Stay Ahead, Stay ONMINE

The foundations of America’s prosperity are being dismantled

Ever since World War II, the US has been the global leader in science and technology—and benefited immensely from it. Research fuels American innovation and the economy in turn. Scientists around the world want to study in the US and collaborate with American scientists to produce more of that research. These international collaborations play a critical role in American soft power and diplomacy. The products Americans can buy, the drugs they have access to, the diseases they’re at risk of catching—are all directly related to the strength of American research and its connections to the world’s scientists. That scientific leadership is now being dismantled, according to more than 10 federal workers who spoke to MIT Technology Review, as the Trump administration—spearheaded by Elon Musk’s Department of Government Efficiency (DOGE)—slashes personnel, programs, and agencies. Meanwhile, the president himself has gone after relationships with US allies.    These workers come from several agencies, including the Departments of State, Defense, and Commerce, the US Agency for International Development, and the National Science Foundation. All of them occupy scientific and technical roles, many of which the average American has never heard of but which are nevertheless critical, coordinating research, distributing funding, supporting policymaking, or advising diplomacy. They warn that dismantling the behind-the-scenes scientific research programs that backstop American life could lead to long-lasting, perhaps irreparable damage to everything from the quality of health care to the public’s access to next-generation consumer technologies. The US took nearly a century to craft its rich scientific ecosystem; if the unraveling that has taken place over the past month continues, Americans will feel the effects for decades to come.  Most of the federal workers spoke on condition of anonymity because they were not authorized to talk or for fear of being targeted. Many are completely stunned and terrified by the scope and totality of the actions. While every administration brings its changes, keeping the US a science and technology leader has never been a partisan issue. No one predicted the wholesale assault on these foundations of American prosperity. “If you believe that innovation is important to economic development, then throwing a wrench in one of the most sophisticated and productive innovation machines in world history is not a good idea,” says Deborah Seligsohn, an assistant professor of political science at Villanova University who worked for two decades in the State Department on science issues. “They’re setting us up for economic decline.” The biggest funder of innovation The US currently has the most top-quality research institutes in the world. This includes world-class universities like MIT (which publishes MIT Technology Review) and the University of California, Berkeley; national labs like Oak Ridge and Los Alamos; and federal research facilities run by agencies like the National Oceanic and Atmospheric Administration and the Department of Defense. Much of this network was developed by the federal government after World War II to bolster the US position as a global superpower.  Before the Trump administration’s wide-ranging actions, which now threaten to slash federal research funding, the government remained by far the largest supporter of scientific progress. Outside of its own labs and facilities, it funded more than 50% of research and development across higher education, according to data from the National Science Foundation. In 2023, that came to nearly $60 billion out of the $109 billion that universities spent on basic science and engineering.  The return on these investments is difficult to measure. It can often take years or decades for this kind of basic science research to have tangible effects on the lives of Americans and people globally, and on the US’s place in the world. But history is littered with examples of the transformative effect that this funding produces over time. The internet and GPS were first developed through research backed by the Department of Defense, as was the quantum dot technology behind high-resolution QLED television screens. Well before they were useful or commercially relevant, the development of neural networks that underpin nearly all modern AI systems was substantially supported by the National Science Foundation. The decades-long drug discovery process that led to Ozempic was incubated by the Department of Veterans Affairs and the National Institutes of Health. Microchips. Self-driving cars. MRIs. The flu shot. The list goes on and on.  In her 2013 book The Entrepreneurial State, Mariana Mazzucato, a leading economist studying innovation at University College London, found that every major technological transformation in the US, from electric cars to Google to the iPhone, can trace its roots back to basic science research once funded by the federal government. If the past offers any lesson, that means every major transformation in the future could be shortchanged with the destruction of that support. The Trump administration’s distaste for regulation will arguably be a boon in the short term for some parts of the tech industry, including crypto and AI. But the federal workers said the president’s and Musk’s undermining of basic science research will hurt American innovation in the long run. “Rather than investing in the future, you’re burning through scientific capital,” an employee at the State Department said. “You can build off the things you already know, but you’re not learning anything new. Twenty years later, you fall behind because you stopped making new discoveries.” A global currency The government doesn’t just give money, either. It supports American science in numerous other ways, and the US reaps the returns. The Department of State helps attract the best students from around the world to American universities. Amid stagnating growth in the number of homegrown STEM PhD graduates, recruiting foreign students remains one of the strongest pathways for the US to expand its pool of technical talent, especially in strategic areas like batteries and semiconductors. Many of those students stay for years, if not the rest of their lives; even if they leave the country, they’ve already spent some of their most productive years in the US and will retain a wealth of professional connections with whom they’ll collaborate, thereby continuing to contribute to US science. The State Department also establishes agreements between the US and other countries and helps broker partnerships between American and international universities. That helps scientists collaborate across borders on everything from global issues like climate change to research that requires equipment on opposite sides of the world, such as the measurement of gravitational waves. The international development work of USAID in global health, poverty reduction, and conflict alleviation—now virtually shut down in its entirety—was designed to build up goodwill toward the US globally; it improved regional stability for decades. In addition to its inherent benefits, this allowed American scientists to safely access diverse geographies and populations, as well as plant and animal species not found in the US. Such international interchange played just as critical a role as government funding in many crucial inventions. Several federal agencies, including the Centers for Disease Control and Prevention, the Environmental Protection Agency, and the National Oceanic and Atmospheric Administration, also help collect and aggregate critical data on disease, health trends, air quality, weather, and more from disparate sources that feed into the work of scientists across the country. The National Institutes of Health, for example, has since 2015 been running the Precision Medicine Initiative, the only effort of its kind to collect extensive and granular health data from over 1 million Americans who volunteer their medical records, genetic history, and even Fitbit data to help researchers understand health disparities and develop personalized and more effective treatments for disorders from heart and lung disease to cancer. The data set, which is too expensive for any one university to assemble and maintain, has already been used in hundreds of papers that will lay the foundation for the next generation of life-saving pharmaceuticals. Beyond fueling innovation, a well-supported science and technology ecosystem bolsters US national security and global influence. When people want to study at American universities, attend international conferences hosted on American soil, or move to the US to work or to found their own companies, the US stays the center of global innovation activity. This ensures that the country continues to get access to the best people and ideas, and gives it an outsize role in setting global scientific practices and priorities. US research norms, including academic freedom and a robust peer review system, become global research norms that lift the overall quality of science. International agencies like the World Health Organization take significant cues from American guidance. US scientific leadership has long been one of the country’s purest tools of soft power and diplomacy as well. Countries keen to learn from the American innovation ecosystem and to have access to American researchers and universities have been more prone to partner with the US and align with its strategic priorities. Just one example: Science diplomacy has long played an important role in maintaining the US’s strong relationship with the Netherlands, which is home to ASML, the only company in the world that can produce the extreme ultraviolet lithography machines needed to produce the most advanced semiconductors. These are critical for both AI development and national security. International science cooperation has also served as a stabilizing force in otherwise difficult relationships. During the Cold War, the US and USSR continued to collaborate on the International Space Station; during the recent heightened economic competition between the US and China, the countries have remained each other’s top scientific partners. “Actively working together to solve problems that we both care about helps maintain the connections and the context but also helps build respect,” Seligsohn says. The federal government itself is a significant beneficiary of the country’s convening power for technical expertise. Among other things, experts both inside and outside the government support its sound policymaking in science and technology. During the US Senate AI Insight Forums, co-organized by Senator Chuck Schumer through the fall of 2023, for example, the Senate heard from more than 150 experts, many of whom were born abroad and studying at American universities, working at or advising American companies, or living permanently in the US as naturalized American citizens. Federal scientists and technical experts at government agencies also work on wide-ranging goals critical to the US, including building resilience in the face of an increasingly erratic climate; researching strategic technologies such as next-generation battery technology to reduce the country’s reliance on minerals not found in the US; and monitoring global infectious diseases to prevent the next pandemic. “Every issue that the US faces, there are people that are trying to do research on it and there are partnerships that have to happen,” the State Department employee said. A system in jeopardy Now the breadth and velocity of the Trump administration’s actions has led to an unprecedented assault on every pillar upholding American scientific leadership. For starters, the purging of tens of thousands—and perhaps soon hundreds of thousands—of federal workers is removing scientists and technologists from the government and paralyzing the ability of critical agencies to function. Across multiple agencies, science and technology fellowship programs, designed to bring in talented early-career staff with advanced STEM degrees, have shuttered. Many other federal scientists were among the thousands who were terminated as probationary employees, a status they held because of the way scientific roles are often contractually structured. Some agencies that were supporting or conducting their own research, including the National Institutes of Health and the National Science Foundation, are no longer functionally operational. USAID has effectively shuttered, eliminating a bastion of US expertise, influence, and credibility overnight. “Diplomacy is built on relationships. If we’ve closed all these clinics and gotten rid of technical experts in our knowledge base inside the government, why would any foreign government have respect for the US in our ability to hold our word and in our ability to actually be knowledgeable?” a terminated USAID worker said. “I really hope America can save itself.” Now the Trump administration has sought to reverse some terminations after discovering that many were key to national security, including nuclear safety employees responsible for designing, building, and maintaining the country’s nuclear weapons arsenal. But many federal workers I spoke to can no longer imagine staying in the public sector. Some are considering going into industry. Others are wondering whether it will be better to move abroad. “It’s just such a waste of American talent,” said Fiona Coleman, a terminated federal scientist, her voice cracking with emotion as she described the long years of schooling and training she and her colleagues went through to serve the government. Many fear the US has also singlehandedly kneecapped its own ability to attract talent from abroad. Over the last 10 years, even as American universities have continued to lead the world, many universities in other countries have rapidly leveled up. That includes those in Canada, where liberal immigration policies and lower tuition fees have driven a 200% increase in international student enrollment over the last decade, according to Anna Esaki-Smith, cofounder of a higher-education research consultancy called Education Rethink and author of Make College Your Superpower. Germany has also seen an influx, thanks to a growing number of English-taught programs and strong connections between universities and German industry. Chinese students, who once represented the largest share of foreign students in the US, are increasingly staying at home or opting to study in places like Hong Kong, Singapore, and the UK. During the first Trump administration, many international students were already more reluctant to come to the US because of the president’s hostile rhetoric. With the return and rapid escalation of that rhetoric, Esaki-Smith is hearing from some universities that international students are declining their admissions offers. Add to that the other recent developments—the potential dramatic cuts in federal research funding, the deletion of scores of rich public data sets on health and the environment, the clampdown on academic freedom for research that appears related to diversity, equity, and inclusion and the fear that these restrictions could ultimately encompass other politically charged topics like climate change or vaccines—and many more international science and engineering students could decide to head elsewhere. “I’ve been hearing this increasingly from several postdocs and early-career professors, fearing the cuts in NIH or NSF grants, that they’re starting to look for funding or job opportunities in other countries,” Coleman told me. “And then we’re going to be training up the US’s competitors.” The attacks could similarly weaken the productivity of those who stay at American universities. While many of the Trump administration’s actions are now being halted and scrutinized by US judges, the chaos has weakened a critical prerequisite for tackling the toughest research problems: a long-term stable environment. With reports that the NSF is combing through research grants for words like “women,” “diverse,” and “institutional” to determine whether they violate President Trump’s executive order on DEIA programs, a chilling effect is also setting in among federally funded academics uncertain whether they’ll get caught in the dragnet. To scientists abroad, the situation in the US government has marked American institutions and researchers as potentially unreliable partners, several federal workers told me. If international researchers think collaborations with the US can end at any moment when funds are abruptly pulled or certain topics or keywords are suddenly blacklisted, many of them could steer clear and look to other countries. “I’m really concerned about the instability we’re showing,” another employee at the State Department said. “What’s the point in even engaging? Because science is a long-term initiative and process that outlasts administrations and political cycles.” Meanwhile, international scientists have far more options these days for high-caliber colleagues to collaborate with outside America. In recent years, for example, China has made a remarkable ascent to become a global peer in scientific discoveries. By some metrics, it has even surpassed the US; it started accounting for more of the top 1% of most-cited papers globally, often called the Nobel Prize tier, back in 2019 and has continued to improve the quality of the rest of its research.  Where Chinese universities can also entice international collaborators with substantial resources, the US is more limited in its ability to offer tangible funding, the State employee said. Until now, the US has maintained its advantage in part through the prestige of its institutions and its more open cultural norms, including stronger academic freedom. But several federal scientists warn that this advantage is dissipating.  “America is made up of so many different people contributing to it. There’s such a powerful global community that makes this country what it is, especially in science and technology and academia and research. We’re going to lose that; there’s not a chance in the world that we’re not going to lose that through stuff like this,” says Brigid Cakouros, a federal scientist who was also terminated from USAID. “I have no doubt that the international science community will ultimately be okay. It’ll just be a shame for the US to isolate themselves from it.”

Ever since World War II, the US has been the global leader in science and technology—and benefited immensely from it. Research fuels American innovation and the economy in turn. Scientists around the world want to study in the US and collaborate with American scientists to produce more of that research. These international collaborations play a critical role in American soft power and diplomacy. The products Americans can buy, the drugs they have access to, the diseases they’re at risk of catching—are all directly related to the strength of American research and its connections to the world’s scientists.

That scientific leadership is now being dismantled, according to more than 10 federal workers who spoke to MIT Technology Review, as the Trump administration—spearheaded by Elon Musk’s Department of Government Efficiency (DOGE)—slashes personnel, programs, and agencies. Meanwhile, the president himself has gone after relationships with US allies.   

These workers come from several agencies, including the Departments of State, Defense, and Commerce, the US Agency for International Development, and the National Science Foundation. All of them occupy scientific and technical roles, many of which the average American has never heard of but which are nevertheless critical, coordinating research, distributing funding, supporting policymaking, or advising diplomacy.

They warn that dismantling the behind-the-scenes scientific research programs that backstop American life could lead to long-lasting, perhaps irreparable damage to everything from the quality of health care to the public’s access to next-generation consumer technologies. The US took nearly a century to craft its rich scientific ecosystem; if the unraveling that has taken place over the past month continues, Americans will feel the effects for decades to come. 

Most of the federal workers spoke on condition of anonymity because they were not authorized to talk or for fear of being targeted. Many are completely stunned and terrified by the scope and totality of the actions. While every administration brings its changes, keeping the US a science and technology leader has never been a partisan issue. No one predicted the wholesale assault on these foundations of American prosperity.

“If you believe that innovation is important to economic development, then throwing a wrench in one of the most sophisticated and productive innovation machines in world history is not a good idea,” says Deborah Seligsohn, an assistant professor of political science at Villanova University who worked for two decades in the State Department on science issues. “They’re setting us up for economic decline.”

The biggest funder of innovation

The US currently has the most top-quality research institutes in the world. This includes world-class universities like MIT (which publishes MIT Technology Review) and the University of California, Berkeley; national labs like Oak Ridge and Los Alamos; and federal research facilities run by agencies like the National Oceanic and Atmospheric Administration and the Department of Defense. Much of this network was developed by the federal government after World War II to bolster the US position as a global superpower. 

Before the Trump administration’s wide-ranging actions, which now threaten to slash federal research funding, the government remained by far the largest supporter of scientific progress. Outside of its own labs and facilities, it funded more than 50% of research and development across higher education, according to data from the National Science Foundation. In 2023, that came to nearly $60 billion out of the $109 billion that universities spent on basic science and engineering. 

The return on these investments is difficult to measure. It can often take years or decades for this kind of basic science research to have tangible effects on the lives of Americans and people globally, and on the US’s place in the world. But history is littered with examples of the transformative effect that this funding produces over time. The internet and GPS were first developed through research backed by the Department of Defense, as was the quantum dot technology behind high-resolution QLED television screens. Well before they were useful or commercially relevant, the development of neural networks that underpin nearly all modern AI systems was substantially supported by the National Science Foundation. The decades-long drug discovery process that led to Ozempic was incubated by the Department of Veterans Affairs and the National Institutes of Health. Microchips. Self-driving cars. MRIs. The flu shot. The list goes on and on. 

In her 2013 book The Entrepreneurial State, Mariana Mazzucato, a leading economist studying innovation at University College London, found that every major technological transformation in the US, from electric cars to Google to the iPhone, can trace its roots back to basic science research once funded by the federal government. If the past offers any lesson, that means every major transformation in the future could be shortchanged with the destruction of that support.

The Trump administration’s distaste for regulation will arguably be a boon in the short term for some parts of the tech industry, including crypto and AI. But the federal workers said the president’s and Musk’s undermining of basic science research will hurt American innovation in the long run. “Rather than investing in the future, you’re burning through scientific capital,” an employee at the State Department said. “You can build off the things you already know, but you’re not learning anything new. Twenty years later, you fall behind because you stopped making new discoveries.”

A global currency

The government doesn’t just give money, either. It supports American science in numerous other ways, and the US reaps the returns. The Department of State helps attract the best students from around the world to American universities. Amid stagnating growth in the number of homegrown STEM PhD graduates, recruiting foreign students remains one of the strongest pathways for the US to expand its pool of technical talent, especially in strategic areas like batteries and semiconductors. Many of those students stay for years, if not the rest of their lives; even if they leave the country, they’ve already spent some of their most productive years in the US and will retain a wealth of professional connections with whom they’ll collaborate, thereby continuing to contribute to US science.

The State Department also establishes agreements between the US and other countries and helps broker partnerships between American and international universities. That helps scientists collaborate across borders on everything from global issues like climate change to research that requires equipment on opposite sides of the world, such as the measurement of gravitational waves.

The international development work of USAID in global health, poverty reduction, and conflict alleviation—now virtually shut down in its entirety—was designed to build up goodwill toward the US globally; it improved regional stability for decades. In addition to its inherent benefits, this allowed American scientists to safely access diverse geographies and populations, as well as plant and animal species not found in the US. Such international interchange played just as critical a role as government funding in many crucial inventions.

Several federal agencies, including the Centers for Disease Control and Prevention, the Environmental Protection Agency, and the National Oceanic and Atmospheric Administration, also help collect and aggregate critical data on disease, health trends, air quality, weather, and more from disparate sources that feed into the work of scientists across the country.

The National Institutes of Health, for example, has since 2015 been running the Precision Medicine Initiative, the only effort of its kind to collect extensive and granular health data from over 1 million Americans who volunteer their medical records, genetic history, and even Fitbit data to help researchers understand health disparities and develop personalized and more effective treatments for disorders from heart and lung disease to cancer. The data set, which is too expensive for any one university to assemble and maintain, has already been used in hundreds of papers that will lay the foundation for the next generation of life-saving pharmaceuticals.

Beyond fueling innovation, a well-supported science and technology ecosystem bolsters US national security and global influence. When people want to study at American universities, attend international conferences hosted on American soil, or move to the US to work or to found their own companies, the US stays the center of global innovation activity. This ensures that the country continues to get access to the best people and ideas, and gives it an outsize role in setting global scientific practices and priorities. US research norms, including academic freedom and a robust peer review system, become global research norms that lift the overall quality of science. International agencies like the World Health Organization take significant cues from American guidance.

US scientific leadership has long been one of the country’s purest tools of soft power and diplomacy as well. Countries keen to learn from the American innovation ecosystem and to have access to American researchers and universities have been more prone to partner with the US and align with its strategic priorities.

Just one example: Science diplomacy has long played an important role in maintaining the US’s strong relationship with the Netherlands, which is home to ASML, the only company in the world that can produce the extreme ultraviolet lithography machines needed to produce the most advanced semiconductors. These are critical for both AI development and national security.

International science cooperation has also served as a stabilizing force in otherwise difficult relationships. During the Cold War, the US and USSR continued to collaborate on the International Space Station; during the recent heightened economic competition between the US and China, the countries have remained each other’s top scientific partners. “Actively working together to solve problems that we both care about helps maintain the connections and the context but also helps build respect,” Seligsohn says.

The federal government itself is a significant beneficiary of the country’s convening power for technical expertise. Among other things, experts both inside and outside the government support its sound policymaking in science and technology. During the US Senate AI Insight Forums, co-organized by Senator Chuck Schumer through the fall of 2023, for example, the Senate heard from more than 150 experts, many of whom were born abroad and studying at American universities, working at or advising American companies, or living permanently in the US as naturalized American citizens.

Federal scientists and technical experts at government agencies also work on wide-ranging goals critical to the US, including building resilience in the face of an increasingly erratic climate; researching strategic technologies such as next-generation battery technology to reduce the country’s reliance on minerals not found in the US; and monitoring global infectious diseases to prevent the next pandemic.

“Every issue that the US faces, there are people that are trying to do research on it and there are partnerships that have to happen,” the State Department employee said.

A system in jeopardy

Now the breadth and velocity of the Trump administration’s actions has led to an unprecedented assault on every pillar upholding American scientific leadership.

For starters, the purging of tens of thousands—and perhaps soon hundreds of thousands—of federal workers is removing scientists and technologists from the government and paralyzing the ability of critical agencies to function. Across multiple agencies, science and technology fellowship programs, designed to bring in talented early-career staff with advanced STEM degrees, have shuttered. Many other federal scientists were among the thousands who were terminated as probationary employees, a status they held because of the way scientific roles are often contractually structured.

Some agencies that were supporting or conducting their own research, including the National Institutes of Health and the National Science Foundation, are no longer functionally operational. USAID has effectively shuttered, eliminating a bastion of US expertise, influence, and credibility overnight.

“Diplomacy is built on relationships. If we’ve closed all these clinics and gotten rid of technical experts in our knowledge base inside the government, why would any foreign government have respect for the US in our ability to hold our word and in our ability to actually be knowledgeable?” a terminated USAID worker said. “I really hope America can save itself.”

Now the Trump administration has sought to reverse some terminations after discovering that many were key to national security, including nuclear safety employees responsible for designing, building, and maintaining the country’s nuclear weapons arsenal. But many federal workers I spoke to can no longer imagine staying in the public sector. Some are considering going into industry. Others are wondering whether it will be better to move abroad.

“It’s just such a waste of American talent,” said Fiona Coleman, a terminated federal scientist, her voice cracking with emotion as she described the long years of schooling and training she and her colleagues went through to serve the government.

Many fear the US has also singlehandedly kneecapped its own ability to attract talent from abroad. Over the last 10 years, even as American universities have continued to lead the world, many universities in other countries have rapidly leveled up. That includes those in Canada, where liberal immigration policies and lower tuition fees have driven a 200% increase in international student enrollment over the last decade, according to Anna Esaki-Smith, cofounder of a higher-education research consultancy called Education Rethink and author of Make College Your Superpower.

Germany has also seen an influx, thanks to a growing number of English-taught programs and strong connections between universities and German industry. Chinese students, who once represented the largest share of foreign students in the US, are increasingly staying at home or opting to study in places like Hong Kong, Singapore, and the UK.

During the first Trump administration, many international students were already more reluctant to come to the US because of the president’s hostile rhetoric. With the return and rapid escalation of that rhetoric, Esaki-Smith is hearing from some universities that international students are declining their admissions offers.

Add to that the other recent developments—the potential dramatic cuts in federal research funding, the deletion of scores of rich public data sets on health and the environment, the clampdown on academic freedom for research that appears related to diversity, equity, and inclusion and the fear that these restrictions could ultimately encompass other politically charged topics like climate change or vaccines—and many more international science and engineering students could decide to head elsewhere.

“I’ve been hearing this increasingly from several postdocs and early-career professors, fearing the cuts in NIH or NSF grants, that they’re starting to look for funding or job opportunities in other countries,” Coleman told me. “And then we’re going to be training up the US’s competitors.”

The attacks could similarly weaken the productivity of those who stay at American universities. While many of the Trump administration’s actions are now being halted and scrutinized by US judges, the chaos has weakened a critical prerequisite for tackling the toughest research problems: a long-term stable environment. With reports that the NSF is combing through research grants for words like “women,” “diverse,” and “institutional” to determine whether they violate President Trump’s executive order on DEIA programs, a chilling effect is also setting in among federally funded academics uncertain whether they’ll get caught in the dragnet.

To scientists abroad, the situation in the US government has marked American institutions and researchers as potentially unreliable partners, several federal workers told me. If international researchers think collaborations with the US can end at any moment when funds are abruptly pulled or certain topics or keywords are suddenly blacklisted, many of them could steer clear and look to other countries. “I’m really concerned about the instability we’re showing,” another employee at the State Department said. “What’s the point in even engaging? Because science is a long-term initiative and process that outlasts administrations and political cycles.”

Meanwhile, international scientists have far more options these days for high-caliber colleagues to collaborate with outside America. In recent years, for example, China has made a remarkable ascent to become a global peer in scientific discoveries. By some metrics, it has even surpassed the US; it started accounting for more of the top 1% of most-cited papers globally, often called the Nobel Prize tier, back in 2019 and has continued to improve the quality of the rest of its research. 

Where Chinese universities can also entice international collaborators with substantial resources, the US is more limited in its ability to offer tangible funding, the State employee said. Until now, the US has maintained its advantage in part through the prestige of its institutions and its more open cultural norms, including stronger academic freedom. But several federal scientists warn that this advantage is dissipating. 

“America is made up of so many different people contributing to it. There’s such a powerful global community that makes this country what it is, especially in science and technology and academia and research. We’re going to lose that; there’s not a chance in the world that we’re not going to lose that through stuff like this,” says Brigid Cakouros, a federal scientist who was also terminated from USAID. “I have no doubt that the international science community will ultimately be okay. It’ll just be a shame for the US to isolate themselves from it.”

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Chronosphere unveils logging package with cost control features

According to a study by Chronosphere, enterprise log data is growing at 250% year-over-year, and Chronosphere Logs helps engineers and observability teams to resolve incidents faster while controlling costs. The usage and volume analysis and proactive recommendations can help reduce data before it’s stored, the company says. “Organizations are drowning

Read More »

Cisco CIO on the future of IT: AI, simplicity, and employee power

AI can democratize access to information to deliver a “white-glove experience” once reserved for senior executives, Previn said. That might include, for example, real-time information retrieval and intelligent process execution for every employee. “Usually, in a large company, you’ve got senior executives, and you’ve got early career hires, and it’s

Read More »

AMI MegaRAC authentication bypass flaw is being exploitated, CISA warns

The spoofing attack works by manipulating HTTP request headers sent to the Redfish interface. Attackers can add specific values to headers like “X-Server-Addr” to make their external requests appear as if they’re coming from inside the server itself. Since the system automatically trusts internal requests as authenticated, this spoofing technique

Read More »

Oil Slips as Traders Weigh OPEC+ Hike

Oil edged down after its biggest weekly loss in two years as traders speculated on the volume of an expected OPEC+ supply hike and fears of Middle East tensions disrupting global oil flows dissipated. West Texas Intermediate crude shed 0.6% to settle near $65 a barrel, following a 13% slump last week. Key members of the Organization of the Petroleum Exporting Countries and its allies are ready to consider another 411,000 barrel-a-day increase for August when they meet Sunday, according to several delegates. It would be the fourth month in a row the group agreed on such a bumper hike, triple the initially planned volumes. “Crude futures continue in a consolidation pattern, seemingly finding equilibrium around the $65 a barrel area,” said Dennis Kissler, senior vice president for trading at BOK Financial Securities. “The real test will be if summer travel demand can take up the extra supplies OPEC will be adding. The wild card again focuses on Iran and their compliance.” Hedge funds piled into bearish bets after a fragile Iran-Israel truce removed a super-sized geopolitical risk premium from the market last week. Though Iran remains skeptical the US-brokered ceasefire will last, US President Donald Trump suggested he might back sanctions relief for the Islamic Republic “if they can be peaceful.” Meanwhile, trend-following commodity trading advisers, which tend to exacerbate price swings, liquidated long positions to sit at 45% net long in WTI on Monday, compared with 55% on June 27, according to data from Bridgeton Research Group. Oil is back near where it was before Israel initially attacked Iran on June 13, with futures on track for a 9% loss this quarter, as focus returns to supply and demand balances. Apart from the potential OPEC+ increase, which may worsen a glut forecast for later this year, investors will

Read More »

Israeli Gas Flows to Egypt Return to Normal as Iran Truce Holds

Israeli natural gas flows to Egypt returned to normal levels after a truce with Iran allowed the Jewish state to reopen facilities shuttered by the 12-day conflict. Daily exports have climbed to 1 billion cubic feet per day, according to two people with direct knowledge of the situation. That’s up from 260 million cubic feet when Israel’s Leviathan gas field, the country’s biggest, restarted on Wednesday, they said, declining to be identified because they’re not authorized to speak to the media.  The increased flows have let Egyptian authorities resume supplies to some factories that had been halted because of the shortages. Israel temporarily closed two of its three gas fields – Chevron-operated Leviathan and Energean’s Karish – shortly after launching attacks on Iran on June 13. The facilities that provided the bulk of exports to Egypt and Jordan resumed operations last week after a US-brokered ceasefire with the Islamic Republic took hold. The ramped-up supplies are a relief for Cairo, which has swung from a net exporter to importer of natural gas in recent years. As Israel and Iran traded blows, Egypt enacted contingency plans that included seeking alternative fuel purchases, limiting gas to some industries and switching power stations to fuel oil and diesel to maintain electricity output. What do you think? We’d love to hear from you, join the conversation on the Rigzone Energy Network. The Rigzone Energy Network is a new social experience created for you and all energy professionals to Speak Up about our industry, share knowledge, connect with peers and industry insiders and engage in a professional community that will empower your career in energy.

Read More »

California Regulator Wants to Pause Newsom Refinery Profit Cap

California’s energy market regulator is backing off a plan to place a profit cap on oil refiners in the state.  Siva Gunda, vice chair of the California Energy Commission, said during a Friday briefing that the cap would “serve as a deterrent” to refiners boosting investments in the state. Gunda said the commission wants to increase gasoline supply in California after two refineries announced plans to close in the next year, accounting for about one-fifth of the state’s crude-processing capacity. The recommendation marks a reversal from years of regulatory scrutiny by Governor Gavin Newsom and the California Energy Commission that contributed to plans by Phillips 66 and Valero Energy Corp. to shut their refineries. The closings prompted Newsom to adjust course in April and urge the energy regulator to collaborate with fuel makers to ensure affordable and reliable supply. Gunda wrote in a Friday letter to Newsom that the commission should pause implementation of a profit margin cap and focus on fuel resupply strategies instead. It comes more than two years after Newsom and state lawmakers gave the energy commission authority to determine a profit margin on refiners and impose financial penalties for violations. The state will be looking to increase fuel imports to make up for the loss of refining capacity, Gunda said. In the short term, California gas prices could rise 15 to 30 cents a gallon because of the loss of production, he said. A spokesperson for the energy commission said the estimated price increases would be mitigated by the plan presented on Friday. Californians already pay the highest gasoline prices in the country. Wade Crowfoot, secretary of the California Natural Resources Agency, said residents want the state to transition away from oil and gas yet they need to prevent cost spikes. “We get it,” he said.

Read More »

State utility regulators urge FERC to slash ROE transmission incentive

Utility regulators from about 35 states are urging the Federal Energy Regulatory Commission to sharply limit a 0.5% return on equity incentive the agency gives to utilities that join regional transmission organizations. “The time has come for the Commission to eliminate its policy of granting the RTO Participation Adder in perpetuity, if not to eliminate this incentive altogether,” the Organization of PJM States, the Organization of MISO States, the New England States Committee on Electricity and the Southwest Power Pool Regional State Committee said in a Friday letter to FERC. The state regulators and others contends the RTO incentive adds millions to ratepayer costs to encourage behavior — being an RTO member — that they would likely do anyway. In 2021, FERC proposed limiting its ROE adder to three years. FERC Chairman Mark Christie supports the proposal as well as limiting other incentives aimed at encouraging utilities to build transmission lines. However, it appears he has been unable to convince a majority of FERC commissioners to reduce those incentives. Christie’s term ends today, although he plans to stay at the agency until at least FERC’s next open meeting on July 24. Limiting the ROE incentive could reduce utility income. Public Service Enterprise Group, for example, estimates that removing the incentive would cut annual net income and cash inflows by about $40 million for its Public Service Electric & Gas subsidiary, according to a Feb. 25 filing at the U.S. Securities and Exchange Commission. The utility earned about $1.5 billion in 2024. Ending the incentive would reduce American Electric Power’s pretax income by $35 million to $50 million a year, the utility company said in its 2023 annual report with the SEC. In April, WIRES, a transmission-focused trade group, the Edison Electric Institute, which represents investor-owned utilities, and GridWise Alliance, a

Read More »

Affordability a ‘formidable challenge’ as load shifts to tech, industrial customers: ICF

Dive Brief: Keeping electricity affordable for consumers is a “formidable challenge” amid projections of declining generation capacity reserves and persistent uncertainty around the scale and pace of future load growth, ICF International Vice President of Energy Markets Maria Scheller said Thursday.  Meanwhile, broad policy uncertainty and an increasingly shaky regulatory environment give utilities and capital markets pause about expensive new infrastructure investments that could become stranded assets, Scheller said in a webinar on ICF’s “Powering the Future: Addressing Surging U.S. Electricity Demand” report. Policy conversations around import tariffs, federal energy tax credits and permitting reform are unfolding as the balance of electricity demand shifts from residential and business consumers to technology and industrial customers, which tend to require around-the-clock power, Scheller added. Dive Insight: The coming shift in U.S. electricity consumption represents less of a new paradigm than a return to the industrial-driven demand the country saw from the 1950s into the 1980s, after which deindustrialization and consumer-centric trends like the widespread adoption of air conditioning, electric resistance heating and personal computing shifted the balance toward the residential segment, Scheller said. The shift is important because unlike residential loads, which show considerable seasonal and intraday variation, industrial loads are flatter, less weather-dependent and more sensitive to voltage fluctuations, Scheller said. By 2035, ICF expects nearly 40% of total U.S. load will have a “flat, power-quality-sensitive profile,” and that overall load will grow faster than peak load, she said. In 2030, ICF projects more than 3% annual power consumption growth, compared with less than 2% annual peak load growth, according to a webinar slide. That’s not to say residential demand won’t also grow in the next few years as consumers electrify home heating and buy more electric vehicles — only that data centers and other industrial demand will “dwarf” it, Scheller

Read More »

Trump attacks on NRC independence pose health, safety risks

Edwin Lyman is director of nuclear power safety at the Union of Concerned Scientists. A White House executive order issued last month targeting the independence of the Nuclear Regulatory Commission, the federal agency that oversees the safety and security of U.S. commercial nuclear facilities and materials, as well as the possibly illegal firing earlier this month of Commissioner Christopher Hanson by President Donald Trump, are raising serious concerns about the agency’s effectiveness as a regulator going forward. While I’ve often been a critic of the NRC for taking actions favoring the nuclear industry at the expense of public health and safety, preserving the NRC in its current form is the best hope for heading off a U.S. nuclear plant disaster like the 2011 Fukushima Daiichi reactor meltdowns in Japan. My long-standing beef with the NRC has primarily been with its political leadership, not with the rank-and-file staff of highly knowledgeable inspectors, analysts and researchers committed to helping ensure that nuclear power remains safe and secure. These professionals are well aware how quickly things can go south at a nuclear power plant without rigorous oversight. They know from experience what obscure corners to look in and what questions to ask. And they can tell — and are not afraid to push back — when they are getting sold snake oil by fly-by-night startups looking to make easy money by capitalizing on the current nuclear power craze. Technical rigor and expert judgment form the bedrock of this work. But when staff are compelled to sweep legitimate safety concerns under the rug in the interest of political expediency, many will leave rather than compromise their scientific integrity. So there is little wonder that a wave of experienced personnel is headed out the door in the wake of the executive order on NRC “reform,”

Read More »

Datacenter industry calls for investment after EU issues water consumption warning

CISPE’s response to the European Commission’s report warns that the resulting regulatory uncertainty could hurt the region’s economy. “Imposing new, standalone water regulations could increase costs, create regulatory fragmentation, and deter investment. This risks shifting infrastructure outside the EU, undermining both sustainability and sovereignty goals,” CISPE said in its latest policy recommendation, Advancing water resilience through digital innovation and responsible stewardship. “Such regulatory uncertainty could also reduce Europe’s attractiveness for climate-neutral infrastructure investment at a time when other regions offer clear and stable frameworks for green data growth,” it added. CISPE’s recommendations are a mix of regulatory harmonization, increased investment, and technological improvement. Currently, water reuse regulation is directed towards agriculture. Updated regulation across the bloc would encourage more efficient use of water in industrial settings such as datacenters, the asosciation said. At the same time, countries struggling with limited public sector budgets are not investing enough in water infrastructure. This could only be addressed by tapping new investment by encouraging formal public-private partnerships (PPPs), it suggested: “Such a framework would enable the development of sustainable financing models that harness private sector innovation and capital, while ensuring robust public oversight and accountability.” Nevertheless, better water management would also require real-time data gathered through networks of IoT sensors coupled to AI analytics and prediction systems. To that end, cloud datacenters were less a drain on water resources than part of the answer: “A cloud-based approach would allow water utilities and industrial users to centralize data collection, automate operational processes, and leverage machine learning algorithms for improved decision-making,” argued CISPE.

Read More »

HPE-Juniper deal clears DOJ hurdle, but settlement requires divestitures

In HPE’s press release following the court’s decision, the vendor wrote that “After close, HPE will facilitate limited access to Juniper’s advanced Mist AIOps technology.” In addition, the DOJ stated that the settlement requires HPE to divest its Instant On business and mandates that the merged firm license critical Juniper software to independent competitors. Specifically, HPE must divest its global Instant On campus and branch WLAN business, including all assets, intellectual property, R&D personnel, and customer relationships, to a DOJ-approved buyer within 180 days. Instant On is aimed primarily at the SMB arena and offers a cloud-based package of wired and wireless networking gear that’s designed for so-called out-of-the-box installation and minimal IT involvement, according to HPE. HPE and Juniper focused on the positive in reacting to the settlement. “Our agreement with the DOJ paves the way to close HPE’s acquisition of Juniper Networks and preserves the intended benefits of this deal for our customers and shareholders, while creating greater competition in the global networking market,” HPE CEO Antonio Neri said in a statement. “For the first time, customers will now have a modern network architecture alternative that can best support the demands of AI workloads. The combination of HPE Aruba Networking and Juniper Networks will provide customers with a comprehensive portfolio of secure, AI-native networking solutions, and accelerate HPE’s ability to grow in the AI data center, service provider and cloud segments.” “This marks an exciting step forward in delivering on a critical customer need – a complete portfolio of modern, secure networking solutions to connect their organizations and provide essential foundations for hybrid cloud and AI,” said Juniper Networks CEO Rami Rahim. “We look forward to closing this transaction and turning our shared vision into reality for enterprise, service provider and cloud customers.”

Read More »

Data center costs surge up to 18% as enterprises face two-year capacity drought

“AI workloads, especially training and archival, can absorb 10-20ms latency variance if offset by 30-40% cost savings and assured uptime,” said Gogia. “Des Moines and Richmond offer better interconnection diversity today than some saturated Tier-1 hubs.” Contract flexibility is also crucial. Rather than traditional long-term leases, enterprises are negotiating shorter agreements with renewal options and exploring revenue-sharing arrangements tied to business performance. Maximizing what you have With expansion becoming more costly, enterprises are getting serious about efficiency through aggressive server consolidation, sophisticated virtualization and AI-driven optimization tools that squeeze more performance from existing space. The companies performing best in this constrained market are focusing on optimization rather than expansion. Some embrace hybrid strategies blending existing on-premises infrastructure with strategic cloud partnerships, reducing dependence on traditional colocation while maintaining control over critical workloads. The long wait When might relief arrive? CBRE’s analysis shows primary markets had a record 6,350 MW under construction at year-end 2024, more than double 2023 levels. However, power capacity constraints are forcing aggressive pre-leasing and extending construction timelines to 2027 and beyond. The implications for enterprises are stark: with construction timelines extending years due to power constraints, companies are essentially locked into current infrastructure for at least the next few years. Those adapting their strategies now will be better positioned when capacity eventually returns.

Read More »

Cisco backs quantum networking startup Qunnect

In partnership with Deutsche Telekom’s T-Labs, Qunnect has set up quantum networking testbeds in New York City and Berlin. “Qunnect understands that quantum networking has to work in the real world, not just in pristine lab conditions,” Vijoy Pandey, general manager and senior vice president of Outshift by Cisco, stated in a blog about the investment. “Their room-temperature approach aligns with our quantum data center vision.” Cisco recently announced it is developing a quantum entanglement chip that could ultimately become part of the gear that will populate future quantum data centers. The chip operates at room temperature, uses minimal power, and functions using existing telecom frequencies, according to Pandey.

Read More »

HPE announces GreenLake Intelligence, goes all-in with agentic AI

Like a teammate who never sleeps Agentic AI is coming to Aruba Central as well, with an autonomous supervisory module talking to multiple specialized models to, for example, determine the root cause of an issue and provide recommendations. David Hughes, SVP and chief product officer, HPE Aruba Networking, said, “It’s like having a teammate who can work while you’re asleep, work on problems, and when you arrive in the morning, have those proposed answers there, complete with chain of thought logic explaining how they got to their conclusions.” Several new services for FinOps and sustainability in GreenLake Cloud are also being integrated into GreenLake Intelligence, including a new workload and capacity optimizer, extended consumption analytics to help organizations control costs, and predictive sustainability forecasting and a managed service mode in the HPE Sustainability Insight Center. In addition, updates to the OpsRamp operations copilot, launched in 2024, will enable agentic automation including conversational product help, an agentic command center that enables AI/ML-based alerts, incident management, and root cause analysis across the infrastructure when it is released in the fourth quarter of 2025. It is now a validated observability solution for the Nvidia Enterprise AI Factory. OpsRamp will also be part of the new HPE CloudOps software suite, available in the fourth quarter, which will include HPE Morpheus Enterprise and HPE Zerto. HPE said the new suite will provide automation, orchestration, governance, data mobility, data protection, and cyber resilience for multivendor, multi cloud, multi-workload infrastructures. Matt Kimball, principal analyst for datacenter, compute, and storage at Moor Insights & strategy, sees HPE’s latest announcements aligning nicely with enterprise IT modernization efforts, using AI to optimize performance. “GreenLake Intelligence is really where all of this comes together. I am a huge fan of Morpheus in delivering an agnostic orchestration plane, regardless of operating stack

Read More »

MEF goes beyond metro Ethernet, rebrands as Mplify with expanded scope on NaaS and AI

While MEF is only now rebranding, Vachon said that the scope of the organization had already changed by 2005. Instead of just looking at metro Ethernet, the organization at the time had expanded into carrier Ethernet requirements.  The organization has also had a growing focus on solving the challenge of cross-provider automation, which is where the LSO framework fits in. LSO provides the foundation for an automation framework that allows providers to more efficiently deliver complex services across partner networks, essentially creating a standardized language for service integration.  NaaS leadership and industry blueprint Building on the LSO automation framework, the organization has been working on efforts to help providers with network-as-a-service (NaaS) related guidance and specifications. The organization’s evolution toward NaaS reflects member-driven demands for modern service delivery models. Vachon noted that MEF member organizations were asking for help with NaaS, looking for direction on establishing common definitions and some standard work. The organization responded by developing comprehensive industry guidance. “In 2023 we launched the first blueprint, which is like an industry North Star document. It includes what we think about NaaS and the work we’re doing around it,” Vachon said. The NaaS blueprint encompasses the complete service delivery ecosystem, with APIs including last mile, cloud, data center and security services. (Read more about its vision for NaaS, including easy provisioning and integrated security across a federated network of providers)

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »