Stay Ahead, Stay ONMINE

The foundations of America’s prosperity are being dismantled

Ever since World War II, the US has been the global leader in science and technology—and benefited immensely from it. Research fuels American innovation and the economy in turn. Scientists around the world want to study in the US and collaborate with American scientists to produce more of that research. These international collaborations play a critical role in American soft power and diplomacy. The products Americans can buy, the drugs they have access to, the diseases they’re at risk of catching—are all directly related to the strength of American research and its connections to the world’s scientists. That scientific leadership is now being dismantled, according to more than 10 federal workers who spoke to MIT Technology Review, as the Trump administration—spearheaded by Elon Musk’s Department of Government Efficiency (DOGE)—slashes personnel, programs, and agencies. Meanwhile, the president himself has gone after relationships with US allies.    These workers come from several agencies, including the Departments of State, Defense, and Commerce, the US Agency for International Development, and the National Science Foundation. All of them occupy scientific and technical roles, many of which the average American has never heard of but which are nevertheless critical, coordinating research, distributing funding, supporting policymaking, or advising diplomacy. They warn that dismantling the behind-the-scenes scientific research programs that backstop American life could lead to long-lasting, perhaps irreparable damage to everything from the quality of health care to the public’s access to next-generation consumer technologies. The US took nearly a century to craft its rich scientific ecosystem; if the unraveling that has taken place over the past month continues, Americans will feel the effects for decades to come.  Most of the federal workers spoke on condition of anonymity because they were not authorized to talk or for fear of being targeted. Many are completely stunned and terrified by the scope and totality of the actions. While every administration brings its changes, keeping the US a science and technology leader has never been a partisan issue. No one predicted the wholesale assault on these foundations of American prosperity. “If you believe that innovation is important to economic development, then throwing a wrench in one of the most sophisticated and productive innovation machines in world history is not a good idea,” says Deborah Seligsohn, an assistant professor of political science at Villanova University who worked for two decades in the State Department on science issues. “They’re setting us up for economic decline.” The biggest funder of innovation The US currently has the most top-quality research institutes in the world. This includes world-class universities like MIT (which publishes MIT Technology Review) and the University of California, Berkeley; national labs like Oak Ridge and Los Alamos; and federal research facilities run by agencies like the National Oceanic and Atmospheric Administration and the Department of Defense. Much of this network was developed by the federal government after World War II to bolster the US position as a global superpower.  Before the Trump administration’s wide-ranging actions, which now threaten to slash federal research funding, the government remained by far the largest supporter of scientific progress. Outside of its own labs and facilities, it funded more than 50% of research and development across higher education, according to data from the National Science Foundation. In 2023, that came to nearly $60 billion out of the $109 billion that universities spent on basic science and engineering.  The return on these investments is difficult to measure. It can often take years or decades for this kind of basic science research to have tangible effects on the lives of Americans and people globally, and on the US’s place in the world. But history is littered with examples of the transformative effect that this funding produces over time. The internet and GPS were first developed through research backed by the Department of Defense, as was the quantum dot technology behind high-resolution QLED television screens. Well before they were useful or commercially relevant, the development of neural networks that underpin nearly all modern AI systems was substantially supported by the National Science Foundation. The decades-long drug discovery process that led to Ozempic was incubated by the Department of Veterans Affairs and the National Institutes of Health. Microchips. Self-driving cars. MRIs. The flu shot. The list goes on and on.  In her 2013 book The Entrepreneurial State, Mariana Mazzucato, a leading economist studying innovation at University College London, found that every major technological transformation in the US, from electric cars to Google to the iPhone, can trace its roots back to basic science research once funded by the federal government. If the past offers any lesson, that means every major transformation in the future could be shortchanged with the destruction of that support. The Trump administration’s distaste for regulation will arguably be a boon in the short term for some parts of the tech industry, including crypto and AI. But the federal workers said the president’s and Musk’s undermining of basic science research will hurt American innovation in the long run. “Rather than investing in the future, you’re burning through scientific capital,” an employee at the State Department said. “You can build off the things you already know, but you’re not learning anything new. Twenty years later, you fall behind because you stopped making new discoveries.” A global currency The government doesn’t just give money, either. It supports American science in numerous other ways, and the US reaps the returns. The Department of State helps attract the best students from around the world to American universities. Amid stagnating growth in the number of homegrown STEM PhD graduates, recruiting foreign students remains one of the strongest pathways for the US to expand its pool of technical talent, especially in strategic areas like batteries and semiconductors. Many of those students stay for years, if not the rest of their lives; even if they leave the country, they’ve already spent some of their most productive years in the US and will retain a wealth of professional connections with whom they’ll collaborate, thereby continuing to contribute to US science. The State Department also establishes agreements between the US and other countries and helps broker partnerships between American and international universities. That helps scientists collaborate across borders on everything from global issues like climate change to research that requires equipment on opposite sides of the world, such as the measurement of gravitational waves. The international development work of USAID in global health, poverty reduction, and conflict alleviation—now virtually shut down in its entirety—was designed to build up goodwill toward the US globally; it improved regional stability for decades. In addition to its inherent benefits, this allowed American scientists to safely access diverse geographies and populations, as well as plant and animal species not found in the US. Such international interchange played just as critical a role as government funding in many crucial inventions. Several federal agencies, including the Centers for Disease Control and Prevention, the Environmental Protection Agency, and the National Oceanic and Atmospheric Administration, also help collect and aggregate critical data on disease, health trends, air quality, weather, and more from disparate sources that feed into the work of scientists across the country. The National Institutes of Health, for example, has since 2015 been running the Precision Medicine Initiative, the only effort of its kind to collect extensive and granular health data from over 1 million Americans who volunteer their medical records, genetic history, and even Fitbit data to help researchers understand health disparities and develop personalized and more effective treatments for disorders from heart and lung disease to cancer. The data set, which is too expensive for any one university to assemble and maintain, has already been used in hundreds of papers that will lay the foundation for the next generation of life-saving pharmaceuticals. Beyond fueling innovation, a well-supported science and technology ecosystem bolsters US national security and global influence. When people want to study at American universities, attend international conferences hosted on American soil, or move to the US to work or to found their own companies, the US stays the center of global innovation activity. This ensures that the country continues to get access to the best people and ideas, and gives it an outsize role in setting global scientific practices and priorities. US research norms, including academic freedom and a robust peer review system, become global research norms that lift the overall quality of science. International agencies like the World Health Organization take significant cues from American guidance. US scientific leadership has long been one of the country’s purest tools of soft power and diplomacy as well. Countries keen to learn from the American innovation ecosystem and to have access to American researchers and universities have been more prone to partner with the US and align with its strategic priorities. Just one example: Science diplomacy has long played an important role in maintaining the US’s strong relationship with the Netherlands, which is home to ASML, the only company in the world that can produce the extreme ultraviolet lithography machines needed to produce the most advanced semiconductors. These are critical for both AI development and national security. International science cooperation has also served as a stabilizing force in otherwise difficult relationships. During the Cold War, the US and USSR continued to collaborate on the International Space Station; during the recent heightened economic competition between the US and China, the countries have remained each other’s top scientific partners. “Actively working together to solve problems that we both care about helps maintain the connections and the context but also helps build respect,” Seligsohn says. The federal government itself is a significant beneficiary of the country’s convening power for technical expertise. Among other things, experts both inside and outside the government support its sound policymaking in science and technology. During the US Senate AI Insight Forums, co-organized by Senator Chuck Schumer through the fall of 2023, for example, the Senate heard from more than 150 experts, many of whom were born abroad and studying at American universities, working at or advising American companies, or living permanently in the US as naturalized American citizens. Federal scientists and technical experts at government agencies also work on wide-ranging goals critical to the US, including building resilience in the face of an increasingly erratic climate; researching strategic technologies such as next-generation battery technology to reduce the country’s reliance on minerals not found in the US; and monitoring global infectious diseases to prevent the next pandemic. “Every issue that the US faces, there are people that are trying to do research on it and there are partnerships that have to happen,” the State Department employee said. A system in jeopardy Now the breadth and velocity of the Trump administration’s actions has led to an unprecedented assault on every pillar upholding American scientific leadership. For starters, the purging of tens of thousands—and perhaps soon hundreds of thousands—of federal workers is removing scientists and technologists from the government and paralyzing the ability of critical agencies to function. Across multiple agencies, science and technology fellowship programs, designed to bring in talented early-career staff with advanced STEM degrees, have shuttered. Many other federal scientists were among the thousands who were terminated as probationary employees, a status they held because of the way scientific roles are often contractually structured. Some agencies that were supporting or conducting their own research, including the National Institutes of Health and the National Science Foundation, are no longer functionally operational. USAID has effectively shuttered, eliminating a bastion of US expertise, influence, and credibility overnight. “Diplomacy is built on relationships. If we’ve closed all these clinics and gotten rid of technical experts in our knowledge base inside the government, why would any foreign government have respect for the US in our ability to hold our word and in our ability to actually be knowledgeable?” a terminated USAID worker said. “I really hope America can save itself.” Now the Trump administration has sought to reverse some terminations after discovering that many were key to national security, including nuclear safety employees responsible for designing, building, and maintaining the country’s nuclear weapons arsenal. But many federal workers I spoke to can no longer imagine staying in the public sector. Some are considering going into industry. Others are wondering whether it will be better to move abroad. “It’s just such a waste of American talent,” said Fiona Coleman, a terminated federal scientist, her voice cracking with emotion as she described the long years of schooling and training she and her colleagues went through to serve the government. Many fear the US has also singlehandedly kneecapped its own ability to attract talent from abroad. Over the last 10 years, even as American universities have continued to lead the world, many universities in other countries have rapidly leveled up. That includes those in Canada, where liberal immigration policies and lower tuition fees have driven a 200% increase in international student enrollment over the last decade, according to Anna Esaki-Smith, cofounder of a higher-education research consultancy called Education Rethink and author of Make College Your Superpower. Germany has also seen an influx, thanks to a growing number of English-taught programs and strong connections between universities and German industry. Chinese students, who once represented the largest share of foreign students in the US, are increasingly staying at home or opting to study in places like Hong Kong, Singapore, and the UK. During the first Trump administration, many international students were already more reluctant to come to the US because of the president’s hostile rhetoric. With the return and rapid escalation of that rhetoric, Esaki-Smith is hearing from some universities that international students are declining their admissions offers. Add to that the other recent developments—the potential dramatic cuts in federal research funding, the deletion of scores of rich public data sets on health and the environment, the clampdown on academic freedom for research that appears related to diversity, equity, and inclusion and the fear that these restrictions could ultimately encompass other politically charged topics like climate change or vaccines—and many more international science and engineering students could decide to head elsewhere. “I’ve been hearing this increasingly from several postdocs and early-career professors, fearing the cuts in NIH or NSF grants, that they’re starting to look for funding or job opportunities in other countries,” Coleman told me. “And then we’re going to be training up the US’s competitors.” The attacks could similarly weaken the productivity of those who stay at American universities. While many of the Trump administration’s actions are now being halted and scrutinized by US judges, the chaos has weakened a critical prerequisite for tackling the toughest research problems: a long-term stable environment. With reports that the NSF is combing through research grants for words like “women,” “diverse,” and “institutional” to determine whether they violate President Trump’s executive order on DEIA programs, a chilling effect is also setting in among federally funded academics uncertain whether they’ll get caught in the dragnet. To scientists abroad, the situation in the US government has marked American institutions and researchers as potentially unreliable partners, several federal workers told me. If international researchers think collaborations with the US can end at any moment when funds are abruptly pulled or certain topics or keywords are suddenly blacklisted, many of them could steer clear and look to other countries. “I’m really concerned about the instability we’re showing,” another employee at the State Department said. “What’s the point in even engaging? Because science is a long-term initiative and process that outlasts administrations and political cycles.” Meanwhile, international scientists have far more options these days for high-caliber colleagues to collaborate with outside America. In recent years, for example, China has made a remarkable ascent to become a global peer in scientific discoveries. By some metrics, it has even surpassed the US; it started accounting for more of the top 1% of most-cited papers globally, often called the Nobel Prize tier, back in 2019 and has continued to improve the quality of the rest of its research.  Where Chinese universities can also entice international collaborators with substantial resources, the US is more limited in its ability to offer tangible funding, the State employee said. Until now, the US has maintained its advantage in part through the prestige of its institutions and its more open cultural norms, including stronger academic freedom. But several federal scientists warn that this advantage is dissipating.  “America is made up of so many different people contributing to it. There’s such a powerful global community that makes this country what it is, especially in science and technology and academia and research. We’re going to lose that; there’s not a chance in the world that we’re not going to lose that through stuff like this,” says Brigid Cakouros, a federal scientist who was also terminated from USAID. “I have no doubt that the international science community will ultimately be okay. It’ll just be a shame for the US to isolate themselves from it.”

Ever since World War II, the US has been the global leader in science and technology—and benefited immensely from it. Research fuels American innovation and the economy in turn. Scientists around the world want to study in the US and collaborate with American scientists to produce more of that research. These international collaborations play a critical role in American soft power and diplomacy. The products Americans can buy, the drugs they have access to, the diseases they’re at risk of catching—are all directly related to the strength of American research and its connections to the world’s scientists.

That scientific leadership is now being dismantled, according to more than 10 federal workers who spoke to MIT Technology Review, as the Trump administration—spearheaded by Elon Musk’s Department of Government Efficiency (DOGE)—slashes personnel, programs, and agencies. Meanwhile, the president himself has gone after relationships with US allies.   

These workers come from several agencies, including the Departments of State, Defense, and Commerce, the US Agency for International Development, and the National Science Foundation. All of them occupy scientific and technical roles, many of which the average American has never heard of but which are nevertheless critical, coordinating research, distributing funding, supporting policymaking, or advising diplomacy.

They warn that dismantling the behind-the-scenes scientific research programs that backstop American life could lead to long-lasting, perhaps irreparable damage to everything from the quality of health care to the public’s access to next-generation consumer technologies. The US took nearly a century to craft its rich scientific ecosystem; if the unraveling that has taken place over the past month continues, Americans will feel the effects for decades to come. 

Most of the federal workers spoke on condition of anonymity because they were not authorized to talk or for fear of being targeted. Many are completely stunned and terrified by the scope and totality of the actions. While every administration brings its changes, keeping the US a science and technology leader has never been a partisan issue. No one predicted the wholesale assault on these foundations of American prosperity.

“If you believe that innovation is important to economic development, then throwing a wrench in one of the most sophisticated and productive innovation machines in world history is not a good idea,” says Deborah Seligsohn, an assistant professor of political science at Villanova University who worked for two decades in the State Department on science issues. “They’re setting us up for economic decline.”

The biggest funder of innovation

The US currently has the most top-quality research institutes in the world. This includes world-class universities like MIT (which publishes MIT Technology Review) and the University of California, Berkeley; national labs like Oak Ridge and Los Alamos; and federal research facilities run by agencies like the National Oceanic and Atmospheric Administration and the Department of Defense. Much of this network was developed by the federal government after World War II to bolster the US position as a global superpower. 

Before the Trump administration’s wide-ranging actions, which now threaten to slash federal research funding, the government remained by far the largest supporter of scientific progress. Outside of its own labs and facilities, it funded more than 50% of research and development across higher education, according to data from the National Science Foundation. In 2023, that came to nearly $60 billion out of the $109 billion that universities spent on basic science and engineering. 

The return on these investments is difficult to measure. It can often take years or decades for this kind of basic science research to have tangible effects on the lives of Americans and people globally, and on the US’s place in the world. But history is littered with examples of the transformative effect that this funding produces over time. The internet and GPS were first developed through research backed by the Department of Defense, as was the quantum dot technology behind high-resolution QLED television screens. Well before they were useful or commercially relevant, the development of neural networks that underpin nearly all modern AI systems was substantially supported by the National Science Foundation. The decades-long drug discovery process that led to Ozempic was incubated by the Department of Veterans Affairs and the National Institutes of Health. Microchips. Self-driving cars. MRIs. The flu shot. The list goes on and on. 

In her 2013 book The Entrepreneurial State, Mariana Mazzucato, a leading economist studying innovation at University College London, found that every major technological transformation in the US, from electric cars to Google to the iPhone, can trace its roots back to basic science research once funded by the federal government. If the past offers any lesson, that means every major transformation in the future could be shortchanged with the destruction of that support.

The Trump administration’s distaste for regulation will arguably be a boon in the short term for some parts of the tech industry, including crypto and AI. But the federal workers said the president’s and Musk’s undermining of basic science research will hurt American innovation in the long run. “Rather than investing in the future, you’re burning through scientific capital,” an employee at the State Department said. “You can build off the things you already know, but you’re not learning anything new. Twenty years later, you fall behind because you stopped making new discoveries.”

A global currency

The government doesn’t just give money, either. It supports American science in numerous other ways, and the US reaps the returns. The Department of State helps attract the best students from around the world to American universities. Amid stagnating growth in the number of homegrown STEM PhD graduates, recruiting foreign students remains one of the strongest pathways for the US to expand its pool of technical talent, especially in strategic areas like batteries and semiconductors. Many of those students stay for years, if not the rest of their lives; even if they leave the country, they’ve already spent some of their most productive years in the US and will retain a wealth of professional connections with whom they’ll collaborate, thereby continuing to contribute to US science.

The State Department also establishes agreements between the US and other countries and helps broker partnerships between American and international universities. That helps scientists collaborate across borders on everything from global issues like climate change to research that requires equipment on opposite sides of the world, such as the measurement of gravitational waves.

The international development work of USAID in global health, poverty reduction, and conflict alleviation—now virtually shut down in its entirety—was designed to build up goodwill toward the US globally; it improved regional stability for decades. In addition to its inherent benefits, this allowed American scientists to safely access diverse geographies and populations, as well as plant and animal species not found in the US. Such international interchange played just as critical a role as government funding in many crucial inventions.

Several federal agencies, including the Centers for Disease Control and Prevention, the Environmental Protection Agency, and the National Oceanic and Atmospheric Administration, also help collect and aggregate critical data on disease, health trends, air quality, weather, and more from disparate sources that feed into the work of scientists across the country.

The National Institutes of Health, for example, has since 2015 been running the Precision Medicine Initiative, the only effort of its kind to collect extensive and granular health data from over 1 million Americans who volunteer their medical records, genetic history, and even Fitbit data to help researchers understand health disparities and develop personalized and more effective treatments for disorders from heart and lung disease to cancer. The data set, which is too expensive for any one university to assemble and maintain, has already been used in hundreds of papers that will lay the foundation for the next generation of life-saving pharmaceuticals.

Beyond fueling innovation, a well-supported science and technology ecosystem bolsters US national security and global influence. When people want to study at American universities, attend international conferences hosted on American soil, or move to the US to work or to found their own companies, the US stays the center of global innovation activity. This ensures that the country continues to get access to the best people and ideas, and gives it an outsize role in setting global scientific practices and priorities. US research norms, including academic freedom and a robust peer review system, become global research norms that lift the overall quality of science. International agencies like the World Health Organization take significant cues from American guidance.

US scientific leadership has long been one of the country’s purest tools of soft power and diplomacy as well. Countries keen to learn from the American innovation ecosystem and to have access to American researchers and universities have been more prone to partner with the US and align with its strategic priorities.

Just one example: Science diplomacy has long played an important role in maintaining the US’s strong relationship with the Netherlands, which is home to ASML, the only company in the world that can produce the extreme ultraviolet lithography machines needed to produce the most advanced semiconductors. These are critical for both AI development and national security.

International science cooperation has also served as a stabilizing force in otherwise difficult relationships. During the Cold War, the US and USSR continued to collaborate on the International Space Station; during the recent heightened economic competition between the US and China, the countries have remained each other’s top scientific partners. “Actively working together to solve problems that we both care about helps maintain the connections and the context but also helps build respect,” Seligsohn says.

The federal government itself is a significant beneficiary of the country’s convening power for technical expertise. Among other things, experts both inside and outside the government support its sound policymaking in science and technology. During the US Senate AI Insight Forums, co-organized by Senator Chuck Schumer through the fall of 2023, for example, the Senate heard from more than 150 experts, many of whom were born abroad and studying at American universities, working at or advising American companies, or living permanently in the US as naturalized American citizens.

Federal scientists and technical experts at government agencies also work on wide-ranging goals critical to the US, including building resilience in the face of an increasingly erratic climate; researching strategic technologies such as next-generation battery technology to reduce the country’s reliance on minerals not found in the US; and monitoring global infectious diseases to prevent the next pandemic.

“Every issue that the US faces, there are people that are trying to do research on it and there are partnerships that have to happen,” the State Department employee said.

A system in jeopardy

Now the breadth and velocity of the Trump administration’s actions has led to an unprecedented assault on every pillar upholding American scientific leadership.

For starters, the purging of tens of thousands—and perhaps soon hundreds of thousands—of federal workers is removing scientists and technologists from the government and paralyzing the ability of critical agencies to function. Across multiple agencies, science and technology fellowship programs, designed to bring in talented early-career staff with advanced STEM degrees, have shuttered. Many other federal scientists were among the thousands who were terminated as probationary employees, a status they held because of the way scientific roles are often contractually structured.

Some agencies that were supporting or conducting their own research, including the National Institutes of Health and the National Science Foundation, are no longer functionally operational. USAID has effectively shuttered, eliminating a bastion of US expertise, influence, and credibility overnight.

“Diplomacy is built on relationships. If we’ve closed all these clinics and gotten rid of technical experts in our knowledge base inside the government, why would any foreign government have respect for the US in our ability to hold our word and in our ability to actually be knowledgeable?” a terminated USAID worker said. “I really hope America can save itself.”

Now the Trump administration has sought to reverse some terminations after discovering that many were key to national security, including nuclear safety employees responsible for designing, building, and maintaining the country’s nuclear weapons arsenal. But many federal workers I spoke to can no longer imagine staying in the public sector. Some are considering going into industry. Others are wondering whether it will be better to move abroad.

“It’s just such a waste of American talent,” said Fiona Coleman, a terminated federal scientist, her voice cracking with emotion as she described the long years of schooling and training she and her colleagues went through to serve the government.

Many fear the US has also singlehandedly kneecapped its own ability to attract talent from abroad. Over the last 10 years, even as American universities have continued to lead the world, many universities in other countries have rapidly leveled up. That includes those in Canada, where liberal immigration policies and lower tuition fees have driven a 200% increase in international student enrollment over the last decade, according to Anna Esaki-Smith, cofounder of a higher-education research consultancy called Education Rethink and author of Make College Your Superpower.

Germany has also seen an influx, thanks to a growing number of English-taught programs and strong connections between universities and German industry. Chinese students, who once represented the largest share of foreign students in the US, are increasingly staying at home or opting to study in places like Hong Kong, Singapore, and the UK.

During the first Trump administration, many international students were already more reluctant to come to the US because of the president’s hostile rhetoric. With the return and rapid escalation of that rhetoric, Esaki-Smith is hearing from some universities that international students are declining their admissions offers.

Add to that the other recent developments—the potential dramatic cuts in federal research funding, the deletion of scores of rich public data sets on health and the environment, the clampdown on academic freedom for research that appears related to diversity, equity, and inclusion and the fear that these restrictions could ultimately encompass other politically charged topics like climate change or vaccines—and many more international science and engineering students could decide to head elsewhere.

“I’ve been hearing this increasingly from several postdocs and early-career professors, fearing the cuts in NIH or NSF grants, that they’re starting to look for funding or job opportunities in other countries,” Coleman told me. “And then we’re going to be training up the US’s competitors.”

The attacks could similarly weaken the productivity of those who stay at American universities. While many of the Trump administration’s actions are now being halted and scrutinized by US judges, the chaos has weakened a critical prerequisite for tackling the toughest research problems: a long-term stable environment. With reports that the NSF is combing through research grants for words like “women,” “diverse,” and “institutional” to determine whether they violate President Trump’s executive order on DEIA programs, a chilling effect is also setting in among federally funded academics uncertain whether they’ll get caught in the dragnet.

To scientists abroad, the situation in the US government has marked American institutions and researchers as potentially unreliable partners, several federal workers told me. If international researchers think collaborations with the US can end at any moment when funds are abruptly pulled or certain topics or keywords are suddenly blacklisted, many of them could steer clear and look to other countries. “I’m really concerned about the instability we’re showing,” another employee at the State Department said. “What’s the point in even engaging? Because science is a long-term initiative and process that outlasts administrations and political cycles.”

Meanwhile, international scientists have far more options these days for high-caliber colleagues to collaborate with outside America. In recent years, for example, China has made a remarkable ascent to become a global peer in scientific discoveries. By some metrics, it has even surpassed the US; it started accounting for more of the top 1% of most-cited papers globally, often called the Nobel Prize tier, back in 2019 and has continued to improve the quality of the rest of its research. 

Where Chinese universities can also entice international collaborators with substantial resources, the US is more limited in its ability to offer tangible funding, the State employee said. Until now, the US has maintained its advantage in part through the prestige of its institutions and its more open cultural norms, including stronger academic freedom. But several federal scientists warn that this advantage is dissipating. 

“America is made up of so many different people contributing to it. There’s such a powerful global community that makes this country what it is, especially in science and technology and academia and research. We’re going to lose that; there’s not a chance in the world that we’re not going to lose that through stuff like this,” says Brigid Cakouros, a federal scientist who was also terminated from USAID. “I have no doubt that the international science community will ultimately be okay. It’ll just be a shame for the US to isolate themselves from it.”

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

How network diversity protects utility operations in an evolving landscape

From redundancy to resilience: The next level of network diversity Despite billions invested in grid modernization and widespread adoption of dual-carrier approaches, many utilities still find their communications infrastructure vulnerable to disruption. It’s a paradox: utilities have engineered redundancy across power generation and distribution, yet communications—the digital backbone of the modern grid—often lacks the comprehensive diversity needed to truly eliminate single points of failure.  True grid resilience now depends on comprehensive network diversity that enables consistent quality of service, operational flexibility and long-term adaptability. The cost of connectivity blind spots As utilities expand advanced metering infrastructure (AMI), SCADA systems, distributed energy resource (DER) management and connected field operations, the strain on communications networks continues to grow. Relying on a single technology exposes utilities to significant risk—from natural disasters and carrier outages to rural coverage gaps and network congestion. The result: delayed outage restoration, compromised grid visibility and operational inefficiencies that undermine reliability and customer trust. The versatility imperative: Why utilities can’t just “upgrade” Utility communications can’t follow the consumer tech cycle. Equipment often remains in service for 20 to 30 years, even as wireless standards evolve from private radio networks to LTE, 4G, 5G and emerging spectrum such as Anterix Band 106. Each shift brings new performance expectations—but utilities can’t afford to rip and replace infrastructure every few years. Instead, they need adaptable, field-proven solutions that bridge technologies and spectrum generations, ensuring consistent, secure connectivity today while accommodating tomorrow’s innovations without interrupting critical operations. Three pillars of network diversity While many utilities have already adopted dual-carrier strategies, the expanding complexity of modern grid operations demands a renewed look at comprehensive network diversity. True resilience comes from a multi-path approach—one that enables seamless communication under any condition. Three key strategies define this new standard of reliability. A. Public-to-public redundancy Dual-radio routers

Read More »

Why conductor strength matters for grid reliability

As utilities work to strengthen and modernize America’s electric grid, they face growing mechanical and environmental challenges below and between the lines. Buried grounding networks, pole grounds and substation grids must all withstand decades of stress from soil movement, moisture, corrosion and fault current events. Each of these physical forces can compromise a system’s electrical integrity — making mechanical strength as vital as electrical performance in ensuring long-term reliability. In earlier decades, utility conductors were relatively short, stationary and installed in stable soil. Today’s infrastructure is different. Expansion into remote terrain, widespread undergrounding and the integration of renewable and distributed resources have multiplied the number of grounding paths and exposed more cable to movement, vibration and stress. These systems must remain reliable through decades of shifting soils, thermal cycling and fault events — all while supporting uninterrupted power delivery. When a grounding conductor fails, the results can be costly. Broken bonds or weakened terminations can increase ground resistance, trigger equipment faults or leave assets unprotected from lightning and surge events. Repairs often require excavation, downtime and new material — expenses that compound across large service territories. In short, mechanical failure doesn’t just compromise safety; it undermines reliability, budgets and public confidence. That’s why conductor strength has become a defining factor in grid resilience. Copper-Clad Steel (CCS) conductors are engineered to meet this demand. By metallurgically bonding a copper layer to a high-tensile-strength steel core, CCS combines the conductivity of copper with the durability of steel. The result is a grounding conductor that resists stretching, breakage and deformation while maintaining long-term electrical integrity. Unlike soft copper, which can elongate or fracture under mechanical strain, CCS retains its shape and strength even after repeated mechanical or thermal stress. That strength translates into reliability you can measure. Stronger conductors stay tight at terminations, maintain

Read More »

Russian Crude Output Rose Last Month

Russia’s crude oil production edged up in October, but remained below its OPEC+ quota as international pressure mounted on the country’s energy sector. Russia pumped an average 9.411 million barrels a day last month, people with knowledge of the data said, asking not to be identified discussing confidential information. While that’s 43,000 barrels a day higher than in September, it’s 70,000 a day below a quota that includes compensation cuts for previous overproduction, Bloomberg calculations show. Oil watchers are closely following Russian production data to assess the impact of sanctions — and Ukrainian drone strikes — against the country’s energy industry. The latest US penalties on the sector, which hit oil giants Rosneft PJSC and Lukoil PJSC, have already eroded crude exports as some refiners in India, China and Turkey prove less willing to take sanctioned barrels. Meanwhile, Ukrainian attacks have intensified, putting pressure on Russia’s crude-processing sector even as refinery owners rush to repair infrastructure.  If Moscow eventually finds itself unable to find buyers for oil from its sanctioned producers, and struggles to restore refining, it’ll be forced to halt output at some fields, risking damage to wells. The Energy Ministry didn’t immediately respond to a request for comment on the production data. Deputy Prime Minister Alexander Novak said last month that the nation has capacity to raise oil production further, but will do it gradually, according to Tass news service. Compensation Cuts Russia, historically one of the biggest laggards in complying with OPEC+ output agreements, has agreed to make additional cuts to compensate for previous overproduction. The monthly schedule for those curbs has been regularly revised, with the latest plan published earlier this month.  It shows that October was the last month when Russia had to make such cuts. Moscow’s pledge to reduce daily output by 10,000 barrels below a quota of 9.491

Read More »

Oil Rises but Logs Second Weekly Loss

Oil rose on Friday but still notched a second weekly loss as the market continued to weigh the threat to output from sanctions on Russia against a looming oversupply. West Texas Intermediate futures rose around 0.5% to settle below $60 a barrel, but were still down for the week. Adding to fears of a glut, oil prices have also been buffeted by swings in equity markets this week. Meanwhile, the White House’s move to clamp down on the buying of Russian crude led oil trading giant Gunvor Group to withdraw an offer for the international assets of Lukoil PJSC. The fate of the assets, which include stakes in oil fields, refineries and gas stations, remains unclear. One possible exception to that crackdown could emerge soon: President Donald Trump signaled an openness to exempting Hungary from sanctions on Russian energy purchases as he hosted Prime Minister Viktor Orban, briefly pushing futures to intraday lows. The development appeared to allay shortage fears, given that Budapest imports over 90% of its crude from Moscow. Senior industry figures have warned the latest US curbs on Russia’s two largest oil companies are beginning to have an impact on the market, particularly in diesel, where prices have been surging in recent days, with time spreads for the fuel signaling supply pressure. At the same time, the US measures have come against a backdrop of oversupply that has weighed on key crude oil metrics. The spread between the nearest West Texas Intermediate futures closed at the weakest level since February on Thursday. “If the market flips to contango, we may see more bearish funds enter the crude space,” said Dennis Kissler, senior vice president for trading at BOK Financial said of the potential that longer-dated contracts trade at a premium to nearer-term ones. “Most traders remain surprised

Read More »

Gunvor Scraps Lukoil Deal

Commodity trader Gunvor Group has withdrawn its offer for the international assets of sanctioned Russian oil producer Lukoil PJSC after the US Treasury Department called it “the Kremlin’s puppet” and said the oil and gas trader would never get a license. Gunvor pushed back on the Treasury comment on social media, calling it “fundamentally misinformed and false.” The Geneva-based company said it would seek to correct a “clear misunderstanding” but that it would withdraw its bid for now. President Trump has been clear that the war must end immediately. As long as Putin continues the senseless killings, the Kremlin’s puppet, Gunvor, will never get a license to operate and profit. — Treasury Department (@USTreasury) November 6, 2025 The comment is a remarkable volte-face after a week in which Gunvor has been in talks with the US Office of Foreign Assets Control, part of the Treasury Department, and other bodies in charge of sanctions to help press its case for a deal that would have transformed it into an integrated oil producing and processing colossus. Gunvor swooped on the assets at the end of last month following the US blacklisting of Lukoil and fellow Russian oil giant Rosneft PJSC, and its exit may leave the door open to other suitors. Gunvor on Thursday also announced it had raised $2.81 billion in a credit facility financed by US arms of global banks. Like other major commodity traders, the firm funds the bulk of its trades of oil, gas and metals around the world with bank financing. For the trader, the comments are likely to revive questions about its connections in Moscow at a time when many oil industry participants are wary of any links to Russia.  The trader’s co-founder, Gennady Timchenko, is a friend of Russian President Vladimir Putin, and when the US imposed sanctions

Read More »

Ship With Russia Oil Makes Rare Move Offshore India

A tanker carrying crude from recently-sanctioned Rosneft PJSC has made a rare cargo transfer off Mumbai, as the Trump administration ramps up its scrutiny of India’s oil trade with Russia. But the unusual move has puzzled traders. The cargo was transferred from one blacklisted tanker to another sanctioned ship, meaning there’s been no attempt to hide its origin — typical of such a move — and the crude is still heading for an Indian port: Kochi in the south, rather than Mumbai on the west coast. India’s purchases of Russian oil have drawn the ire of President Donald Trump, and the US penalties on Rosneft along with Lukoil PJSC are expected to severely impact the trade. The market is keenly watching for disruptions to established flows before a grace period related to the sanctions ends later this month. “What we’re seeing now is this uncertainty in the market about what the sanctions risks are,” said Rachel Ziemba, an analyst at the Center for a New American Security in Washington. “The net result is more ship-to-ship transfers, more subterfuge, longer routes, more complicated transactions.” The Fortis took around 720,000 barrels of Russian Urals from Ailana on Tuesday near Mumbai, according to ship-tracking data compiled by Bloomberg, Kpler and Vortexa. The cargo was collected from the Baltic port of Ust-Luga before the US sanctioned Rosneft, and Ailana had idled in the area for nearly two weeks with no clear reason.  Ailana is on its way back to Russia, while Fortis is expected to arrive at Kochi early next week with the cargo, ship-tracking data shows. Both vessels have been sanctioned by the European Union and the UK. Fortis’ owner and manager — Vietnam-based Pacific Logistic & Maritime and North Star Ship Management — didn’t respond to emailed requests for comment. There are no contact details on maritime database

Read More »

Designing the AI Century: 7×24 Exchange Fall ’25 Charts the New Data Center Industrial Stack

SMRs and the AI Power Gap: Steve Fairfax Separates Promise from Physics If NVIDIA’s Sean Young made the case for AI factories, Steve Fairfax offered a sobering counterweight: even the smartest factories can’t run without power—and not just any power, but constant, high-availability, clean generation at a scale utilities are increasingly struggling to deliver. In his keynote “Small Modular Reactors for Data Centers,” Fairfax, president of Oresme and one of the data center industry’s most seasoned voices on reliability, walked through the long arc from nuclear fusion research to today’s resurgent interest in fission at modular scale. His presentation blended nuclear engineering history with pragmatic counsel for AI-era infrastructure leaders: SMRs are promising, but their road to reality is paved with physics, fuel, and policy—not PowerPoint. From Fusion Research to Data Center Reliability Fairfax began with his own story—a career that bridges nuclear reliability and data center engineering. As a young physicist and electrical engineer at MIT, he helped build the Alcator C-MOD fusion reactor, a 400-megawatt research facility that heated plasma to 100 million degrees with 3 million amps of current. The magnet system alone drew 265,000 amps at 1,400 volts, producing forces measured in millions of pounds. It was an extreme experiment in controlled power, and one that shaped his later philosophy: design for failure, test for truth, and assume nothing lasts forever. When the U.S. cooled on fusion power in the 1990s, Fairfax applied nuclear reliability methods to data center systems—quantifying uptime and redundancy with the same math used for reactor safety. By 1994, he was consulting for hyperscale pioneers still calling 10 MW “monstrous.” Today’s 400 MW campuses, he noted, are beginning to look a lot more like reactors in their energy intensity—and increasingly, in their regulatory scrutiny. Defining the Small Modular Reactor Fairfax defined SMRs

Read More »

Top network and data center events 2025 & 2026

Denise Dubie is a senior editor at Network World with nearly 30 years of experience writing about the tech industry. Her coverage areas include AIOps, cybersecurity, networking careers, network management, observability, SASE, SD-WAN, and how AI transforms enterprise IT. A seasoned journalist and content creator, Denise writes breaking news and in-depth features, and she delivers practical advice for IT professionals while making complex technology accessible to all. Before returning to journalism, she held senior content marketing roles at CA Technologies, Berkshire Grey, and Cisco. Denise is a trusted voice in the world of enterprise IT and networking.

Read More »

Google’s cheaper, faster TPUs are here, while users of other AI processors face a supply crunch

Opportunities for the AI industry LLM vendors such as OpenAI and Anthropic, which still have relatively young code bases and are continuously evolving them, also have much to gain from the arrival of Ironwood for training their models, said Forrester vice president and principal analyst Charlie Dai. In fact, Anthropic has already agreed to procure 1 million TPUs for training and its models and using them for inferencing. Other, smaller vendors using Google’s TPUs for training models include Lightricks and Essential AI. Google has seen a steady increase in demand for its TPUs (which it also uses to run interna services), and is expected to buy $9.8 billion worth of TPUs from Broadcom this year, compared to $6.2 billion and $2.04 billion in 2024 and 2023 respectively, according to Harrowell. “This makes them the second-biggest AI chip program for cloud and enterprise data centers, just tailing Nvidia, with approximately 5% of the market. Nvidia owns about 78% of the market,” Harrowell said. The legacy problem While some analysts were optimistic about the prospects for TPUs in the enterprise, IDC research director Brandon Hoff said enterprises will most likely to stay away from Ironwood or TPUs in general because of their existing code base written for other platforms. “For enterprise customers who are writing their own inferencing, they will be tied into Nvidia’s software platform,” Hoff said, referring to CUDA, the software platform that runs on Nvidia GPUs. CUDA was released to the public in 2007, while the first version of TensorFlow has only been around since 2015.

Read More »

Cisco launches AI infrastructure, AI practitioner certifications

“This new certification focuses on artificial intelligence and machine learning workloads, helping technical professionals become AI-ready and successfully embed AI into their workflows,” said Pat Merat, vice president at Learn with Cisco, in a blog detailing the new AI Infrastructure Specialist certification. “The certification validates a candidate’s comprehensive knowledge in designing, implementing, operating, and troubleshooting AI solutions across Cisco infrastructure.” Separately, the AITECH certification is part of the Cisco AI Infrastructure track, which complements its existing networking, data center, and security certifications. Cisco says the AITECH cert training is intended for network engineers, system administrators, solution architects, and other IT professionals who want to learn how AI impacts enterprise infrastructure. The training curriculum covers topics such as: Utilizing AI for code generation, refactoring, and using modern AI-assisted coding workflows. Using generative AI for exploratory data analysis, data cleaning, transformation, and generating actionable insights. Designing and implementing multi-step AI-assisted workflows and understanding complex agentic systems for automation. Learning AI-powered requirements, evaluating customization approaches, considering deployment strategies, and designing robust AI workflows. Evaluating, fine-tuning, and deploying pre-trained AI models, and implementing Retrieval Augmented Generation (RAG) systems. Monitoring, maintaining, and optimizing AI-powered workflows, ensuring data integrity and security. AITECH certification candidates will learn how to use AI to enhance productivity, automate routine tasks, and support the development of new applications. The training program includes hands-on labs and simulations to demonstrate practical use cases for AI within Cisco and multi-vendor environments.

Read More »

Chip-to-Grid Gets Bought: Eaton, Vertiv, and Daikin Deals Imply a New Thermal Capital Cycle

This week delivered three telling acquisitions that mark a turning point for the global data center supply chain; and more specifically, for the high-density liquid cooling mega-play now unfolding across the power-thermal continuum. Eaton is acquiring Boyd Thermal for $9.5 billion from Goldman Sachs Asset Management. Vertiv is buying PurgeRite for about $1 billion from Milton Street Capital. And Daikin Applied has moved to acquire Chilldyne, one of the most proven negative-pressure direct-to-chip pioneers. On paper, they’re three distinct transactions. In reality, they’re chapters in the same story: the acceleration of strategic vertical integration around thermal infrastructure for AI-class compute. The Equity Layer: Private Capital Builds, Strategics Buy From an equity standpoint, these are classic handoff moments between private-equity construction and corporate consolidation. Goldman Sachs built Boyd Thermal into a global platform spanning cold plates, CDUs, and high-density liquid loop design, now sold to Eaton at an enterprise multiple north of 5× 2026E revenue. Milton Street Capital took PurgeRite from a specialist contractor in fluid flushing and commissioning into a nationwide services platform. And Daikin, long synonymous with chillers and air-side thermal, is crossing the liquid Rubicon by buying its way into the D2C ecosystem. Each deal crystallizes a simple fact: liquid cooling is no longer an adjunct; it’s core infrastructure. Private equity did its job scaling the parts. Strategic players are now paying up for the system. Eaton’s Bid: The Chip-to-Grid Thesis For Eaton, Boyd Thermal is the final missing piece in its “chip-to-grid” thesis. The company already owns the electrical side of the data center: UPS, busway, switchgear, and monitoring. Boyd plugs the thermal gap, allowing Eaton to market full rack-to-substation solutions for AI loads in the 50–100 kW+ range. It’s a statement acquisition that places Eaton squarely against Schneider Electric, Vertiv and ABB in the race to

Read More »

Space: The final frontier for data processing

There are, however, a couple of reasons why data centers in space are being considered. There are plenty of reports about how the increased amount of AI processing is affecting power consumption within data centers; the World Economic Forum has estimated that the power required to handle AI is increasing at a rate of between 26% and 36% annually. Therefore, it is not surprising that organizations are looking at other options. But an even more pressing reason for orbiting data centers is to handle the amount of data that is being produced by existing satellites, Judge said. “Essentially, satellites are gathering a lot more data than can be sent to earth, because downlinks are a bottleneck,” he noted. “With AI capacity in orbit, they could potentially analyze more of this data, extract more useful information, and send insights back to earth. My overall feeling is that any more data processing in space is going to be driven by space processing needs.” And China may already be ahead of the game. Last year, Guoxing Aerospace  launched 12 satellites, forming a space-based computing network dubbed the Three-Body Computing Constellation. When completed, it will contain 2,800 satellites, all handling the orchestration and processing of data, taking edge computing to a new dimension.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »