Stay Ahead, Stay ONMINE

Practical SQL Puzzles That Will Level Up Your Skill

There are some Sql patterns that, once you know them, you start seeing them everywhere. The solutions to the puzzles that I will show you today are actually very simple SQL queries, but understanding the concept behind them will surely unlock new solutions to the queries you write on a day-to-day basis. These challenges are all based on real-world scenarios, as over the past few months I made a point of writing down every puzzle-like query that I had to build. I also encourage you to try them for yourself, so that you can challenge yourself first, which will improve your learning! All queries to generate the datasets will be provided in a PostgreSQL and DuckDB-friendly syntax, so that you can easily copy and play with them. At the end I will also provide you a link to a GitHub repo containing all the code, as well as the answer to the bonus challenge I will leave for you! I organized these puzzles in order of increasing difficulty, so, if you find the first ones too easy, at least take a look at the last one, which uses a technique that I truly believe you won’t have seen before. Okay, let’s get started. I love this puzzle because of how short and simple the final query is, even though it deals with many edge cases. The data for this challenge shows tickets moving in between Kanban stages, and the objective is to find how long, on average, tickets stay in the Doing stage. The data contains the ID of the ticket, the date the ticket was created, the date of the move, and the “from” and “to” stages of the move. The stages present are New, Doing, Review, and Done. Some things you need to know (edge cases): Tickets can move backwards, meaning tickets can go back to the Doing stage. You should not include tickets that are still stuck in the Doing stage, as there is no way to know how long they will stay there for. Tickets are not always created in the New stage. “`SQL CREATE TABLE ticket_moves ( ticket_id INT NOT NULL, create_date DATE NOT NULL, move_date DATE NOT NULL, from_stage TEXT NOT NULL, to_stage TEXT NOT NULL ); “` “`SQL INSERT INTO ticket_moves (ticket_id, create_date, move_date, from_stage, to_stage) VALUES — Ticket 1: Created in “New”, then moves to Doing, Review, Done. (1, ‘2024-09-01’, ‘2024-09-03’, ‘New’, ‘Doing’), (1, ‘2024-09-01’, ‘2024-09-07’, ‘Doing’, ‘Review’), (1, ‘2024-09-01’, ‘2024-09-10’, ‘Review’, ‘Done’), — Ticket 2: Created in “New”, then moves: New → Doing → Review → Doing again → Review. (2, ‘2024-09-05’, ‘2024-09-08’, ‘New’, ‘Doing’), (2, ‘2024-09-05’, ‘2024-09-12’, ‘Doing’, ‘Review’), (2, ‘2024-09-05’, ‘2024-09-15’, ‘Review’, ‘Doing’), (2, ‘2024-09-05’, ‘2024-09-20’, ‘Doing’, ‘Review’), — Ticket 3: Created in “New”, then moves to Doing. (Edge case: no subsequent move from Doing.) (3, ‘2024-09-10’, ‘2024-09-16’, ‘New’, ‘Doing’), — Ticket 4: Created already in “Doing”, then moves to Review. (4, ‘2024-09-15’, ‘2024-09-22’, ‘Doing’, ‘Review’); “` A summary of the data: Ticket 1: Created in the New stage, moves normally to Doing, then Review, and then Done. Ticket 2: Created in New, then moves: New → Doing → Review → Doing again → Review. Ticket 3: Created in New, moves to Doing, but it is still stuck there. Ticket 4: Created in the Doing stage, moves to Review afterward. It might be a good idea to stop for a bit and think how you would deal with this. Can you find out how long a ticket stays on a single stage? Honestly, this sounds intimidating at first, and it looks like it will be a nightmare to deal with all the edge cases. Let me show you the full solution to the problem, and then I will explain what is happening afterward. “`SQL WITH stage_intervals AS (     SELECT         ticket_id,         from_stage,         move_date          – COALESCE(             LAG(move_date) OVER (                 PARTITION BY ticket_id                  ORDER BY move_date             ),              create_date         ) AS days_in_stage     FROM         ticket_moves ) SELECT     SUM(days_in_stage) / COUNT(DISTINCT ticket_id) as avg_days_in_doing FROM     stage_intervals WHERE     from_stage = ‘Doing’; “` The first CTE uses the LAG function to find the previous move of the ticket, which will be the time the ticket entered that stage. Calculating the duration is as simple as subtracting the previous date from the move date. What you should notice is the use of the COALESCE in the previous move date. What that does is that if a ticket doesn’t have a previous move, then it uses the date of creation of the ticket. This takes care of the cases of tickets being created directly into the Doing stage, as it still will properly calculate the time it took to leave the stage. This is the result of the first CTE, showing the time spent in each stage. Notice how the Ticket 2 has two entries, as it visited the Doing stage in two separate occasions. With this done, it’s just a matter of getting the average as the SUM of total days spent in doing, divided by the distinct number of tickets that ever left the stage. Doing it this way, instead of simply using the AVG, makes sure that the two rows for Ticket 2 get properly accounted for as a single ticket. Not so bad, right? The goal of this second challenge is to find the most recent contract sequence of every employee. A break of sequence happens when two contracts have a gap of more than one day between them.  In this dataset, there are no contract overlaps, meaning that a contract for the same employee either has a gap or ends a day before the new one starts. “`SQL CREATE TABLE contracts (     contract_id integer PRIMARY KEY,     employee_id integer NOT NULL,     start_date date NOT NULL,     end_date date NOT NULL ); INSERT INTO contracts (contract_id, employee_id, start_date, end_date) VALUES      — Employee 1: Two continuous contracts     (1, 1, ‘2024-01-01’, ‘2024-03-31’),     (2, 1, ‘2024-04-01’, ‘2024-06-30’),     — Employee 2: One contract, then a gap of three days, then two contracts     (3, 2, ‘2024-01-01’, ‘2024-02-15’),     (4, 2, ‘2024-02-19’, ‘2024-04-30’),     (5, 2, ‘2024-05-01’, ‘2024-07-31’),     — Employee 3: One contract     (6, 3, ‘2024-03-01’, ‘2024-08-31’); “` As a summary of the data: Employee 1: Has two continuous contracts. Employee 2: One contract, then a gap of three days, then two contracts. Employee 3: One contract. The expected result, given the dataset, is that all contracts should be included except for the first contract of Employee 2, which is the only one that has a gap. Before explaining the logic behind the solution, I would like you to think about what operation can be used to join the contracts that belong to the same sequence. Focus only on the second row of data, what information do you need to know if this contract was a break or not? I hope it’s clear that this is the perfect situation for window functions, again. They are incredibly useful for solving problems like this, and understanding when to use them helps a lot in finding clean solutions to problems. First thing to do, then, is to get the end date of the previous contract for the same employee with the LAG function. Doing that, it’s simple to compare both dates and check if it was a break of sequence. “`SQL WITH ordered_contracts AS (     SELECT         *,         LAG(end_date) OVER (PARTITION BY employee_id ORDER BY start_date) AS previous_end_date     FROM         contracts ), gapped_contracts AS (     SELECT         *,         — Deals with the case of the first contract, which won’t have         — a previous end date. In this case, it’s still the start of a new         — sequence.         CASE WHEN previous_end_date IS NULL             OR previous_end_date < start_date – INTERVAL '1 day' THEN             1         ELSE             0         END AS is_new_sequence     FROM         ordered_contracts ) SELECT * FROM gapped_contracts ORDER BY employee_id ASC; “` An intuitive way to continue the query is to number the sequences of each employee. For example, an employee who has no gap, will always be on his first sequence, but an employee who had 5 breaks in contracts will be on his 5th sequence. Funnily enough, this is done by another window function. “`SQL — — Previous CTEs — sequences AS (     SELECT         *,         SUM(is_new_sequence) OVER (PARTITION BY employee_id ORDER BY start_date) AS sequence_id FROM     gapped_contracts ) SELECT * FROM sequences ORDER BY employee_id ASC; “` Notice how, for Employee 2, he starts his sequence #2 after the first gapped value. To finish this query, I grouped the data by employee, got the value of their most recent sequence, and then did an inner join with the sequences to keep only the most recent one. “`SQL — — Previous CTEs — max_sequence AS (     SELECT         employee_id,         MAX(sequence_id) AS max_sequence_id FROM     sequences GROUP BY     employee_id ), latest_contract_sequence AS (     SELECT         c.contract_id,         c.employee_id,         c.start_date,         c.end_date     FROM         sequences c         JOIN max_sequence m ON c.sequence_id = m.max_sequence_id             AND c.employee_id = m.employee_id         ORDER BY             c.employee_id,             c.start_date ) SELECT     * FROM     latest_contract_sequence; “` As expected, our final result is basically our starting query just with the first contract of Employee 2 missing!  Finally, the last puzzle — I’m glad you made it this far.  For me, this is the most mind-blowing one, as when I first encountered this problem I thought of a completely different solution that would be a mess to implement in SQL. For this puzzle, I’ve changed the context from what I had to deal with for my job, as I think it will make it easier to explain.  Imagine you’re a data analyst at an event venue, and you’re analyzing the talks scheduled for an upcoming event. You want to find the time of day where there will be the highest number of talks happening at the same time. This is what you should know about the schedules: Rooms are booked in increments of 30min, e.g. from 9h-10h30. The data is clean, there are no overbookings of meeting rooms. There can be back-to-back meetings in a single meeting room. Meeting schedule visualized (this is the actual data).  “`SQL CREATE TABLE meetings (     room TEXT NOT NULL,     start_time TIMESTAMP NOT NULL,     end_time TIMESTAMP NOT NULL ); INSERT INTO meetings (room, start_time, end_time) VALUES     — Room A meetings     ('Room A', '2024-10-01 09:00', '2024-10-01 10:00'),     ('Room A', '2024-10-01 10:00', '2024-10-01 11:00'),     ('Room A', '2024-10-01 11:00', '2024-10-01 12:00'),     — Room B meetings     ('Room B', '2024-10-01 09:30', '2024-10-01 11:30'),     — Room C meetings     ('Room C', '2024-10-01 09:00', '2024-10-01 10:00'),     ('Room C', '2024-10-01 11:30', '2024-10-01 12:00'); “` The way to solve this is using what is called a Sweep Line Algorithm, or also known as an event-based solution. This last name actually helps to understand what will be done, as the idea is that instead of dealing with intervals, which is what we have in the original data, we deal with events instead. To do this, we need to transform every row into two separate events. The first event will be the Start of the meeting, and the second event will be the End of the meeting. “`SQL WITH events AS (   — Create an event for the start of each meeting (+1)   SELECT      start_time AS event_time,      1 AS delta   FROM meetings   UNION ALL   — Create an event for the end of each meeting (-1)   SELECT     — Small trick to work with the back-to-back meetings (explained later)     end_time – interval '1 minute' as end_time,     -1 AS delta   FROM meetings ) SELECT * FROM events; “` Take the time to understand what is happening here. To create two events from a single row of data, we’re simply unioning the dataset on itself; the first half uses the start time as the timestamp, and the second part uses the end time. You might already notice the delta column created and see where this is going. When an event starts, we count it as +1, when it ends, we count it as -1. You might even be already thinking of another window function to solve this, and you’re actually right! But before that, let me just explain the trick I used in the end dates. As I don’t want back-to-back meetings to count as two concurrent meetings, I’m subtracting a single minute of every end date. This way, if a meeting ends and another starts at 10h30, it won’t be assumed that two meetings are concurrently happening at 10h30. Okay, back to the query and yet another window function. This time, though, the function of choice is a rolling SUM. “`SQL — — Previous CTEs — ordered_events AS (   SELECT     event_time,     delta,     SUM(delta) OVER (ORDER BY event_time, delta DESC) AS concurrent_meetings   FROM events ) SELECT * FROM ordered_events ORDER BY event_time DESC; “` The rolling SUM at the Delta column is essentially walking down every record and finding how many events are active at that time. For example, at 9 am sharp, it sees two events starting, so it marks the number of concurrent meetings as two! When the third meeting starts, the count goes up to three. But when it gets to 9h59 (10 am), then two meetings end, bringing the counter back to one. With this data, the only thing missing is to find when the highest value of concurrent meetings happens. “`SQL — — Previous CTEs — max_events AS (   — Find the maximum concurrent meetings value   SELECT      event_time,      concurrent_meetings,     RANK() OVER (ORDER BY concurrent_meetings DESC) AS rnk   FROM ordered_events ) SELECT event_time, concurrent_meetings FROM max_events WHERE rnk = 1; “` That’s it! The interval of 9h30–10h is the one with the largest number of concurrent meetings, which checks out with the schedule visualization above! This solution looks incredibly simple in my opinion, and it works for so many situations. Every time you are dealing with intervals now, you should think if the query wouldn’t be easier if you thought about it in the perspective of events. But before you move on, and to really nail down this concept, I want to leave you with a bonus challenge, which is also a common application of the Sweep Line Algorithm. I hope you give it a try! Bonus challenge The context for this one is still the same as the last puzzle, but now, instead of trying to find the period when there are most concurrent meetings, the objective is to find bad scheduling. It seems that there are overlaps in the meeting rooms, which need to be listed so it can be fixed ASAP. How would you find out if the same meeting room has two or more meetings booked at the same time? Here are some tips on how to solve it: It’s still the same algorithm. This means you will still do the UNION, but it will look slightly different. You should think in the perspective of each meeting room. You can use this data for the challenge: “`SQL CREATE TABLE meetings_overlap (     room TEXT NOT NULL,     start_time TIMESTAMP NOT NULL,     end_time TIMESTAMP NOT NULL ); INSERT INTO meetings_overlap (room, start_time, end_time) VALUES     — Room A meetings     ('Room A', '2024-10-01 09:00', '2024-10-01 10:00'),     ('Room A', '2024-10-01 10:00', '2024-10-01 11:00'),     ('Room A', '2024-10-01 11:00', '2024-10-01 12:00'),     — Room B meetings     ('Room B', '2024-10-01 09:30', '2024-10-01 11:30'),     — Room C meetings     ('Room C', '2024-10-01 09:00', '2024-10-01 10:00'),     — Overlaps with previous meeting.     ('Room C', '2024-10-01 09:30', '2024-10-01 12:00'); “` If you’re interested in the solution to this puzzle, as well as the rest of the queries, check this GitHub repo. The first takeaway from this blog post is that window functions are overpowered. Ever since I got more comfortable with using them, I feel that my queries have gotten so much simpler and easier to read, and I hope the same happens to you. If you’re interested in learning more about them, you would probably enjoy reading this other blog post I’ve written, where I go over how you can understand and use them effectively. The second takeaway is that these patterns used in the challenges really do happen in many other places. You might need to find sequences of subscriptions, customer retention, or you might need to find overlap of tasks. There are many situations when you will need to use window functions in a very similar fashion to what was done in the puzzles. The third thing I want you to remember is about this solution to using events besides dealing with intervals. I’ve looked at some problems I solved a long time ago that I could’ve used this pattern on to make my life easier, and unfortunately, I didn’t know about it at the time. I really do hope you enjoyed this post and gave a shot to the puzzles yourself. And I’m sure that if you made it this far, you either learned something new about SQL or strengthened your knowledge of window functions!  Thank you so much for reading. If you have questions or just want to get in touch with me, don’t hesitate to contact me at mtrentz.com. All images by the author unless stated otherwise.

There are some Sql patterns that, once you know them, you start seeing them everywhere. The solutions to the puzzles that I will show you today are actually very simple SQL queries, but understanding the concept behind them will surely unlock new solutions to the queries you write on a day-to-day basis.

These challenges are all based on real-world scenarios, as over the past few months I made a point of writing down every puzzle-like query that I had to build. I also encourage you to try them for yourself, so that you can challenge yourself first, which will improve your learning!

All queries to generate the datasets will be provided in a PostgreSQL and DuckDB-friendly syntax, so that you can easily copy and play with them. At the end I will also provide you a link to a GitHub repo containing all the code, as well as the answer to the bonus challenge I will leave for you!

I organized these puzzles in order of increasing difficulty, so, if you find the first ones too easy, at least take a look at the last one, which uses a technique that I truly believe you won’t have seen before.

Okay, let’s get started.

I love this puzzle because of how short and simple the final query is, even though it deals with many edge cases. The data for this challenge shows tickets moving in between Kanban stages, and the objective is to find how long, on average, tickets stay in the Doing stage.

The data contains the ID of the ticket, the date the ticket was created, the date of the move, and the “from” and “to” stages of the move. The stages present are New, Doing, Review, and Done.

Some things you need to know (edge cases):

  • Tickets can move backwards, meaning tickets can go back to the Doing stage.
  • You should not include tickets that are still stuck in the Doing stage, as there is no way to know how long they will stay there for.
  • Tickets are not always created in the New stage.
```SQL

CREATE TABLE ticket_moves (
    ticket_id INT NOT NULL,
    create_date DATE NOT NULL,
    move_date DATE NOT NULL,
    from_stage TEXT NOT NULL,
    to_stage TEXT NOT NULL
);

```
```SQL

INSERT INTO ticket_moves (ticket_id, create_date, move_date, from_stage, to_stage)
    VALUES
        -- Ticket 1: Created in "New", then moves to Doing, Review, Done.
        (1, '2024-09-01', '2024-09-03', 'New', 'Doing'),
        (1, '2024-09-01', '2024-09-07', 'Doing', 'Review'),
        (1, '2024-09-01', '2024-09-10', 'Review', 'Done'),
        -- Ticket 2: Created in "New", then moves: New → Doing → Review → Doing again → Review.
        (2, '2024-09-05', '2024-09-08', 'New', 'Doing'),
        (2, '2024-09-05', '2024-09-12', 'Doing', 'Review'),
        (2, '2024-09-05', '2024-09-15', 'Review', 'Doing'),
        (2, '2024-09-05', '2024-09-20', 'Doing', 'Review'),
        -- Ticket 3: Created in "New", then moves to Doing. (Edge case: no subsequent move from Doing.)
        (3, '2024-09-10', '2024-09-16', 'New', 'Doing'),
        -- Ticket 4: Created already in "Doing", then moves to Review.
        (4, '2024-09-15', '2024-09-22', 'Doing', 'Review');
```

A summary of the data:

  • Ticket 1: Created in the New stage, moves normally to Doing, then Review, and then Done.
  • Ticket 2: Created in New, then moves: New → Doing → Review → Doing again → Review.
  • Ticket 3: Created in New, moves to Doing, but it is still stuck there.
  • Ticket 4: Created in the Doing stage, moves to Review afterward.

It might be a good idea to stop for a bit and think how you would deal with this. Can you find out how long a ticket stays on a single stage?

Honestly, this sounds intimidating at first, and it looks like it will be a nightmare to deal with all the edge cases. Let me show you the full solution to the problem, and then I will explain what is happening afterward.

```SQL

WITH stage_intervals AS (
    SELECT
        ticket_id,
        from_stage,
        move_date 
        - COALESCE(
            LAG(move_date) OVER (
                PARTITION BY ticket_id 
                ORDER BY move_date
            ), 
            create_date
        ) AS days_in_stage
    FROM
        ticket_moves
)
SELECT
    SUM(days_in_stage) / COUNT(DISTINCT ticket_id) as avg_days_in_doing
FROM
    stage_intervals
WHERE
    from_stage = 'Doing';
```

The first CTE uses the LAG function to find the previous move of the ticket, which will be the time the ticket entered that stage. Calculating the duration is as simple as subtracting the previous date from the move date.

What you should notice is the use of the COALESCE in the previous move date. What that does is that if a ticket doesn’t have a previous move, then it uses the date of creation of the ticket. This takes care of the cases of tickets being created directly into the Doing stage, as it still will properly calculate the time it took to leave the stage.

This is the result of the first CTE, showing the time spent in each stage. Notice how the Ticket 2 has two entries, as it visited the Doing stage in two separate occasions.

With this done, it’s just a matter of getting the average as the SUM of total days spent in doing, divided by the distinct number of tickets that ever left the stage. Doing it this way, instead of simply using the AVG, makes sure that the two rows for Ticket 2 get properly accounted for as a single ticket.

Not so bad, right?

The goal of this second challenge is to find the most recent contract sequence of every employee. A break of sequence happens when two contracts have a gap of more than one day between them. 

In this dataset, there are no contract overlaps, meaning that a contract for the same employee either has a gap or ends a day before the new one starts.

```SQL
CREATE TABLE contracts (
    contract_id integer PRIMARY KEY,
    employee_id integer NOT NULL,
    start_date date NOT NULL,
    end_date date NOT NULL
);

INSERT INTO contracts (contract_id, employee_id, start_date, end_date)
VALUES 
    -- Employee 1: Two continuous contracts
    (1, 1, '2024-01-01', '2024-03-31'),
    (2, 1, '2024-04-01', '2024-06-30'),
    -- Employee 2: One contract, then a gap of three days, then two contracts
    (3, 2, '2024-01-01', '2024-02-15'),
    (4, 2, '2024-02-19', '2024-04-30'),
    (5, 2, '2024-05-01', '2024-07-31'),
    -- Employee 3: One contract
    (6, 3, '2024-03-01', '2024-08-31');
```

As a summary of the data:

  • Employee 1: Has two continuous contracts.
  • Employee 2: One contract, then a gap of three days, then two contracts.
  • Employee 3: One contract.

The expected result, given the dataset, is that all contracts should be included except for the first contract of Employee 2, which is the only one that has a gap.

Before explaining the logic behind the solution, I would like you to think about what operation can be used to join the contracts that belong to the same sequence. Focus only on the second row of data, what information do you need to know if this contract was a break or not?

I hope it’s clear that this is the perfect situation for window functions, again. They are incredibly useful for solving problems like this, and understanding when to use them helps a lot in finding clean solutions to problems.

First thing to do, then, is to get the end date of the previous contract for the same employee with the LAG function. Doing that, it’s simple to compare both dates and check if it was a break of sequence.

```SQL
WITH ordered_contracts AS (
    SELECT
        *,
        LAG(end_date) OVER (PARTITION BY employee_id ORDER BY start_date) AS previous_end_date
    FROM
        contracts
),
gapped_contracts AS (
    SELECT
        *,
        -- Deals with the case of the first contract, which won't have
        -- a previous end date. In this case, it's still the start of a new
        -- sequence.
        CASE WHEN previous_end_date IS NULL
            OR previous_end_date < start_date - INTERVAL '1 day' THEN
            1
        ELSE
            0
        END AS is_new_sequence
    FROM
        ordered_contracts
)
SELECT * FROM gapped_contracts ORDER BY employee_id ASC;
```

An intuitive way to continue the query is to number the sequences of each employee. For example, an employee who has no gap, will always be on his first sequence, but an employee who had 5 breaks in contracts will be on his 5th sequence. Funnily enough, this is done by another window function.

```SQL
--
-- Previous CTEs
--
sequences AS (
    SELECT
        *,
        SUM(is_new_sequence) OVER (PARTITION BY employee_id ORDER BY start_date) AS sequence_id
FROM
    gapped_contracts
)
SELECT * FROM sequences ORDER BY employee_id ASC;
```

Notice how, for Employee 2, he starts his sequence #2 after the first gapped value. To finish this query, I grouped the data by employee, got the value of their most recent sequence, and then did an inner join with the sequences to keep only the most recent one.

```SQL
--
-- Previous CTEs
--
max_sequence AS (
    SELECT
        employee_id,
        MAX(sequence_id) AS max_sequence_id
FROM
    sequences
GROUP BY
    employee_id
),
latest_contract_sequence AS (
    SELECT
        c.contract_id,
        c.employee_id,
        c.start_date,
        c.end_date
    FROM
        sequences c
        JOIN max_sequence m ON c.sequence_id = m.max_sequence_id
            AND c.employee_id = m.employee_id
        ORDER BY
            c.employee_id,
            c.start_date
)
SELECT
    *
FROM
    latest_contract_sequence;
```

As expected, our final result is basically our starting query just with the first contract of Employee 2 missing! 

Finally, the last puzzle — I’m glad you made it this far. 

For me, this is the most mind-blowing one, as when I first encountered this problem I thought of a completely different solution that would be a mess to implement in SQL.

For this puzzle, I’ve changed the context from what I had to deal with for my job, as I think it will make it easier to explain. 

Imagine you’re a data analyst at an event venue, and you’re analyzing the talks scheduled for an upcoming event. You want to find the time of day where there will be the highest number of talks happening at the same time.

This is what you should know about the schedules:

  • Rooms are booked in increments of 30min, e.g. from 9h-10h30.
  • The data is clean, there are no overbookings of meeting rooms.
  • There can be back-to-back meetings in a single meeting room.

Meeting schedule visualized (this is the actual data). 

```SQL
CREATE TABLE meetings (
    room TEXT NOT NULL,
    start_time TIMESTAMP NOT NULL,
    end_time TIMESTAMP NOT NULL
);

INSERT INTO meetings (room, start_time, end_time) VALUES
    -- Room A meetings
    ('Room A', '2024-10-01 09:00', '2024-10-01 10:00'),
    ('Room A', '2024-10-01 10:00', '2024-10-01 11:00'),
    ('Room A', '2024-10-01 11:00', '2024-10-01 12:00'),
    -- Room B meetings
    ('Room B', '2024-10-01 09:30', '2024-10-01 11:30'),
    -- Room C meetings
    ('Room C', '2024-10-01 09:00', '2024-10-01 10:00'),
    ('Room C', '2024-10-01 11:30', '2024-10-01 12:00');
```

The way to solve this is using what is called a Sweep Line Algorithm, or also known as an event-based solution. This last name actually helps to understand what will be done, as the idea is that instead of dealing with intervals, which is what we have in the original data, we deal with events instead.

To do this, we need to transform every row into two separate events. The first event will be the Start of the meeting, and the second event will be the End of the meeting.

```SQL
WITH events AS (
  -- Create an event for the start of each meeting (+1)
  SELECT 
    start_time AS event_time, 
    1 AS delta
  FROM meetings
  UNION ALL
  -- Create an event for the end of each meeting (-1)
  SELECT 
   -- Small trick to work with the back-to-back meetings (explained later)
    end_time - interval '1 minute' as end_time,
    -1 AS delta
  FROM meetings
)
SELECT * FROM events;
```

Take the time to understand what is happening here. To create two events from a single row of data, we’re simply unioning the dataset on itself; the first half uses the start time as the timestamp, and the second part uses the end time.

You might already notice the delta column created and see where this is going. When an event starts, we count it as +1, when it ends, we count it as -1. You might even be already thinking of another window function to solve this, and you’re actually right!

But before that, let me just explain the trick I used in the end dates. As I don’t want back-to-back meetings to count as two concurrent meetings, I’m subtracting a single minute of every end date. This way, if a meeting ends and another starts at 10h30, it won’t be assumed that two meetings are concurrently happening at 10h30.

Okay, back to the query and yet another window function. This time, though, the function of choice is a rolling SUM.

```SQL
--
-- Previous CTEs
--
ordered_events AS (
  SELECT
    event_time,
    delta,
    SUM(delta) OVER (ORDER BY event_time, delta DESC) AS concurrent_meetings
  FROM events
)
SELECT * FROM ordered_events ORDER BY event_time DESC;
```

The rolling SUM at the Delta column is essentially walking down every record and finding how many events are active at that time. For example, at 9 am sharp, it sees two events starting, so it marks the number of concurrent meetings as two!

When the third meeting starts, the count goes up to three. But when it gets to 9h59 (10 am), then two meetings end, bringing the counter back to one. With this data, the only thing missing is to find when the highest value of concurrent meetings happens.

```SQL
--
-- Previous CTEs
--
max_events AS (
  -- Find the maximum concurrent meetings value
  SELECT 
    event_time, 
    concurrent_meetings,
    RANK() OVER (ORDER BY concurrent_meetings DESC) AS rnk
  FROM ordered_events
)
SELECT event_time, concurrent_meetings
FROM max_events
WHERE rnk = 1;
```

That’s it! The interval of 9h30–10h is the one with the largest number of concurrent meetings, which checks out with the schedule visualization above!

This solution looks incredibly simple in my opinion, and it works for so many situations. Every time you are dealing with intervals now, you should think if the query wouldn’t be easier if you thought about it in the perspective of events.

But before you move on, and to really nail down this concept, I want to leave you with a bonus challenge, which is also a common application of the Sweep Line Algorithm. I hope you give it a try!

Bonus challenge

The context for this one is still the same as the last puzzle, but now, instead of trying to find the period when there are most concurrent meetings, the objective is to find bad scheduling. It seems that there are overlaps in the meeting rooms, which need to be listed so it can be fixed ASAP.

How would you find out if the same meeting room has two or more meetings booked at the same time? Here are some tips on how to solve it:

  • It’s still the same algorithm.
  • This means you will still do the UNION, but it will look slightly different.
  • You should think in the perspective of each meeting room.

You can use this data for the challenge:

```SQL
CREATE TABLE meetings_overlap (
    room TEXT NOT NULL,
    start_time TIMESTAMP NOT NULL,
    end_time TIMESTAMP NOT NULL
);

INSERT INTO meetings_overlap (room, start_time, end_time) VALUES
    -- Room A meetings
    ('Room A', '2024-10-01 09:00', '2024-10-01 10:00'),
    ('Room A', '2024-10-01 10:00', '2024-10-01 11:00'),
    ('Room A', '2024-10-01 11:00', '2024-10-01 12:00'),
    -- Room B meetings
    ('Room B', '2024-10-01 09:30', '2024-10-01 11:30'),
    -- Room C meetings
    ('Room C', '2024-10-01 09:00', '2024-10-01 10:00'),
    -- Overlaps with previous meeting.
    ('Room C', '2024-10-01 09:30', '2024-10-01 12:00');
```

If you’re interested in the solution to this puzzle, as well as the rest of the queries, check this GitHub repo.

The first takeaway from this blog post is that window functions are overpowered. Ever since I got more comfortable with using them, I feel that my queries have gotten so much simpler and easier to read, and I hope the same happens to you.

If you’re interested in learning more about them, you would probably enjoy reading this other blog post I’ve written, where I go over how you can understand and use them effectively.

The second takeaway is that these patterns used in the challenges really do happen in many other places. You might need to find sequences of subscriptions, customer retention, or you might need to find overlap of tasks. There are many situations when you will need to use window functions in a very similar fashion to what was done in the puzzles.

The third thing I want you to remember is about this solution to using events besides dealing with intervals. I’ve looked at some problems I solved a long time ago that I could’ve used this pattern on to make my life easier, and unfortunately, I didn’t know about it at the time.


I really do hope you enjoyed this post and gave a shot to the puzzles yourself. And I’m sure that if you made it this far, you either learned something new about SQL or strengthened your knowledge of window functions! 

Thank you so much for reading. If you have questions or just want to get in touch with me, don’t hesitate to contact me at mtrentz.com.

All images by the author unless stated otherwise.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

OpenAI tests Google TPUs amid rising inference cost concerns

Barclays forecasts that chip-related capital expenditure for consumer AI inference alone is expected to approach $120 billion in 2026 and exceed $1.1 trillion by 2028.  Barclays also noted that LLM providers, such as OpenAI, are being forced to look at custom chips, mainly ASICS, instead of GPUs, to reduce the

Read More »

Chronosphere unveils logging package with cost control features

According to a study by Chronosphere, enterprise log data is growing at 250% year-over-year, and Chronosphere Logs helps engineers and observability teams to resolve incidents faster while controlling costs. The usage and volume analysis and proactive recommendations can help reduce data before it’s stored, the company says. “Organizations are drowning

Read More »

Russia’s Sanctioned Arctic LNG 2 Raises Output to Record Levels

Russia’s sanctioned Arctic LNG 2 project raised production to record levels during the last days of June as the facility appears to have resumed loading cargoes. Natural gas output at the Novatek PJSC-led facility averaged 14 million cubic meters a day on June 28 and June 29, according to a person with knowledge of the matter.  That’s the highest daily level for the plant, historic data shows. Higher natural gas output doesn’t automatically indicate a hike in LNG production, but historically the plant produced more gas when it was able to load cargoes. In December 2023, when it was launched, Arctic LNG 2 pumped an average of 13.7 million cubic meters of gas a day. The facility located above the Arctic Circle is key for Russia’s ambition to triple LNG production by 2030. Those plans were squeezed by international restrictions after the invasion of Ukraine, but a liquefied gas tanker appeared to load a cargo several days ago, suggesting Russia may be finding ways around the penalties. Gas output at Arctic LNG 2 averaged 8.9 million cubic meters a day during most of June, compared with 9.4 million cubic meters a day the month before, the person said, asking not to be identified because the information isn’t public. Novatek, the largest shareholder of Arctic LNG 2, and the plant’s operator didn’t immediately respond to requests for comments. The Iris tanker — previously known as North Sky and blacklisted by the US, the EU and the UK — left the site Sunday. Its draft level, which the crew inputs manually, has increased, potentially indicating the tanker loaded a cargo there, according to ship-tracking data compiled by Bloomberg. The tanker is heading toward the Arctic port of Murmansk, where it’s expected to arrive July 2. Novatek uses waters near Murmansk to transfer LNG cargoes

Read More »

Oil Gains as Mideast Tensions Reignite

Oil edged up from near the lowest levels in a month as tensions once again flared in the Middle East, returning the spotlight to the fragility of a truce between Israel and Iran. West Texas Intermediate rose 0.5% to settle near $65.50 a barrel, while Brent closed above $67. Volumes were trending lower ahead of Friday’s July 4 holiday in the US. Investors are watching closely to see whether Iran’s inventories of near-bomb-grade uranium have been depleted and whether its moves to cut off communication with key United Nations watchdog officials will trigger another wave of US strikes. President Donald Trump has said the US will “be there” unless Iran backs away from its nuclear program. So far, the conflict has not disrupted flows in the region but the mere possibility of supply interruptions now has some traders taking a wait-and-see approach. During the heat of tensions, a quarterly record of combined options contracts for WTI and Brent changed hands as traders bet on the outcome of these fast-evolving conflicts, based on data from the exchanges. Aside from geopolitics, macro factors also lent conflicting signals to oil. The demand outlook for the US darkened slightly after factory activity contracted in June for a fourth consecutive month, although the labor market showed signs of strength. The Middle East developments took away the focus from a meeting between the Organization of the Petroleum Exporting Countries and its allies. The group is expected to agree to a fourth monthly major supply increase during discussions Sunday, according to a Bloomberg survey, as de facto leader Saudi Arabia continues its bid to reclaim market share. Oil lost almost 10% last quarter in a volatile three months that saw prices drop sharply in April on Trump’s tariff plans, and surge in June after Israel attacked Iran,

Read More »

Senate passes megabill that curbs IRA tax credits, drops wind and solar tax

Dive Brief: The Senate voted Tuesday to pass an amended version of the Republican budget megabill that significantly curtails clean energy tax credits. It does not contain a proposed excise tax on wind and solar projects that caught many by surprise when it was added late Friday. The final version carves out an exception to the bill’s new phaseout deadline for wind and solar project tax credits. Previously, the legislation stipulated that wind and solar projects had to be placed in service by the end of 2027 to qualify for the clean energy production credit. This was amended to exempt projects that begin construction within a year after the signing of the legislation. The bill that made it out of the Senate Finance Committee had softened some of the IRA cuts made in the House. That version was supplanted over the weekend by harsher language that included the now-dead excise tax. The Senate bill now heads back to the House, with Republican leadership in both chambers aiming to deliver the bill to President Trump’s desk for him to sign it into law by Friday. Dive Insight: Sen. Rand Paul, R-Ky., and Sen. Thom Tillis, R-N.C., continued to oppose the legislation after voting against it over the weekend. They were joined by Sen. Susan Collins, R-Maine, along with all Democrats. Vice President JD Vance provided the tiebreaking vote. “Under the last-minute carveout, Big Green has 12 months to initiate as many subsidized projects as it wants using the insanely-easy-to-meet ‘construction’ threshold,” tweeted fossil fuel advocate Alex Epstein, who helped congressional Republicans shape the megabill. “Several Senators have already told me they didn’t know about or understand this last-minute paragraph. If that’s the case they should do whatever they can to fix the situation.”  Harry Godfrey, who leads Advanced Energy United’s federal policy team, said

Read More »

USA Diesel Demand in April Stronger Than Expected Despite Tariffs

US diesel demand, a closely watched measure of the country’s economic health, was higher in April than early weekly estimates, the Energy Information Administration said in its monthly report. Distillate fuel oil demand was 3.88 million barrels a day in April, according to the agency’s latest Petroleum Supply Monthly report released Monday. That is 4.7% higher than early estimates published by the agency in its Wednesday weekly report and 2.2% higher than April 2024. April was a volatile month for diesel futures after President Trump announced sweeping tariffs on April 2, causing prices to tank. Demand for jet fuel was revised down by 5% in the monthly EIA report to 1.76 million barrels a day from estimates of 1.86 millions barrels a day. Those same tariffs also clouded the outlook for air travel, with some Americans opting for road trips over flying as they tighten spending.  Demand for gasoline, the most consumed fuel in the US, was in-line with weekly estimates published earlier this year. Total US liquids production eked out a record-high of 20.83 million barrels a day in April, up roughly 50,000 barrels from the previous month, the report said. The number, which includes crude oil and natural gas liquids, came in roughly 340,000 barrels higher than a previous estimate for the month of April. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

Sapura Energy Restructuring in ‘Final Stages’

Malaysian oil and gas contractor Sapura Energy Bhd.’s restructuring plan to restore financial stability is entering its “final stages,” according to the company’s first-quarter earnings statement. Regulator Bursa Malaysia’s approval of the blueprint to restructure debt puts the company on a path to exit its financially distressed classification set by Malaysia’s stock exchange, the company said. The country’s anti-graft agency said in March it was investigating the cash-strapped company, which reported a net loss in the quarter ended in April, for alleged misappropriation of funds. Prime Minister Anwar Ibrahim said that month he ordered an audit of the firm and change of management. He also approved a 1.1 billion ringgit ($262.5 million) injection into the company, but denied that it was a bailout.  Sapura Energy’s restructuring is “aimed at addressing the group’s unsustainable debt levels and restoring financial stability,” according to its statement. “Restructuring efforts remain on track and have entered the final stages.” The company said the plan will help reduce total borrowings to 5.6 billion ringgit from 10.8 billion ringgit, without giving a time frame. Sapura Energy reported a first-quarter net loss of 478.0 million ringgit compared with a profit of 82.1 million ringgit a year ago. It cited a challenging project in Angola, as well as lower activity across the oil industry’s operations, maintenance and drilling segments, for the loss. What do you think? We’d love to hear from you, join the conversation on the Rigzone Energy Network. The Rigzone Energy Network is a new social experience created for you and all energy professionals to Speak Up about our industry, share knowledge, connect with peers and industry insiders and engage in a professional community that will empower your career in energy.

Read More »

New Jersey seeks up to 1 GW of transmission-scale storage

Dive Brief: The New Jersey Board of Public Utilities plans to procure at least 1 GW of transmission-scale energy storage in two competitive solicitations over the next 12 months, it said on June 18. The board aims to procure 350 MW to 750 MW by Oct. 31 and the remaining capacity needed to reach the 1 GW target in a second solicitation in the first half of 2026, it said. The two solicitations show New Jersey is moving forward with the clean energy plan signed into law by Gov. Phil Murphy, D, in 2018, which mandates 2 GW of new energy storage by 2030 and 100% “clean energy” by 2050. Dive Insight: The board’s long-awaited announcement came seven years after Murphy signed what was characterized at the time as an “aggressive” plan to boost the state’s renewable portfolio and storage targets. The solicitation “is the culmination of two years of extensive stakeholder engagement, incorporating valuable feedback from a diverse range of industry experts, environmental groups and public representatives,” the board said in a statement. The first phase, which opened to bidders on June 25, is open to transmission-scale projects, including standalone storage, additions to existing solar, and solar-plus-storage resources, according to the program’s website. They will be funded largely through the New Jersey Clean Energy Program budget, which receives funding from a long-running utility bill surcharge, and will not increase costs for ratepayers, the board said. “This ambitious program directly addresses demand growth and limited supply, the root causes of recent rate increases, while simultaneously building a major part of the state’s clean energy future,” the board said. New Jersey’s generation mix is 35.8% natural gas, 57.5% nuclear and 4.8% renewables, according to the U.S. Energy Information Administration. While the first phase of New Jersey’s program is focused on bulk

Read More »

Data center capacity continues to shift to hyperscalers

However, even though colocation and on-premises data centers will continue to lose share, they will still continue to grow. They just won’t be growing as fast as hyperscalers. So, it creates the illusion of shrinkage when it’s actually just slower growth. In fact, after a sustained period of essentially no growth, on-premises data center capacity is receiving a boost thanks to genAI applications and GPU infrastructure. “While most enterprise workloads are gravitating towards cloud providers or to off-premise colo facilities, a substantial subset are staying on-premise, driving a substantial increase in enterprise GPU servers,” said John Dinsdale, a chief analyst at Synergy Research Group.

Read More »

Oracle inks $30 billion cloud deal, continuing its strong push into AI infrastructure.

He pointed out that, in addition to its continued growth, OCI has a remaining performance obligation (RPO) — total future revenue expected from contracts not yet reported as revenue — of $138 billion, a 41% increase, year over year. The company is benefiting from the immense demand for cloud computing largely driven by AI models. While traditionally an enterprise resource planning (ERP) company, Oracle launched OCI in 2016 and has been strategically investing in AI and data center infrastructure that can support gigawatts of capacity. Notably, it is a partner in the $500 billion SoftBank-backed Stargate project, along with OpenAI, Arm, Microsoft, and Nvidia, that will build out data center infrastructure in the US. Along with that, the company is reportedly spending about $40 billion on Nvidia chips for a massive new data center in Abilene, Texas, that will serve as Stargate’s first location in the country. Further, the company has signaled its plans to significantly increase its investment in Abu Dhabi to grow out its cloud and AI offerings in the UAE; has partnered with IBM to advance agentic AI; has launched more than 50 genAI use cases with Cohere; and is a key provider for ByteDance, which has said it plans to invest $20 billion in global cloud infrastructure this year, notably in Johor, Malaysia. Ellison’s plan: dominate the cloud world CTO and co-founder Larry Ellison announced in a recent earnings call Oracle’s intent to become No. 1 in cloud databases, cloud applications, and the construction and operation of cloud data centers. He said Oracle is uniquely positioned because it has so much enterprise data stored in its databases. He also highlighted the company’s flexible multi-cloud strategy and said that the latest version of its database, Oracle 23ai, is specifically tailored to the needs of AI workloads. Oracle

Read More »

Datacenter industry calls for investment after EU issues water consumption warning

CISPE’s response to the European Commission’s report warns that the resulting regulatory uncertainty could hurt the region’s economy. “Imposing new, standalone water regulations could increase costs, create regulatory fragmentation, and deter investment. This risks shifting infrastructure outside the EU, undermining both sustainability and sovereignty goals,” CISPE said in its latest policy recommendation, Advancing water resilience through digital innovation and responsible stewardship. “Such regulatory uncertainty could also reduce Europe’s attractiveness for climate-neutral infrastructure investment at a time when other regions offer clear and stable frameworks for green data growth,” it added. CISPE’s recommendations are a mix of regulatory harmonization, increased investment, and technological improvement. Currently, water reuse regulation is directed towards agriculture. Updated regulation across the bloc would encourage more efficient use of water in industrial settings such as datacenters, the asosciation said. At the same time, countries struggling with limited public sector budgets are not investing enough in water infrastructure. This could only be addressed by tapping new investment by encouraging formal public-private partnerships (PPPs), it suggested: “Such a framework would enable the development of sustainable financing models that harness private sector innovation and capital, while ensuring robust public oversight and accountability.” Nevertheless, better water management would also require real-time data gathered through networks of IoT sensors coupled to AI analytics and prediction systems. To that end, cloud datacenters were less a drain on water resources than part of the answer: “A cloud-based approach would allow water utilities and industrial users to centralize data collection, automate operational processes, and leverage machine learning algorithms for improved decision-making,” argued CISPE.

Read More »

HPE-Juniper deal clears DOJ hurdle, but settlement requires divestitures

In HPE’s press release following the court’s decision, the vendor wrote that “After close, HPE will facilitate limited access to Juniper’s advanced Mist AIOps technology.” In addition, the DOJ stated that the settlement requires HPE to divest its Instant On business and mandates that the merged firm license critical Juniper software to independent competitors. Specifically, HPE must divest its global Instant On campus and branch WLAN business, including all assets, intellectual property, R&D personnel, and customer relationships, to a DOJ-approved buyer within 180 days. Instant On is aimed primarily at the SMB arena and offers a cloud-based package of wired and wireless networking gear that’s designed for so-called out-of-the-box installation and minimal IT involvement, according to HPE. HPE and Juniper focused on the positive in reacting to the settlement. “Our agreement with the DOJ paves the way to close HPE’s acquisition of Juniper Networks and preserves the intended benefits of this deal for our customers and shareholders, while creating greater competition in the global networking market,” HPE CEO Antonio Neri said in a statement. “For the first time, customers will now have a modern network architecture alternative that can best support the demands of AI workloads. The combination of HPE Aruba Networking and Juniper Networks will provide customers with a comprehensive portfolio of secure, AI-native networking solutions, and accelerate HPE’s ability to grow in the AI data center, service provider and cloud segments.” “This marks an exciting step forward in delivering on a critical customer need – a complete portfolio of modern, secure networking solutions to connect their organizations and provide essential foundations for hybrid cloud and AI,” said Juniper Networks CEO Rami Rahim. “We look forward to closing this transaction and turning our shared vision into reality for enterprise, service provider and cloud customers.”

Read More »

Data center costs surge up to 18% as enterprises face two-year capacity drought

“AI workloads, especially training and archival, can absorb 10-20ms latency variance if offset by 30-40% cost savings and assured uptime,” said Gogia. “Des Moines and Richmond offer better interconnection diversity today than some saturated Tier-1 hubs.” Contract flexibility is also crucial. Rather than traditional long-term leases, enterprises are negotiating shorter agreements with renewal options and exploring revenue-sharing arrangements tied to business performance. Maximizing what you have With expansion becoming more costly, enterprises are getting serious about efficiency through aggressive server consolidation, sophisticated virtualization and AI-driven optimization tools that squeeze more performance from existing space. The companies performing best in this constrained market are focusing on optimization rather than expansion. Some embrace hybrid strategies blending existing on-premises infrastructure with strategic cloud partnerships, reducing dependence on traditional colocation while maintaining control over critical workloads. The long wait When might relief arrive? CBRE’s analysis shows primary markets had a record 6,350 MW under construction at year-end 2024, more than double 2023 levels. However, power capacity constraints are forcing aggressive pre-leasing and extending construction timelines to 2027 and beyond. The implications for enterprises are stark: with construction timelines extending years due to power constraints, companies are essentially locked into current infrastructure for at least the next few years. Those adapting their strategies now will be better positioned when capacity eventually returns.

Read More »

Cisco backs quantum networking startup Qunnect

In partnership with Deutsche Telekom’s T-Labs, Qunnect has set up quantum networking testbeds in New York City and Berlin. “Qunnect understands that quantum networking has to work in the real world, not just in pristine lab conditions,” Vijoy Pandey, general manager and senior vice president of Outshift by Cisco, stated in a blog about the investment. “Their room-temperature approach aligns with our quantum data center vision.” Cisco recently announced it is developing a quantum entanglement chip that could ultimately become part of the gear that will populate future quantum data centers. The chip operates at room temperature, uses minimal power, and functions using existing telecom frequencies, according to Pandey.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »