Stay Ahead, Stay ONMINE

Learnings from a Machine Learning Engineer — Part 3: The Evaluation

In this third part of my series, I will explore the evaluation process which is a critical piece that will lead to a cleaner data set and elevate your model performance. We will see the difference between evaluation of a trained model (one not yet in production), and evaluation of a deployed model (one making real-world predictions). In Part 1, […]

In this third part of my series, I will explore the evaluation process which is a critical piece that will lead to a cleaner data set and elevate your model performance. We will see the difference between evaluation of a trained model (one not yet in production), and evaluation of a deployed model (one making real-world predictions).

In Part 1, I discussed the process of labelling your image data that you use in your Image Classification project. I showed how to define “good” images and create sub-classes. In Part 2, I went over various data sets, beyond the usual train-validation-test sets, such as benchmark sets, plus how to handle synthetic data and duplicate images.

Evaluation of the trained model

As machine learning engineers we look at accuracy, F1, log loss, and other metrics to decide if a model is ready to move to production. These are all important measures, but from my experience, these scores can be deceiving especially as the number of classes grows.

Although it can be time consuming, I find it very important to manually review the images that the model gets wrong, as well as the images that the model gives a low softmax “confidence” score to. This means adding a step immediately after your training run completes to calculate scores for all images — training, validation, test, and the benchmark sets. You only need to bring up for manual review the ones that the model had problems with. This should only be a small percentage of the total number of images. See the Double-check process below

What you do during the manual evaluation is to put yourself in a “training mindset” to ensure that the labelling standards are being followed that you setup in Part 1. Ask yourself:

  • “Is this a good image?” Is the subject front and center, and can you clearly see all the features?
  • “Is this the correct label?” Don’t be surprised if you find wrong labels.

You can either remove the bad images or fix the labels if they are wrong. Otherwise you can keep them in the data set and force the model to do better next time. Other questions I ask are:

  • “Why did the model get this wrong?”
  • “Why did this image get a low score?”
  • “What is it about the image that caused confusion?”

Sometimes the answer has nothing to do with that specific image. Frequently, it has to do with the other images, either in the ground truth class or in the predicted class. It is worth the effort to Double-check all images in both sets if you see a consistently bad guess. Again, don’t be surprised if you find poor images or wrong labels.

Weighted evaluation

When doing the evaluation of the trained model (above), we apply a lot of subjective analysis — “Why did the model get this wrong?” and “Is this a good image?” From these, you may only get a gut feeling.

Frequently, I will decide to hold off moving a model forward to production based on that gut feel. But how can you justify to your manager that you want to hit the brakes? This is where putting a more objective analysis comes in by creating a weighted average of the softmax “confidence” scores.

In order to apply a weighted evaluation, we need to identify sets of classes that deserve adjustments to the score. Here is where I create a list of “commonly confused” classes.

Commonly confused classes

Certain animals at our zoo can easily be mistaken. For example, African elephants and Asian elephants have different ear shapes. If your model gets these two mixed up, that is not as bad as guessing a giraffe! So perhaps you give partial credit here. You and your subject matter experts (SMEs) can come up with a list of these pairs and a weighted adjustment for each.

Photo by Matt Bango on Unsplash
Photo by Mathew Krizmanich on Unsplash

This weight can be factored into a modified cross-entropy loss function in the equation below. The back half of this equation will reduce the impact of being wrong for specific pairs of ground truth and prediction by using the “weight” function as a lookup. By default, the weighted adjustment would be 1 for all pairings, and the commonly confused classes would get something like 0.5.

In other words, it’s better to be unsure (have a lower confidence score) when you are wrong, compared to being super confident and wrong.

Modified cross-entropy loss function, image by author

Once this weighted log loss is calculated, I can compare to previous training runs to see if the new model is ready for production.

Confidence threshold report

Another valuable measure that incorporates the confidence threshold (in my example, 95) is to report on accuracy and false positive rates. Recall that when we apply the confidence threshold before presenting results, we help reduce false positives from being shown to the end user.

In this table, we look at the breakdown of “true positive above 95” for each data set. We get a sense that when a “good” picture comes through (like the ones from our train-validation-test set) it is very likely to surpass the threshold, thus the user is “happy” with the outcome. Conversely, the “false positive above 95” is extremely low for good pictures, thus only a small number of our users will be “sad” about the results.

Example Confidence Threshold Report, image by author

We expect the train-validation-test set results to be exceptional since our data is curated. So, as long as people take “good” pictures, the model should do very well. But to get a sense of how it does on extreme situations, let’s take a look at our benchmarks.

The “difficult” benchmark has more modest true positive and false positive rates, which reflects the fact that the images are more challenging. These values are much easier to compare across training runs, so that lets me set a min/max target. So for example, if I target a minimum of 80% for true positive, and maximum of 5% for false positive on this benchmark, then I can feel confident moving this to production.

The “out-of-scope” benchmark has no true positive rate because none of the images belong to any class the model can identify. Remember, we picked things like a bag of popcorn, etc., that are not zoo animals, so there cannot be any true positives. But we do get a false positive rate, which means the model gave a confident score to that bag of popcorn as some animal. And if we set a target maximum of 10% for this benchmark, then we may not want to move it to production.

Photo by Linus Mimietz on Unsplash

Right now, you may be thinking, “Well, what animal did it pick for the bag of popcorn?” Excellent question! Now you understand the importance of doing a manual review of the images that get bad results.

Evaluation of the deployed model

The evaluation that I described above applies to a model immediately after training. Now, you want to evaluate how your model is doing in the real world. The process is similar, but requires you to shift to a “production mindset” and asking yourself, “Did the model get this correct?” and “Should it have gotten this correct?” and “Did we tell the user the right thing?”

So, imagine that you are logging in for the morning — after sipping on your cold brew coffee, of course — and are presented with 500 images that your zoo guests took yesterday of different animals. Your job is to determine how satisfied the guests were using your model to identify the zoo animals.

Using the softmax “confidence” score for each image, we have a threshold before presenting results. Above the threshold, we tell the guest what the model predicted. I’ll call this the “happy path”. And below the threshold is the “sad path” where we ask them to try again.

Your review interface will first show you all the “happy path” images one at a time. This is where you ask yourself, “Did we get this right?” Hopefully, yes!

But if not, this is where things get tricky. So now you have to ask, “Why not?” Here are some things that it could be:

  • “Bad” picture — Poor lighting, bad angle, zoomed out, etc — refer to your labelling standards.
  • Out-of-scope — It’s a zoo animal, but unfortunately one that isn’t found in this zoo. Maybe it belongs to another zoo (your guest likes to travel and try out your app). Consider adding these to your data set.
  • Out-of-scope — It’s not a zoo animal. It could be an animal in your zoo, but not one typically contained there, like a neighborhood sparrow or mallard duck. This might be a candidate to add.
  • Out-of-scope — It’s something found in the zoo. A zoo usually has interesting trees and shrubs, so people might try to identify those. Another candidate to add.
  • Prankster — Completely out-of-scope. Because people like to play with technology, there’s the possibility you have a prankster that took a picture of a bag of popcorn, or a soft drink cup, or even a selfie. These are hard to prevent, but hopefully get a low enough score (below the threshold) so the model did not identify it as a zoo animal. If you see enough pattern in these, consider creating a class with special handling on the front-end.

After reviewing the “happy path” images, you move on to the “sad path” images — the ones that got a low confidence score and the app gave a “sorry, try again” message. This time you ask yourself, “Should the model have given this image a higher score?” which would have put it in the “happy path”. If so, then you want to ensure these images are added to the training set so next time it will do better. But most of time, the low score reflects many of the “bad” or out-of-scope situations mentioned above.

Perhaps your model performance is suffering and it has nothing to do with your model. Maybe it is the ways you users interacting with the app. Keep an eye out of non-technical problems and share your observations with the rest of your team. For example:

  • Are your users using the application in the ways you expected?
  • Are they not following the instructions?
  • Do the instructions need to be stated more clearly?
  • Is there anything you can do to improve the experience?

Collect statistics and new images

Both of the manual evaluations above open a gold mine of data. So, be sure to collect these statistics and feed them into a dashboard — your manager and your future self will thank you!

Photo by Justin Morgan on Unsplash

Keep track of these stats and generate reports that you and your can reference:

  • How often the model is being called?
  • What times of the day, what days of the week is it used?
  • Are your system resources able to handle the peak load?
  • What classes are the most common?
  • After evaluation, what is the accuracy for each class?
  • What is the breakdown for confidence scores?
  • How many scores are above and below the confidence threshold?

The single best thing you get from a deployed model is the additional real-world images! You can add these now images to improve coverage of your existing zoo animals. But more importantly, they provide you insight on other classes to add. For example, let’s say people enjoy taking a picture of the large walrus statue at the gate. Some of these may make sense to incorporate into your data set to provide a better user experience.

Creating a new class, like the walrus statue, is not a huge effort, and it avoids the false positive responses. It would be more embarrassing to identify a walrus statue as an elephant! As for the prankster and the bag of popcorn, you can configure your front-end to quietly handle these. You might even get creative and have fun with it like, “Thank you for visiting the food court.”

Double-check process

It is a good idea to double-check your image set when you suspect there may be problems with your data. I’m not suggesting a top-to-bottom check, because that would a monumental effort! Rather specific classes that you suspect could contain bad data that is degrading your model performance.

Immediately after my training run completes, I have a script that will use this new model to generate predictions for my entire data set. When this is complete, it will take the list of incorrect identifications, as well as the low scoring predictions, and automatically feed that list into the Double-check interface.

This interface will show, one at a time, the image in question, alongside an example image of the ground truth and an example image of what the model predicted. I can visually compare the three, side-by-side. The first thing I do is ensure the original image is a “good” picture, following my labelling standards. Then I check if the ground-truth label is indeed correct, or if there is something that made the model think it was the predicted label.

At this point I can:

  • Remove the original image if the image quality is poor.
  • Relabel the image if it belongs in a different class.

During this manual evaluation, you might notice dozens of the same wrong prediction. Ask yourself why the model made this mistake when the images seem perfectly fine. The answer may be some incorrect labels on images in the ground truth, or even in the predicted class!

Don’t hesitate to add those classes and sub-classes back into the Double-check interface and step through them all. You may have 100–200 pictures to review, but there is a good chance that one or two of the images will stand out as being the culprit.

Up next…

With a different mindset for a trained model versus a deployed model, we can now evaluate performances to decide which models are ready for production, and how well a production model is going to serve the public. This relies on a solid Double-check process and a critical eye on your data. And beyond the “gut feel” of your model, we can rely on the benchmark scores to support us.

In Part 4, we kick off the training run, but there are some subtle techniques to get the most out of the process and even ways to leverage throw-away models to expand your library image data.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Cisco extends Nexus 9000 support to Intel Gaudi 3 AI accelerators

Partnerships, validated designs strengthen Cisco offerings Cisco’s AI offerings also include Nvidia technologies, such as Spectrum-X-based switches that are part of Cisco Secure AI Factory with Nvidia.  Cisco also works with AMD and its Instinct AI GPUs for networking and compute stack in large AI clusters. In addition, Cisco integrates

Read More »

F5 tackles AI security with new platform extensions

F5 AI Guardrails deploys as a proxy between users and AI models. Wormke describes it as being inserted as a proxy layer at the “front door” of AI interaction, between AI applications, users and agents. It intercepts prompts before they reach the model and analyzes outputs before they return to

Read More »

Western Midstream Secures New Deals with Occidental,ConocoPhillips

Western Midstream Partners LP (WES) announced Tuesday it has amended its natural gas gathering and processing contracts in the Delaware Basin with Occidental Petroleum Corp and expanded its partnership with ConocoPhillips in the same basin. The new agreements with ConocoPhillips and Occidental advance WES’ transition to fixed-fee arrangements in the maturing basin, The Woodlands, Texas-based company said in a statement on its website. The previous agreement with Occidental already provided for a transition to a fixed-fee structure; the new agreement speeds up that transition, according to WES. Houston, Texas-based oil, gas and chemicals producer Occidental agreed to reduce its ownership in WES from about 42 percent to around 40 percent under the renegotiated gathering and processing contracts, “further positioning WES as a standalone midstream enterprise”, WES said. “Following this amendment, approximately nine percent of WES’ total revenue will remain subject to cost-of-service rates, with approximately one percent of total revenue subject to cost-of-service rates expiring in the late 2020s”, WES said. “The remaining cost-of-service rate provisions extend into the mid-to-late 2030s and include provisions to convert to fixed-fee structures at that time. “All significant fixed-fee contracts with Occidental, including the contracts being amended, are effective through the mid-to-late 2030s”. The new gas gathering contract provides “volumetric protection via substantial minimum volume commitments (MVCs) through the original cost-of-service term, and from that point forward, the existing acreage dedication and fixed-fee structure continues through the duration of the contract”, WES added. The new gas processing contract “continues to provide volumetric protection via MVCs through 2035”, WES said. As part of the renegotiated contracts, Occidental will surrender to WES 15.3 million common units currently owned by Occidental. The volume represents around $610 million of limited partnership interests, according to WES. “This transfer was structured on terms intended to represent a value-neutral exchange for the economic concessions reflected in

Read More »

Why Are USA NatGas Prices Rising Today?

U.S. natural gas prices are rising today due to a combination of weather risk, production softness, and positioning, rather than any single structural shift. That’s what Ole R. Hvalbye, a commodities analyst at Skandinaviska Enskilda Banken AB (SEB), told Rigzone in an exclusive interview on Wednesday. “First, the weather premium has kicked in hard,” Hvalbye said. “Forecasts now show temperatures in the Lower-48 turning well below normal from around January 23 and extending into early February, particularly across the eastern half of the United States,” he added. “That directly lifts heating demand expectations at a time of year when the market is already sensitive(!). As a result, Henry Hub has surged from … [around] $3 per MMBtu [million British thermal units] last week to nearly $5 per MMBtu intraday today!” he noted. “Second, supply has tightened at the margin. Lower-48 dry gas production has dipped to around 110.5 Bcfpd [billion cubic feet per day], down from over 112 Bcfpd earlier this week, partly reflecting cold-weather disruptions,” Hvalbye continued. “At the same time, LNG feedgas demand remains elevated at just over 18 Bcfpd, even though flows at Sabine Pass eased slightly today, partly offset by higher intake at Elba Island,” he stated. “Third, positioning and short covering are amplifying the move,” Hvalbye highlighted. The SEB commodities analyst told Rigzone that trading volumes in Henry Hub futures hit a record high earlier this week and added that today’s rally has been pushed by hedge funds covering short positions built up during the recent sell-off. “That adds momentum once prices start moving,” he pointed out. Looking at the demand side, Hvalbye told Rigzone that U.S. gas consumption “has eased back toward ~108 Bcfpd from very high cold-weather levels earlier this week” but added that “that hasn’t been enough to offset the weather risk

Read More »

EU Hydrogen Matchmaking Platform Opens for Buyer Expressions of Interest

The European Commission on Tuesday made the first call for buyer expressions of interest for hydrogen supply offers under a matchmaking platform launched last year. In a call to suppliers that closed earlier this month, European and international companies placed offers from over 260 projects, the Commission’s Directorate-General for Energy said in an online statement. Buyers now have until March 20, 2026 to indicate interest in the offers, according to the statement. “As part of the EU Energy and Raw Materials Platform, the Hydrogen Mechanism connects potential off-takers in Europe with suppliers of renewable and low-carbon hydrogen or derivatives, including ammonia, methanol, eMethane and electro-sustainable aviation fuel”, the Directorate-General said. “Hydrogen plays an important role in decarbonizing industrial processes and industries for which reducing carbon emissions is both urgent and hard to achieve”, it added. “At the same time, it can strengthen the competitiveness of Europe’s industry and leverage the EU market towards more security of supply, diversification and decarbonization”. European Energy and Housing Commissioner Dan Jørgensen said, “The EU’s Hydrogen Mechanism is a new, innovative tool to help develop the market. With strong interest shown from suppliers across Europe and beyond, the initiative is off to a very promising start”. The broader European Union Energy and Raw Materials Platform lets buyers in the 27-member bloc offer demand for biomethane, hydrogen, natural gas and raw materials. The online platform seeks to give EU companies cost-effective and efficient access to such commodities by enabling negotiations with competing suppliers, according to the Commission. The Hydrogen Mechanism will operate until 2029 under the European Hydrogen Bank, as specified under the EU’s “Regulation on the Internal Markets for Renewable Gas, Natural Gas and Hydrogen”. The Hydrogen Bank is an EU Innovation Fund financing platform to scale up the renewable hydrogen value chain. The platform’s user

Read More »

Bulgaria Acquires 10 Percent in Han Asparuh Block

OMV Petrom SA and NewMed Energy LP have signed a deal to sell 10 percent in the Han Asparuh exploration block on Bulgaria’s side of the Black Sea to state-owned Bulgarian Energy Holding EAD (BEH) following a government order. The Bulgarian parliament had directed the Energy Ministry to have up to 20 percent of the license transferred to a government-owned corporation, NewMed Energy said in a stock filing. Operator OMV Petrom, an integrated energy company with investments from Austria’s state-backed OMV AG and the Romanian government, and equal co-owner NewMed Energy, an Israeli natural gas-focused explorer and producer, have now agreed to sell five percent each to BEH, according to the regulatory disclosure. The Bulgarian government still needs to approve the sale agreement and the companies need to amend the “joint operating agreement” for Han Asparuh before the sale could be completed, NewMed Energy said. Under the sale agreement, “the parties agreed to work jointly vis-à-vis the Bulgarian government and the Bulgarian Ministry of Energy in connection with amendments to the ordinance for determining the concession royalty payments for the production of underground resources and extension of the period of the appraisal drillings in the project to two years in lieu of one year”, NewMed Energy said. “It is noted in this context that on 8 December 2025, the Bulgarian Ministry of Energy released a draft of new regulations for determining royalty payments to the Bulgarian government, which are determined by multiplying the economic value of annual production by the royalty rate payable to the government”. “It is further proposed to establish in the draft regulations a minimum annual royalty payment obligation”, NewMed Energy added. BEH has agreed to pay NewMed Energy and OMV Petrom its proportionate share of the cost of drilling preparations, NewMed Energy said. A two-well campaign

Read More »

HSBC Thinks BP Could Accentuate Shift Back to Oil Under New CEO

In a research note sent to Rigzone by the HSBC team this week, HSBC analysts, including Kim Fustier, HSBC’s Senior Global Oil and Gas Analyst, said they think BP “could accentuate its shift back to oil and gas and away from low carbon energy” under its new CEO. “BP’s 4Q25 results in February will take place during yet another period of transition for the company,” the analysts said in the note. “Incoming CEO Meg O’Neill will assume the role on April 1, following the unexpected departure of Murray Auchincloss in late December and interim leadership of Carol Howle,” they added. “We do not expect major strategic announcements at BP’s 4Q results yet, almost a year since its ‘fundamental reset’. Under its new CEO, we think BP could accentuate its shift back to oil and gas and away from low carbon energy,” they continued. The HSBC analysts stated in the research note that they would also expect a greater emphasis on cost savings and capital efficiency. “On our estimates, there is no immediate financial pressure on BP’s $3 billion annual buyback in a $60-65 per barrel Brent environment as it is dwarfed by the scale of yet to be announced disposals of c$9 billion,” the analysts noted. “That said, BP could choose to cut buybacks out of prudence as deleveraging remains a priority, or if it sees the current interim period as an opportune time to reset shareholder distributions,” they added. Rigzone has contacted BP for comment on HSBC’s research note. At the time of writing, BP has not responded to Rigzone. In a statement posted on its website on December 17, BP announced that its board had appointed O’Neill as BP’s next CEO, effective April 1, noting that Murray Auchincloss had decided to step down from his position as CEO

Read More »

Norway Gas Production Hits 12-Month High

Norway’s natural gas output averaged 367.6 million cubic meters (12.98 billion cubic feet) a day (MMcmd) in December, increasing for the third consecutive month sequentially and marking last year’s highest monthly production, according to preliminary monthly production figures released Tuesday by the country’s upstream regulator. Last month’s gas production exceeded the Norwegian Offshore Directorate’s (NOD) forecast by 2.9 percent and rose 1.5 percent from November, the NOD reported on its website. Year-on-year the December figure climbed 1.6 percent. The Nordic country sold 11.4 billion cubic meters (Bcm) of gas in December, up 600 MMcm from November. In the third quarter of 2025, the Nordic country accounted for 51.8 percent of pipeline gas imported into the European Union, according to EU statistics agency Eurostat. “Norwegian gas accounts for about 30 percent of EU gas consumption, and Norway is Europe’s largest supplier after cutting off Russian gas”, the NOD said earlier in “The Shelf 2025” report published January 8, 2026. The Equinor ASA-operated Troll field in the North Sea accounts for about one-third of Norway’s gas production. The NOD said in that report it expects Troll to hold onto the position “over the next few years”, noting most new developments “are relatively small discoveries that are being developed with subsea templates or wells from existing subsea templates, and tied back to existing infrastructure”. Meanwhile Norway’s oil production in December averaged two million barrels per day (MMbpd), up 4.6 percent from November 2025 and 9.7 percent from December 2024, the NOD said Tuesday. The figure beat the NOD projection by 5.1 percent. Total liquids production in December was 2.2 MMbpd, up 4.9 percent month-over-month and 8.1 percent year-on-year. “Preliminary production figures for December 2025 show an average daily production of 2,190,000 barrels of oil, NGL [natural gas liquids] and condensate”, the NOD said. “The total

Read More »

Forrester study quantifies benefits of Cisco Intersight

If IT groups are to be the strategic business partners their companies need, they require solutions that can improve infrastructure life cycle management in the age of artificial intelligence (AI) and heightened security threats. To quantify the value of such solutions, Cisco recently commissioned Forrester Consulting to conduct a Total Economic Impact™ analysis of Cisco Intersight. The comprehensive study found that for a composite organization, Intersight delivered 192% return on investment (ROI) and a payback period of less than six months, along with significant tangible benefits to IT and businesses. Cisco Intersight overview Cisco Intersight is a cloud-native IT operations platform for infrastructure life cycle management. It provides IT teams with comprehensive visibility, control, and automation capabilities for Cisco’s portfolio of compute solutions for data centers, colocation facilities, and edge environments based on the Cisco Unified Computing System (Cisco UCS). Intersight also integrates with leading operating systems, storage providers, hypervisors, and third-party IT service management and security tools. Intersight’s unified, policy-driven approach to infrastructure management helps IT groups automate numerous tasks and, as Forrester found, free up time to dedicate to strategic projects. Forrester study quantifies the benefits of Cisco Intersight  A composite organization using Cisco Intersight achieved:192% ROI and payback in less than six months$3.3M net present value over three years$2.7M from improved uptime and resilience 50% reduction in mean time to resolution $1.7M from increased IT productivity$267K benefit from decreased time to value due to faster project execution and earlier return on infrastructure investments Forrester Total Economic Impact study findings The analyst firm conducted detailed interviews with IT decision-makers and Intersight users at six organizations, from which it created one composite organization: a multinational technology-driven company with $10 billion in annual revenue, 120 branch locations, and a team of six engineers managing its 1,000 servers deployed in several

Read More »

SoftBank launches software stack for AI data center operations

Addressing enterprise challenges The software provides two main services, according to SoftBank. The Kubernetes-as-a-Service component automates the stack from BIOS and RAID settings through the OS, GPU drivers, networking, Kubernetes controllers, and storage, the company said. It reconfigures physical connectivity using Nvidia NVLink and memory allocation as users create, update, or delete clusters, according to the announcement. The system allocates nodes based on GPU proximity and NVLink domain configuration to reduce latency, SoftBank said. Enterprises currently face complex GPU cluster provisioning, Kubernetes lifecycle management, inference scaling, and infrastructure tuning challenges that require deep expertise, according to Dai. SoftBank’s automated approach addresses these pain points by handling BIOS-to-Kubernetes configuration, optimizing GPU interconnects, and abstracting inference into API-based services, he said. This allows teams to focus on model development rather than infrastructure maintenance, Dai said. The Inference-as-a-Service component lets users deploy inference services by selecting large language models without configuring Kubernetes or underlying infrastructure, according to the company. It provides OpenAI-compatible APIs and scales across multiple nodes on platforms including the GB200 NVL72, SoftBank said. The software includes tenant isolation through encrypted communications, automated system monitoring and failover, and APIs for connecting to portal, customer management, and billing systems, according to the announcement.

Read More »

OpenAI shifts AI data center strategy toward power-first design

The shift to ‘energy sovereignty’  Analysts say the move reflects a fundamental shift in data center strategy, moving from “fiber-first” to “power-first” site selection. “Historically, data centers were built near internet exchange points and urban centers to minimize latency,” said Ashish Banerjee, senior principal analyst at Gartner. “However, as AI training requirements reach the gigawatt scale, OpenAI is signaling that they will prioritize regions with ‘energy sovereignty’, places where they can build proprietary generation and transmission, rather than fighting for scraps on an overtaxed public grid.” For network architecture, this means a massive expansion of the “middle mile.” By placing these behemoth data centers in energy-rich but remote locations, the industry will have to invest heavily in long-haul, high-capacity dark fiber to connect these “power islands” back to the edge. “We should expect a bifurcated network: a massive, centralized core for ‘cold’ model training located in the wilderness, and a highly distributed edge for ‘hot’ real-time inference located near the users,” Banerjee added. Manish Rawat, a semiconductor analyst at TechInsights, also noted that the benefits may come at the cost of greater architectural complexity. “On the network side, this pushes architectures toward fewer mega-hubs and more regionally distributed inference and training clusters, connected via high-capacity backbone links,” Rawat said. “The trade-off is higher upfront capex but greater control over scalability timelines, reducing dependence on slow-moving utility upgrades.”

Read More »

CleanArc’s Virginia Hyperscale Bet Meets the Era of Pay-Your-Way Power

What CleanArc’s Project Really Signals About Scaling in Virginia The more important story is what the project signals about how developers believe they can still scale in Virginia at hyperscale magnitude. To wit: 1) The campus is sized like a grid project, not a real estate project At 900 MW, CleanArc is not simply building a few facilities. It is effectively planning a utility-interface program that will require staged substation, transmission, and interconnection work over many years. The company describes the campus as a “flagship” designed for scalable demand and sustainability-focused procurement. Power delivery is planned in three 300 MW phases: the first targeted for 2027, the second for 2030, and the final block sometime between 2033 and 2035. That scale changes what “site selection” really means. For projects of this magnitude, the differentiator is no longer “Can we entitle buildings?” but “Can we secure a credible path for large power blocks, with predictable commercial terms, while regulators are rewriting the rules?” 2) It’s being marketed as sustainability-forward in a market that increasingly requires it CleanArc frames the campus as aligned with sustainability-focused infrastructure: a posture that is no longer optional for hyperscale procurement teams. That does not mean the grid power itself is automatically carbon-free. It means the campus is being positioned to support the modern contracting stack, involving renewables, clean-energy attributes, and related structures, while still delivering what hyperscalers buy first: capacity, reliability, and delivery certainty. 3) The timing is strategic as Virginia tightens around very large load CleanArc is launching its flagship in the nation’s premier data center corridor at the same moment Virginia has moved to formalize a large-customer category that explicitly includes data centers. The implication is not that Virginia has become anti-data center. It is that the state is entering a phase where it

Read More »

xAI’s AI Factories: From Colossus to MACROHARDRR in the Gigawatt Era

Colossus: The Prototype For much of the past year, xAI’s infrastructure story did not unfold across a portfolio of sites. It unfolded inside a single building in Memphis, where the company first tested what an “AI factory” actually looks like in physical form. That building had a name that matched the ambition: Colossus. The Memphis-area facility, carved out of a vacant Electrolux factory, became shorthand for a new kind of AI build: fast, dense, liquid-cooled, and powered on a schedule that often ran ahead of the grid. It was an “AI factory” in the literal sense: not a cathedral of architecture, but a machine for turning electricity into tokens. Colossus began as an exercise in speed. xAI took over a dormant industrial building in Southwest Memphis and turned it into an AI training plant in months, not years. The company has said the first major system was built in about 122 days, and then doubled in roughly 92 more, reaching around 200,000 GPUs. Those numbers matter less for their bravado than for what they reveal about method. Colossus was never meant to be bespoke. It was meant to be repeatable. High-density GPU servers, liquid cooling at the rack, integrated CDUs, and large-scale Ethernet networking formed a standardized building block. The rack, not the room, became the unit of design. Liquid cooling was not treated as a novelty. It was treated as a prerequisite. By pushing heat removal down to the rack, xAI avoided having to reinvent the data hall every time density rose. The building became a container; the rack became the machine. That design logic, e.g. industrial shell plus standardized AI rack, has quietly become the template for everything that followed. Power: Where Speed Met Reality What slowed the story was not compute, cooling, or networking. It was power.

Read More »

Sustainable Data Centers in the Age of AI: Page Haun, Chief Marketing and ESG Strategy Officer, Cologix

Artificial intelligence has turned the data center industry into a front-page story, often for the wrong reasons. The narrative usually starts with megawatts, ends with headlines about grid strain, and rarely pauses to explain what operators are actually doing about it. On the latest episode of The Data Center Frontier Show, Page Haun, Chief Marketing and ESG Strategy Officer at Cologix, laid out a more grounded reality: the AI era is forcing sustainability from a side initiative into a core design principle. Not because it sounds good, but because it has to work. From fuel cells in Ohio to closed-loop water systems that dramatically outperform industry norms, Cologix’s approach offers a case study in what “responsible growth” looks like when rack densities climb, power timelines stretch, and communities demand more than promises. The AI-Era Sustainability Baseline AI is changing the math. Power demand is rising faster than grid infrastructure can move. Communities are paying closer attention. Regulators are asking sharper questions. And the industry is discovering that speed without credibility creates friction. Haun described the current moment as a “perfect storm” where grid constraints, community concerns, and regulatory scrutiny all converge around AI-driven growth. But she also pushed back on the idea that the industry is ignoring the problem. Data center operators, utilities, and governments are already working together in ways that didn’t exist a decade ago by sharing load forecasts, coordinating long-lead infrastructure investments, and aligning power planning with customer roadmaps. One of the industry’s biggest gaps, she argued, isn’t engineering; it’s communication. Data centers still struggle to explain their role in the digital economy: education platforms, healthcare systems, streaming media, gaming, and now AI tools that enterprises are rapidly embedding into daily operations. Without that context, power usage becomes the whole story, yet it’s only part of the

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »