Stay Ahead, Stay ONMINE

Polars vs. Pandas — An Independent Speed Comparison

Overview Introduction — Purpose and Reasons Speed is important when dealing with large amounts of data. If you are handling data in a cloud data warehouse or similar, then the speed of execution for your data ingestion and processing affects the following: As you’ve probably understood from the title, I am going to provide a […]

Overview

  1. Introduction — Purpose and Reasons
  2. Datasets, Tasks, and Settings
  3. Results
  4. Conclusions
  5. Wrapping Up

Introduction — Purpose and Reasons

Speed is important when dealing with large amounts of data. If you are handling data in a cloud data warehouse or similar, then the speed of execution for your data ingestion and processing affects the following:

  • Cloud costs: This is probably the biggest factor. More compute time equals more costs in most billing models. In other billing based on a certain amount of preallocated resources, you could have chosen a lower service level if the speed of your ingestion and processing was higher.
  • Data timeliness: If you have a real-time stream that takes 5 minutes to process data, then your users will have a lag of at least 5 minutes when viewing the data through e.g. a Power BI rapport. This difference can be a lot in certain situations. Even for batch jobs, the data timeliness is important. If you are running a batch job every hour, it is a lot better if it takes 2 minutes rather than 20 minutes.
  • Feedback loop: If your batch job takes only a minute to run, then you get a very quick feedback loop. This probably makes your job more enjoyable. In addition, it enables you to find logical mistakes more quickly.

As you’ve probably understood from the title, I am going to provide a speed comparison between the two Python libraries Polars and Pandas. If you know anything about Pandas and Polars from before, then you know that Polars is the (relatively) new kid on the block proclaiming to be much faster than Pandas. You probably also know that Polars is implemented in Rust, which is a trend for many other modern Python tools like uv and Ruff.

There are two distinct reasons that I want to do a speed comparison test between Polars and Pandas:

Reason 1 — Investigating Claims

Polars boasts on its website with the following claim: Compared to pandas, it (Polars) can achieve more than 30x performance gains.

As you can see, you can follow a link to the benchmarks that they have. It’s commendable that they have speed tests open source. But if you are writing the comparison tests for both your own tool and a competitor’s tool, then there might be a slight conflict of interest. I’m not here saying that they are purposefully overselling the speed of Polars, but rather that they might have unconsciously selected for favorable comparisons.

Hence the first reason to do a speed comparison test is simply to see whether this supports the claims presented by Polars or not.

Reason 2 — Greater granularity

Another reason for doing a speed comparison test between Polars and Pandas is to make it slightly more transparent where the performance gains might be.

This might be already clear if you’re an expert on both libraries. However, speed tests between Polars and Pandas are mostly of interest to those considering switching up their tool. In that case, you might not yet have played around much with Polars because you are unsure if it is worth it.

Hence the second reason to do a speed comparison is simply to see where the speed gains are located.

I want to test both libraries on different tasks both within data ingestion and Data Processing. I also want to consider datasets that are both small and large. I will stick to common tasks within data engineering, rather than esoteric tasks that one seldom uses.

What I will not do

  • I will not give a tutorial on either Pandas or Polars. If you want to learn Pandas or Polars, then a good place to start is their documentation.
  • I will not cover other common data processing libraries. This might be disappointing to a fan of PySpark, but having a distributed compute model makes comparisons a bit more difficult. You might find that PySpark is quicker than Polars on tasks that are very easy to parallelize, but slower on other tasks where keeping all the data in memory reduces travel times.
  • I will not provide full reproducibility. Since this is, in humble words, only a blog post, then I will only explain the datasets, tasks, and system settings that I have used. I will not host a complete running environment with the datasets and bundle everything neatly. This is not a precise scientific experiment, but rather a guide that only cares about rough estimations.

Finally, before we start, I want to say that I like both Polars and Pandas as tools. I’m not financially or otherwise compensated by any of them obviously, and don’t have any incentive other than being curious about their performance ☺️

Datasets, Tasks, and Settings

Let’s first describe the datasets that I will be considering, the tasks that the libraries will perform, and the system settings that I will be running them on.

Datasets

A most companies, you will need to work with both small and (relatively) large datasets. In my opinion, a good data processing tool can tackle both ends of the spectrum. Small datasets challenge the start-up time of tasks, while larger datasets challenge scalability. I will consider two datasets, both can be found on Kaggle:

  • A small dataset on the format CSV: It is no secret that CSV files are everywhere! Often they are quite small, coming from Excel files or database dumps. What better example of this than the classical iris dataset (licensed with CC0 1.0 Universal License) with 5 columns and 150 rows. The iris version I linked to on Kaggle has 6 columns, but the classical one does not have a running index column. So remove this column if you want precisely the same dataset as I have. The iris dataset is certainly small data by any stretch of the imagination.
  • A large dataset on the format Parquet: The parquet format is super useful for large data as it has built-in compression column-wise (along with many other benefits). I will use the Transaction dataset (licensed with Apache License 2.0) representing financial transactions. The dataset has 24 columns and 7 483 766 rows. It is close to 3 GB in its CSV format found on Kaggle. I used Pandas & Pyarrow to convert this to a parquet file. The final result is only 905 MB due to the compression of the parquet file format. This is at the low end of what people call big data, but it will suffice for us.

Tasks

I will do a speed comparison on five different tasks. The first two are I/O tasks, while the last three are common tasks in data processing. Specifically, the tasks are:

  1. Reading data: I will read both files using the respective methods read_csv() and read_parquet() from the two libraries. I will not use any optional arguments as I want to compare their default behavior.
  2. Writing data: I will write both files back to identical copies as new files using the respective methods to_csv() and to_parquet() for Pandas and write_csv() and write_parquet() for Polars. I will not use any optional arguments as I want to compare their default behavior.
  3. Computing Numeric Expressions: For the iris dataset I will compute the expression SepalLengthCm ** 2 + SepalWidthCm as a new column in a copy of the DataFrame. For the transactions dataset, I will simply compute the expression (amount + 10) ** 2 as a new column in a copy of the DataFrame. I will use the standard way to transform columns in Pandas, while in Polars I will use the standard functions all()col(), and alias() to make an equivalent transformation.
  4. Filters: For the iris dataset, I will select the rows corresponding to the criteria SepalLengthCm >= 5.0 and SepalWidthCm <= 4.0. For the transactions dataset, I will select the rows corresponding to the categorical criteria merchant_category == 'Restaurant'. I will use the standard filtering method based on Boolean expressions in each library. In pandas, this is syntax such as df_new = df[df['col'] < 5], while in Polars this is given similarly by the filter() function along with the col() function. I will use the and-operator & for both libraries to combine the two numeric conditions for the iris dataset.
  5. Group By: For the iris dataset, I will group by the Species column and calculate the mean values for each species of the four columns SepalLengthCmSepalWidthCmPetalLengthCm, and PetalWidthCm. For the transactions dataset, I will group by the column merchant_category and count the number of instances in each of the classes within merchant_category. Naturally, I will use the groupby() function in Pandas and the group_by() function in Polars in obvious ways.

Settings

  • System Settings: I’m running all the tasks locally with 16GB RAM and an Intel Core i5–10400F CPU with 6 Cores (12 logical cores through hyperthreading). So it’s not state-of-the-art by any means, but good enough for simple benchmarking.
  • Python: I’m running Python 3.12. This is not the most current stable version (which is Python 3.13), but I think this is a good thing. Commonly the latest supported Python version in cloud data warehouses is one or two versions behind.
  • Polars & Pandas: I’m using Polars version 1.21 and Pandas 2.2.3. These are roughly the newest stable releases to both packages.
  • Timeit: I’m using the standard timeit module in Python and finding the median of 10 runs.

Especially interesting will be how Polars can take advantage of the 12 logical cores through multithreading. There are ways to make Pandas take advantage of multiple processors, but I want to compare Polars and Pandas out of the box without any external modification. After all, this is probably how they are running in most companies around the world.

Results

Here I will write down the results for each of the five tasks and make some minor comments. In the next section I will try to summarize the main points into a conclusion and point out a disadvantage that Polars has in this comparison:

Task 1 — Reading data

The median run time over 10 runs for the reading task was as follows:

# Iris Dataset
Pandas: 0.79 milliseconds
Polars: 0.31 milliseconds

# Transactions Dataset
Pandas: 14.14 seconds
Polars: 1.25 seconds

For reading the Iris dataset, Polars was roughly 2.5x faster than Pandas. For the transactions dataset, the difference is even starker where Polars was 11x faster than Pandas. We can see that Polars is much faster than Pandas for reading both small and large files. The performance difference grows with the size of the file.

Task 2— Writing data

The median run time in seconds over 10 runs for the writing task was as follows:

# Iris Dataset
Pandas: 1.06 milliseconds
Polars: 0.60 milliseconds

# Transactions Dataset
Pandas: 20.55 seconds
Polars: 10.39 seconds

For writing the iris dataset, Polars was around 75% faster than Pandas. For the transactions dataset, Polars was roughly 2x as fast as Pandas. Again we see that Polars is faster than Pandas, but the difference here is smaller than for reading files. Still, a difference of close to 2x in performance is a massive difference.

Task 3 —Computing Numeric Expressions

The median run time over 10 runs for the computing numeric expressions task was as follows:

# Iris Dataset
Pandas: 0.35 milliseconds
Polars: 0.15 milliseconds

# Transactions Dataset
Pandas: 54.58 milliseconds
Polars: 14.92 milliseconds

For computing the numeric expressions, Polars beats Pandas with a rate of roughly 2.5x for the iris dataset, and roughly 3.5x for the transactions dataset. This is a pretty massive difference. It should be noted that computing numeric expressions is fast in both libraries even for the large dataset transactions.

Task 4 — Filters

The median run time over 10 runs for the filters task was as follows:

# Iris Dataset
Pandas: 0.40 milliseconds
Polars: 0.15 milliseconds

# Transactions Dataset
Pandas: 0.70 seconds
Polars: 0.07 seconds

For filters, Polars is 2.6x faster on the iris dataset and 10x as fast on the transactions dataset. This is probably the most surprising improvement for me since I suspected that the speed improvements for filtering tasks would not be this massive.

Task 5 — Group By

The median run time over 10 runs for the group by task was as follows:

# Iris Dataset
Pandas: 0.54 milliseconds
Polars: 0.18 milliseconds

# Transactions Dataset
Pandas: 334 milliseconds 
Polars: 126 milliseconds

For the group-by task, there is a 3x speed improvement for Polars in the case of the iris dataset. For the transactions dataset, there is a 2.6x improvement of Polars over Pandas.

Conclusions

Before highlighting each point below, I want to point out that Polars is somewhat in an unfair position throughout my comparisons. It is often that multiple data transformations are performed after one another in practice. For this, Polars has the lazy API that optimizes this before calculating. Since I have considered single ingestions and transformations, this advantage of Polars is hidden. How much this would improve in practical situations is not clear, but it would probably make the difference in performance even bigger.

Data Ingestion

Polars is significantly faster than Pandas for both reading and writing data. The difference is largest in reading data, where we had a massive 11x difference in performance for the transactions dataset. On all measurements, Polars performs significantly better than Pandas.

Data Processing

Polars is significantly faster than Pandas for common data processing tasks. The difference was starkest for filters, but you can at least expect a 2–3x difference in performance across the board.

Final Verdict

Polars consistently performs faster than Pandas on all tasks with both small and large data. The improvements are very significant, ranging from a 2x improvement to a whopping 11x improvement. When it comes to reading large parquet files or performing filter statements, Polars is leaps and bound in front of Pandas.

However…Nowhere here is Polars remotely close to performing 30x better than Pandas, as Polars’ benchmarking suggests. I would argue that the tasks that I have presented are standard tasks performed on realistic hardware infrastructure. So I think that my conclusions give us some room to question whether the claims put forward by Polars give a realistic picture of the improvements that you can expect.

Nevertheless, I am in no doubt that Polars is significantly faster than Pandas. Working with Polars is not more complicated than working with Pandas. So for your next data engineering project where the data fits in memory, I would strongly suggest that you opt for Polars rather than Pandas.

Wrapping Up

Photo by Spencer Bergen on Unsplash

I hope this blog post gave you a different perspective on the speed difference between Polars and Pandas. Please comment if you have a different experience with the performance difference between Polars and Pandas than what I have presented.

If you are interested in AI, Data Science, or data engineering, please follow me or connect on LinkedIn.

Like my writing? Check out some of my other posts:

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Nutanix expands beyond HCI

The Pure Storage integration will also be supported within Cisco’s FlashStack offering, creating a “FlashStack with Nutanix” solution with storage provided by Pure, networking capabilities as well as UCS servers from Cisco, and then the common Nutanix Cloud Platform. Cloud Native AOS: Breaking free from hypervisors Another sharp departure from

Read More »

IBM introduces new generation of LinuxOne AI mainframe

In addition to generative AI applications, new multiple model AI approaches are engineered to enhance prediction and accuracy in many industry use cases like advanced fraud detection, image processing and retail automation, according to IBM. LinuxONE Emperor 5 also comes with advanced security features specifically designed for the AI threat

Read More »

Business leaders and SNP call on Starmer to visit Aberdeen amid North Sea job losses

Aberdeen business leaders and the SNP are calling on the Prime Minister to visit the north-east of Scotland as they blamed Labour policies for yet more job losses in the oil and gas sector. On Wednesday, Harbour Energy announced that it would cut 250 jobs from its onshore operations, accounting for a 25% reduction in headcount. The UK’s largest producer of oil and gas has claimed that the hostile fiscal policy facing oil and gas businesses prompted the decision as it slows investment in the country, opting to allocate funds overseas. On the day of this announcement, Aberdeen South MP and SNP Westminster leader Stephen Flynn brought the news to the attention of prime minister Sir Keir Starmer. © BloombergEmissions from chimneys at the British Steel Ltd. plant in Scunthorpe, UK. He asked Starmer to “explain to my constituents why he is willing to move heaven and earth to save jobs in Scunthorpe while destroying jobs in Scotland.” The SNP leader was referring to the government’s recent move to nationalise British Steel. The UK government took control of the British steel company from its Chinese owner, Jingye Group, after losses from its steelmaking operations forced it to the brink. Now the SNP MP, alongside his colleagues in Westminster and Holyrood, has written to the Labour Party leader, inviting him to see the impacts his government’s energy policy is having on Aberdeen and its people. “We are writing to you as the local MPs and MSPs for Aberdeen, to invite you to urgently visit Aberdeen to meet with local representatives, businesses, trade unions and workers to hear about the damaging impact that Labour government policies are having on Scottish energy jobs – and to discuss the urgent investment needed to protect jobs and deliver prosperity,” the letter reads. ‘Haemorrhaging investment in

Read More »

Oil Gains 3% as Trade Hopes Rise

Oil rose as President Donald Trump announced a trade framework with the UK, spurring some optimism about deals to come. West Texas Intermediate climbed 3.2% to approach $60 a barrel. Trump said the UK would fast-track US items through its customs process and reduce barriers on billions of dollars of agricultural, chemical, energy and industrial exports, including ethanol. Notably, the terms are limited in scope and a 10% baseline tariff remains. The British deal is raising investors’ confidence that agreements can be reached in the more complicated trade talks that lie ahead, specifically negotiations between US and Chinese officials kicking off this weekend. Trump said that the 145% levy against China, the world’s largest crude-importer, could be lowered if talks go well. “The real driver of risk assets today appears to be renewed optimism around progress in the US–China trade talks,” said Rebecca Babin, a senior energy trader at CIBC Private Wealth Group. “It’s also worth noting that sentiment toward crude remains overwhelmingly bearish.” Crude has slid since Trump took office on concerns that his global trade war will dent economic growth and slow energy demand. Adding to the bearishness, OPEC+ has decided to revive idled output faster than expected. Already, the drop in oil prices is spurring American shale producers to cut spending in the Permian Basin. Still, small pockets of bullishness are visible in the options market. There was active trading of Brent $95 September call options, which profit when futures rise. The US on Thursday sanctioned a third Chinese “teapot” oil refinery and various other entities associated with Iran, days ahead of a fourth round of nuclear talks between Washington and Tehran. The failure of the negotiations could push Brent up toward $70 a barrel, Citigroup analysts including Eric Lee said in a note. In the US,

Read More »

Indian LNG Buyers Embrace USA Benchmark to Balance Volatility

Indian liquefied natural gas importers have signed a flurry of long-term purchase agreements linked to the US price benchmark, the latest effort by the nation’s buyers to protect themselves from volatile markets. State-owned companies have signed at least four contracts since December, totaling nearly 11 million tons per year, priced to the Henry Hub index, according to the executives familiar with the deals. Until now, most of India’s long-term contracts have been linked to crude oil, the traditional way to price LNG deals. Pricing the fuel to the Henry Hub index doesn’t necessarily mean that the fuel will come from the US, rather it is a move to hedge risk.  India’s consumers — from power plants to petrochemical facilities — are highly price-sensitive as gas competes head-to-head with cheaper and dirtier alternatives. Companies that relied on the spot market or oil-linked contracts have periodically been forced to cut back purchases due to price spikes. US gas futures have also been relatively less volatile and more liquid than the Asian spot benchmark, the Japan-Korea Marker. “The last ten year average shows that there have been periods during winter months JKM benchmark surged beyond imagination, while Henry Hub prices saw proportionally smaller growth,” Bharat Petroelum Corp Ltd’s Director Finance V.R.K. Gupta said. BPCL in February signed a deal with ADNOC Trading for 2.5 million tons of LNG for five years. The Mumbai-based refiner will evaluate the performance of the deal and may sign more such contracts, Gupta said.  Indian Oil Corp. last week signed a deal with Trafigura for 2.5 million tons, or 27 cargoes, spread over five years, with supplies starting the middle of this year. The recent deals have been signed at a 115% link to Henry Hub plus $5 to $6 per million British thermal units. The supply is

Read More »

PJM, utilities urge FERC to dismiss call for colocation settlement talks

The Federal Energy Regulatory Commission should reject a call for a 90-day pause in its deliberations over the PJM Interconnection’s rules for colocating data centers at power plants, according to PJM, major utilities and other organizations. “The national interest will be best served by a quick dismissal of this proceeding, and a ruling that the existing PJM Tariff remains just and reasonable,” PJM transmission owners said in a Wednesday filing urging FERC to dismiss a call for stakeholder settlement talks. “Rather than fighting about a wish list of new rules, the parties will then instead begin to focus on obtaining service under the rules in place today.” The transmission owners include utility companies such as American Electric Power, Dominion Energy, Duke Energy, Exelon, FirstEnergy and PPL Electric. “The record is clear — no matter how connected to the PJM transmission system, large loads pose both a safety and a reliability concern,” the utilities said. “It is unrealistic to ask the [transmission owners] to accede to these demands in the context of settlement procedures while those questions remain unresolved.” PJM also wants FERC to ignore the call for settlement discussions that was made in late April by the Electric Power Supply Association, the PJM Power Providers Group, Calpine, Cogentrix Energy Power Management, Constellation Energy Generation and LS Power Development. “The Commission should not pause its work on offering the industry guidance on a path forward for co-location arrangements,” PJM said in a Monday filing. The call for settlement talks lacks broad stakeholder support, PJM said, noting it is holding a workshop on “large load” issues on Friday. American Municipal Power, a wholesale power provider for public power utilities, and Northern Virginia Electric Cooperative and Northeastern Rural Electric Membership Corp. also oppose holding settlement talks. Beside the power generators and trade organizations,

Read More »

IRA’s fate unclear as Republicans look to finance megabill

Dive Brief: The Inflation Reduction Act – which passed in 2022 without any Republican support and is anticipated to cost taxpayers between $780 billion and $2 trillion over its first ten years – is likely to be targeted for cuts as the Republican-controlled Congress aims to cut spending by $2 trillion in order to cut taxes by $4.5 trillion. However, certain provisions of the IRA have won support with Republican lawmakers, setting up likely disagreements over cuts in the budget reconciliation process. That process is already expected to be “very contentious,” said Harry Godfrey, who leads Advanced Energy United’s federal investment and manufacturing working group. “[House Ways and Means Committee Chairman Jason Smith] and the Ways and Means Republicans will need revenue and will be seeking it, and have been saying all along that the IRA is an area they’re going to look at,” said Ryan Abraham, a principal with Ernst & Young’s Washington Council advisory practice. “But obviously there are some concerns among some members.” Dive Insight: Abraham noted the May 1 letter sent by 26 House Republicans to Chairman Smith, advocating for the preservation of the IRA’s 45U, 45Y, and 48E tax credits. The letter advocates on behalf of nuclear power specifically, “[urging Smith] to maintain federal investment in the existing nuclear energy fleet while accelerating deployment of the next generation of nuclear power technologies.” The 45U credit is the IRA’s zero-emission nuclear power production credit, while 48E and 45Y are technology-neutral credits, which were targeted in legislation introduced in April by Rep. Julie Fedorchak, R-N.D. “There’s a lot of concern that some of the bonus items that have been created in the IRA, like direct pay and transferability, which were also in that Fedorchak bill, could also get targeted,” Abraham said. However, he said, “Chairman Smith is aware

Read More »

Energy Department Aligns Award Criteria for For-profit, Non-profit Organizations, and State and Local Governments, Saving $935 Million Annually

WASHINGTON — The U.S. Department of Energy (DOE) today announced three new policy actions that are projected to save more than $935 million annually for the American taxpayer, while expanding American innovation and scientific research. In three new policy memorandums, the DOE announced that it will follow best practices used by fellow grant providers and limit “indirect costs” of DOE funding to 10% for state and local governments, 15% for non-profit organizations, and 15% for for-profit companies. The Energy Department expects to generate over $935 million in annual cost savings for the American people, delivering on President Trump’s commitment to bring greater transparency and efficiency to federal government spending. Estimated savings are based on applying the new policies to 2024 fiscal year spending. “This action ensures that Department of Energy funds are supporting state, local, for-profit and non-profit initiatives that make energy more affordable and secure for Americans, not funding administrative costs,” U.S. Secretary of Energy Chris Wright said. “By aligning our policy on indirect costs with industry standards, we are increasing accountability of taxpayer dollars and ensuring the American people are getting the greatest value possible from these DOE programs.” These policy actions follow an announcement made in April to limit financial support of “indirect costs” of DOE research funding at colleges and universities to 15%, saving an estimated additional $405 million annually. By enacting indirect cost limits, the Department aligns its practices with those common for other grant providers. The full three memorandums are available below: POLICY FLASH SUBJECT: Adjusting Department of Energy Financial Assistance Policy for State and Local Governments’ Financial Assistance Awards BACKGROUND: Pursuant to 5 U.S.C. 553(a)(2), the Department of Energy (“Department”) is updating its policy with respect to Department financial assistance funding awarded to state and local governments. Through its financial assistance programs (which include grants and cooperative agreements),

Read More »

Tech CEOs warn Senate: Outdated US power grid threatens AI ambitions

The implications are clear: without dramatic improvements to the US energy infrastructure, the nation’s AI ambitions could be significantly constrained by simple physical limitations – the inability to power the massive computing clusters necessary for advanced AI development and deployment. Streamlining permitting processes The tech executives have offered specific recommendations to address these challenges, with several focusing on the need to dramatically accelerate permitting processes for both energy generation and the transmission infrastructure needed to deliver that power to AI facilities, the report added. Intrator specifically called for efforts “to streamline the permitting process to enable the addition of new sources of generation and the transmission infrastructure to deliver it,” noting that current regulatory frameworks were not designed with the urgent timelines of the AI race in mind. This acceleration would help technology companies build and power the massive data centers needed for AI training and inference, which require enormous amounts of electricity delivered reliably and consistently. Beyond the cloud: bringing AI to everyday devices While much of the testimony focused on large-scale infrastructure needs, AMD CEO Lisa Su emphasized that true AI leadership requires “rapidly building data centers at scale and powering them with reliable, affordable, and clean energy sources.” Su also highlighted the importance of democratizing access to AI technologies: “Moving faster also means moving AI beyond the cloud. To ensure every American benefits, AI must be built into the devices we use every day and made as accessible and dependable as electricity.”

Read More »

Networking errors pose threat to data center reliability

Still, IT and networking issues increased in 2024, according to Uptime Institute. The analysis attributed the rise in outages due to increased IT and network complexity, specifically, change management and misconfigurations. “Particularly with distributed services, cloud services, we find that cascading failures often occur when networking equipment is replicated across an entire network,” Lawrence explained. “Sometimes the failure of one forces traffic to move in one direction, overloading capacity at another data center.” The most common causes of major network-related outages were cited as: Configuration/change management failure: 50% Third-party network provider failure: 34% Hardware failure: 31% Firmware/software error: 26% Line breakages: 17% Malicious cyberattack: 17% Network overload/congestion failure: 13% Corrupted firewall/routing tables issues: 8% Weather-related incident: 7% Configuration/change management issues also attributed for 62% of the most common causes of major IT system-/software-related outages. Change-related disruptions consistently are responsible for software-related outages. Human error continues to be one of the “most persistent challenges in data center operations,” according to Uptime’s analysis. The report found that the biggest cause of these failures is data center staff failing to follow established procedures, which has increased by about 10 percentage points compared to 2023. “These are things that were 100% under our control. I mean, we can’t control when the UPS module fails because it was either poorly manufactured, it had a flaw, or something else. This is 100% under our control,” Brown said. The most common causes of major human error-related outages were reported as:

Read More »

Liquid cooling technologies: reducing data center environmental impact

“Highly optimized cold-plate or one-phase immersion cooling technologies can perform on par with two-phase immersion, making all three liquid-cooling technologies desirable options,” the researchers wrote. Factors to consider There are numerous factors to consider when adopting liquid cooling technologies, according to Microsoft’s researchers. First, they advise performing a full environmental, health, and safety analysis, and end-to-end life cycle impact analysis. “Analyzing the full data center ecosystem to include systems interactions across software, chip, server, rack, tank, and cooling fluids allows decision makers to understand where savings in environmental impacts can be made,” they wrote. It is also important to engage with fluid vendors and regulators early, to understand chemical composition, disposal methods, and compliance risks. And associated socioeconomic, community, and business impacts are equally critical to assess. More specific environmental considerations include ozone depletion and global warming potential; the researchers emphasized that operators should only use fluids with low to zero ozone depletion potential (ODP) values, and not hydrofluorocarbons or carbon dioxide. It is also critical to analyze a fluid’s viscosity (thickness or stickiness), flammability, and overall volatility. And operators should only use fluids with minimal bioaccumulation (the buildup of chemicals in lifeforms, typically in fish) and terrestrial and aquatic toxicity. Finally, once up and running, data center operators should monitor server lifespan and failure rates, tracking performance uptime and adjusting IT refresh rates accordingly.

Read More »

Cisco unveils prototype quantum networking chip

Clock synchronization allows for coordinated time-dependent communications between end points that might be cloud databases or in large global databases that could be sitting across the country or across the world, he said. “We saw recently when we were visiting Lawrence Berkeley Labs where they have all of these data sources such as radio telescopes, optical telescopes, satellites, the James Webb platform. All of these end points are taking snapshots of a piece of space, and they need to synchronize those snapshots to the picosecond level, because you want to detect things like meteorites, something that is moving faster than the rotational speed of planet Earth. So the only way you can detect that quickly is if you synchronize these snapshots at the picosecond level,” Pandey said. For security use cases, the chip can ensure that if an eavesdropper tries to intercept the quantum signals carrying the key, they will likely disturb the state of the qubits, and this disturbance can be detected by the legitimate communicating parties and the link will be dropped, protecting the sender’s data. This feature is typically implemented in a Quantum Key Distribution system. Location information can serve as a critical credential for systems to authenticate control access, Pandey said. The prototype quantum entanglement chip is just part of the research Cisco is doing to accelerate practical quantum computing and the development of future quantum data centers.  The quantum data center that Cisco envisions would have the capability to execute numerous quantum circuits, feature dynamic network interconnection, and utilize various entanglement generation protocols. The idea is to build a network connecting a large number of smaller processors in a controlled environment, the data center warehouse, and provide them as a service to a larger user base, according to Cisco.  The challenges for quantum data center network fabric

Read More »

Zyxel launches 100GbE switch for enterprise networks

Port specifications include: 48 SFP28 ports supporting dual-rate 10GbE/25GbE connectivity 8 QSFP28 ports supporting 100GbE connections Console port for direct management access Layer 3 routing capabilities include static routing with support for access control lists (ACLs) and VLAN segmentation. The switch implements IEEE 802.1Q VLAN tagging, port isolation, and port mirroring for traffic analysis. For link aggregation, the switch supports IEEE 802.3ad for increased throughput and redundancy between switches or servers. Target applications and use cases The CX4800-56F targets multiple deployment scenarios where high-capacity backbone connectivity and flexible port configurations are required. “This will be for service providers initially or large deployments where they need a high capacity backbone to deliver a primarily 10G access layer to the end point,” explains Nguyen. “Now with Wi-Fi 7, more 10G/25G capable POE switches are being powered up and need interconnectivity without the bottleneck. We see this for data centers, campus, MDU (Multi-Dwelling Unit) buildings or community deployments.” Management is handled through Zyxel’s NebulaFlex Pro technology, which supports both standalone configuration and cloud management via the Nebula Control Center (NCC). The switch includes a one-year professional pack license providing IGMP technology and network analytics features. The SFP28 ports maintain backward compatibility between 10G and 25G standards, enabling phased migration paths for organizations transitioning between these speeds.

Read More »

Engineers rush to master new skills for AI-driven data centers

According to the Uptime Institute survey, 57% of data centers are increasing salary spending. Data center job roles that saw the highest increases were in operations management – 49% of data center operators said they saw highest increases in this category – followed by junior and mid-level operations staff at 45%, and senior management and strategy at 35%. Other job categories that saw salary growth were electrical, at 32% and mechanical, at 23%. Organizations are also paying premiums on top of salaries for particular skills and certifications. Foote Partners tracks pay premiums for more than 1,300 certified and non-certified skills for IT jobs in general. The company doesn’t segment the data based on whether the jobs themselves are data center jobs, but it does track 60 skills and certifications related to data center management, including skills such as storage area networking, LAN, and AIOps, and 24 data center-related certificates from Cisco, Juniper, VMware and other organizations. “Five of the eight data center-related skills recording market value gains in cash pay premiums in the last twelve months are all AI-related skills,” says David Foote, chief analyst at Foote Partners. “In fact, they are all among the highest-paying skills for all 723 non-certified skills we report.” These skills bring in 16% to 22% of base salary, he says. AIOps, for example, saw an 11% increase in market value over the past year, now bringing in a premium of 20% over base salary, according to Foote data. MLOps now brings in a 22% premium. “Again, these AI skills have many uses of which the data center is only one,” Foote adds. The percentage increase in the specific subset of these skills in data centers jobs may vary. The Uptime Institute survey suggests that the higher pay is motivating workers to stay in the

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »