Stay Ahead, Stay ONMINE

Is this the electric grid of the future?

One morning in the middle of March, a slow-moving spring blizzard stalled above eastern Nebraska, pounding the state capital of Lincoln with 60-mile-per-hour winds, driving sleet, and up to eight inches of snow. Lincoln Electric System, the local electric utility, has approximately 150,000 customers. By lunchtime, nearly 10% of them were without power. Ice was accumulating on the lines, causing them to slap together and circuits to lock. Sustained high winds and strong gusts—including one recorded at the Lincoln airport at 74 mph—snapped an entire line of poles across an empty field on the northern edge of the city.  Emeka Anyanwu kept the outage map open on his screen, refreshing it every 10 minutes or so while the 18 crews out in the field—some 75 to 80 line workers in total—struggled to shrink the orange circles that stood for thousands of customers in the dark. This was already Anyanwu’s second major storm since he’d become CEO of Lincoln Electric, in January of 2024. Warm and dry in his corner office, he fretted over what his colleagues were facing. Anyanwu spent the first part of his career at Kansas City Power & Light (now called Evergy), designing distribution systems, supervising crews, and participating in storm response. “Part of my DNA as a utility person is storm response,” he says. In weather like this “there’s a physical toll of trying to resist the wind and maneuver your body,” he adds. “You’re working slower. There’s just stuff that can’t get done. You’re basically being sandblasted.”  Lincoln Electric is headquartered in a gleaming new building named after Anyanwu’s predecessor, Kevin Wailes. Its cavernous garage, like an airplane hangar, is designed so that vehicles never need to reverse. As crews returned for a break and a dry change of clothes, their faces burned red and raw from the sleet and wind, their truck bumpers dripped ice onto the concrete floor. In a darkened control room, supervisors collected damage assessments, phoned or radioed in by the crews. The division heads above them huddled in a small conference room across the hall—their own outage map filling a large screen. Emeka Anyanwu is CEO of Lincoln Electric System.TERRY RATZLAFF Anyanwu did his best to stay out of the way. “I sit on the storm calls, and I’ll have an idea or a thought, and I try not to be in the middle of things,” he says. “I’m not in their hair. I didn’t go downstairs until the very end of the day, as I was leaving the building—because I just don’t want to be looming. And I think, quite frankly, our folks do an excellent job. They don’t need me.”  At a moment of disruption, Anyanwu chooses collaboration over control. His attitude is not that “he alone can fix it,” but that his team knows the assignment and is ready for the task. Yet a spring blizzard like this is the least of Anyanwu’s problems. It is a predictable disruption, albeit one of a type that seems to occur with greater frequency. What will happen soon—not only at Lincoln Electric but for all electric utilities—is a challenge of a different order.  In the industry, they call it the “trilemma”: the seemingly intractable problem of balancing reliability, affordability, and sustainability. Utilities must keep the lights on in the face of more extreme and more frequent storms and fires, growing risks of cyberattacks and physical disruptions, and a wildly uncertain policy and regulatory landscape. They must keep prices low amid inflationary costs. And they must adapt to an epochal change in how the grid works, as the industry attempts to transition from power generated with fossil fuels to power generated from renewable sources like solar and wind, in all their vicissitudes. Yet over the last year, the trilemma has turned out to be table stakes. Additional layers of pressure have been building—including powerful new technical and political considerations that would seem to guarantee disruption. The electric grid is bracing for a near future characterized by unstoppable forces and immovable objects—an interlocking series of factors so oppositional that Anyanwu’s clear-eyed approach to the trials ahead makes Lincoln Electric an effective lens through which to examine the grid of the near future.  A worsening storm The urgent technical challenge for utilities is the rise in electricity demand—the result, in part, of AI. In the living memory of the industry, every organic increase in load from population growth has been quietly matched by a decrease in load thanks to efficiency (primarily from LED lighting and improvements in appliances). No longer. Demand from new data centers, factories, and the electrification of cars, kitchens, and home heaters has broken that pattern. Annual load growth that had been less than 1% since 2000 is now projected to exceed 3%. In 2022, the grid was expected to add 23 gigawatts of new capacity over the next five years; now it is expected to add 128 gigawatts.  The political challenge is one the world knows well: Donald Trump, and his appetite for upheaval. Significant Biden-era legislation drove the adoption of renewable energy across dozens of sectors. Broad tax incentives invigorated cleantech manufacturing and renewable development, government policies rolled out the red carpet for wind and solar on federal lands, and funding became available for next-generation energy tech including storage, nuclear, and geothermal. The Trump administration’s swerve would appear absolute, at least in climate terms. The government is slowing (if not stopping) the permitting of offshore and onshore wind, while encouraging development of coal and other fossil fuels with executive orders (though they will surely face legal challenges). Its declaration of an “energy emergency” could radically disrupt the electric grid’s complex regulatory regime—throwing a monkey wrench into the rules by which utilities play. Trump’s blustery rhetoric on its own emboldens some communities to fight harder against new wind and solar projects, raising costs and uncertainty for developers—perhaps past the point of viability.  And yet the momentum of the energy transition remains substantial, if not unstoppable. The US Energy Information Administration’s published expectations for 2025, released in February, include 63 gigawatts of new utility-scale generation—93% of which will be solar, wind, or storage. In Texas, the interconnection queue (a leading indicator of what will be built) is about 92% solar, wind, and storage. What happens next is somehow both obvious and impossible to predict. The situation amounts to a deranged swirl of macro dynamics, a dilemma inside the trilemma, caught in a political hurricane.  A microcosm What is a CEO to do? Anyanwu got the LES job in part by squaring off against the technical issues while parrying the political ones. He grew up professionally in “T&D,” transmission and distribution, the bread and butter of the grid. Between his time in Kansas City and Lincoln, he led Seattle City Light’s innovation efforts, working on the problems of electrification, energy markets, resource planning strategy, cybersecurity, and grid modernization.   LES’s indoor training facility accommodates a 50-foot utility pole and dirt-floor instruction area, for line workers to practice repairs.TERRY RATZLAFF His charisma takes a notably different form from the visionary salesmanship of the startup CEO. Anyanwu exudes responsibility and stewardship—key qualities in the utility industry. A “third culture kid,” he was born in Ames, Iowa, where his Nigerian parents had come to study agriculture and early childhood education. He returned with them to Nigeria for most of his childhood before returning himself to Iowa State University. He is 45 years old and six feet two inches tall, and he has three children under 10. At LES’s open board meetings, in podcast interviews, and even when receiving an industry award, Anyanwu has always insisted that credit and commendation are rightly shared by everyone on the team. He builds consensus with praise and acknowledgment. After the blizzard, he thanked the Lincoln community for “the grace and patience they always show.”   Nebraska is the only 100% “public power state,” with utilities owned and managed entirely by the state’s own communities. The trilemma won’t be easy for any utility, yet LES is both special and typical. It’s big enough to matter, but small enough to manage. (Pacific Gas & Electric, to take one example, has about 37 times as many customers.) It is a partial owner in three large coal plants—the most recent of which opened in 2007—and has contracts for 302 megawatts of wind power. It even has a gargantuan new data center in its service area; later this year, Google expects to open a campus on some 580 acres abutting Interstate 80, 10 minutes from downtown. From a technical standpoint, Anyanwu leads an organization whose situation is emblematic of the challenges and opportunities utilities face today. Equally interesting is what Lincoln Electric is not: a for-profit utility. Two-thirds of Americans get their electricity from “investor-­owned utilities,” while the remaining third are served by either publicly owned nonprofits like LES or privately owned nonprofit cooperatives. But Nebraska is the only 100% “public power state,” with utilities owned and managed entirely by the state’s own communities. They are governed by local boards and focused fully on the needs—and aspirations—of their customers. “LES is public power and is explicitly serving the public interest,” says Lucas Sabalka, a local technology executive who serves as the unpaid chairman of the board. “LES tries very, very hard to communicate that public interest and to seek public input, and to make sure that the public feels like they’re included in that process.” Civic duty sits at the core. “We don’t have a split incentive,” Anyanwu says. “We’re not going to do something just to gobble up as many rate-based assets as we can earn on. That’s not what we do—it’s not what we exist to do.” He adds, “Our role as a utility is stewardship. We are the diligent and vigilant agents of our community.”  A political puzzle In 2020, over a series of open meetings that sometimes drew 200 people, the public encouraged the LES board to adopt a noteworthy resolution: Lincoln Electric’s generation portfolio would reach net-zero carbon emissions by 2040. It wasn’t alone; Nebraska’s other two largest utilities, the Omaha Public Power District and the Nebraska Public Power District, adopted similar nonbinding decarbonization goals.  These goals build on a long transition toward cleaner energy. Over the last decade, Nebraska’s energy sector has been transformed by wind power, which in 2023 provided 30% of its net generation. That’s been an economic boon for a state that is notably oil-poor compared with its neighbors.  But at the same time, the tall turbines have become a cultural lightning rod—both for their appearance and for the way they displace farmland (much of which, ironically, was directed toward corn for production of ethanol fuel). That dynamic has intensified since Trump’s second election, with both solar and wind projects around the state facing heightened community opposition.  Following the unanimous approval by Lancaster County commissioners of a 304-megawatt solar plant outside Lincoln, one of the largest in the state, local opponents appealed. The project’s developer, the Florida-based behemoth NextEra Energy Resources, made news in March when its CEO both praised the Trump administration’s policy and insisted that solar and storage remained the fastest path to increasing the energy supply.   Lincoln Electric is headquartered in a gleaming new building named after Anyanwu’s predecessor, Kevin Wailes.TERRY RATZLAFF Nebraska is, after all, a red state, where only an estimated 66% of adults think global warming is happening, according to a survey from the Yale Program on Climate Change Communication. President Trump won almost 60% of the vote statewide, though only 47% of the vote in Lancaster County—a purple dot in a sea of red.  “There are no simple answers,” Anyanwu says, with characteristic measure. “In our industry there’s a lot of people trying to win an ideological debate, and they insist on that debate being binary. And I think it should be pretty clear to most of us—if we’re being intellectually honest about this—that there isn’t a binary answer to anything.” The new technical frontier What there are, are questions. The most intractable of them—how to add capacity without raising costs or carbon emissions—came to a head for LES starting in April 2024. Like almost all utilities in the US, LES relies on an independent RTO, or regional transmission organization, to ensure reliability by balancing supply and demand and to run an electricity market (among other roles). The principle is that when the utilities on the grid pool both their load and their generation, everyone benefits—in terms of both reliability and economic efficiency. “Think of the market like a potluck,” Anyanwu says. “Everyone is supposed to bring enough food to feed their own family—but the compact is not that their family eats the food.” Each utility must come to the market with enough capacity to serve its peak loads, even as the electrons are all pooled together in a feast that can feed many. (The bigger the grid, the more easily it absorbs small fluctuations or failures.) But today, everyone is hungrier. And the oven doesn’t always work. In an era when the only real variable was whether power plants were switched on or off, determining capacity was relatively straightforward: A 164-megawatt gas or coal plant could, with reasonable reliability, be expected to produce 164 megawatts of power. Wind and solar break that model, even though they run without fuel costs (or carbon emissions). “Resource adequacy,” as the industry calls it, is a wildly complex game of averages and expectations, which are calculated around the seasonal peaks when a utility has the highest load. On those record-breaking days, keeping the lights on requires every power plant to show up and turn on. But solar and wind don’t work that way. The summer peak could be a day when it’s cloudy and calm; the winter peak will definitely be a day when the sun sets early. Coal and gas plants are not without their own reliability challenges. They frequently go offline for maintenance. And—especially in winter—the system of underground pipelines that supply gas is at risk of freezing and cannot always keep up with the stacked demand from home heating customers and big power plants.  Politics had suddenly become beside the point; the new goal was to keep the lights—and the AI data centers—on. Faced with a rapidly changing mix of generation resources, the Southwest Power Pool (SPP), the RTO responsible for a big swath of the country including Nebraska, decided that prudence should reign. In August 2024, SPP changed its “accreditations”—the expectation for how much electricity each power plant, of every type, could be counted on to contribute on those peak days. Everything would be graded on a curve. If your gas plant had a tendency to break, it would be worth less. If you had a ton of wind, it would count more for the winter peak (when it’s windier) than for the summer. If you had solar, it would count more in summer (when the days are longer and brighter) than in winter. The new rules meant LES needed to come to the potluck with more capacity—calculated with a particular formula of SPP’s devising. It was as if a pound of hamburgers was decreed to feed more people than a pound of tofu. Clean power and environmental advocacy groups jeered the changes, because they so obviously favored fossil-fuel generation while penalizing wind and solar. (Whether this was the result of industry lobbying, embedded ideology, or an immature technical understanding was not clear.) But resource adequacy is difficult to argue with. No one will risk a brownout.  In the terms of the trilemma, this amounted to the stick of reliability beating the horse of affordability, while sustainability stood by and waited for its turn. Politics had suddenly become beside the point; the new goal was to keep the lights—and the AI data centers—on.  Navigating a way forward  But what to do? LES can lobby against SPP’s rules, but it must follow them. The community can want what it wants, but the lights must stay on. Hard choices are coming. “We’re not going to go out and spend money we shouldn’t or make financially imprudent decisions because we’re chasing a goal,” Anyanwu says of the resolution to reach net zero by 2040. “We’re not going to compromise reliability to do any of that. But within the bounds of those realities, the community does get to make a choice and say, ‘Hey, this is important to us. It matters to us that we do these things.’” As part of a strategic planning process, LES has begun a broad range of surveys and community meetings. Among other questions, respondents are asked to rank reliability, affordability, and sustainability “in order of importance.” Lincoln Electric commissioned Nebraska’s first wind turbines in the late ’90s. They were decommissioned in July 2024.TERRY RATZLAFF What becomes visible is the role of utilities as stewards—of their infrastructure, but also of their communities. Amid the emphasis on innovative technologies, on development of renewables, on the race to power data centers, it is local utilities that carry the freight of the energy transition. While this is often obscured by the way they are beholden to their quarterly stock price, weighed down by wildfire risk, or operated as regional behemoths that seem to exist as supra-political entities, a place like Lincoln Electric reveals both the possibilities and the challenges ahead. “The community gets to dream a little bit, right?” says Anyanwu. Yet “we as the technical Debbie Downers have to come and be like, ‘Well, okay, here’s what you want, and here’s what we can actually do.’ And we’re tempering that dream.” “But you don’t necessarily want a community that just won’t dream at all, that doesn’t have any expectations and doesn’t have any aspirations,” he adds. For Anyanwu, that’s the way through: “I’m willing to help us as an organization dream a little bit—be aspirational, be ambitious, be bold. But at my core and in my heart, I’m a utility operations person.”  Andrew Blum is the author of Tubes and The Weather Machine. He is currently at work on a book about the infrastructure of the energy transition.

One morning in the middle of March, a slow-moving spring blizzard stalled above eastern Nebraska, pounding the state capital of Lincoln with 60-mile-per-hour winds, driving sleet, and up to eight inches of snow. Lincoln Electric System, the local electric utility, has approximately 150,000 customers. By lunchtime, nearly 10% of them were without power. Ice was accumulating on the lines, causing them to slap together and circuits to lock. Sustained high winds and strong gusts—including one recorded at the Lincoln airport at 74 mph—snapped an entire line of poles across an empty field on the northern edge of the city. 

Emeka Anyanwu kept the outage map open on his screen, refreshing it every 10 minutes or so while the 18 crews out in the field—some 75 to 80 line workers in totalstruggled to shrink the orange circles that stood for thousands of customers in the dark. This was already Anyanwu’s second major storm since he’d become CEO of Lincoln Electric, in January of 2024. Warm and dry in his corner office, he fretted over what his colleagues were facing. Anyanwu spent the first part of his career at Kansas City Power & Light (now called Evergy), designing distribution systems, supervising crews, and participating in storm response. “Part of my DNA as a utility person is storm response,” he says. In weather like this “there’s a physical toll of trying to resist the wind and maneuver your body,” he adds. “You’re working slower. There’s just stuff that can’t get done. You’re basically being sandblasted.” 

Lincoln Electric is headquartered in a gleaming new building named after Anyanwu’s predecessor, Kevin Wailes. Its cavernous garage, like an airplane hangar, is designed so that vehicles never need to reverse. As crews returned for a break and a dry change of clothes, their faces burned red and raw from the sleet and wind, their truck bumpers dripped ice onto the concrete floor. In a darkened control room, supervisors collected damage assessments, phoned or radioed in by the crews. The division heads above them huddled in a small conference room across the hall—their own outage map filling a large screen.

Emeka Anyanwu is CEO of Lincoln Electric System.
TERRY RATZLAFF

Anyanwu did his best to stay out of the way. “I sit on the storm calls, and I’ll have an idea or a thought, and I try not to be in the middle of things,” he says. “I’m not in their hair. I didn’t go downstairs until the very end of the day, as I was leaving the building—because I just don’t want to be looming. And I think, quite frankly, our folks do an excellent job. They don’t need me.” 

At a moment of disruption, Anyanwu chooses collaboration over control. His attitude is not that “he alone can fix it,” but that his team knows the assignment and is ready for the task. Yet a spring blizzard like this is the least of Anyanwu’s problems. It is a predictable disruption, albeit one of a type that seems to occur with greater frequency. What will happen soon—not only at Lincoln Electric but for all electric utilities—is a challenge of a different order. 

In the industry, they call it the “trilemma”: the seemingly intractable problem of balancing reliability, affordability, and sustainability. Utilities must keep the lights on in the face of more extreme and more frequent storms and fires, growing risks of cyberattacks and physical disruptions, and a wildly uncertain policy and regulatory landscape. They must keep prices low amid inflationary costs. And they must adapt to an epochal change in how the grid works, as the industry attempts to transition from power generated with fossil fuels to power generated from renewable sources like solar and wind, in all their vicissitudes.

Yet over the last year, the trilemma has turned out to be table stakes. Additional layers of pressure have been building—including powerful new technical and political considerations that would seem to guarantee disruption. The electric grid is bracing for a near future characterized by unstoppable forces and immovable objects—an interlocking series of factors so oppositional that Anyanwu’s clear-eyed approach to the trials ahead makes Lincoln Electric an effective lens through which to examine the grid of the near future. 

A worsening storm

The urgent technical challenge for utilities is the rise in electricity demand—the result, in part, of AI. In the living memory of the industry, every organic increase in load from population growth has been quietly matched by a decrease in load thanks to efficiency (primarily from LED lighting and improvements in appliances). No longer. Demand from new data centers, factories, and the electrification of cars, kitchens, and home heaters has broken that pattern. Annual load growth that had been less than 1% since 2000 is now projected to exceed 3%. In 2022, the grid was expected to add 23 gigawatts of new capacity over the next five years; now it is expected to add 128 gigawatts. 

The political challenge is one the world knows well: Donald Trump, and his appetite for upheaval. Significant Biden-era legislation drove the adoption of renewable energy across dozens of sectors. Broad tax incentives invigorated cleantech manufacturing and renewable development, government policies rolled out the red carpet for wind and solar on federal lands, and funding became available for next-generation energy tech including storage, nuclear, and geothermal. The Trump administration’s swerve would appear absolute, at least in climate terms. The government is slowing (if not stopping) the permitting of offshore and onshore wind, while encouraging development of coal and other fossil fuels with executive orders (though they will surely face legal challenges). Its declaration of an “energy emergency” could radically disrupt the electric grid’s complex regulatory regime—throwing a monkey wrench into the rules by which utilities play. Trump’s blustery rhetoric on its own emboldens some communities to fight harder against new wind and solar projects, raising costs and uncertainty for developers—perhaps past the point of viability. 

And yet the momentum of the energy transition remains substantial, if not unstoppable. The US Energy Information Administration’s published expectations for 2025, released in February, include 63 gigawatts of new utility-scale generation—93% of which will be solar, wind, or storage. In Texas, the interconnection queue (a leading indicator of what will be built) is about 92% solar, wind, and storage. What happens next is somehow both obvious and impossible to predict. The situation amounts to a deranged swirl of macro dynamics, a dilemma inside the trilemma, caught in a political hurricane. 

A microcosm

What is a CEO to do? Anyanwu got the LES job in part by squaring off against the technical issues while parrying the political ones. He grew up professionally in “T&D,” transmission and distribution, the bread and butter of the grid. Between his time in Kansas City and Lincoln, he led Seattle City Light’s innovation efforts, working on the problems of electrification, energy markets, resource planning strategy, cybersecurity, and grid modernization.  

LES’s indoor training facility accommodates a 50-foot utility pole and dirt-floor instruction area, for line workers to practice repairs.
TERRY RATZLAFF

His charisma takes a notably different form from the visionary salesmanship of the startup CEO. Anyanwu exudes responsibility and stewardship—key qualities in the utility industry. A “third culture kid,” he was born in Ames, Iowa, where his Nigerian parents had come to study agriculture and early childhood education. He returned with them to Nigeria for most of his childhood before returning himself to Iowa State University. He is 45 years old and six feet two inches tall, and he has three children under 10. At LES’s open board meetings, in podcast interviews, and even when receiving an industry award, Anyanwu has always insisted that credit and commendation are rightly shared by everyone on the team. He builds consensus with praise and acknowledgment. After the blizzard, he thanked the Lincoln community for “the grace and patience they always show.”  

Nebraska is the only 100% “public power state,” with utilities owned and managed entirely by the state’s own communities.

The trilemma won’t be easy for any utility, yet LES is both special and typical. It’s big enough to matter, but small enough to manage. (Pacific Gas & Electric, to take one example, has about 37 times as many customers.) It is a partial owner in three large coal plants—the most recent of which opened in 2007—and has contracts for 302 megawatts of wind power. It even has a gargantuan new data center in its service area; later this year, Google expects to open a campus on some 580 acres abutting Interstate 80, 10 minutes from downtown. From a technical standpoint, Anyanwu leads an organization whose situation is emblematic of the challenges and opportunities utilities face today.

Equally interesting is what Lincoln Electric is not: a for-profit utility. Two-thirds of Americans get their electricity from “investor-­owned utilities,” while the remaining third are served by either publicly owned nonprofits like LES or privately owned nonprofit cooperatives. But Nebraska is the only 100% “public power state,” with utilities owned and managed entirely by the state’s own communities. They are governed by local boards and focused fully on the needs—and aspirations—of their customers. “LES is public power and is explicitly serving the public interest,” says Lucas Sabalka, a local technology executive who serves as the unpaid chairman of the board. “LES tries very, very hard to communicate that public interest and to seek public input, and to make sure that the public feels like they’re included in that process.” Civic duty sits at the core.

“We don’t have a split incentive,” Anyanwu says. “We’re not going to do something just to gobble up as many rate-based assets as we can earn on. That’s not what we do—it’s not what we exist to do.” He adds, “Our role as a utility is stewardship. We are the diligent and vigilant agents of our community.” 

A political puzzle

In 2020, over a series of open meetings that sometimes drew 200 people, the public encouraged the LES board to adopt a noteworthy resolution: Lincoln Electric’s generation portfolio would reach net-zero carbon emissions by 2040. It wasn’t alone; Nebraska’s other two largest utilities, the Omaha Public Power District and the Nebraska Public Power District, adopted similar nonbinding decarbonization goals. 

These goals build on a long transition toward cleaner energy. Over the last decade, Nebraska’s energy sector has been transformed by wind power, which in 2023 provided 30% of its net generation. That’s been an economic boon for a state that is notably oil-poor compared with its neighbors. 

But at the same time, the tall turbines have become a cultural lightning rod—both for their appearance and for the way they displace farmland (much of which, ironically, was directed toward corn for production of ethanol fuel). That dynamic has intensified since Trump’s second election, with both solar and wind projects around the state facing heightened community opposition. 

Following the unanimous approval by Lancaster County commissioners of a 304-megawatt solar plant outside Lincoln, one of the largest in the state, local opponents appealed. The project’s developer, the Florida-based behemoth NextEra Energy Resources, made news in March when its CEO both praised the Trump administration’s policy and insisted that solar and storage remained the fastest path to increasing the energy supply.  

Lincoln Electric is headquartered in a gleaming new building named after Anyanwu’s predecessor, Kevin Wailes.
TERRY RATZLAFF

Nebraska is, after all, a red state, where only an estimated 66% of adults think global warming is happening, according to a survey from the Yale Program on Climate Change Communication. President Trump won almost 60% of the vote statewide, though only 47% of the vote in Lancaster County—a purple dot in a sea of red. 

“There are no simple answers,” Anyanwu says, with characteristic measure. “In our industry there’s a lot of people trying to win an ideological debate, and they insist on that debate being binary. And I think it should be pretty clear to most of us—if we’re being intellectually honest about this—that there isn’t a binary answer to anything.”

The new technical frontier

What there are, are questions. The most intractable of them—how to add capacity without raising costs or carbon emissions—came to a head for LES starting in April 2024. Like almost all utilities in the US, LES relies on an independent RTO, or regional transmission organization, to ensure reliability by balancing supply and demand and to run an electricity market (among other roles). The principle is that when the utilities on the grid pool both their load and their generation, everyone benefits—in terms of both reliability and economic efficiency. “Think of the market like a potluck,” Anyanwu says. “Everyone is supposed to bring enough food to feed their own family—but the compact is not that their family eats the food.” Each utility must come to the market with enough capacity to serve its peak loads, even as the electrons are all pooled together in a feast that can feed many. (The bigger the grid, the more easily it absorbs small fluctuations or failures.)

But today, everyone is hungrier. And the oven doesn’t always work. In an era when the only real variable was whether power plants were switched on or off, determining capacity was relatively straightforward: A 164-megawatt gas or coal plant could, with reasonable reliability, be expected to produce 164 megawatts of power. Wind and solar break that model, even though they run without fuel costs (or carbon emissions). “Resource adequacy,” as the industry calls it, is a wildly complex game of averages and expectations, which are calculated around the seasonal peaks when a utility has the highest load. On those record-breaking days, keeping the lights on requires every power plant to show up and turn on. But solar and wind don’t work that way. The summer peak could be a day when it’s cloudy and calm; the winter peak will definitely be a day when the sun sets early. Coal and gas plants are not without their own reliability challenges. They frequently go offline for maintenance. And—especially in winter—the system of underground pipelines that supply gas is at risk of freezing and cannot always keep up with the stacked demand from home heating customers and big power plants. 

Politics had suddenly become beside the point; the new goal was to keep the lights—and the AI data centers—on.

Faced with a rapidly changing mix of generation resources, the Southwest Power Pool (SPP), the RTO responsible for a big swath of the country including Nebraska, decided that prudence should reign. In August 2024, SPP changed its “accreditations”—the expectation for how much electricity each power plant, of every type, could be counted on to contribute on those peak days. Everything would be graded on a curve. If your gas plant had a tendency to break, it would be worth less. If you had a ton of wind, it would count more for the winter peak (when it’s windier) than for the summer. If you had solar, it would count more in summer (when the days are longer and brighter) than in winter.

The new rules meant LES needed to come to the potluck with more capacity—calculated with a particular formula of SPP’s devising. It was as if a pound of hamburgers was decreed to feed more people than a pound of tofu. Clean power and environmental advocacy groups jeered the changes, because they so obviously favored fossil-fuel generation while penalizing wind and solar. (Whether this was the result of industry lobbying, embedded ideology, or an immature technical understanding was not clear.) But resource adequacy is difficult to argue with. No one will risk a brownout. 

In the terms of the trilemma, this amounted to the stick of reliability beating the horse of affordability, while sustainability stood by and waited for its turn. Politics had suddenly become beside the point; the new goal was to keep the lights—and the AI data centers—on. 

Navigating a way forward 

But what to do? LES can lobby against SPP’s rules, but it must follow them. The community can want what it wants, but the lights must stay on. Hard choices are coming. “We’re not going to go out and spend money we shouldn’t or make financially imprudent decisions because we’re chasing a goal,” Anyanwu says of the resolution to reach net zero by 2040. “We’re not going to compromise reliability to do any of that. But within the bounds of those realities, the community does get to make a choice and say, ‘Hey, this is important to us. It matters to us that we do these things.’” As part of a strategic planning process, LES has begun a broad range of surveys and community meetings. Among other questions, respondents are asked to rank reliability, affordability, and sustainability “in order of importance.”

Lincoln Electric commissioned Nebraska’s first wind turbines in the late ’90s. They were decommissioned in July 2024.
TERRY RATZLAFF

What becomes visible is the role of utilities as stewards—of their infrastructure, but also of their communities. Amid the emphasis on innovative technologies, on development of renewables, on the race to power data centers, it is local utilities that carry the freight of the energy transition. While this is often obscured by the way they are beholden to their quarterly stock price, weighed down by wildfire risk, or operated as regional behemoths that seem to exist as supra-political entities, a place like Lincoln Electric reveals both the possibilities and the challenges ahead.

“The community gets to dream a little bit, right?” says Anyanwu. Yet “we as the technical Debbie Downers have to come and be like, ‘Well, okay, here’s what you want, and here’s what we can actually do.’ And we’re tempering that dream.”

“But you don’t necessarily want a community that just won’t dream at all, that doesn’t have any expectations and doesn’t have any aspirations,” he adds. For Anyanwu, that’s the way through: “I’m willing to help us as an organization dream a little bit—be aspirational, be ambitious, be bold. But at my core and in my heart, I’m a utility operations person.” 

Andrew Blum is the author of Tubes and The Weather Machine. He is currently at work on a book about the infrastructure of the energy transition.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Essential commands for Linux server management

Any Linux systems administrator needs to be proficient with a wide range of commands for user management, file handling, system monitoring, networking, security and more. This article covers a range of commands that are essential for managing a Linux server. Keep in mind that some commands will depend on the

Read More »

India May Cut Oil Product Exports If Strait of Hormuz Is Blocked

India is preparing to source crude oil from outside the Persian Gulf and cut its own refined-product exports should the Strait of Hormuz be blocked to ship traffic, Oil Minister Hardeep Puri said Thursday. About a quarter of the world’s oil trade passes through the key waterway, which links the Gulf to the Indian Ocean. Some market watchers are concerned that Iran, locked in a conflict with long-time adversary Israel, could choose to attack tankers sailing through Hormuz or close the strait altogether. “We have enough stocks” of crude and refined products, Puri told NDTV television. “We have enough diversified supplies” of crude, and “even if there were to be disruption, we can source it from alternate sources.” Iran has previously threatened to close the strait in times of conflict, though there’s no sign of that happening so far. Of the 5.5 million barrels of oil India consumes every day, 1.5 million pass through the waterway, according to Puri.  “I don’t think this is something we are unduly worried about,” he said. There is ample crude available in the global market, which means it isn’t supply but prices that are a concern, he said. Product Exports India is a net exporter of petroleum products, with refiners such as Reliance Industries Ltd. and Nayara Energy shipping to countries including the United Arab Emirates, Singapore, the US and Australia. It could reduce those shipments if needed to maintain sufficient stockpiles at home, Puri said.  India’s product exports have averaged 1.3 million barrels a day so far this year, with Reliance and Nayara accounting for 82 percent of shipments, Kpler data show. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments

Read More »

Namibia Weighs Incentives to Kickstart TotalEnergies’ Offshore Oil Plan

Namibia will offer financial incentives to help kick-start the development of oil fields managed by a group led by TotalEnergies SE, according to a special adviser in the presidency. TotalEnergies and Shell Plc in 2022 made the first in a series of finds off the coast of the southwest African nation. But the explorers have also hit dry wells, prompting them to write off drilling costs as they learned more about the fields.  “The government recognizes the complexities and high costs associated with the development of the Venus oil field by TotalEnergies,” Kornelia Shilunga, special adviser and head of upstream petroleum unit in the Namibian Presidency, said in a reply to questions.  The state is “exploring mechanisms to enhance financing options, such as credit support instruments and partnerships with international lending institutions, to address challenges faced by local enterprises in accessing capital,” she said. Namibia is targeting first oil output in the next five years, as it seeks to become a producer before crude demand is overtaken by low-carbon and renewable sources of energy. State oil company Namcor is looking to build capacity to have a bigger role in developments along with the country’s strategy to maximize local production, according to Shilunga, who was appointed last month. Namibia is also evaluating the potential to hold licensing rounds to increase activity, she said. What do you think? We’d love to hear from you, join the conversation on the Rigzone Energy Network. The Rigzone Energy Network is a new social experience created for you and all energy professionals to Speak Up about our industry, share knowledge, connect with peers and industry insiders and engage in a professional community that will empower your career in energy.

Read More »

Oceaneering Signs Vessel Services Agreement with Major Operator

Oceaneering International Inc. said that its Offshore Projects Group (OPG) segment has entered into a vessel services agreement with an undisclosed major operator for the use of the MPSV Harvey Deep Sea vessel. The MPSV Harvey Deep Sea, currently chartered by Oceaneering through February 2027, is equipped with two Oceaneering Millennium work class remotely operated vehicles. It is expected to be used by the operator to perform subsea inspection, maintenance, and repair (IMR) and installation services in the Gulf of America, the company said in a news release. Financial details of the deal were not disclosed. Chris Dyer, OPG’s senior vice president, said, “This award not only secures vessel backlog in the region but also allows us to optimize our equipment spreads and reduce scheduling uncertainty. We look forward to delivering critical subsea IMR and installation services to create value for our customer and further demonstrate our commitment to project execution that delivers safe, efficient, and high-quality results”. Sumrulf Named as New CFO Earlier in the month, Oceaneering announced a Chief Financial Officer (CFO) succession plan with Michael Sumruld joining the company as senior vice president of finance on September 1. Oceaneering CFO Alan Curtis is stepping down from his position effective January 1, 2026, the company said in a statement. He began his career with Oceaneering in 1995 as a financial controller and has served in a variety of roles, including most recently as CFO since 2015. Sumruld is expected to succeed Curtis as CFO upon his retirement from the role. Curtis will continue to serve Oceaneering in a supporting role to provide for an orderly transition of duties, with Sumruld reporting to Larson, according to the statement. Sumruld most recently served as senior vice president and CFO for Parker Drilling Company from October 2017 until its sale to

Read More »

Commonwealth LNG Gets Final Export Permit

The Department of Energy (DOE) has granted Commonwealth LNG, a project of Kimmeridge Energy Management Co. LLC in Louisiana, complete authorization to export to countries without a free trade agreement (FTA) with the United States, Commonwealth said Wednesday. “Commonwealth anticipates reaching a final investment decision in the third quarter of this year with first LNG production expected in 2029”, Commonwealth said in an online statement. “The Commonwealth LNG project is proceeding with significant momentum from recently announced long-term binding LNG offtake agreements with top-tier global purchasers, including Glencore, JERA  and PETRONAS, and line of sight toward finalizing its commercial book in the near term”, Commonwealth added. The offtake agreements involve four million metric tons per annum (MMtpa). Commonwealth is permitted to export up to 9.5 MMtpa, equivalent to about 441.4 billion cubic feet (Bcf) a year or 1.21 Bcf per day, to both FTA and non-FTA countries. The DOE granted the FTA portion of the permit April 2020 for a 25-year term. The non-FTA permit lasts through December 2050. “Commonwealth is pioneering an integrated wellhead-to-water strategy in partnership with its upstream operating entity to deliver low-cost, low-emission gas to the global market which is seeking supply from trusted trading partners”, Commonwealth said. “The Commonwealth export facility is expected to unlock approximately $11 billion in investments in Louisiana and an estimated $3.5 billion in annual export revenue, unleashing American energy, utilizing approximately 2,000 workers at the peak of construction and providing 270 high-paying jobs when the facility begins operations”, it claimed. In February the DOE granted the project a conditional non-FTA permit. A final permit was withheld pending a DOE review of permitting considerations concerning greenhouse gas emissions, environmental impact, energy prices and domestic gas supply. On May 19 the DOE announced it would proceed with issuing final orders on pending applications to export LNG

Read More »

Inpex Granted Production Concession for UAE Block

Inpex Corporation said it has been granted a production concession for Onshore Block 4, located on the central coast of Abu Dhabi, United Arab Emirates, by the Supreme Financial and Economic Council of the Emirate of Abu Dhabi (SCFEA). The Japanese energy firm has been conducting exploration and evaluation activities in the block since 2018, after winning the block in an open exploration round held by Abu Dhabi National Oil Company (ADNOC), Inpex said in a news release. As the block’s operator, Inpex said it discovered multiple conventional oil, condensate and gas layers through the drilling of exploratory wells conducted since May 2021. Since then, the company said it has been conducting evaluation work with the aim of moving into development and starting production as soon as possible. The block is owned 60 percent by ADNOC, with the remaining 40 percent owned by JODCO Exploration Limited, in which Inpex has a 51 percent interest and Japan Energy and Metals National Corporation (JOGMEC) has 49 percent. Commissioning Started at Hydrogen and Ammonia Production Project Meanwhile, Inpex has started commissioning work, including the introduction of natural gas, at its integrated blue hydrogen and ammonia production and utilization demonstration test project in Kashiwazaki City, Niigata Prefecture, Japan. The project is the first of its kind in Japan to implement an integrated process from production to the utilization of hydrogen and ammonia, the company said in an earlier statement. The natural gas used as a raw material in the process is domestically sourced from the Inpex-operated Minami-Nagaoka Gas Field in Niigata Prefecture. The carbon dioxide (CO2) emitted during production is injected into previously depleted gas reservoirs in the Hirai District of the Higashi-Kashiwazaki gas field to minimize atmospheric emissions using carbon capture, utilization, and storage (CCUS) technology, according to the statement. The hydrogen produced

Read More »

Petronas Gets New Block offshore Suriname

Malaysia’s national oil and gas company has expanded its footprint in Suriname with the signing of a production sharing contract (PSC) for a deepwater block next to several discoveries. Petroliam Nasional Bhd.’s (Petronas) new license area, Block 66, spans about 3,390 square kilometers (1,308.89 square miles). It is adjacent to Block 52, which contains the Fusaea, Roystonea and Sloanea discoveries. “Building on this strong foundation, PETRONAS is optimistic that the positive momentum and learnings from Block 52 will carry over into Block 66 as it continues to explore and unlock the hydrocarbon potential of the area”, Petronas said in a press release. “The PSC includes a firm commitment to drill two exploration wells, targeting drill-ready prospects that offer significant resource potential and are strategically positioned to unlock synergies with PETRONAS’ existing operations in Suriname”. Petronas, through PETRONAS Suriname E&P BV, operates Block 66 with an 80 percent stake. Paradise Oil Co. NV, a subsidiary of Suriname’s state-owned Staatsolie Maatschappij Suriname NV, owns 20 percent. “With the signing of the [Block 66] PSC, approximately fifty percent of Suriname’s offshore area is now under contract”, Staatsolie said separately. Petronas vice president for international upstream assets Mohd Redhani Abdul Rahman said, “This acquisition marks a pivotal step in PETRONAS’ expansion into the prolific Suriname-Guyana hydrocarbon basin, aligning with our strategy to unlock high-value, high-potential assets and deliver long-term value through global partnerships and deepwater innovation”. Petronas now has six blocks in the South American country: 48, 52, 53, 63, 64 and 66. It has made four oil and gas discoveries, all in Block 52: Sloanea-1 in 2020, Roystonea-1 in 2023 and Fusaea-1 and Sloanea-2 in 2024. Block 52 spans over 4,500 square kilometers north of Paramaribo’s coast. The discoveries are “undergoing intensive evaluation”, Staatsolie said in its statement. Exxon Mobil Corp. exited the block

Read More »

Can Intel cut its way to profit with factory layoffs?

Matt Kimball, principal analyst at Moor Insights & Strategy, said, “While I’m sure tariffs have some impact on Intel’s layoffs, this is actually pretty simple — these layoffs are largely due to the financial challenges Intel is facing in terms of declining revenues.” The move, he said, “aligns with what the company had announced some time back, to bring expenses in line with revenues. While it is painful, I am confident that Intel will be able to meet these demands, as being able to produce quality chips in a timely fashion is critical to their comeback in the market.”  Intel, said Kimball, “started its turnaround a few years back when ex-CEO Pat Gelsinger announced its five nodes in four years plan. While this was an impressive vision to articulate, its purpose was to rebuild trust with customers, and to rebuild an execution discipline. I think the company has largely succeeded, but of course the results trail a bit.” Asked if a combination of layoffs and the moving around of jobs will affect the cost of importing chips, Kimball predicted it will likely not have an impact: “Intel (like any responsible company) is extremely focused on cost and supply chain management. They have this down to a science and it is so critical to margins. Also, while I don’t have insights, I would expect Intel is employing AI and/or analytics to help drive supply chain and manufacturing optimization.” The company’s number one job, he said, “is to deliver the highest quality chips to its customers — from the client to the data center. I have every confidence it will not put this mandate at risk as it considers where/how to make the appropriate resourcing decisions. I think everybody who has been through corporate restructuring (I’ve been through too many to count)

Read More »

Intel appears stuck between ‘a rock and a hard place’

Intel, said Kimball, “started its turnaround a few years back when ex-CEO Pat Gelsinger announced its five nodes in four years plan. While this was an impressive vision to articulate, its purpose was to rebuild trust with customers, and to rebuild an execution discipline. I think the company has largely succeeded, but of course the results trail a bit.” Asked if a combination of layoffs and the moving around of jobs will affect the cost of importing chips, Kimball predicted it will likely not have an impact: “Intel (like any responsible company) is extremely focused on cost and supply chain management. They have this down to a science and it is so critical to margins. Also, while I don’t have insights, I would expect Intel is employing AI and/or analytics to help drive supply chain and manufacturing optimization.” The company’s number one job, he said, “is to deliver the highest quality chips to its customers — from the client to the data center. I have every confidence it will not put this mandate at risk as it considers where/how to make the appropriate resourcing decisions. I think everybody who has been through corporate restructuring (I’ve been through too many to count) realizes that, when planning for these, ensuring the resilience of these mission critical functions is priority one.”  Added Bickley, “trimming the workforce, delaying construction of the US fab plants, and flattening the decision structure of the organization are prudent moves meant to buy time in the hopes that their new chip designs and foundry processes attract new business.”

Read More »

Next-gen AI chips will draw 15,000W each, redefining power, cooling, and data center design

“Dublin imposed a 2023 moratorium on new data centers, Frankfurt has no new capacity expected before 2030, and Singapore has just 7.2 MW available,” said Kasthuri Jagadeesan, Research Director at Everest Group, highlighting the dire situation. Electricity: the new bottleneck in AI RoI As AI modules push infrastructure to its limits, electricity is becoming a critical driver of return on investment. “Electricity has shifted from a line item in operational overhead to the defining factor in AI project feasibility,” Gogia noted. “Electricity costs now constitute between 40–60% of total Opex in modern AI infrastructure, both cloud and on-prem.” Enterprises are now forced to rethink deployment strategies—balancing control, compliance, and location-specific power rates. Cloud hyperscalers may gain further advantage due to better PUE, renewable access, and energy procurement models. “A single 15,000-watt module running continuously can cost up to $20,000 annually in electricity alone, excluding cooling,” said Manish Rawat, analyst at TechInsights. “That cost structure forces enterprises to evaluate location, usage models, and platform efficiency like never before.” The silicon arms race meets the power ceiling AI chip innovation is hitting new milestones, but the cost of that performance is no longer just measured in dollars or FLOPS — it’s in kilowatts. The KAIST TeraLab roadmap demonstrates that power and heat are becoming dominant factors in compute system design. The geography of AI, as several experts warn, is shifting. Power-abundant regions such as the Nordics, the Midwest US, and the Gulf states are becoming magnets for data center investments. Regions with limited grid capacity face a growing risk of becoming “AI deserts.”

Read More »

Edge reality check: What we’ve learned about scaling secure, smart infrastructure

Enterprises are pushing cloud resources back to the edge after years of centralization. Even as major incumbents such as Google, Microsoft, and AWS pull more enterprise workloads into massive, centralized hyperscalers, use cases at the edge increasingly require nearby infrastructure—not a long hop to a centralized data center—to take advantage of the torrents of real-time data generated by IoT devices, sensor networks, smart vehicles, and a panoply of newly connected hardware. Not long ago, the enterprise edge was a physical one. The central data center was typically located in or very near the organization’s headquarters. When organizations sought to expand their reach, they wanted to establish secure, speedy connections to other office locations, such as branches, providing them with fast and reliable access to centralized computing resources. Vendors initially sold MPLS, WAN optimization, and SD-WAN as “branch office solutions,” after all. Lesson one: Understand your legacy before locking in your future The networking model that connects centralized cloud resources to the edge via some combination of SD-WAN, MPLS, or 4G reflects a legacy HQ-branch design. However, for use cases such as facial recognition, gaming, or video streaming, old problems are new again. Latency, middle-mile congestion, and the high cost of bandwidth all undermine these real-time edge use cases.

Read More »

Cisco capitalizes on Isovalent buy, unveils new load balancer

The customer deploys the Isovalent Load Balancer control plane via automation and configures the desired number of virtual load-balancer appliances, Graf said. “The control plane automatically deploys virtual load-balancing appliances via the virtualization or Kubernetes platform. The load-balancing layer is self-healing and supports auto-scaling, which means that I can replace unhealthy instances and scale out as needed. The load balancer supports powerful L3-L7 load balancing with enterprise capabilities,” he said. Depending on the infrastructure the load balancer is deployed into, the operator will deploy the load balancer using familiar deployment methods. In a data center, this will be done using a standard virtualization automation installation such as Terraform or Ansible. In the public cloud, the load balancer is deployed as a public cloud service. In Kubernetes and OpenShift, the load balancer is deployed as a Kubernetes Deployment/Operator, Graf said.  “In the future, the Isovalent Load Balancer will also be able to run on top of Cisco Nexus smart switches,” Graf said. “This means that the Isovalent Load Balancer can run in any environment, from data center, public cloud, to Kubernetes while providing a consistent load-balancing layer with a frictionless cloud-native developer experience.” Cisco has announced a variety of smart switches over the past couple of months on the vendor’s 4.8T capacity Silicon One chip. But the N9300, where Isovalent would run, includes a built-in programmable data processing unit (DPU) from AMD to offload complex data processing work and free up the switches for AI and large workload processing. For customers, the Isovalent Load Balancer provides consistent load balancing across infrastructure while being aligned with Kubernetes as the future for infrastructure. “A single load-balancing solution that can run in the data center, in public cloud, and modern Kubernetes environments. This removes operational complexity, lowers cost, while modernizing the load-balancing infrastructure in preparation

Read More »

Oracle’s struggle with capacity meant they made the difficult but responsible decisions

IDC President Crawford Del Prete agreed, and said that Oracle senior management made the right move, despite how difficult the situation is today. “Oracle is being incredibly responsible here. They don’t want to have a lot of idle capacity. That capacity does have a shelf life,” Del Prete said. CEO Katz “is trying to be extremely precise about how much capacity she puts on.” Del Prete said that, for the moment, Oracle’s capacity situation is unique to the company, and has not been a factor with key rivals AWS, Microsoft, and Google. During the investor call, Katz said that her team “made engineering decisions that were much different from the other hyperscalers and that were better suited to the needs of enterprise customers, resulting in lower costs to them and giving them deployment flexibility.” Oracle management certainly anticipated a flurry of orders, but Katz said that she chose to not pay for expanded capacity until she saw finalized “contracted noncancelable bookings.” She pointed to a huge capex line of $9.1 billion and said, “the vast majority of our capex investments are for revenue generating equipment that is going into data centers and not for land or buildings.”

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »