Stay Ahead, Stay ONMINE

Learnings from a Machine Learning Engineer — Part 3: The Evaluation

In this third part of my series, I will explore the evaluation process which is a critical piece that will lead to a cleaner data set and elevate your model performance. We will see the difference between evaluation of a trained model (one not yet in production), and evaluation of a deployed model (one making real-world predictions). In Part 1, […]

In this third part of my series, I will explore the evaluation process which is a critical piece that will lead to a cleaner data set and elevate your model performance. We will see the difference between evaluation of a trained model (one not yet in production), and evaluation of a deployed model (one making real-world predictions).

In Part 1, I discussed the process of labelling your image data that you use in your Image Classification project. I showed how to define “good” images and create sub-classes. In Part 2, I went over various data sets, beyond the usual train-validation-test sets, such as benchmark sets, plus how to handle synthetic data and duplicate images.

Evaluation of the trained model

As machine learning engineers we look at accuracy, F1, log loss, and other metrics to decide if a model is ready to move to production. These are all important measures, but from my experience, these scores can be deceiving especially as the number of classes grows.

Although it can be time consuming, I find it very important to manually review the images that the model gets wrong, as well as the images that the model gives a low softmax “confidence” score to. This means adding a step immediately after your training run completes to calculate scores for all images — training, validation, test, and the benchmark sets. You only need to bring up for manual review the ones that the model had problems with. This should only be a small percentage of the total number of images. See the Double-check process below

What you do during the manual evaluation is to put yourself in a “training mindset” to ensure that the labelling standards are being followed that you setup in Part 1. Ask yourself:

  • “Is this a good image?” Is the subject front and center, and can you clearly see all the features?
  • “Is this the correct label?” Don’t be surprised if you find wrong labels.

You can either remove the bad images or fix the labels if they are wrong. Otherwise you can keep them in the data set and force the model to do better next time. Other questions I ask are:

  • “Why did the model get this wrong?”
  • “Why did this image get a low score?”
  • “What is it about the image that caused confusion?”

Sometimes the answer has nothing to do with that specific image. Frequently, it has to do with the other images, either in the ground truth class or in the predicted class. It is worth the effort to Double-check all images in both sets if you see a consistently bad guess. Again, don’t be surprised if you find poor images or wrong labels.

Weighted evaluation

When doing the evaluation of the trained model (above), we apply a lot of subjective analysis — “Why did the model get this wrong?” and “Is this a good image?” From these, you may only get a gut feeling.

Frequently, I will decide to hold off moving a model forward to production based on that gut feel. But how can you justify to your manager that you want to hit the brakes? This is where putting a more objective analysis comes in by creating a weighted average of the softmax “confidence” scores.

In order to apply a weighted evaluation, we need to identify sets of classes that deserve adjustments to the score. Here is where I create a list of “commonly confused” classes.

Commonly confused classes

Certain animals at our zoo can easily be mistaken. For example, African elephants and Asian elephants have different ear shapes. If your model gets these two mixed up, that is not as bad as guessing a giraffe! So perhaps you give partial credit here. You and your subject matter experts (SMEs) can come up with a list of these pairs and a weighted adjustment for each.

Photo by Matt Bango on Unsplash
Photo by Mathew Krizmanich on Unsplash

This weight can be factored into a modified cross-entropy loss function in the equation below. The back half of this equation will reduce the impact of being wrong for specific pairs of ground truth and prediction by using the “weight” function as a lookup. By default, the weighted adjustment would be 1 for all pairings, and the commonly confused classes would get something like 0.5.

In other words, it’s better to be unsure (have a lower confidence score) when you are wrong, compared to being super confident and wrong.

Modified cross-entropy loss function, image by author

Once this weighted log loss is calculated, I can compare to previous training runs to see if the new model is ready for production.

Confidence threshold report

Another valuable measure that incorporates the confidence threshold (in my example, 95) is to report on accuracy and false positive rates. Recall that when we apply the confidence threshold before presenting results, we help reduce false positives from being shown to the end user.

In this table, we look at the breakdown of “true positive above 95” for each data set. We get a sense that when a “good” picture comes through (like the ones from our train-validation-test set) it is very likely to surpass the threshold, thus the user is “happy” with the outcome. Conversely, the “false positive above 95” is extremely low for good pictures, thus only a small number of our users will be “sad” about the results.

Example Confidence Threshold Report, image by author

We expect the train-validation-test set results to be exceptional since our data is curated. So, as long as people take “good” pictures, the model should do very well. But to get a sense of how it does on extreme situations, let’s take a look at our benchmarks.

The “difficult” benchmark has more modest true positive and false positive rates, which reflects the fact that the images are more challenging. These values are much easier to compare across training runs, so that lets me set a min/max target. So for example, if I target a minimum of 80% for true positive, and maximum of 5% for false positive on this benchmark, then I can feel confident moving this to production.

The “out-of-scope” benchmark has no true positive rate because none of the images belong to any class the model can identify. Remember, we picked things like a bag of popcorn, etc., that are not zoo animals, so there cannot be any true positives. But we do get a false positive rate, which means the model gave a confident score to that bag of popcorn as some animal. And if we set a target maximum of 10% for this benchmark, then we may not want to move it to production.

Photo by Linus Mimietz on Unsplash

Right now, you may be thinking, “Well, what animal did it pick for the bag of popcorn?” Excellent question! Now you understand the importance of doing a manual review of the images that get bad results.

Evaluation of the deployed model

The evaluation that I described above applies to a model immediately after training. Now, you want to evaluate how your model is doing in the real world. The process is similar, but requires you to shift to a “production mindset” and asking yourself, “Did the model get this correct?” and “Should it have gotten this correct?” and “Did we tell the user the right thing?”

So, imagine that you are logging in for the morning — after sipping on your cold brew coffee, of course — and are presented with 500 images that your zoo guests took yesterday of different animals. Your job is to determine how satisfied the guests were using your model to identify the zoo animals.

Using the softmax “confidence” score for each image, we have a threshold before presenting results. Above the threshold, we tell the guest what the model predicted. I’ll call this the “happy path”. And below the threshold is the “sad path” where we ask them to try again.

Your review interface will first show you all the “happy path” images one at a time. This is where you ask yourself, “Did we get this right?” Hopefully, yes!

But if not, this is where things get tricky. So now you have to ask, “Why not?” Here are some things that it could be:

  • “Bad” picture — Poor lighting, bad angle, zoomed out, etc — refer to your labelling standards.
  • Out-of-scope — It’s a zoo animal, but unfortunately one that isn’t found in this zoo. Maybe it belongs to another zoo (your guest likes to travel and try out your app). Consider adding these to your data set.
  • Out-of-scope — It’s not a zoo animal. It could be an animal in your zoo, but not one typically contained there, like a neighborhood sparrow or mallard duck. This might be a candidate to add.
  • Out-of-scope — It’s something found in the zoo. A zoo usually has interesting trees and shrubs, so people might try to identify those. Another candidate to add.
  • Prankster — Completely out-of-scope. Because people like to play with technology, there’s the possibility you have a prankster that took a picture of a bag of popcorn, or a soft drink cup, or even a selfie. These are hard to prevent, but hopefully get a low enough score (below the threshold) so the model did not identify it as a zoo animal. If you see enough pattern in these, consider creating a class with special handling on the front-end.

After reviewing the “happy path” images, you move on to the “sad path” images — the ones that got a low confidence score and the app gave a “sorry, try again” message. This time you ask yourself, “Should the model have given this image a higher score?” which would have put it in the “happy path”. If so, then you want to ensure these images are added to the training set so next time it will do better. But most of time, the low score reflects many of the “bad” or out-of-scope situations mentioned above.

Perhaps your model performance is suffering and it has nothing to do with your model. Maybe it is the ways you users interacting with the app. Keep an eye out of non-technical problems and share your observations with the rest of your team. For example:

  • Are your users using the application in the ways you expected?
  • Are they not following the instructions?
  • Do the instructions need to be stated more clearly?
  • Is there anything you can do to improve the experience?

Collect statistics and new images

Both of the manual evaluations above open a gold mine of data. So, be sure to collect these statistics and feed them into a dashboard — your manager and your future self will thank you!

Photo by Justin Morgan on Unsplash

Keep track of these stats and generate reports that you and your can reference:

  • How often the model is being called?
  • What times of the day, what days of the week is it used?
  • Are your system resources able to handle the peak load?
  • What classes are the most common?
  • After evaluation, what is the accuracy for each class?
  • What is the breakdown for confidence scores?
  • How many scores are above and below the confidence threshold?

The single best thing you get from a deployed model is the additional real-world images! You can add these now images to improve coverage of your existing zoo animals. But more importantly, they provide you insight on other classes to add. For example, let’s say people enjoy taking a picture of the large walrus statue at the gate. Some of these may make sense to incorporate into your data set to provide a better user experience.

Creating a new class, like the walrus statue, is not a huge effort, and it avoids the false positive responses. It would be more embarrassing to identify a walrus statue as an elephant! As for the prankster and the bag of popcorn, you can configure your front-end to quietly handle these. You might even get creative and have fun with it like, “Thank you for visiting the food court.”

Double-check process

It is a good idea to double-check your image set when you suspect there may be problems with your data. I’m not suggesting a top-to-bottom check, because that would a monumental effort! Rather specific classes that you suspect could contain bad data that is degrading your model performance.

Immediately after my training run completes, I have a script that will use this new model to generate predictions for my entire data set. When this is complete, it will take the list of incorrect identifications, as well as the low scoring predictions, and automatically feed that list into the Double-check interface.

This interface will show, one at a time, the image in question, alongside an example image of the ground truth and an example image of what the model predicted. I can visually compare the three, side-by-side. The first thing I do is ensure the original image is a “good” picture, following my labelling standards. Then I check if the ground-truth label is indeed correct, or if there is something that made the model think it was the predicted label.

At this point I can:

  • Remove the original image if the image quality is poor.
  • Relabel the image if it belongs in a different class.

During this manual evaluation, you might notice dozens of the same wrong prediction. Ask yourself why the model made this mistake when the images seem perfectly fine. The answer may be some incorrect labels on images in the ground truth, or even in the predicted class!

Don’t hesitate to add those classes and sub-classes back into the Double-check interface and step through them all. You may have 100–200 pictures to review, but there is a good chance that one or two of the images will stand out as being the culprit.

Up next…

With a different mindset for a trained model versus a deployed model, we can now evaluate performances to decide which models are ready for production, and how well a production model is going to serve the public. This relies on a solid Double-check process and a critical eye on your data. And beyond the “gut feel” of your model, we can rely on the benchmark scores to support us.

In Part 4, we kick off the training run, but there are some subtle techniques to get the most out of the process and even ways to leverage throw-away models to expand your library image data.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

AI agent traffic drives first profitable year for Fastly

Fetcher bots, which retrieve content in real time when users make queries to AI assistants, show different concentration patterns. OpenAI’s ChatGPT and related bots generated 68% of fetcher bot requests. In some cases, fetcher bot request volumes exceeded 39,000 requests per minute to individual sites. AI agents check multiple websites

Read More »

Enbridge Q4 Profit Up YoY

Enbridge Inc has reported CAD 1.95 billion ($1.43 billion) in earnings and CAD 1.92 billion in adjusted earnings for the fourth quarter of 2025, up from CAD 493 million and CAD 1.64 billion for the same three-month period in 2024 respectively. Q4 2025 income per share of CAD 0.88 ($0.63), adjusted for extraordinary items, beat the Zacks Consensus Estimate of $0.6. Calgary-based Enbridge, which operates oil and gas pipelines in Canada and the United States, earlier bumped up its quarterly dividend by three percent against the prior rate to CAD 0.97. The annualized rate for 2026 is CAD 3.88 per share. Q4 2025 adjusted EBITDA rose 1.62 percent year-on-year to CAD 5.21 billion “due primarily to favorable gas transmission contracting and Venice Extension entering service, colder weather and higher rates and customer growth at Enbridge Gas Ontario, partially offset by the absence in 2025 of equity earnings related to investment tax credits from our investment in Fox Squirrel Solar”, Enbridge said in an online statement. United States gas transmission contributed CAD 997 million to segment adjusted EBITDA, down from CAD 1 billion for Q4 2024. The U.S. figure benefited from the startup of the Venice Extension Project, which expands the Texas Eastern system’s capacity to deliver gas to Gulf Coast markets, and Enbridge’s acquisition of a stake in the Matterhorn Express Pipeline. Enbridge also recognized “favorable contracting and successful rate case settlements on our U.S. Gas Transmission assets”, partially offset by the timing of operating costs. Adjusted EBITDA from Canadian gas transmission increased from CAD 157 million for Q4 2024 to CAD 190 million for Q4 2025, helped by “higher revenues at Aitken Creek due to favorable storage spreads”. Liquid pipelines logged CAD 2.45 billion in adjusted EBITDA, up from CAD 2.4 billion for Q4 2024. The Mainline System, which carries

Read More »

Analyst Highlights Focus of IEW Event

Focus at the London International Energy Week (IEW) last week was the balancing of geopolitics versus assessed surplus of oil globally in 2026. That’s what Skandinaviska Enskilda Banken AB (SEB) Chief Commodities Analyst Bjarne Schieldrop noted in a SEB report sent to Rigzone on Monday morning, adding that one delegate at the event stated that “if OPEC doesn’t cut, we’ll have $45 per barrel in June”. “That may be true,” Schieldrop said in the report. “But OPEC+ is meeting every month, taking a measure of the state of the global oil market and then decides what to do on the back of that. The group has been very explicit that they may cut, increase, or keep production steady depending on their findings,” he added. “We believe they will and thus we do not buy into $45 per barrel by June because, if need-be, they will trim production as they say they will,” he continued, pointing out that OPEC+ is next scheduled to meet on March 1 “to discuss production for April”. Schieldrop highlighted in the report that, in its February oil market report, the International Energy Agency (IEA) “restated its view that the world will only need 25.7 million barrels per day of crude from OPEC in 2026 versus a recent production by the group of 28.8 million barrels per day”. “I.e. that to keep the market balanced the group will need to cut production by some three million barrels per day,” he said. “Though strategic stock building around the world needs to be deducted from that. And the appetite for such stock building could be solid given elevated geopolitical risks. Thus what will flow to commercial stocks in the end remains to be seen,” he stated. Schieldrop went on to note in the report that increased Iranian tension could drive Brent

Read More »

Hungary Asks Croatia to Allow Russian Crude Shipments

Hungary requested that Croatia allow the shipment of Russian crude via the Adriatic pipeline while a key route through Ukraine remains blocked. Hungarian Foreign Minister Peter Szijjarto and Slovak Economy Minister Denisa Sakova jointly wrote to the Croatian government in Zagreb with the request, Szijjarto said in a statement Sunday. Oil transit along the Druzhba pipeline via Ukraine has been halted since late last month amid large-scale Russian attacks on Ukraine’s energy infrastructure, with the governments in Budapest and Kyiv in a standoff over the fallout. Budapest relies on the Druzhba pipeline connecting Hungary with Russia through war-torn Ukraine for most of its oil flows. Hungarian Prime Minister Viktor Orban, who has remained committed to buying Russian energy sources for his landlocked country, has also frequently engaged in debate with neighboring Croatia over the capacity of the Adriatic pipeline.  Energy policy is also likely to feature in Orban’s talks in Budapest with US Secretary of State Marco Rubio on Monday. Orban has found an ally in Slovak counterpart Robert Fico, who on Sunday echoed his views that Ukraine was using the Druzhba pipeline for political leverage, which officials in Kyiv have denied. What do you think? We’d love to hear from you, join the conversation on the Rigzone Energy Network. The Rigzone Energy Network is a new social experience created for you and all energy professionals to Speak Up about our industry, share knowledge, connect with peers and industry insiders and engage in a professional community that will empower your career in energy.

Read More »

Philippines Announces New Project Pipeline under 10-Year RE Auction

The Philippine Department of Energy (DOE) has announced new award plans under a 10-year auction for renewable energy development, with over 3,200 megawatts (MW) of non-floating solar capacity targeted to be built between 2027 and 2028. The DOE said in a press release it plans to hold the sixth to ninth rounds of the Green Energy Auction Program (GEAP) for project delivery within the next two years, toward the Southeast Asian archipelago’s target of adding at least 25 gigawatts (GW) of renewable power capacity by 2035. GEA-6 would offer onshore wind and floating solar capacities. GEA-7 covers rooftop solar and solar plus battery energy storage systems in collaboration with the Mindanao Development Authority. “GEA-8 will include solar on stilts with the Department of Agriculture, agri-solar with the Department of Agrarian Reform and the Department of Agriculture and canal-top solar with the National Irrigation Administration”, the DOE said. “GEA-9 will cover biomass, geothermal, solar, hydropower and onshore wind”. Besides the non-floating solar goal of 3,200 MW, the four rounds aim to install 5,565 MW of renewable generation capacity from other technologies between 2028 and 2035. “Succeeding auctions for the remaining capacities in the 25 GW target will be scheduled based on the availability of ready projects covered by RE Contracts or Certificates of Award, power-supply-demand scenarios, grid conditions among others”, the DOE said. Philippine Energy Secretary Sharon S. Garin said in the statement, “By preparing a clear, auction-backed pipeline, we are giving developers and financial institutions the market visibility they need to plan, mobilize capital and deliver projects on schedule”. “As the Philippines accelerates toward its targets of 35 percent renewable energy share by 2030 and 50 percent by 2040, clarity in how power is sold, priced and monetized becomes just as critical as how it is generated”, Garin said. The

Read More »

BP, Eni Discover More Oil offshore Angola

Azule Energy Holdings Ltd, an Angolan joint venture equally owned by Italy’s Eni SpA and Britain’s BP PLC, has declared a new oil discovery in Block 15/06 in the offshore Lower Congo Basin, with an initial estimate of about 500 million barrels. “The Algaita-01 results build on a long successful track record of 22 discoveries, once again confirming the exceptional effectiveness of the petroleum system in Block 15/06”, Azule Energy chief executive Joe Murphy said in an online statement by the company. “The presence of multiple nearby producing facilities further enhances the value of this new exploratory success”. The well sits approximately 18 kilometers (11.18 miles) from the Armada Olombendo floating production, storage and offloading facility in the same block, Italy’s state-backed energy major Eni noted in a separate online statement. The latest discovery showed oil-bearing sandstones in Upper Miocene reservoir intervals, Azule Energy said. “Preliminary interpretation of wireline logging and fluid sampling indicates the presence of multiple reservoir intervals with excellent petrophysical properties and fluid mobilities”, it said. The well had a water depth of 667 meters (2,188.32 feet), Azule Energy said. The discovery “reaffirms the high potential of the Lower Congo Basin and the consistency of the ongoing exploration strategy, creating favorable conditions for swift monetization, with positive impacts on national production and state revenues”, Paulino Jerónimo, chairman and chief executive of the Angolan National Agency of Petroleum, Gas and Biofuels, was quoted as saying in Azule Energy’s statement. “The ANPG encourages the continued identification of new opportunities under the existing incentive mechanisms, particularly Decree 8/24 on Incremental Production, as well as Decree 5/18, which establishes the legal framework that allows exploration within and near development areas”. Incorporated joint venture Azule Energy, based in the Central African country, operates Block 15/06 with a 36.84 percent stake. Sociedade Nacional

Read More »

Naftogaz Seeks USA Funds to Renovate Destroyed Plants

Ukraine’s state-run oil and gas company Naftogaz Group is seeking funds to restore and renovate its facilities after the destruction caused by constant Russian attacks, said its top executive. At least €3 billion ($3.5 billion) of damage has been done to the country’s facilities, with equipment needs exceeding €900 million, according to the company.  Naftogaz is particularly interested in Ukraine’s ongoing talks with partners such as the US Exim Bank and the US International Development Finance Corp., Chief Executive Officer Sergii Koretskyi told Bloomberg News in an interview at his office in Kyiv. He also stressed the importance of European assistance. Some $250 million in unspent Ukraine assistance funds remain with the US State Department, he said — part of which could be used to purchase US-made gas compressor units to allow Kyiv to repair production facilities. Their use would also be a boon to American companies, he added.  “Now we need funding for imports, investments and technologies. This is definitely a win-win situation for all parties — we’re not saying ‘help us’ but offering mutually beneficial cooperation,” said Koretskyi. Naftogaz, which provides gas to 12.5 million households, is a key element of Ukraine’s energy sector. Its infrastructure, as well as that of other power companies, has come under intense Russian bombardment in recent weeks, depriving many civilians of heating amid freezing temperatures. Since the start of this year, Naftogaz infrastructure has already faced 20 strikes, damaging oil and gas production and transportation systems, Koretskyi said.  He said that last year was the most destructive for Ukraine’s energy sector since Russian President Vladimir Putin began his full-scale invasion nearly four years ago, with hundreds of missiles and drones hitting facilities. Last February and October were the hardest months for Naftogaz specifically, the CEO added. The company’s biggest challenge is the unpredictable consequences

Read More »

Arista laments ‘horrendous’ memory situation

Digging in on campus Arista has been clear about its plans to grow its presence campus networking environments. Last Fall, Ullal said she expects Arista’s campus and WAN business would grow from the current $750 million-$800 million run rate to $1.25 billion, representing a 60% growth opportunity for the company. “We are committed to our aggressive goal of $1.25 billion for ’26 for the cognitive campus and branch. We have also successfully deployed in many routing edge, core spine and peering use cases,” Ullal said. “In Q4 2025, Arista launched our flagship 7800 R4 spine for many routing use cases, including DCI, AI spines with that massive 460 terabits of capacity to meet the demanding needs of multiservice routing, AI workloads and switching use cases. The combined campus and routing adjacencies together contribute approximately 18% of revenue.” Ethernet leads the way “In terms of annual 2025 product lines, our core cloud, AI and data center products built upon our highly differentiated Arista EOS stack is successfully deployed across 10 gig to 800 gigabit Ethernet speeds with 1.6 terabit migration imminent,” Ullal said. “This includes our portfolio of EtherLink AI and our 7000 series platforms for best-in-class performance, power efficiency, high availability, automation, agility for both the front and back-end compute, storage and all of the interconnect zones.” Ullal said she expects Ethernet will get even more of a boost later this year when the multivendor Ethernet for Scale-Up Networking (ESUN) specification is released.  “We have consistently described that today’s configurations are mostly a combination of scale out and scale up were largely based on 800G and smaller ratings. Now that the ESUN specification is well underway, we need a good solid spec. Otherwise, we’ll be shipping proprietary products like some people in the world do today. And so we will tie our

Read More »

From NIMBY to YIMBY: A Playbook for Data Center Community Acceptance

Across many conversations at the start of this year, at PTC and other conferences alike, the word on everyone’s lips seems to be “community.” For the data center industry, that single word now captures a turning point from just a few short years ago: we are no longer a niche, back‑of‑house utility, but a front‑page presence in local politics, school board budgets, and town hall debates. That visibility is forcing a choice in how we tell our story—either accept a permanent NIMBY-reactive framework, or actively build a YIMBY narrative that portrays the real value digital infrastructure brings to the markets and surrounding communities that host it. Speaking regularly with Ilissa Miller, CEO of iMiller Public Relations about this topic, there is work to be done across the ecosystem to build communications. Miller recently reflected: “What we’re seeing in communities isn’t a rejection of digital infrastructure, it’s a rejection of uncertainty driven by anxiety and fear. Most local leaders have never been given a framework to evaluate digital infrastructure developments the way they evaluate roads, water systems, or industrial parks. When there’s no shared planning language, ‘no’ becomes the safest answer.” A Brief History of “No” Community pushback against data centers is no longer episodic; it has become organized, media‑savvy, and politically influential in key markets. In Northern Virginia, resident groups and environmental organizations have mobilized against large‑scale campuses, pressing counties like Loudoun and Prince William to tighten zoning, question incentives, and delay or reshape projects.1 Loudoun County’s move in 2025 to end by‑right approvals for new facilities, requiring public hearings and board votes, marked a watershed moment as the world’s densest data center market signaled that communities now expect more say over where and how these campuses are built. Prince William County’s decision to sharply increase its tax rate on

Read More »

Nomads at the Frontier: PTC 2026 Signals the Digital Infrastructure Industry’s Moment of Execution

Each January, the Pacific Telecommunications Council conference serves as a barometer for where digital infrastructure is headed next. And according to Nomad Futurist founders Nabeel Mahmood and Phillip Koblence, the message from PTC 2026 was unmistakable: The industry has moved beyond hype. The hard work has begun. In the latest episode of The DCF Show Podcast, part of our ongoing ‘Nomads at the Frontier’ series, Mahmood and Koblence joined Data Center Frontier to unpack the tone shift emerging across the AI and data center ecosystem. Attendance continues to grow year over year. Conversations remain energetic. But the character of those conversations has changed. As Mahmood put it: “The hype that the market started to see is actually resulting a bit more into actions now, and those conversations are resulting into some good progress.” The difference from prior years? Less speculation. More execution. From Data Center Cowboys to Real Deployments Koblence offered perhaps the sharpest contrast between PTC conversations in 2024 and those in 2026. Two years ago, many projects felt speculative. Today, developers are arriving with secured power, customers, and construction underway. “If 2024’s PTC was data center cowboys — sites that in someone’s mind could be a data center — this year was: show me the money, show me the power, give me accurate timelines.” In other words, the market is no longer rewarding hypothetical capacity. It is demanding delivered capacity. Operators now speak in terms of deployments already underway, not aspirational campuses still waiting on permits and power commitments. And behind nearly every conversation sits the same gating factor. Power. Power Has Become the Industry’s Defining Constraint Whether discussions centered on AI factories, investment capital, or campus expansion, Mahmood and Koblence noted that every conversation eventually returned to energy availability. “All of those questions are power,” Koblence said.

Read More »

Cooling Consolidation Hits AI Scale: LiquidStack, Submer, and the Future of Data Center Thermal Strategy

As AI infrastructure scales toward ever-higher rack densities and gigawatt-class campuses, cooling has moved from a technical subsystem to a defining strategic issue for the data center industry. A trio of announcements in early February highlights how rapidly the cooling and AI infrastructure stack is consolidating and evolving: Trane Technologies’ acquisition of LiquidStack; Submer’s acquisition of Radian Arc, extending its reach from core data centers into telco edge environments; and Submer’s partnership with Anant Raj to accelerate sovereign AI infrastructure deployment across India. Layered atop these developments is fresh guidance from Oracle Cloud Infrastructure explaining why closed-loop, direct-to-chip cooling is becoming central to next-generation facility design, particularly in regions where water use has become a flashpoint in community discussions around data center growth. Taken together, these developments show how the industry is moving beyond point solutions toward integrated, scalable AI infrastructure ecosystems, where cooling, compute, and deployment models must work together across hyperscale campuses and distributed edge environments alike. Trane Moves to Own the Cooling Stack The most consequential development comes from Trane Technologies, which on February 10 announced it has entered into a definitive agreement to acquire LiquidStack, one of the pioneers and leading innovators in data center liquid cooling. The acquisition significantly strengthens Trane’s ambition to become a full-service thermal partner for data center operators, extending its reach from plant-level systems all the way down to the chip itself. LiquidStack, headquartered in Carrollton, Texas, built its reputation on immersion cooling and advanced direct-to-chip liquid solutions supporting high-density deployments across hyperscale, enterprise, colocation, edge, and blockchain environments. Under Trane, those technologies will now be scaled globally and integrated into a broader thermal portfolio. In practical terms, Trane is positioning itself to deliver cooling across the full thermal chain, including: • Central plant equipment and chillers.• Heat rejection and controls

Read More »

Infrastructure Maturity Defines the Next Phase of AI Deployment

The State of Data Infrastructure Global Report 2025 from Hitachi Vantara arrives at a moment when the data center industry is undergoing one of the most profound structural shifts in its history. The transition from enterprise IT to AI-first infrastructure has moved from aspiration to inevitability, forcing operators, developers, and investors to confront uncomfortable truths about readiness, resilience, and risk. Although framed around “AI readiness,” the report ultimately tells an infrastructure story: one that maps directly onto how data centers are designed, operated, secured, and justified economically. Drawing on a global survey of more than 1,200 IT leaders, the report introduces a proprietary maturity model that evaluates organizations across six dimensions: scalability, reliability, security, governance, sovereignty, and sustainability. Respondents are then grouped into three categories—Emerging, Defined, and Optimized—revealing a stark conclusion: most organizations are not constrained by access to AI models or capital, but by the fragility of the infrastructure supporting their data pipelines. For the data center industry, the implications are immediate, shaping everything from availability design and automation strategies to sustainability planning and evolving customer expectations. In short, extracting value from AI now depends less on experimentation and more on the strength and resilience of the underlying infrastructure. The Focus of the Survey: Infrastructure, Not Algorithms Although the report is positioned as a study of AI readiness, its primary focus is not models, training approaches, or application development, but rather the infrastructure foundations required to operate AI reliably at scale. Drawing on responses from more than 1,200 organizations, Hitachi Vantara evaluates how enterprises are positioned to support production AI workloads across six dimensions as stated above: scalability, reliability, security, governance, sovereignty, and sustainability. These factors closely reflect the operational realities shaping modern data center design and management. The survey’s central argument is that AI success is no longer

Read More »

AI’s New Land Grab: Meta’s Indiana Megaproject and the Rise of Europe’s Neocloud Challengers

While Meta’s Indiana campus anchors hyperscale expansion in the United States, Europe recorded its own major infrastructure milestone this week as Amsterdam-based AI infrastructure provider Nebius unveiled plans for a 240-megawatt data center campus in Béthune, France, near Lille in the country’s northern industrial corridor. When completed, the campus will rank among Europe’s largest AI-focused data center facilities and positions northern France as a growing node in the continent’s expanding AI infrastructure map. The development repurposes a former Bridgestone tire manufacturing site, reflecting a broader trend across Europe in which legacy industrial properties, already equipped with heavy power access, transport links, and industrial zoning, are being converted into large-scale digital infrastructure hubs. Located within reach of connectivity and enterprise corridors linking Paris, Brussels, London, and Amsterdam, the site allows Nebius to serve major European markets while avoiding the congestion and power constraints increasingly shaping Tier 1 data center hubs. Industrial Infrastructure Becomes Digital Infrastructure Developers increasingly view former industrial sites as ideal for AI campuses because they often provide: • Existing grid interconnection capacity built for heavy industry• Transport and logistics infrastructure already in place• Industrial zoning that reduces permitting friction• Large contiguous parcels suited to phased campus expansion For regions like Hauts-de-France, redevelopment projects also offer economic transition opportunities, replacing legacy manufacturing capacity with next-generation digital infrastructure investment. Local officials have positioned the project as part of broader efforts to reposition northern France as a logistics and technology hub within Europe. The Neocloud Model Gains Ground Beyond the site itself, Nebius’ expansion illustrates the rapid emergence of neocloud infrastructure providers, companies building GPU-intensive AI capacity without operating full hyperscale cloud ecosystems. These firms increasingly occupy a strategic middle ground: supplying AI compute capacity to enterprises, startups, and even hyperscalers facing short-term infrastructure constraints. Nebius’ rise over the past year

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »