
When Elon Musk was at Davos last week, an interviewer asked him if he thought aging could be reversed. Musk said he hasn’t put much time into the problem but suspects it is “very solvable” and that when scientists discover why we age, it’s going to be something “obvious.”
Not long after, the Harvard professor and life-extension evangelist David Sinclair jumped into the conversation on X to strongly agree with the world’s richest man. “Aging has a relatively simple explanation and is apparently reversible,” wrote Sinclair. “Clinical Trials begin shortly.”
“ER-100?” Musk asked.
“Yes” replied Sinclair.
ER-100 turns out to be the code name of a treatment created by Life Biosciences, a small Boston startup that Sinclair cofounded and which he confirmed today has won FDA approval to proceed with the first targeted attempt at age reversal in human volunteers.
The company plans to try to treat eye disease with a radical rejuvenation concept called “reprogramming” that has recently attracted hundreds of millions in investment for Silicon Valley firms like Altos Labs, New Limit, and Retro Biosciences, backed by many of the biggest names in tech.
The technique attempts to restore cells to a healthier state by broadly resetting their epigenetic controls—switches on our genes that determine which are turned on and off.
“Reprogramming is like the AI of the bio world. It’s the thing everyone is funding,” says Karl Pfleger, an investor who backs a smaller UK startup, Shift Bioscience. He says Sinclair’s company has recently been seeking additional funds to keep advancing its treatment.
Reprogramming is so powerful that it sometimes creates risks, even causing cancer in lab animals, but the version of the technique being advanced by Life Biosciences passed initial safety tests in animals.
But it’s still very complex. The trial will initially test the treatment on about a dozen patients with glaucoma, a condition where high pressure inside the eye damages the optic nerve. In the tests, viruses carrying three powerful reprogramming genes will be injected into one eye of each patient, according to a description of the study first posted in December.
To help make sure the process doesn’t go too far, the reprogramming genes will be under the control of a special genetic switch that turns them on only while the patients take a low dose of the antibiotic doxycycline. Initially, they will take the antibiotic for about two months while the effects are monitored.
Executives at the company have said for months that a trial could begin this year, sometimes characterizing it as a starting bell for a new era of age reversal. “It’s an incredibly big deal for us as an industry,” Michael Ringel, chief operating officer at Life Biosciences, said at an event this fall. “It’ll be the first time in human history, in the millennia of human history, of looking for something that rejuvenates … So watch this space.”
The technology is based on the Nobel Prize–winning discovery, 20 years ago, that introducing a few potent genes into a cell will cause it to turn back into a stem cell, just like those found in an early embryo that develop into the different specialized cell types. These genes, known as Yamanaka factors, have been likened to a “factory reset” button for cells.
But they’re dangerous, too. When turned on in a living animal, they can cause an eruption of tumors.
That is what led scientists to a new idea, termed “partial” or “transient” reprogramming. The idea is to limit exposure to the potent genes—or use only a subset of them—in the hope of making cells act younger without giving them complete amnesia about what their role in the body is.
In 2020, Sinclair claimed that such partial reprogramming could restore vision to mice after their optic nerves were smashed, saying there was even evidence that the nerves regrew. His report appeared on the cover of the influential journal Nature alongside the headline “Turning Back Time.”
Not all scientists agree that reprogramming really counts as age reversal. But Sinclair has doubled down. He’s been advancing the theory that the gradual loss of correct epigenetic information in our cells is, in fact, the ultimate cause of aging—just the kind of root cause that Musk was alluding to.
“Elon does seem to be paying attention to the field and [is] seemingly in sync with [my theory],” Sinclair said in an email.
Reprogramming isn’t the first longevity fix championed by Sinclair, who’s written best-selling books and commands stratospheric fees on the longevity lecture circuit. Previously, he touted the longevity benefits of molecules called sirtuins as well as resveratrol, a molecule found in red wine. But some critics say he greatly exaggerates scientific progress, pushback that culminated in a 2024 Wall Street Journal story that dubbed him a “reverse-aging guru” whose companies “have not panned out.”
Life Biosciences has been among those struggling companies. Initially formed in 2017, it at first had a strategy of launching subsidiaries, each intended to pursue one aspect of the aging problem. But after these made limited progress, in 2021 it hired a new CEO, Jerry McLaughlin, who has refocused its efforts on Sinclair’s mouse vision results and the push toward a human trial.
The company has discussed the possibility of reprogramming other organs, including the brain. And Ringel, like Sinclair, entertains the idea that someday even whole-body rejuvenation might be feasible. But for now, it’s better to think of the study as a proof of concept that’s still far from a fountain of youth. “The optimistic case is this solves some blindness for certain people and catalyzes work in other indications,” says Pfleger, the investor. “It’s not like your doctor will be writing a prescription for a pill that will rejuvenate you.”
Life’s treatment also relies on an antibiotic switching mechanism that, while often used in lab animals, hasn’t been tried in humans before. Since the switch is built from gene components taken from E. coli and the herpes virus, it’s possible that it could cause an immune reaction in humans, scientists say.
“I was always thinking that for widespread use you might need a different system,” says Noah Davidsohn, who helped Sinclair implement the technique and is now chief scientist at a different company, Rejuvenate Bio. And Life’s choice of reprogramming factors—it’s picked three, which go by the acronym OSK—may also be risky. They are expected to turn on hundreds of other genes, and in some circumstances the combination can cause cells to revert to a very primitive, stem-cell-like state.
Other companies studying reprogramming say their focus is on researching which genes to use, in order to achieve time reversal without unwanted side effects. New Limit, which has been carrying out an extensive search for such genes, says it won’t be ready for a human study for two years. At Shift, experiments on animals are only beginning now.
“Are their factors the best version of rejuvenation? We don’t think they are. I think they are working with what they’ve got,” Daniel Ives, the CEO of Shift, says of Life Biosciences. “But I think they’re way ahead of anybody else in terms of getting into humans. They have found a route forward in the eye, which is a nice self-contained system. If it goes wrong, you’ve still got one left.”





















