and North Carolina (115 MW) made meaningful contributions. In the residential market, the storage attachment rate reached 34% despite slower-than-expected progress to retire California’s backlog of projects under the legacy NEM 2.0 tariff, Wood Mackenzie

Read More »

FERC approves SPP’s RTO West, plus 4 other open meeting takeaways

The Southwest Power Pool will expand its regional transmission organization operations into the Western Interconnection as soon as early next year under its RTO West plan, which the Federal Energy Regulatory Commission approved on Thursday. “This proposal will likely enhance grid reliability and operational efficiency by consolidating transmission management under a single RTO,” FERC Commissioner Willie Phillips said during the agency’s monthly meeting. The approval of SPP’s RTO West plan “is another major milestone for the market evolution in the Western part of the U.S.,” FERC Commissioner Judy Chang said. Chang and Phillips said more work needs to occur on RTO West, however, especially on how the seams between markets and nonmarket areas will be managed. “In the near future, I hope we can address seams issues — like data sharing, congestion management, market power mitigation, transmission availability, export-import management and intertie optimization — to maximize reliability and consumer benefits,” Phillips said. In its decision, FERC said it was too soon to address the seams issues, which were raised by the Colorado Public Service Commission, Xcel Energy’s Public Service Co. of Colorado and Black Hills utilities. Entities pursuing RTO membership or expanded participation in SPP’s markets include Basin Electric Power Cooperative, Colorado Springs Utilities, Deseret Generation and Transmission Cooperative, Municipal Energy Agency of Nebraska, Platte River Power Authority, Tri-State Generation and Transmission Association, Western Area Power Administration – Colorado River Storage Project Management Center, WAPA – Rocky Mountain Region and WAPA – Upper Great Plains Region. “We greatly value the full benefits of the SPP RTO, including day-ahead and ancillary services markets, efficient regional transmission planning, a common transmission tariff and participatory governance model that help us to further reduce costs for our members across the West,” Tri-State CEO Duane Highley said in an SPP press release. SPP is working with additional Western utilities that are considering joining

Read More »

PEAK:AIO adds power, density to AI storage server

There is also the fact that many people working with AI are not IT professionals, such as professors, biochemists, scientists, doctors, clinicians, and they don’t have a traditional enterprise department or a data center. “It’s run by people that wouldn’t really know, nor want to know, what storage is,” he said. While the new AI Data Server is a Dell design, PEAK:AIO has worked with Lenovo, Supermicro, and HPE as well as Dell over the past four years, offering to convert their off the shelf storage servers into hyper fast, very AI-specific, cheap, specific storage servers that work with all the protocols at Nvidia, like NVLink, along with NFS and NVMe over Fabric. It also greatly increased storage capacity by going with 61TB drives from Solidigm. SSDs from the major server vendors typically maxed out at 15TB, according to the vendor. PEAK:AIO competes with VAST, WekaIO, NetApp, Pure Storage and many others in the growing AI workload storage arena. PEAK:AIO’s AI Data Server is available now.

Read More »

SoftBank to buy Ampere for $6.5B, fueling Arm-based server market competition

SoftBank’s announcement suggests Ampere will collaborate with other SBG companies, potentially creating a powerful ecosystem of Arm-based computing solutions. This collaboration could extend to SoftBank’s numerous portfolio companies, including Korean/Japanese web giant LY Corp, ByteDance (TikTok’s parent company), and various AI startups. If SoftBank successfully steers its portfolio companies toward Ampere processors, it could accelerate the shift away from x86 architecture in data centers worldwide. Questions remain about Arm’s server strategy The acquisition, however, raises questions about how SoftBank will balance its investments in both Arm and Ampere, given their potentially competing server CPU strategies. Arm’s recent move to design and sell its own server processors to Meta signaled a major strategic shift that already put it in direct competition with its own customers, including Qualcomm and Nvidia. “In technology licensing where an entity is both provider and competitor, boundaries are typically well-defined without special preferences beyond potential first-mover advantages,” Kawoosa explained. “Arm will likely continue making independent licensing decisions that serve its broader interests rather than favoring Ampere, as the company can’t risk alienating its established high-volume customers.” Industry analysts speculate that SoftBank might position Arm to focus on custom designs for hyperscale customers while allowing Ampere to dominate the market for more standardized server processors. Alternatively, the two companies could be merged or realigned to present a unified strategy against incumbents Intel and AMD. “While Arm currently dominates processor architecture, particularly for energy-efficient designs, the landscape isn’t static,” Kawoosa added. “The semiconductor industry is approaching a potential inflection point, and we may witness fundamental disruptions in the next 3-5 years — similar to how OpenAI transformed the AI landscape. SoftBank appears to be maximizing its Arm investments while preparing for this coming paradigm shift in processor architecture.”

Read More »

Nvidia, xAI and two energy giants join genAI infrastructure initiative

The new AIP members will “further strengthen the partnership’s technology leadership as the platform seeks to invest in new and expanded AI infrastructure. Nvidia will also continue in its role as a technical advisor to AIP, leveraging its expertise in accelerated computing and AI factories to inform the deployment of next-generation AI data center infrastructure,” the group’s statement said. “Additionally, GE Vernova and NextEra Energy have agreed to collaborate with AIP to accelerate the scaling of critical and diverse energy solutions for AI data centers. GE Vernova will also work with AIP and its partners on supply chain planning and in delivering innovative and high efficiency energy solutions.” The group claimed, without offering any specifics, that it “has attracted significant capital and partner interest since its inception in September 2024, highlighting the growing demand for AI-ready data centers and power solutions.” The statement said the group will try to raise “$30 billion in capital from investors, asset owners, and corporations, which in turn will mobilize up to $100 billion in total investment potential when including debt financing.” Forrester’s Nguyen also noted that the influence of two of the new members — xAI, owned by Elon Musk, along with Nvidia — could easily help with fundraising. Musk “with his connections, he does not make small quiet moves,” Nguyen said. “As for Nvidia, they are the face of AI. Everything they do attracts attention.” Info-Tech’s Bickley said that the astronomical dollars involved in genAI investments is mind-boggling. And yet even more investment is needed — a lot more.

Read More »

IBM broadens access to Nvidia technology for enterprise AI

The IBM Storage Scale platform will support CAS and now will respond to queries using the extracted and augmented data, speeding up the communications between GPUs and storage using Nvidia BlueField-3 DPUs and Spectrum-X networking, IBM stated. The multimodal document data extraction workflow will also support Nvidia NeMo Retriever microservices. CAS will be embedded in the next update of IBM Fusion, which is planned for the second quarter of this year. Fusion simplifies the deployment and management of AI applications and works with Storage Scale, which will handle high-performance storage support for AI workloads, according to IBM. IBM Cloud instances with Nvidia GPUs In addition to the software news, IBM said its cloud customers can now use Nvidia H200 instances in the IBM Cloud environment. With increased memory bandwidth (1.4x higher than its predecessor) and capacity, the H200 Tensor Core can handle larger datasets, accelerating the training of large AI models and executing complex simulations, with high energy efficiency and low total cost of ownership, according to IBM. In addition, customers can use the power of the H200 to process large volumes of data in real time, enabling more accurate predictive analytics and data-driven decision-making, IBM stated. IBM Consulting capabilities with Nvidia Lastly, IBM Consulting is adding Nvidia Blueprint to its recently introduced AI Integration Service, which offers customers support for developing, building and running AI environments. Nvidia Blueprints offer a suite pre-validated, optimized, and documented reference architectures designed to simplify and accelerate the deployment of complex AI and data center infrastructure, according to Nvidia.  The IBM AI Integration service already supports a number of third-party systems, including Oracle, Salesforce, SAP and ServiceNow environments.

Read More »

Nvidia’s silicon photonics switches bring better power efficiency to AI data centers

Nvidia typically uses partnerships where appropriate, and the new switch design was done in collaboration with multiple vendors across different aspects, including creating the lasers, packaging, and other elements as part of the silicon photonics. Hundreds of patents were also included. Nvidia will licensing the innovations created to its partners and customers with the goal of scaling this model. Nvidia’s partner ecosystem includes TSMC, which provides advanced chip fabrication and 3D chip stacking to integrate silicon photonics into Nvidia’s hardware. Coherent, Eoptolink, Fabrinet, and Innolight are involved in the development, manufacturing, and supply of the transceivers. Additional partners include Browave, Coherent, Corning Incorporated, Fabrinet, Foxconn, Lumentum, SENKO, SPIL, Sumitomo Electric Industries, and TFC Communication. AI has transformed the way data centers are being designed. During his keynote at GTC, CEO Jensen Huang talked about the data center being the “new unit of compute,” which refers to the entire data center having to act like one massive server. That has driven compute to be primarily CPU based to being GPU centric. Now the network needs to evolve to ensure data is being fed to the GPUs at a speed they can process the data. The new co-packaged switches remove external parts, which have historically added a small amount of overhead to networking. Pre-AI this was negligible, but with AI, any slowness in the network leads to dollars being wasted.

Read More »

Critical vulnerability in AMI MegaRAC BMC allows server takeover

“In disruptive or destructive attacks, attackers can leverage the often heterogeneous environments in data centers to potentially send malicious commands to every other BMC on the same management segment, forcing all devices to continually reboot in a way that victim operators cannot stop,” the Eclypsium researchers said. “In extreme scenarios, the net impact could be indefinite, unrecoverable downtime until and unless devices are re-provisioned.” BMC vulnerabilities and misconfigurations, including hardcoded credentials, have been of interest for attackers for over a decade. In 2022, security researchers found a malicious implant dubbed iLOBleed that was likely developed by an APT group and was being deployed through vulnerabilities in HPE iLO (HPE’s Integrated Lights-Out) BMC. In 2018, a ransomware group called JungleSec used default credentials for IPMI interfaces to compromise Linux servers. And back in 2016, Intel’s Active Management Technology (AMT) Serial-over-LAN (SOL) feature which is part of Intel’s Management Engine (Intel ME), was exploited by an APT group as a covert communication channel to transfer files. OEM, server manufacturers in control of patching AMI released an advisory and patches to its OEM partners, but affected users must wait for their server manufacturers to integrate them and release firmware updates. In addition to this vulnerability, AMI also patched a flaw tracked as CVE-2024-54084 that may lead to arbitrary code execution in its AptioV UEFI implementation. HPE and Lenovo have already released updates for their products that integrate AMI’s patch for CVE-2024-54085.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »