Stay Ahead, Stay ONMINE

Studying the uninvited guests

Microbes that gobble up or break down environmental toxins can clean up oil spills, waste sites, and contaminated watersheds. But until his faculty mentor asked him for help with a project he was working on with doctors at Boston Children’s Hospital in 2009, Eric Alm had not thought much about their role in a very different environment: the human digestive system. David Schauer, a professor of biological engineering, was examining how microorganisms in the gut might be linked to inflammatory bowel disease (IBD), and he hoped advanced statistical analysis of the data he was collecting could make those connections clearer. Alm, who’d joined the civil and environmental engineering faculty in 2006 as a computational biologist studying environmental uses of microbes, had the statistical experience needed and could apply machine-learning tools to help. But for him, the project was supposed to be a brief detour.   In June of 2009, however, Schauer—just 48—died unexpectedly, only two weeks after falling ill. Alm, heartbroken, worked to help push his mentor’s project over the finish line. As that effort was underway, Neil Rasmussen ’76, SM ’80, a longtime member of the MIT Corporation and the philanthropist funding the project, asked for a tour of his lab. That encounter would change the course of Alm’s career. At the end of the lab tour, Rasmussen, who has a family member with IBD, had a surprise: He asked Alm if he’d be willing to pivot to researching inflammatory bowel disease—and offered to fund his lab if he did so. Alm was game. He began shifting the main focus of his research away from harnessing microbes for the environment and turned most of his attention to exploring how they could be applied to human health. Then Rasmussen decided he wanted to “do something really big,” as Alm puts it, and make Boston a hub for microbiome research. So in 2014, with a $25 million grant from the Neil and Anna Rasmussen Foundation, the Center for Microbiome Informatics and Therapeutics (CMIT) was launched with Alm and Ramnik Xavier, chief of gastroenterology at Massachusetts General Hospital, as its co-directors.  CMIT co-director Eric Alm is a professor of biological engineering and civil and environmental engineering and an Institute Member of the Broad Institute. His research uses data science, quantitative analysis, and novel molecular techniques to engineer the human microbiome.COURTESY OF ERIC ALM By teaming up with Alm and others, Rasmussen hoped to create a research hub where scientists, engineers, doctors, and next-generation trainees would collaborate across scientific disciplines. They would build the tools needed to support a new research field and translate cutting-­edge research into clinic-ready interventions for patients suffering from a wide range of inflammatory and autoimmune conditions influenced by the gut, including not only IBD but diabetes and Alzheimer’s—and potentially autism, Parkinson’s disease, and depression as well.   In its first 10 years, CMIT has made remarkable progress.  When the center started, Alm says, it was still a relatively novel idea that the human microbiome—particularly the community of trillions of symbiotic microbes that reside in the gut—might play a key role in human health. Few serious research programs existed to study this idea.   “It was really this undiscovered territory,” he recalls. “[In] a lot of diseases where there seemed to be things that we couldn’t explain, a lot of people thought maybe the microbiome plays a role either directly or indirectly.”   It has since become increasingly clear that the microbiome has a far greater impact on human health and development than previously thought. We now know that the human gut—often defined as the series of food-processing organs that make up the gastrointestinal tract—is home to untold trillions of microorganisms, each one a living laboratory capable of ingesting nutrients, sugars, and organic materials, digesting them, and releasing various kinds of organic outputs. And the metabolic outputs of these gut-dwelling microbes are similar to those of the liver, Alm says. In fact, the gut microbiome can essentially mirror some of the liver’s functions, helping the body metabolize carbohydrates, proteins, and fats by breaking down complex compounds into simpler molecules it can process more easily. But the gut’s outputs can change in either helpful or harmful ways if different microbes establish themselves within it.  “I would love to have bacteria that live on my face and release sunscreen in response to light. Why can’t I have that?” Tami Lieberman “Our exquisite immune defenses evolved in response to the microbiome and continue to adapt during our lifetime,” Rasmussen says. “I believe that advancing the basic science of human interactions with the microbiome is central to understanding and curing chronic immune-­related diseases.” By now, researchers affiliated with the center have published some 200 scientific papers, and it has found ways to advance microbiome research far beyond its walls. It funds a team at the Broad Institute (where Alm is now an Institute Member) that does assays and gene sequencing for scientists doing such research. Meanwhile, it has established one of the world’s most comprehensive microbiome “strain libraries,” facilitating studies around the globe. To create this library—which includes strains in both the Broad Institute–OpenBiome Microbiome Library and the Global Microbiome Conservancy’s Biobank­—researchers have isolated more than 15,000 distinct strains of microbes that are found in the human gut. The library can serve as a reference for those hoping to gain information on microbes they have isolated on their own, but researchers can also use it if they need samples of specific strains to study. To supplement the strain library, CMIT-affiliated researchers have traveled to many corners of the globe to collect stool samples from far-flung indigenous populations, an effort that continues to this day through the Global Microbiome Conservancy.   “We’re trying to build a critical mass and give folks working in different labs a central place where they can communicate and collaborate,” says Alm. “We also want to help them have access to doctors who might have samples they can use, or doctors who might have problems that need an engineering solution.”   The clinical applications produced by CMIT have already affected the lives of tens of thousands of patients. One of the most significant began making an impact even before the center’s official launch.  For decades, hospitals had been grappling with the deadly toll of bacterial infections caused by Clostridioides difficile (C. diff), a hardy, opportunistic bacterium that can colonize the gut of vulnerable patients, often after heavy doses of antibiotics wipe out beneficial microbes that usually keep C. diff at bay. The condition, which causes watery diarrhea, abdominal pain, fever, and nausea, can be resistant to conventional treatments. It kills roughly 30,000 Americans every year.  By 2003, researchers had discovered that transplanting stool from a healthy donor into the colon of a sick patient could restore the healthy microbes and solve the problem. But even a decade later, there was no standardized treatment or protocol—relatives were often asked to bring in their own stool in ice cream containers. In 2013, Mark Smith, PhD ’14, then a graduate student in Alm’s lab, cofounded the nonprofit OpenBiome, the nation’s first human stool bank. OpenBiome developed rigorous methods to screen donors (people joke that it’s harder to get approved than to get into MIT or Harvard) and standardized the procedures for sample processing and storage. Over the years, the nonprofit has worked with some 1,300 health-care facilities and research institutions and facilitated the treatment of more than 70,000 patients—work that OpenBiome says helped set the stage for the US Food and Drug Administration to approve the first microbiome-based therapeutic for recurrent C. diff infections.   Today, CMIT’s flagship effort is a 100-patient clinical trial that it launched to study IBD, using a wide array of technologies to monitor two cohorts of patients—one in the US and the other in the Netherlands—over the course of a year. People with Crohn’s disease and ulcerative colitis typically experience periods of full or partial remission, but they currently have no way to predict when they will relapse. So researchers are tracking weekly changes in each patient’s microbiome and other biological indicators while amassing continuous physiological data from Fitbits and recording self-reported symptom scores along with other clinical data. The goal is to identify biomarkers and other indicators that might be used to predict flare-ups so that already approved therapies can be used more effectively.  Although data is still being collected, early analysis suggests that a patient’s gut microbiome begins to change six to eight weeks before flare symptoms appear, and a few weeks later, genetic analysis of epithelial cells in their stool samples starts to show signs of increased inflammation. The team is planning to host a hackathon this summer to help speed analysis of the mountain of disparate types of data being collected.   Meanwhile, the community of clinicians, engineers, and scientists CMIT has nurtured is undertaking projects that Alm could hardly have imagined when he first delved into research on the human microbiome. Survivor: Microbe edition  Right below the photograph on the bio page of her Twitter/X account, Alyssa Haynes Mitchell has three emojis: a tiny laptop, a red and blue strand of DNA, and a smiling pile of poo. The digital hieroglyphics neatly sum up her area of focus as she pursues a doctorate in microbiology. A 2024 Neil and Anna Rasmussen fellow, Mitchell is attempting to understand precisely what it is that allows microbes to survive and thrive in the human gut. Mitchell fell in love with the study of microbes as an undergrad at Boston University. First, her mind was blown after she read a paper by researchers who could create a facsimile of a patient’s intestinal cell population—a “gut on a chip”—and planned to culture a microbiome on it. She was fascinated by the idea that this might lead to personalized treatments for conditions like IBD. Then she cultured her first colony of a strain of the microbe Bacillus subtilis that had been genetically engineered to fluoresce.  “They form these really complex ridges, and the more you look at microscopy images, the more you realize that there’s patterns of collective behavior of bacterial biofilms that we just don’t understand,” she says. “They’re super beautiful, and it’s really quite amazing to look at.”  In 2023, Mitchell joined the lab of Tami Lieberman, an associate professor of civil and environmental engineering and a member of both CMIT and MIT’s Institute for Medical Engineering and Science.  Mitchell and others who study the microbiome think that “probiotics,” beneficial microbes that are applied to the skin or ingested in supplements or foods such as yogurt or kombucha, could have broad potential to help treat disease. But for reasons that still aren’t well understood, once probiotics are introduced into the gut, only a small percentage of them are able to survive and proliferate, a process known as engraftment. A probiotic with an engraftment rate of 30% (meaning it’s still detectable in 30% of subjects) six months after administration is considered good, says Mitchell. She and Lieberman, who also holds the title of Hermann L.F. von Helmholtz Professor, are studying the way individual strains of microbes evolve to survive in the microbiome—a key mystery that needs to be solved to engineer more effective, longer-lasting therapies.    COURTESY OF ALYSSA HAYNES MITCHELL COURTESY OF TAMI LIEBERMAN Alyssa Haynes Mitchell, a PhD student pursuing a doctorate in microbiology, is working with Tami Lieberman, an assistant professor of civil and environmental engineering, to study how strains of microbes evolve to survive in the gut. Lieberman also studies how microbes survive and proliferate on the skin. “Hopefully if we learn a little bit more about what drives evolution of the ones that stick around, we might be able to learn why some don’t,” she says. Mitchell has been working with samples collected by a local biotech company developing biotherapeutics for the gut. Its probiotic products, which are used to treat recurrent C. diff infections, contain eight closely related microbial strains belonging to the order known as Clostridiales. The company gave one of its products to 56 human subjects and collected stool samples over time. Mitchell is using genetic sequencing techniques to track how three of the microbial species evolved in 21 of the subjects. Identifying person-specific differences and similarities might reveal insights about the host environment and could help explain why some types of mutations allow some microbes to survive and thrive. The project is still in its early phases, but Mitchell has a working hypothesis. “The model that I have in my mind is that people have different [gut] environments, and microbes are either compatible with them or not,” she says. “And there’s a window in which, if you’re a microbe, you might be able to stick around but maybe not thrive. And then evolution kind of gets you there. You might not be very fit when you land there, but you’re close enough to hang around and get there. Whereas in other people, you’re totally incompatible with what’s already there, and the resident microbes beat you out.” Her work is just one of many projects using new approaches developed by Lieberman, who worked as a postdoc in Alm’s lab before starting her own in 2018. As a graduate student at Harvard, Lieberman gained access to more than 100 frozen samples collected from the airways, blood, and chest tissue of 14 patients with cystic fibrosis, a genetic disease that causes mucus to build up in the lungs and creates conditions ripe for infections. The patients were among those who had developed bacterial infections during an outbreak in the 1990s.   Lieberman and her colleagues recognized a perfect opportunity to use genetic sequencing technologies to study the way the genome of the Burkholderia dolosa bacterium evolved when she cultured those samples. What was it that allowed B. dolosa to adapt and survive? Many of the surviving microbes, she discovered, had developed similar mutations independently in different patients, suggesting that at least some of these mutations helped them to thrive. The research indicated which genes were worthy of further study—and suggested that this approach holds promise for understanding what it takes for microbes to grow well in the human body. Lieberman joined Alm’s lab in 2015, aiming to apply the same experimental paradigm and the statistical techniques she had developed to the emerging field of microbiome research. In her own lab, she has developed an approach to figuring out how the pressures of natural selection result in mutations that may help certain microbes to engraft. It involves studying colonies of bacteria that form on the human skin. “The idea is to create a genetically engineered metabolite factory in the gut.” Daniel Pascal In the gut, Lieberman explains, hundreds of different species of microbes coexist and coevolve, forming a heterogeneous community whose members interact with one another in ways that are not fully understood. This creates a wide array of confounding variables that make it more difficult to identify why some engraft and others don’t. But on the skin, the metabolic environment is less complex, so fewer species of bacteria coexist. The smaller number of species makes it far easier to track the way the genomes of specific microbes change over time to facilitate survival, and the accessibility of the skin makes it easier to figure out how spatial structure and the presence of other microbes affect this process.  One discovery from Lieberman’s lab is that each pore is dominated by just one random strain of a single species. Her group hypothesizes that survival may depend on the geometry of the pore and the location of the microbes. For example, as these anaerobic microbes typically thrive at the hard-to-access bottom of the pore, where there is less oxygen, the first to manage to get there can crowd out new migrants. “My vision, and really a vision for the microbiome field in general,” Lieberman says, is that one day therapeutic microbes could be added to the body to treat medical conditions. “These could be microbes that are naturally occurring, or they could be genetically engineered microbes that have some property we want,” she adds. “But how to actually do that is really challenging because we don’t understand the ecology of the system.” Most bacteria introduced into a person’s system, even those taken from another healthy human, will not persist in the new person’s body, she notes, unless you “first bomb it with antibiotics” to get rid of most of the microbes that are already there. “Why that is,” she adds, “is something we really don’t understand.” If Lieberman can solve the puzzle, the possible applications are tantalizing.   “I would love to have bacteria that live on my face and release sunscreen in response to light,” she says. “Why can’t I have that? In the future, there’s no reason we can’t figure out how to do that in a safe and controlled manner. And it would be much more convenient than applying sunscreen every day.”  Harnessing light-sensitive, sunblock-­producing microbes may sound like a distant fantasy. But it’s not beyond the realm of possibility. Other microbial products that sound straight out of a science fiction novel have already been invented in the lab.  Molecular assassin When Daniel Pascal first landed in the lab of MIT synthetic biologist Christopher Voigt, he had no idea he’d be staying on to make bacteria with superpowers. He was a first-year PhD student rotating through various labs, with little inkling of the potential contained in the microbes that live inside us. Pascal, a 2024 Neil and Anna Rasmussen fellow who is pursuing a doctorate in biological engineering, was originally paired with a graduate student doing a more materials-­related synthetic biology project. But he came from a family of physicians and soon found himself speaking with other graduate students in the lab whose projects had to do with health.  He then learned that two of the lab’s postdocs, Arash Farhadi and Brandon Fields, were receiving funding under a program sponsored by the Defense Advanced Research Projects Agency (DARPA), the Pentagon’s R&D organization, to develop solutions for common traveler’s ailments that result from problems like disrupted sleep cycles and limited access to safe food and water. When they explained that they hoped to harness microbes in the human body, they had his attention.  Daniel Pascal, a graduate student pursuing a doctorate in biological engineering, is using synthetic biology to get microbes to carry out functions that they would not perform in the natural world.COURTESY OF DANIEL PASCAL “It’s amazing how these tiny little organisms have so much control and can wreak so much havoc,” he says.   Intrigued, Pascal wound up officially joining Voigt’s lab, where he is working to create microbes that can carry out a wide array of functions they would not perform in the natural world.   To do so, he is using a custom “landing pad” system developed in the lab. The system relies on synthetic biology to create a new region in the genome of a microbe that, using specific enzymes, can be filled with pieces of DNA designed to imbue the microbe with special new abilities.   After engineering the landing pad into samples of an existing probiotic, Pascal and his collaborators on a project funded by the US Air Force and DARPA were able to deliver DNA that allows the probiotic to essentially set up a specialized drug production facility within the gut. First it absorbs two common amino acids, arginine and glycine. Then it converts them into a precursor compound that the body transforms into creatine, which can facilitate the production of muscle tissue from exercise and may help with memory.   Pascal explains that creatine is often taken as an over-the-counter supplement by people doing weight training and other athletes who want to improve their fitness. “But creatine has been shown to improve performance in fatigued humans,” he says. “So the motivation for this project was the idea that Air Force pilots that are traveling all over the world are jet-lagged, are working crazy hours and shifts.” What if, the researchers wondered, those pilots “could take a supplement that would improve some of their responsiveness, athletic accuracy, intelligence, and reasoning?” A typical oral supplement delivers a spike of creatine in the bloodstream that largely dissipates relatively quickly. More useful to the pilots would be a probiotic engineered to produce a consistent amount of the creatine precursor that could be turned into creatine as needed. CMIT is also funding Pascal’s project using the landing pad system to get microbes to produce substances that target specific pathogens without disrupting the entire microbiome. Although Pascal cannot yet reveal any details about these molecular-­level assassins, he notes that other researchers in the Voigt lab have recently used the landing pad system to redesign the Escherichia coli Nissle (EcN) microbe, which had previously been engineered to produce such things as antibiotics, enzymes that break down toxins, and chemotherapy drugs to fight cancer. The lab’s work made it possible to improve the efficacy of a treatment for phenylketonuria and perhaps of other EcN therapeutics as well.   The lab has, in short, been able to get microbe strains (one of which he says is a commercially available probiotic that in some countries you can buy over the counter) to do some very useful things. “They’ve figured out a way to take this mundane thing and give it these extraordinary capabilities,” he says. “The idea is to create a genetically engineered metabolite factory in the gut.” Tackling childhood obesity   Understanding the microbiome may also lead to new therapies for one of the greatest public health challenges currently facing the US: rising rates of obesity. Jason Zhang, a pediatric gastroenterologist at Boston Children’s Hospital, has received a CMIT clinical fellowship to study how gut bacteria may be linked to childhood obesity and diabetes. As a visiting scientist in Alm’s lab, he is using AI to predict people’s loss of control over what or how much they eat. His working hypothesis is that microbial metabolites are interacting with endocrine cells in the lining of the gut. Those endocrine cells in turn secrete hormones that travel to the brain and stimulate or suppress hunger.  “We believe that the microbiome plays a role in how we make choices around food,” he says. “The microbiome can send metabolites into the bloodstream that will maybe cross the blood-brain barrier. And there may be a direct connection. There is some evidence of that. But more likely they’re going to be interacting with cells in the epithelial layer in the gut.” Jason Zhang, a pediatric gastroenterologist at Boston Children’s Hospital, studies the link between gut bacteria and childhood obesity and diabetes. As a visiting scientist in the lab of Eric Alm, he uses AI to model what’s known as “loss-of-control eating.”COURTESY OF JASON ZHANG Zhang has sequenced the microbes found in the stool of subjects who have exhibited “loss-of-control eating” and developed a machine-learning algorithm that can predict it in other patients on the basis of their stool samples. He and his colleagues have begun to home in on a specific microbe that appears to be deficient in kids who experience this eating pattern.  The researchers have discovered that this particular microbe appears to respond to food in the gut by creating compounds that stimulate enteroendocrine cells to release a series of hormones signaling satiety to the brain—among them GLP-1, the hormone whose signal is turned up by weight-loss drugs like Ozempic. Zhang has already begun experimenting with therapies that artificially introduce the microbe into mice to treat obesity, diabetes, and food addiction.   “As with any single mechanism that treats a really complex disease, I would say it’s likely to make a difference,” he says. “But is it the silver bullet? Probably not.” Still, Zhang isn’t ruling it out: “We don’t know yet. That’s the ongoing work.”  All these projects provide a taste of what’s to come. For more than a decade, CMIT has played a key role in building the fundamental infrastructure needed to develop the new field.But with as many as 100 trillion bacterial cells in the human microbiome, the efforts to explore it have only just begun.

Microbes that gobble up or break down environmental toxins can clean up oil spills, waste sites, and contaminated watersheds. But until his faculty mentor asked him for help with a project he was working on with doctors at Boston Children’s Hospital in 2009, Eric Alm had not thought much about their role in a very different environment: the human digestive system.

David Schauer, a professor of biological engineering, was examining how microorganisms in the gut might be linked to inflammatory bowel disease (IBD), and he hoped advanced statistical analysis of the data he was collecting could make those connections clearer. Alm, who’d joined the civil and environmental engineering faculty in 2006 as a computational biologist studying environmental uses of microbes, had the statistical experience needed and could apply machine-learning tools to help. But for him, the project was supposed to be a brief detour.  

In June of 2009, however, Schauer—just 48—died unexpectedly, only two weeks after falling ill. Alm, heartbroken, worked to help push his mentor’s project over the finish line. As that effort was underway, Neil Rasmussen ’76, SM ’80, a longtime member of the MIT Corporation and the philanthropist funding the project, asked for a tour of his lab. That encounter would change the course of Alm’s career.

At the end of the lab tour, Rasmussen, who has a family member with IBD, had a surprise: He asked Alm if he’d be willing to pivot to researching inflammatory bowel disease—and offered to fund his lab if he did so.

Alm was game. He began shifting the main focus of his research away from harnessing microbes for the environment and turned most of his attention to exploring how they could be applied to human health. Then Rasmussen decided he wanted to “do something really big,” as Alm puts it, and make Boston a hub for microbiome research. So in 2014, with a $25 million grant from the Neil and Anna Rasmussen Foundation, the Center for Microbiome Informatics and Therapeutics (CMIT) was launched with Alm and Ramnik Xavier, chief of gastroenterology at Massachusetts General Hospital, as its co-directors. 

Eric Alm
CMIT co-director Eric Alm is a professor of biological engineering and civil and environmental engineering and an Institute Member of the Broad Institute. His research uses data science, quantitative analysis, and novel molecular techniques to engineer the human microbiome.
COURTESY OF ERIC ALM

By teaming up with Alm and others, Rasmussen hoped to create a research hub where scientists, engineers, doctors, and next-generation trainees would collaborate across scientific disciplines. They would build the tools needed to support a new research field and translate cutting-­edge research into clinic-ready interventions for patients suffering from a wide range of inflammatory and autoimmune conditions influenced by the gut, including not only IBD but diabetes and Alzheimer’s—and potentially autism, Parkinson’s disease, and depression as well.  

In its first 10 years, CMIT has made remarkable progress. 

When the center started, Alm says, it was still a relatively novel idea that the human microbiome—particularly the community of trillions of symbiotic microbes that reside in the gut—might play a key role in human health. Few serious research programs existed to study this idea.  

“It was really this undiscovered territory,” he recalls. “[In] a lot of diseases where there seemed to be things that we couldn’t explain, a lot of people thought maybe the microbiome plays a role either directly or indirectly.”  

It has since become increasingly clear that the microbiome has a far greater impact on human health and development than previously thought. We now know that the human gut—often defined as the series of food-processing organs that make up the gastrointestinal tract—is home to untold trillions of microorganisms, each one a living laboratory capable of ingesting nutrients, sugars, and organic materials, digesting them, and releasing various kinds of organic outputs. And the metabolic outputs of these gut-dwelling microbes are similar to those of the liver, Alm says. In fact, the gut microbiome can essentially mirror some of the liver’s functions, helping the body metabolize carbohydrates, proteins, and fats by breaking down complex compounds into simpler molecules it can process more easily. But the gut’s outputs can change in either helpful or harmful ways if different microbes establish themselves within it. 

“I would love to have bacteria that live on my face and release sunscreen in response to light. Why can’t I have that?”

Tami Lieberman

“Our exquisite immune defenses evolved in response to the microbiome and continue to adapt during our lifetime,” Rasmussen says. “I believe that advancing the basic science of human interactions with the microbiome is central to understanding and curing chronic immune-­related diseases.”

By now, researchers affiliated with the center have published some 200 scientific papers, and it has found ways to advance microbiome research far beyond its walls. It funds a team at the Broad Institute (where Alm is now an Institute Member) that does assays and gene sequencing for scientists doing such research. Meanwhile, it has established one of the world’s most comprehensive microbiome “strain libraries,” facilitating studies around the globe.

To create this library—which includes strains in both the Broad Institute–OpenBiome Microbiome Library and the Global Microbiome Conservancy’s Biobank­—researchers have isolated more than 15,000 distinct strains of microbes that are found in the human gut. The library can serve as a reference for those hoping to gain information on microbes they have isolated on their own, but researchers can also use it if they need samples of specific strains to study. To supplement the strain library, CMIT-affiliated researchers have traveled to many corners of the globe to collect stool samples from far-flung indigenous populations, an effort that continues to this day through the Global Microbiome Conservancy.  

“We’re trying to build a critical mass and give folks working in different labs a central place where they can communicate and collaborate,” says Alm. “We also want to help them have access to doctors who might have samples they can use, or doctors who might have problems that need an engineering solution.”  

The clinical applications produced by CMIT have already affected the lives of tens of thousands of patients. One of the most significant began making an impact even before the center’s official launch. 

For decades, hospitals had been grappling with the deadly toll of bacterial infections caused by Clostridioides difficile (C. diff), a hardy, opportunistic bacterium that can colonize the gut of vulnerable patients, often after heavy doses of antibiotics wipe out beneficial microbes that usually keep C. diff at bay. The condition, which causes watery diarrhea, abdominal pain, fever, and nausea, can be resistant to conventional treatments. It kills roughly 30,000 Americans every year. 

By 2003, researchers had discovered that transplanting stool from a healthy donor into the colon of a sick patient could restore the healthy microbes and solve the problem. But even a decade later, there was no standardized treatment or protocol—relatives were often asked to bring in their own stool in ice cream containers. In 2013, Mark Smith, PhD ’14, then a graduate student in Alm’s lab, cofounded the nonprofit OpenBiome, the nation’s first human stool bank. OpenBiome developed rigorous methods to screen donors (people joke that it’s harder to get approved than to get into MIT or Harvard) and standardized the procedures for sample processing and storage. Over the years, the nonprofit has worked with some 1,300 health-care facilities and research institutions and facilitated the treatment of more than 70,000 patients—work that OpenBiome says helped set the stage for the US Food and Drug Administration to approve the first microbiome-based therapeutic for recurrent C. diff infections.  

Today, CMIT’s flagship effort is a 100-patient clinical trial that it launched to study IBD, using a wide array of technologies to monitor two cohorts of patients—one in the US and the other in the Netherlands—over the course of a year. People with Crohn’s disease and ulcerative colitis typically experience periods of full or partial remission, but they currently have no way to predict when they will relapse. So researchers are tracking weekly changes in each patient’s microbiome and other biological indicators while amassing continuous physiological data from Fitbits and recording self-reported symptom scores along with other clinical data. The goal is to identify biomarkers and other indicators that might be used to predict flare-ups so that already approved therapies can be used more effectively.

 Although data is still being collected, early analysis suggests that a patient’s gut microbiome begins to change six to eight weeks before flare symptoms appear, and a few weeks later, genetic analysis of epithelial cells in their stool samples starts to show signs of increased inflammation. The team is planning to host a hackathon this summer to help speed analysis of the mountain of disparate types of data being collected.  

Meanwhile, the community of clinicians, engineers, and scientists CMIT has nurtured is undertaking projects that Alm could hardly have imagined when he first delved into research on the human microbiome.

Survivor: Microbe edition 

Right below the photograph on the bio page of her Twitter/X account, Alyssa Haynes Mitchell has three emojis: a tiny laptop, a red and blue strand of DNA, and a smiling pile of poo. The digital hieroglyphics neatly sum up her area of focus as she pursues a doctorate in microbiology. A 2024 Neil and Anna Rasmussen fellow, Mitchell is attempting to understand precisely what it is that allows microbes to survive and thrive in the human gut.

Mitchell fell in love with the study of microbes as an undergrad at Boston University. First, her mind was blown after she read a paper by researchers who could create a facsimile of a patient’s intestinal cell population—a “gut on a chip”—and planned to culture a microbiome on it. She was fascinated by the idea that this might lead to personalized treatments for conditions like IBD. Then she cultured her first colony of a strain of the microbe Bacillus subtilis that had been genetically engineered to fluoresce. 

“They form these really complex ridges, and the more you look at microscopy images, the more you realize that there’s patterns of collective behavior of bacterial biofilms that we just don’t understand,” she says. “They’re super beautiful, and it’s really quite amazing to look at.” 

In 2023, Mitchell joined the lab of Tami Lieberman, an associate professor of civil and environmental engineering and a member of both CMIT and MIT’s Institute for Medical Engineering and Science. 

Mitchell and others who study the microbiome think that “probiotics,” beneficial microbes that are applied to the skin or ingested in supplements or foods such as yogurt or kombucha, could have broad potential to help treat disease. But for reasons that still aren’t well understood, once probiotics are introduced into the gut, only a small percentage of them are able to survive and proliferate, a process known as engraftment. A probiotic with an engraftment rate of 30% (meaning it’s still detectable in 30% of subjects) six months after administration is considered good, says Mitchell. She and Lieberman, who also holds the title of Hermann L.F. von Helmholtz Professor, are studying the way individual strains of microbes evolve to survive in the microbiome—a key mystery that needs to be solved to engineer more effective, longer-lasting therapies.   

ALYSSA HAYNES MITCHELL

COURTESY OF ALYSSA HAYNES MITCHELL

COURTESY OF TAMI LIEBERMAN

Alyssa Haynes Mitchell, a PhD student pursuing a doctorate in microbiology, is working with Tami Lieberman, an assistant professor of civil and environmental engineering, to study how strains of microbes evolve to survive in the gut. Lieberman also studies how microbes survive and proliferate on the skin.

“Hopefully if we learn a little bit more about what drives evolution of the ones that stick around, we might be able to learn why some don’t,” she says.

Mitchell has been working with samples collected by a local biotech company developing biotherapeutics for the gut. Its probiotic products, which are used to treat recurrent C. diff infections, contain eight closely related microbial strains belonging to the order known as Clostridiales. The company gave one of its products to 56 human subjects and collected stool samples over time. Mitchell is using genetic sequencing techniques to track how three of the microbial species evolved in 21 of the subjects. Identifying person-specific differences and similarities might reveal insights about the host environment and could help explain why some types of mutations allow some microbes to survive and thrive. The project is still in its early phases, but Mitchell has a working hypothesis.

“The model that I have in my mind is that people have different [gut] environments, and microbes are either compatible with them or not,” she says. “And there’s a window in which, if you’re a microbe, you might be able to stick around but maybe not thrive. And then evolution kind of gets you there. You might not be very fit when you land there, but you’re close enough to hang around and get there. Whereas in other people, you’re totally incompatible with what’s already there, and the resident microbes beat you out.”

Her work is just one of many projects using new approaches developed by Lieberman, who worked as a postdoc in Alm’s lab before starting her own in 2018. As a graduate student at Harvard, Lieberman gained access to more than 100 frozen samples collected from the airways, blood, and chest tissue of 14 patients with cystic fibrosis, a genetic disease that causes mucus to build up in the lungs and creates conditions ripe for infections. The patients were among those who had developed bacterial infections during an outbreak in the 1990s.  

Lieberman and her colleagues recognized a perfect opportunity to use genetic sequencing technologies to study the way the genome of the Burkholderia dolosa bacterium evolved when she cultured those samples. What was it that allowed B. dolosa to adapt and survive? Many of the surviving microbes, she discovered, had developed similar mutations independently in different patients, suggesting that at least some of these mutations helped them to thrive. The research indicated which genes were worthy of further study—and suggested that this approach holds promise for understanding what it takes for microbes to grow well in the human body.

Lieberman joined Alm’s lab in 2015, aiming to apply the same experimental paradigm and the statistical techniques she had developed to the emerging field of microbiome research. In her own lab, she has developed an approach to figuring out how the pressures of natural selection result in mutations that may help certain microbes to engraft. It involves studying colonies of bacteria that form on the human skin.

“The idea is to create a genetically engineered metabolite factory in the gut.”

Daniel Pascal

In the gut, Lieberman explains, hundreds of different species of microbes coexist and coevolve, forming a heterogeneous community whose members interact with one another in ways that are not fully understood. This creates a wide array of confounding variables that make it more difficult to identify why some engraft and others don’t. But on the skin, the metabolic environment is less complex, so fewer species of bacteria coexist. The smaller number of species makes it far easier to track the way the genomes of specific microbes change over time to facilitate survival, and the accessibility of the skin makes it easier to figure out how spatial structure and the presence of other microbes affect this process. 

One discovery from Lieberman’s lab is that each pore is dominated by just one random strain of a single species. Her group hypothesizes that survival may depend on the geometry of the pore and the location of the microbes. For example, as these anaerobic microbes typically thrive at the hard-to-access bottom of the pore, where there is less oxygen, the first to manage to get there can crowd out new migrants.

“My vision, and really a vision for the microbiome field in general,” Lieberman says, is that one day therapeutic microbes could be added to the body to treat medical conditions. “These could be microbes that are naturally occurring, or they could be genetically engineered microbes that have some property we want,” she adds. “But how to actually do that is really challenging because we don’t understand the ecology of the system.” Most bacteria introduced into a person’s system, even those taken from another healthy human, will not persist in the new person’s body, she notes, unless you “first bomb it with antibiotics” to get rid of most of the microbes that are already there. “Why that is,” she adds, “is something we really don’t understand.”

If Lieberman can solve the puzzle, the possible applications are tantalizing.  

“I would love to have bacteria that live on my face and release sunscreen in response to light,” she says. “Why can’t I have that? In the future, there’s no reason we can’t figure out how to do that in a safe and controlled manner. And it would be much more convenient than applying sunscreen every day.” 

Harnessing light-sensitive, sunblock-­producing microbes may sound like a distant fantasy. But it’s not beyond the realm of possibility. Other microbial products that sound straight out of a science fiction novel have already been invented in the lab. 

Molecular assassin

When Daniel Pascal first landed in the lab of MIT synthetic biologist Christopher Voigt, he had no idea he’d be staying on to make bacteria with superpowers. He was a first-year PhD student rotating through various labs, with little inkling of the potential contained in the microbes that live inside us.

Pascal, a 2024 Neil and Anna Rasmussen fellow who is pursuing a doctorate in biological engineering, was originally paired with a graduate student doing a more materials-­related synthetic biology project. But he came from a family of physicians and soon found himself speaking with other graduate students in the lab whose projects had to do with health. 

He then learned that two of the lab’s postdocs, Arash Farhadi and Brandon Fields, were receiving funding under a program sponsored by the Defense Advanced Research Projects Agency (DARPA), the Pentagon’s R&D organization, to develop solutions for common traveler’s ailments that result from problems like disrupted sleep cycles and limited access to safe food and water. When they explained that they hoped to harness microbes in the human body, they had his attention. 

Daniel Pascal, a graduate student pursuing a doctorate in biological engineering, is using synthetic biology to get microbes to carry out functions that they would not perform in the natural world.
COURTESY OF DANIEL PASCAL

“It’s amazing how these tiny little organisms have so much control and can wreak so much havoc,” he says.  

Intrigued, Pascal wound up officially joining Voigt’s lab, where he is working to create microbes that can carry out a wide array of functions they would not perform in the natural world.  

To do so, he is using a custom “landing pad” system developed in the lab. The system relies on synthetic biology to create a new region in the genome of a microbe that, using specific enzymes, can be filled with pieces of DNA designed to imbue the microbe with special new abilities.  

After engineering the landing pad into samples of an existing probiotic, Pascal and his collaborators on a project funded by the US Air Force and DARPA were able to deliver DNA that allows the probiotic to essentially set up a specialized drug production facility within the gut. First it absorbs two common amino acids, arginine and glycine. Then it converts them into a precursor compound that the body transforms into creatine, which can facilitate the production of muscle tissue from exercise and may help with memory.  

Pascal explains that creatine is often taken as an over-the-counter supplement by people doing weight training and other athletes who want to improve their fitness. “But creatine has been shown to improve performance in fatigued humans,” he says. “So the motivation for this project was the idea that Air Force pilots that are traveling all over the world are jet-lagged, are working crazy hours and shifts.” What if, the researchers wondered, those pilots “could take a supplement that would improve some of their responsiveness, athletic accuracy, intelligence, and reasoning?”

A typical oral supplement delivers a spike of creatine in the bloodstream that largely dissipates relatively quickly. More useful to the pilots would be a probiotic engineered to produce a consistent amount of the creatine precursor that could be turned into creatine as needed.

CMIT is also funding Pascal’s project using the landing pad system to get microbes to produce substances that target specific pathogens without disrupting the entire microbiome. Although Pascal cannot yet reveal any details about these molecular-­level assassins, he notes that other researchers in the Voigt lab have recently used the landing pad system to redesign the Escherichia coli Nissle (EcN) microbe, which had previously been engineered to produce such things as antibiotics, enzymes that break down toxins, and chemotherapy drugs to fight cancer. The lab’s work made it possible to improve the efficacy of a treatment for phenylketonuria and perhaps of other EcN therapeutics as well.  

The lab has, in short, been able to get microbe strains (one of which he says is a commercially available probiotic that in some countries you can buy over the counter) to do some very useful things. “They’ve figured out a way to take this mundane thing and give it these extraordinary capabilities,” he says. “The idea is to create a genetically engineered metabolite factory in the gut.”

Tackling childhood obesity  

Understanding the microbiome may also lead to new therapies for one of the greatest public health challenges currently facing the US: rising rates of obesity.

Jason Zhang, a pediatric gastroenterologist at Boston Children’s Hospital, has received a CMIT clinical fellowship to study how gut bacteria may be linked to childhood obesity and diabetes. As a visiting scientist in Alm’s lab, he is using AI to predict people’s loss of control over what or how much they eat. His working hypothesis is that microbial metabolites are interacting with endocrine cells in the lining of the gut. Those endocrine cells in turn secrete hormones that travel to the brain and stimulate or suppress hunger. 

“We believe that the microbiome plays a role in how we make choices around food,” he says. “The microbiome can send metabolites into the bloodstream that will maybe cross the blood-brain barrier. And there may be a direct connection. There is some evidence of that. But more likely they’re going to be interacting with cells in the epithelial layer in the gut.”

JASON ZHANG
Jason Zhang, a pediatric gastroenterologist at Boston Children’s Hospital, studies the link between gut bacteria and childhood obesity and diabetes. As a visiting scientist in the lab of Eric Alm, he uses AI to model what’s known as “loss-of-control eating.”
COURTESY OF JASON ZHANG

Zhang has sequenced the microbes found in the stool of subjects who have exhibited “loss-of-control eating” and developed a machine-learning algorithm that can predict it in other patients on the basis of their stool samples. He and his colleagues have begun to home in on a specific microbe that appears to be deficient in kids who experience this eating pattern. 

The researchers have discovered that this particular microbe appears to respond to food in the gut by creating compounds that stimulate enteroendocrine cells to release a series of hormones signaling satiety to the brain—among them GLP-1, the hormone whose signal is turned up by weight-loss drugs like Ozempic. Zhang has already begun experimenting with therapies that artificially introduce the microbe into mice to treat obesity, diabetes, and food addiction.  

“As with any single mechanism that treats a really complex disease, I would say it’s likely to make a difference,” he says. “But is it the silver bullet? Probably not.” Still, Zhang isn’t ruling it out: “We don’t know yet. That’s the ongoing work.” 

All these projects provide a taste of what’s to come. For more than a decade, CMIT has played a key role in building the fundamental infrastructure needed to develop the new field.But with as many as 100 trillion bacterial cells in the human microbiome, the efforts to explore it have only just begun.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Nissan, SK On announce $661M EV battery supply deal

Dive Brief: Nissan Motor Corp. and SK On inked a battery agreement to bolster the automaker’s electric vehicle production in North America, according to a Wednesday press release. Under the $661 million deal, the battery manufacturer will supply Nissan with roughly 100 GWh of high-nickel batteries from 2028 to 2033.

Read More »

Nvidia launches research center to accelerate quantum computing breakthrough

The new research center aims to tackle quantum computing’s most significant challenges, including qubit noise reduction and the transformation of experimental quantum processors into practical devices. “By combining quantum processing units (QPUs) with state-of-the-art GPU technology, Nvidia hopes to accelerate the timeline to practical quantum computing applications,” the statement added.

Read More »

Keysight network packet brokers gain AI-powered features

The technology has matured considerably since then. Over the last five years, Singh said that most of Keysight’s NPB customers are global Fortune 500 organizations that have large network visibility practices. Meaning they deploy a lot of packet brokers with capabilities ranging anywhere from one gigabit networking at the edge,

Read More »

Adding, managing and deleting groups on Linux

$ sudo groupadd -g 1111 techs In this case, a specific group ID (1111) is being assigned. Omit the -g option to use the next available group ID (e.g., sudo groupadd techs). Once a group is added, you will find it in the /etc/group file. $ grep techs /etc/grouptechs:x:1111: Adding

Read More »

Power Moves: New renewables managing director for PX Group and more

Tracy Wilson-Long has been appointed to Teesside-based PX Group as its new managing director for power and renewables. Originally from Teesside, Wilson-Long brings a wealth of experience to the role, having previously held strategic leadership positions at BP, working on global large-scale projects across North America, Europe, Asia, and Africa. Most recently she has worked in the Canadian clean technology space, helping start-ups advance to commercialisation, with a key focus and expertise in the developing hydrogen market. Tracy succeeds Neil Grimley, who has been with PX Group for over three decades and has shown outstanding, dedication and contribution, most recently in his leadership role building the power and renewables portfolio. He will now transition to the role of group business development director, where he will leverage his extensive experience to drive growth in fuels, terminals, and major net zero projects. Wilson-Long said: “PX Group’s vision, strategy and culture are a fantastic fit for me, I’m really looking forward to getting out to all our sites, meeting our people and customers, whilst learning all about the diverse operations in our business. I’m looking forward to working with PX Group’s talented team to unlock new possibilities.” PX Group recently scored a major contract win as it landed an operations and maintenance deal for the Tees Renewable Energy Plant (Tees REP). © Supplied by EnerMechEnerMech head of regional management in the Asia Pacific region Jason Jeow. Jason Jeow has been promoted to head Aberdeen-based EnerMech’s regional management in the Asia Pacific region. Jeow joined EnerMech in February as vice-president for Asia Pacific and will take on responsibility for managing relationships with regulatory bodies and environmental agencies as well as collaborate with business lines and local leaders to ensure adherence to high HSE standards and the safety of EnerMech personnel. EnerMech CEO Charles ‘Chuck’

Read More »

USA Crude Oil Inventories Rise Week on Week

U.S. commercial crude oil inventories, excluding those in the Strategic Petroleum Reserve (SPR), increased by 1.7 million barrels from the week ending March 7 to the week ending March 14, the U.S. Energy Information Administration (EIA) highlighted in its latest weekly petroleum status report. That report was released on March 19 and included data for the week ending March 14. This EIA report showed that crude oil stocks, not including the SPR, stood at 437.0 million barrels on March 14, 435.2 million barrels on March 7, and 445.0 million barrels on March 15, 2024. Crude oil in the SPR stood at 395.9 million barrels on March 14, 395.6 million barrels on March 7, and 362.3 million barrels on March 15, 2024, the report outlined. The EIA report highlighted that data may not add up to totals due to independent rounding. Total petroleum stocks – including crude oil, total motor gasoline, fuel ethanol, kerosene type jet fuel, distillate fuel oil, residual fuel oil, propane/propylene, and other oils – stood at 1.596 billion barrels on March 14, the report showed. Total petroleum stocks were up 1.9 million barrels week on week and up 22.5 million barrels year on year, the report revealed. “At 437.0 million barrels, U.S. crude oil inventories are about five percent below the five year average for this time of year,” the EIA said in its latest weekly petroleum status report. “Total motor gasoline inventories decreased by 0.5 million barrels from last week and are two percent above the five year average for this time of year. Finished gasoline inventories and blending components inventories both decreased last week,” it added. “Distillate fuel inventories decreased by 2.8 million barrels last week and are about six percent below the five year average for this time of year. Propane/propylene inventories decreased by

Read More »

Ceres Power strikes ‘record’ 2024

Fuel cell and electrolyser company Ceres Power generated record revenues and orders which narrowed losses in 2024, according to its final results for the year to 31 December. “This past year has been a record,” the company’s chief executive Phil Caldwell said on a call on Friday. “Looking ahead to next year… if we can get similar performance in 2025, that would also be a very good year.” The Horsham-based company’s revenues more than doubled over the year to £51.9 million, up from £22.3m a year earlier. Its gross margin rose to 77%, with gross profit nearly quadrupling to £40.2m, up from £13.6m in 2023. Healthy sales of services and licences and increased profitability meant pre-tax losses for the year halved to £25.9m, from a £53.6m loss in the prior year. Caldwell attributed the results, including a record order book of £112.8m for the period, to “progress” that the company has made with its partners. The firm signed three “significant” partner licence agreements in the year, although it was also disappointed” that its shareholder Bosch announced in February it would cease production of the firm’s fuel cells and divest its minority stake. During the period, Ceres signed two new manufacturing licensees, Taiwan-based Delta Electronics and Denso in Japan, together with India’s electrolyser company Thermax. “What that does is that builds out our market share and really where this business becomes profitable is, as those partners get to market and we’ve started to get products in the market, that’s where we get royalties and that’s what really drives the business forwards,” he said. “So, making progress with existing partners and also adding new partners to that is really how we grow the business.” First hydrogen production This fiscal year, the fuel cell and electrolyser company said it expects to reach initial

Read More »

UK net zero innovators to showcase pioneering tech in Aberdeen

Leading energy technology companies from across the UK will head to Aberdeen in April for the Net Zero Innovators conference at the P&J Live. Organised by the Net Zero Technology Centre (NZTC), the event comes amid a multibillion-pound boom in the UK’s energy transition sector. Taking place on 3 April, the conference will feature 50 exhibiting startups including previous participants from the NZTC TechX Accelerator programme. Firms including Frontier Robotics, Wastewater Fuels and JET Connectivity will showcase their innovations, alongside a series of panel discussions. Technologies on display range from renewables to energy storage, carbon capture, hydrogen, alternative fuels and industrial decarbonisation. Since its launch, the Aberdeen-headquartered NZTC has co-invested £420 million in technology development and demonstration projects. Jointly funded by the UK and Scottish governments as part of the Aberdeen City Region Deal, the NZTC said its investment programme has created 1,550 direct jobs in Scotland. Net Zero Innovators NZTC chief acceleration officer Mark Anderson said events like the Net Zero Innovators conference “are about more than just ideas”. “They’re about bringing people together and driving real change,” he said. “As our first-ever Net Zero Innovators conference, this event is a major step forward in our journey to connect the brightest minds and most impactful innovations with their potential customers and backers in the energy industry. © Supplied by NZTCNZTC TechX director Mark Anderson. “It’s happening at an exciting time for Scotland’s net zero economy, which is growing at the fastest rate in the UK.” Anderson said the conference will demonstration how collaboration can “accelerate the transition to net zero” and boost “not also sustainability but also the economy”. “We’re thrilled to bring together experts and innovators who, through our TechX Accelerator, are turning cutting-edge ideas into scalable, commercial solutions,” he said. “These startups are making a real impact

Read More »

US deploys record energy storage in 2024, but Trump policies cloud outlook: WoodMac/ACP

Dive Brief: U.S. energy storage installations reached 12.3 GW/37.1 GWh in 2024 despite a 20% year-over-year drop in the fourth quarter, Wood Mackenzie and the American Clean Power Association said Wednesday. The full-year 2024 and Q1 2025 Energy Storage Monitor projected 15 GW/48 GWh of energy storage deployments in 2025, a 25% increase over 2024, due to strong growth in the utility-scale segment and an expected 47% jump in the residential segment. But state and federal policy uncertainty cloud the medium-term outlook for energy storage, resulting in a 27-GW gap between Wood Mackenzie’s five-year “high” and “low” cases, the report said.  Dive Insight: U.S. energy storage deployments rose 34% from 2023 to 2024, and all three energy storage segments Wood Mackenzie tracks saw double-digit growth. The utility-scale segment grew 32% to 33.7 GWh, while the residential segment jumped 64% to just over 3 GWh and the community-scale, commercial and industrial segment rose 11% to 370 MWh, Wood Mackenzie said. The residential and CCI segments saw strong growth in Q4 2024, but utility-scale deployments fell 28%, resulting in a decline in total deployments during the quarter. Development delays in late 2024 pushed about 2 GW of projects originally expected for last year into 2025, boosting Wood Mackenzie’s 2025 forecast for utility-scale deployments by 11% from the previous quarter. Q4 2024 saw a noticeable increase in installations outside California and Texas, the United States’ largest energy storage markets. The two states accounted for 61% of deployments in the fourth quarter, a 30% drop from Q3 2024, as New Mexico (400 MW), Oregon (292 MW), Arizona (185 MW) and North Carolina (115 MW) made meaningful contributions. In the residential market, the storage attachment rate reached 34% despite slower-than-expected progress to retire California’s backlog of projects under the legacy NEM 2.0 tariff, Wood Mackenzie

Read More »

FERC approves SPP’s RTO West, plus 4 other open meeting takeaways

The Southwest Power Pool will expand its regional transmission organization operations into the Western Interconnection as soon as early next year under its RTO West plan, which the Federal Energy Regulatory Commission approved on Thursday. “This proposal will likely enhance grid reliability and operational efficiency by consolidating transmission management under a single RTO,” FERC Commissioner Willie Phillips said during the agency’s monthly meeting. The approval of SPP’s RTO West plan “is another major milestone for the market evolution in the Western part of the U.S.,” FERC Commissioner Judy Chang said. Chang and Phillips said more work needs to occur on RTO West, however, especially on how the seams between markets and nonmarket areas will be managed. “In the near future, I hope we can address seams issues — like data sharing, congestion management, market power mitigation, transmission availability, export-import management and intertie optimization — to maximize reliability and consumer benefits,” Phillips said. In its decision, FERC said it was too soon to address the seams issues, which were raised by the Colorado Public Service Commission, Xcel Energy’s Public Service Co. of Colorado and Black Hills utilities. Entities pursuing RTO membership or expanded participation in SPP’s markets include Basin Electric Power Cooperative, Colorado Springs Utilities, Deseret Generation and Transmission Cooperative, Municipal Energy Agency of Nebraska, Platte River Power Authority, Tri-State Generation and Transmission Association, Western Area Power Administration – Colorado River Storage Project Management Center, WAPA – Rocky Mountain Region and WAPA – Upper Great Plains Region. “We greatly value the full benefits of the SPP RTO, including day-ahead and ancillary services markets, efficient regional transmission planning, a common transmission tariff and participatory governance model that help us to further reduce costs for our members across the West,” Tri-State CEO Duane Highley said in an SPP press release. SPP is working with additional Western utilities that are considering joining

Read More »

PEAK:AIO adds power, density to AI storage server

There is also the fact that many people working with AI are not IT professionals, such as professors, biochemists, scientists, doctors, clinicians, and they don’t have a traditional enterprise department or a data center. “It’s run by people that wouldn’t really know, nor want to know, what storage is,” he said. While the new AI Data Server is a Dell design, PEAK:AIO has worked with Lenovo, Supermicro, and HPE as well as Dell over the past four years, offering to convert their off the shelf storage servers into hyper fast, very AI-specific, cheap, specific storage servers that work with all the protocols at Nvidia, like NVLink, along with NFS and NVMe over Fabric. It also greatly increased storage capacity by going with 61TB drives from Solidigm. SSDs from the major server vendors typically maxed out at 15TB, according to the vendor. PEAK:AIO competes with VAST, WekaIO, NetApp, Pure Storage and many others in the growing AI workload storage arena. PEAK:AIO’s AI Data Server is available now.

Read More »

SoftBank to buy Ampere for $6.5B, fueling Arm-based server market competition

SoftBank’s announcement suggests Ampere will collaborate with other SBG companies, potentially creating a powerful ecosystem of Arm-based computing solutions. This collaboration could extend to SoftBank’s numerous portfolio companies, including Korean/Japanese web giant LY Corp, ByteDance (TikTok’s parent company), and various AI startups. If SoftBank successfully steers its portfolio companies toward Ampere processors, it could accelerate the shift away from x86 architecture in data centers worldwide. Questions remain about Arm’s server strategy The acquisition, however, raises questions about how SoftBank will balance its investments in both Arm and Ampere, given their potentially competing server CPU strategies. Arm’s recent move to design and sell its own server processors to Meta signaled a major strategic shift that already put it in direct competition with its own customers, including Qualcomm and Nvidia. “In technology licensing where an entity is both provider and competitor, boundaries are typically well-defined without special preferences beyond potential first-mover advantages,” Kawoosa explained. “Arm will likely continue making independent licensing decisions that serve its broader interests rather than favoring Ampere, as the company can’t risk alienating its established high-volume customers.” Industry analysts speculate that SoftBank might position Arm to focus on custom designs for hyperscale customers while allowing Ampere to dominate the market for more standardized server processors. Alternatively, the two companies could be merged or realigned to present a unified strategy against incumbents Intel and AMD. “While Arm currently dominates processor architecture, particularly for energy-efficient designs, the landscape isn’t static,” Kawoosa added. “The semiconductor industry is approaching a potential inflection point, and we may witness fundamental disruptions in the next 3-5 years — similar to how OpenAI transformed the AI landscape. SoftBank appears to be maximizing its Arm investments while preparing for this coming paradigm shift in processor architecture.”

Read More »

Nvidia, xAI and two energy giants join genAI infrastructure initiative

The new AIP members will “further strengthen the partnership’s technology leadership as the platform seeks to invest in new and expanded AI infrastructure. Nvidia will also continue in its role as a technical advisor to AIP, leveraging its expertise in accelerated computing and AI factories to inform the deployment of next-generation AI data center infrastructure,” the group’s statement said. “Additionally, GE Vernova and NextEra Energy have agreed to collaborate with AIP to accelerate the scaling of critical and diverse energy solutions for AI data centers. GE Vernova will also work with AIP and its partners on supply chain planning and in delivering innovative and high efficiency energy solutions.” The group claimed, without offering any specifics, that it “has attracted significant capital and partner interest since its inception in September 2024, highlighting the growing demand for AI-ready data centers and power solutions.” The statement said the group will try to raise “$30 billion in capital from investors, asset owners, and corporations, which in turn will mobilize up to $100 billion in total investment potential when including debt financing.” Forrester’s Nguyen also noted that the influence of two of the new members — xAI, owned by Elon Musk, along with Nvidia — could easily help with fundraising. Musk “with his connections, he does not make small quiet moves,” Nguyen said. “As for Nvidia, they are the face of AI. Everything they do attracts attention.” Info-Tech’s Bickley said that the astronomical dollars involved in genAI investments is mind-boggling. And yet even more investment is needed — a lot more.

Read More »

IBM broadens access to Nvidia technology for enterprise AI

The IBM Storage Scale platform will support CAS and now will respond to queries using the extracted and augmented data, speeding up the communications between GPUs and storage using Nvidia BlueField-3 DPUs and Spectrum-X networking, IBM stated. The multimodal document data extraction workflow will also support Nvidia NeMo Retriever microservices. CAS will be embedded in the next update of IBM Fusion, which is planned for the second quarter of this year. Fusion simplifies the deployment and management of AI applications and works with Storage Scale, which will handle high-performance storage support for AI workloads, according to IBM. IBM Cloud instances with Nvidia GPUs In addition to the software news, IBM said its cloud customers can now use Nvidia H200 instances in the IBM Cloud environment. With increased memory bandwidth (1.4x higher than its predecessor) and capacity, the H200 Tensor Core can handle larger datasets, accelerating the training of large AI models and executing complex simulations, with high energy efficiency and low total cost of ownership, according to IBM. In addition, customers can use the power of the H200 to process large volumes of data in real time, enabling more accurate predictive analytics and data-driven decision-making, IBM stated. IBM Consulting capabilities with Nvidia Lastly, IBM Consulting is adding Nvidia Blueprint to its recently introduced AI Integration Service, which offers customers support for developing, building and running AI environments. Nvidia Blueprints offer a suite pre-validated, optimized, and documented reference architectures designed to simplify and accelerate the deployment of complex AI and data center infrastructure, according to Nvidia.  The IBM AI Integration service already supports a number of third-party systems, including Oracle, Salesforce, SAP and ServiceNow environments.

Read More »

Nvidia’s silicon photonics switches bring better power efficiency to AI data centers

Nvidia typically uses partnerships where appropriate, and the new switch design was done in collaboration with multiple vendors across different aspects, including creating the lasers, packaging, and other elements as part of the silicon photonics. Hundreds of patents were also included. Nvidia will licensing the innovations created to its partners and customers with the goal of scaling this model. Nvidia’s partner ecosystem includes TSMC, which provides advanced chip fabrication and 3D chip stacking to integrate silicon photonics into Nvidia’s hardware. Coherent, Eoptolink, Fabrinet, and Innolight are involved in the development, manufacturing, and supply of the transceivers. Additional partners include Browave, Coherent, Corning Incorporated, Fabrinet, Foxconn, Lumentum, SENKO, SPIL, Sumitomo Electric Industries, and TFC Communication. AI has transformed the way data centers are being designed. During his keynote at GTC, CEO Jensen Huang talked about the data center being the “new unit of compute,” which refers to the entire data center having to act like one massive server. That has driven compute to be primarily CPU based to being GPU centric. Now the network needs to evolve to ensure data is being fed to the GPUs at a speed they can process the data. The new co-packaged switches remove external parts, which have historically added a small amount of overhead to networking. Pre-AI this was negligible, but with AI, any slowness in the network leads to dollars being wasted.

Read More »

Critical vulnerability in AMI MegaRAC BMC allows server takeover

“In disruptive or destructive attacks, attackers can leverage the often heterogeneous environments in data centers to potentially send malicious commands to every other BMC on the same management segment, forcing all devices to continually reboot in a way that victim operators cannot stop,” the Eclypsium researchers said. “In extreme scenarios, the net impact could be indefinite, unrecoverable downtime until and unless devices are re-provisioned.” BMC vulnerabilities and misconfigurations, including hardcoded credentials, have been of interest for attackers for over a decade. In 2022, security researchers found a malicious implant dubbed iLOBleed that was likely developed by an APT group and was being deployed through vulnerabilities in HPE iLO (HPE’s Integrated Lights-Out) BMC. In 2018, a ransomware group called JungleSec used default credentials for IPMI interfaces to compromise Linux servers. And back in 2016, Intel’s Active Management Technology (AMT) Serial-over-LAN (SOL) feature which is part of Intel’s Management Engine (Intel ME), was exploited by an APT group as a covert communication channel to transfer files. OEM, server manufacturers in control of patching AMI released an advisory and patches to its OEM partners, but affected users must wait for their server manufacturers to integrate them and release firmware updates. In addition to this vulnerability, AMI also patched a flaw tracked as CVE-2024-54084 that may lead to arbitrary code execution in its AptioV UEFI implementation. HPE and Lenovo have already released updates for their products that integrate AMI’s patch for CVE-2024-54085.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »