Stay Ahead, Stay ONMINE

The second wave of AI coding is here

Ask people building generative AI what generative AI is good for right now—what they’re really fired up about—and many will tell you: coding.  “That’s something that’s been very exciting for developers,” Jared Kaplan, chief scientist at Anthropic, told MIT Technology Review this month: “It’s really understanding what’s wrong with code, debugging it.” Copilot, a tool built on top of OpenAI’s large language models and launched by Microsoft-backed GitHub in 2022, is now used by millions of developers around the world. Millions more turn to general-purpose chatbots like Anthropic’s Claude, OpenAI’s ChatGPT, and Google DeepMind’s Gemini for everyday help. “Today, more than a quarter of all new code at Google is generated by AI, then reviewed and accepted by engineers,” Alphabet CEO Sundar Pichai claimed on an earnings call in October: “This helps our engineers do more and move faster.” Expect other tech companies to catch up, if they haven’t already. It’s not just the big beasts rolling out AI coding tools. A bunch of new startups have entered this buzzy market too. Newcomers such as Zencoder, Merly, Cosine, Tessl (valued at $750 million within months of being set up), and Poolside (valued at $3 billion before it even released a product) are all jostling for their slice of the pie. “It actually looks like developers are willing to pay for copilots,” says Nathan Benaich, an analyst at investment firm Air Street Capital: “And so code is one of the easiest ways to monetize AI.” Such companies promise to take generative coding assistants to the next level. Instead of providing developers with a kind of supercharged autocomplete, like most existing tools, this next generation can prototype, test, and debug code for you. The upshot is that developers could essentially turn into managers, who may spend more time reviewing and correcting code written by a model than writing it from scratch themselves.  But there’s more. Many of the people building generative coding assistants think that they could be a fast track to artificial general intelligence (AGI), the hypothetical superhuman technology that a number of top firms claim to have in their sights. “The first time we will see a massively economically valuable activity to have reached human-level capabilities will be in software development,” says Eiso Kant, CEO and cofounder of Poolside. (OpenAI has already boasted that its latest o3 model beat the company’s own chief scientist in a competitive coding challenge.) Welcome to the second wave of AI coding.  Correct code  Software engineers talk about two types of correctness. There’s the sense in which a program’s syntax (its grammar) is correct—meaning all the words, numbers, and mathematical operators are in the right place. This matters a lot more than grammatical correctness in natural language. Get one tiny thing wrong in thousands of lines of code and none of it will run. The first generation of coding assistants are now pretty good at producing code that’s correct in this sense. Trained on billions of pieces of code, they have assimilated the surface-level structures of many types of programs.   But there’s also the sense in which a program’s function is correct: Sure, it runs, but does it actually do what you wanted it to? It’s that second level of correctness that the new wave of generative coding assistants are aiming for—and this is what will really change the way software is made. “Large language models can write code that compiles, but they may not always write the program that you wanted,” says Alistair Pullen, a cofounder of Cosine. “To do that, you need to re-create the thought processes that a human coder would have gone through to get that end result.” The problem is that the data most coding assistants have been trained on—the billions of pieces of code taken from online repositories—doesn’t capture those thought processes. It represents a finished product, not what went into making it. “There’s a lot of code out there,” says Kant. “But that data doesn’t represent software development.” What Pullen, Kant, and others are finding is that to build a model that does a lot more than autocomplete—one that can come up with useful programs, test them, and fix bugs—you need to show it a lot more than just code. You need to show it how that code was put together.   In short, companies like Cosine and Poolside are building models that don’t just mimic what good code looks like—whether it works well or not—but mimic the process that produces such code in the first place. Get it right and the models will come up with far better code and far better bug fixes.  Breadcrumbs But you first need a data set that captures that process—the steps that a human developer might take when writing code. Think of these steps as a breadcrumb trail that a machine could follow to produce a similar piece of code itself. Part of that is working out what materials to draw from: Which sections of the existing codebase are needed for a given programming task? “Context is critical,” says Zencoder founder Andrew Filev. “The first generation of tools did a very poor job on the context, they would basically just look at your open tabs. But your repo [code repository] might have 5000 files and they’d miss most of it.” Zencoder has hired a bunch of search engine veterans to help it build a tool that can analyze large codebases and figure out what is and isn’t relevant. This detailed context reduces hallucinations and improves the quality of code that large language models can produce, says Filev: “We call it repo grokking.” Cosine also thinks context is key. But it draws on that context to create a new kind of data set. The company has asked dozens of coders to record what they were doing as they worked through hundreds of different programming tasks. “We asked them to write down everything,” says Pullen: “Why did you open that file? Why did you scroll halfway through? Why did you close it?” They also asked coders to annotate finished pieces of code, marking up sections that would have required knowledge of other pieces of code or specific documentation to write. Cosine then takes all that information and generates a large synthetic data set that maps the typical steps coders take, and the sources of information they draw on, to finished pieces of code. They use this data set to train a model to figure out what breadcrumb trail it might need to follow to produce a particular program, and then how to follow it.   Poolside, based in San Francisco, is also creating a synthetic data set that captures the process of coding, but it leans more on a technique called RLCE—reinforcement learning from code execution. (Cosine uses this too, but to a lesser degree.) RLCE is analogous to the technique used to make chatbots like ChatGPT slick conversationalists, known as RLHF—reinforcement learning from human feedback. With RLHF, a model is trained to produce text that’s more like the kind human testers say they favor. With RLCE, a model is trained to produce code that’s more like the kind that does what it is supposed to do when it is run (or executed).   Gaming the system Cosine and Poolside both say they are inspired by the approach DeepMind took with its game-playing model AlphaZero. AlphaZero was given the steps it could take—the moves in a game—and then left to play against itself over and over again, figuring out via trial and error what sequence of moves were winning moves and which were not.   “They let it explore moves at every possible turn, simulate as many games as you can throw compute at—that led all the way to beating Lee Sedol,” says Pengming Wang, a founding scientist at Poolside, referring to the Korean Go grandmaster that AlphaZero beat in 2016. Before Poolside, Wang worked at Google DeepMind on applications of AlphaZero beyond board games, including FunSearch, a version trained to solve advanced math problems. When that AlphaZero approach is applied to coding, the steps involved in producing a piece of code—the breadcrumbs—become the available moves in a game, and a correct program becomes winning that game. Left to play by itself, a model can improve far faster than a human could. “A human coder tries and fails one failure at a time,” says Kant. “Models can try things 100 times at once.” A key difference between Cosine and Poolside is that Cosine is using a custom version of GPT-4o provided by OpenAI, which makes it possible to train on a larger data set than the base model can cope with, but Poolside is building its own large language model from scratch. Poolside’s Kant thinks that training a model on code from the start will give better results than adapting an existing model that has sucked up not only billions of pieces of code but most of the internet. “I’m perfectly fine with our model forgetting about butterfly anatomy,” he says.   Cosine claims that its generative coding assistant, called Genie, tops the leaderboard on SWE-Bench, a standard set of tests for coding models. Poolside is still building its model but claims that what it has so far already matches the performance of GitHub’s Copilot. “I personally have a very strong belief that large language models will get us all the way to being as capable as a software developer,” says Kant. Not everyone takes that view, however. Illogical LLMs To Justin Gottschlich, the CEO and founder of Merly, large language models are the wrong tool for the job—period. He invokes his dog: “No amount of training for my dog will ever get him to be able to code, it just won’t happen,” he says. “He can do all kinds of other things, but he’s just incapable of that deep level of cognition.”   Having worked on code generation for more than a decade, Gottschlich has a similar sticking point with large language models. Programming requires the ability to work through logical puzzles with unwavering precision. No matter how well large language models may learn to mimic what human programmers do, at their core they are still essentially statistical slot machines, he says: “I can’t train an illogical system to become logical.” Instead of training a large language model to generate code by feeding it lots of examples, Merly does not show its system human-written code at all. That’s because to really build a model that can generate code, Gottschlich argues, you need to work at the level of the underlying logic that code represents, not the code itself. Merly’s system is therefore trained on an intermediate representation—something like the machine-readable notation that most programming languages get translated into before they are run. Gottschlich won’t say exactly what this looks like or how the process works. But he throws out an analogy: There’s this idea in mathematics that the only numbers that have to exist are prime numbers, because you can calculate all other numbers using just the primes. “Take that concept and apply it to code,” he says. Not only does this approach get straight to the logic of programming; it’s also fast, because millions of lines of code are reduced to a few thousand lines of intermediate language before the system analyzes them. Shifting mindsets What you think of these rival approaches may depend on what you want generative coding assistants to be.   In November, Cosine banned its engineers from using tools other than its own products. It is now seeing the impact of Genie on its own engineers, who often find themselves watching the tool as it comes up with code for them. “You now give the model the outcome you would like, and it goes ahead and worries about the implementation for you,” says Yang Li, another Cosine cofounder. Pullen admits that it can be baffling, requiring a switch of mindset. “We have engineers doing multiple tasks at once, flitting between windows,” he says. “While Genie is running code in one, they might be prompting it to do something else in another.” These tools also make it possible to protype multiple versions of a system at once. Say you’re developing software that needs a payment system built in. You can get a coding assistant to simultaneously try out several different options—Stripe, Mango, Checkout—instead of having to code them by hand one at a time. Genie can be left to fix bugs around the clock. Most software teams use bug-reporting tools that let people upload descriptions of errors they have encountered. Genie can read these descriptions and come up with fixes. Then a human just needs to review them before updating the code base. No single human understands the trillions of lines of code in today’s biggest software systems, says Li, “and as more and more software gets written by other software, the amount of code will only get bigger.” This will make coding assistants that maintain that code for us essential. “The bottleneck will become how fast humans can review the machine-generated code,” says Li. How do Cosine’s engineers feel about all this? According to Pullen, at least, just fine. “If I give you a hard problem, you’re still going to think about how you want to describe that problem to the model,” he says. “Instead of writing the code, you have to write it in natural language. But there’s still a lot of thinking that goes into that, so you’re not really taking the joy of engineering away. The itch is still scratched.” Some may adapt faster than others. Cosine likes to invite potential hires to spend a few days coding with its team. A couple of months ago it asked one such candidate to build a widget that would let employees share cool bits of software they were working on to social media.  The task wasn’t straightforward, requiring working knowledge of multiple sections of Cosine’s millions of lines of code. But the candidate got it done in a matter of hours. “This person who had never seen our code base turned up on Monday and by Tuesday afternoon he’d shipped something,” says Li. “We thought it would take him all week.” (They hired him.) But there’s another angle too. Many companies will use this technology to cut down on the number of programmers they hire. Li thinks we will soon see tiers of software engineers. At one end there will be elite developers with million-dollar salaries who can diagnose problems when the AI goes wrong. At the other end, smaller teams of 10 to 20 people will do a job that once required hundreds of coders. “It will be like how ATMs transformed banking,” says Li. “Anything you want to do will be determined by compute and not head count,” he says. “I think it’s generally accepted that the era of adding another few thousand engineers to your organization is over.” Warp drives Indeed, for Gottschlich, machines that can code better than humans are going to be essential. For him, that’s the only way we will build the vast, complex software systems that he thinks we will eventually need. Like many in Silicon Valley, he anticipates a future in which humans move to other planets. That’s only going to be possible if we get AI to build the software required, he says: “Merly’s real goal is to get us to Mars.” Gottschlich prefers to talk about “machine programming” rather than “coding assistants,” because he thinks that term frames the problem the wrong way. “I don’t think that these systems should be assisting humans—I think humans should be assisting them,” he says. “They can move at the speed of AI. Why restrict their potential?” “There’s this cartoon called The Flintstones where they have these cars, but they only move when the drivers use their feet,” says Gottschlich. “This is sort of how I feel most people are doing AI for software systems.” “But what Merly’s building is, essentially, spaceships,” he adds. He’s not joking. “And I don’t think spaceships should be powered by humans on a bicycle. Spaceships should be powered by a warp engine.” If that sounds wild—it is. But there’s a serious point to be made about what the people building this technology think the end goal really is. Gottschlich is not an outlier with his galaxy-brained take. Despite their focus on products that developers will want to use today, most of these companies have their sights on a far bigger payoff. Visit Cosine’s website and the company introduces itself as a “Human Reasoning Lab.” It sees coding as just the first step toward a more general-purpose model that can mimic human problem-solving in a number of domains. Poolside has similar goals: The company states upfront that it is building AGI. “Code is a way of formalizing reasoning,” says Kant. Wang invokes agents. Imagine a system that can spin up its own software to do any task on the fly, he says. “If you get to a point where your agent can really solve any computational task that you want through the means of software—that is a display of AGI, essentially.” Down here on Earth, such systems may remain a pipe dream. And yet software engineering is changing faster than many at the cutting edge expected.  “We’re not at a point where everything’s just done by machines, but we’re definitely stepping away from the usual role of a software engineer,” says Cosine’s Pullen. “We’re seeing the sparks of that new workflow—what it means to be a software engineer going into the future.”

Ask people building generative AI what generative AI is good for right now—what they’re really fired up about—and many will tell you: coding. 

“That’s something that’s been very exciting for developers,” Jared Kaplan, chief scientist at Anthropic, told MIT Technology Review this month: “It’s really understanding what’s wrong with code, debugging it.”

Copilot, a tool built on top of OpenAI’s large language models and launched by Microsoft-backed GitHub in 2022, is now used by millions of developers around the world. Millions more turn to general-purpose chatbots like Anthropic’s Claude, OpenAI’s ChatGPT, and Google DeepMind’s Gemini for everyday help.

“Today, more than a quarter of all new code at Google is generated by AI, then reviewed and accepted by engineers,” Alphabet CEO Sundar Pichai claimed on an earnings call in October: “This helps our engineers do more and move faster.” Expect other tech companies to catch up, if they haven’t already.

It’s not just the big beasts rolling out AI coding tools. A bunch of new startups have entered this buzzy market too. Newcomers such as Zencoder, Merly, Cosine, Tessl (valued at $750 million within months of being set up), and Poolside (valued at $3 billion before it even released a product) are all jostling for their slice of the pie. “It actually looks like developers are willing to pay for copilots,” says Nathan Benaich, an analyst at investment firm Air Street Capital: “And so code is one of the easiest ways to monetize AI.”

Such companies promise to take generative coding assistants to the next level. Instead of providing developers with a kind of supercharged autocomplete, like most existing tools, this next generation can prototype, test, and debug code for you. The upshot is that developers could essentially turn into managers, who may spend more time reviewing and correcting code written by a model than writing it from scratch themselves. 

But there’s more. Many of the people building generative coding assistants think that they could be a fast track to artificial general intelligence (AGI), the hypothetical superhuman technology that a number of top firms claim to have in their sights.

“The first time we will see a massively economically valuable activity to have reached human-level capabilities will be in software development,” says Eiso Kant, CEO and cofounder of Poolside. (OpenAI has already boasted that its latest o3 model beat the company’s own chief scientist in a competitive coding challenge.)

Welcome to the second wave of AI coding. 

Correct code 

Software engineers talk about two types of correctness. There’s the sense in which a program’s syntax (its grammar) is correct—meaning all the words, numbers, and mathematical operators are in the right place. This matters a lot more than grammatical correctness in natural language. Get one tiny thing wrong in thousands of lines of code and none of it will run.

The first generation of coding assistants are now pretty good at producing code that’s correct in this sense. Trained on billions of pieces of code, they have assimilated the surface-level structures of many types of programs.  

But there’s also the sense in which a program’s function is correct: Sure, it runs, but does it actually do what you wanted it to? It’s that second level of correctness that the new wave of generative coding assistants are aiming for—and this is what will really change the way software is made.

“Large language models can write code that compiles, but they may not always write the program that you wanted,” says Alistair Pullen, a cofounder of Cosine. “To do that, you need to re-create the thought processes that a human coder would have gone through to get that end result.”

The problem is that the data most coding assistants have been trained on—the billions of pieces of code taken from online repositories—doesn’t capture those thought processes. It represents a finished product, not what went into making it. “There’s a lot of code out there,” says Kant. “But that data doesn’t represent software development.”

What Pullen, Kant, and others are finding is that to build a model that does a lot more than autocomplete—one that can come up with useful programs, test them, and fix bugs—you need to show it a lot more than just code. You need to show it how that code was put together.  

In short, companies like Cosine and Poolside are building models that don’t just mimic what good code looks like—whether it works well or not—but mimic the process that produces such code in the first place. Get it right and the models will come up with far better code and far better bug fixes. 

Breadcrumbs

But you first need a data set that captures that process—the steps that a human developer might take when writing code. Think of these steps as a breadcrumb trail that a machine could follow to produce a similar piece of code itself.

Part of that is working out what materials to draw from: Which sections of the existing codebase are needed for a given programming task? “Context is critical,” says Zencoder founder Andrew Filev. “The first generation of tools did a very poor job on the context, they would basically just look at your open tabs. But your repo [code repository] might have 5000 files and they’d miss most of it.”

Zencoder has hired a bunch of search engine veterans to help it build a tool that can analyze large codebases and figure out what is and isn’t relevant. This detailed context reduces hallucinations and improves the quality of code that large language models can produce, says Filev: “We call it repo grokking.”

Cosine also thinks context is key. But it draws on that context to create a new kind of data set. The company has asked dozens of coders to record what they were doing as they worked through hundreds of different programming tasks. “We asked them to write down everything,” says Pullen: “Why did you open that file? Why did you scroll halfway through? Why did you close it?” They also asked coders to annotate finished pieces of code, marking up sections that would have required knowledge of other pieces of code or specific documentation to write.

Cosine then takes all that information and generates a large synthetic data set that maps the typical steps coders take, and the sources of information they draw on, to finished pieces of code. They use this data set to train a model to figure out what breadcrumb trail it might need to follow to produce a particular program, and then how to follow it.  

Poolside, based in San Francisco, is also creating a synthetic data set that captures the process of coding, but it leans more on a technique called RLCE—reinforcement learning from code execution. (Cosine uses this too, but to a lesser degree.)

RLCE is analogous to the technique used to make chatbots like ChatGPT slick conversationalists, known as RLHF—reinforcement learning from human feedback. With RLHF, a model is trained to produce text that’s more like the kind human testers say they favor. With RLCE, a model is trained to produce code that’s more like the kind that does what it is supposed to do when it is run (or executed).  

Gaming the system

Cosine and Poolside both say they are inspired by the approach DeepMind took with its game-playing model AlphaZero. AlphaZero was given the steps it could take—the moves in a game—and then left to play against itself over and over again, figuring out via trial and error what sequence of moves were winning moves and which were not.  

“They let it explore moves at every possible turn, simulate as many games as you can throw compute at—that led all the way to beating Lee Sedol,” says Pengming Wang, a founding scientist at Poolside, referring to the Korean Go grandmaster that AlphaZero beat in 2016. Before Poolside, Wang worked at Google DeepMind on applications of AlphaZero beyond board games, including FunSearch, a version trained to solve advanced math problems.

When that AlphaZero approach is applied to coding, the steps involved in producing a piece of code—the breadcrumbs—become the available moves in a game, and a correct program becomes winning that game. Left to play by itself, a model can improve far faster than a human could. “A human coder tries and fails one failure at a time,” says Kant. “Models can try things 100 times at once.”

A key difference between Cosine and Poolside is that Cosine is using a custom version of GPT-4o provided by OpenAI, which makes it possible to train on a larger data set than the base model can cope with, but Poolside is building its own large language model from scratch.

Poolside’s Kant thinks that training a model on code from the start will give better results than adapting an existing model that has sucked up not only billions of pieces of code but most of the internet. “I’m perfectly fine with our model forgetting about butterfly anatomy,” he says.  

Cosine claims that its generative coding assistant, called Genie, tops the leaderboard on SWE-Bench, a standard set of tests for coding models. Poolside is still building its model but claims that what it has so far already matches the performance of GitHub’s Copilot.

“I personally have a very strong belief that large language models will get us all the way to being as capable as a software developer,” says Kant.

Not everyone takes that view, however.

Illogical LLMs

To Justin Gottschlich, the CEO and founder of Merly, large language models are the wrong tool for the job—period. He invokes his dog: “No amount of training for my dog will ever get him to be able to code, it just won’t happen,” he says. “He can do all kinds of other things, but he’s just incapable of that deep level of cognition.”  

Having worked on code generation for more than a decade, Gottschlich has a similar sticking point with large language models. Programming requires the ability to work through logical puzzles with unwavering precision. No matter how well large language models may learn to mimic what human programmers do, at their core they are still essentially statistical slot machines, he says: “I can’t train an illogical system to become logical.”

Instead of training a large language model to generate code by feeding it lots of examples, Merly does not show its system human-written code at all. That’s because to really build a model that can generate code, Gottschlich argues, you need to work at the level of the underlying logic that code represents, not the code itself. Merly’s system is therefore trained on an intermediate representation—something like the machine-readable notation that most programming languages get translated into before they are run.

Gottschlich won’t say exactly what this looks like or how the process works. But he throws out an analogy: There’s this idea in mathematics that the only numbers that have to exist are prime numbers, because you can calculate all other numbers using just the primes. “Take that concept and apply it to code,” he says.

Not only does this approach get straight to the logic of programming; it’s also fast, because millions of lines of code are reduced to a few thousand lines of intermediate language before the system analyzes them.

Shifting mindsets

What you think of these rival approaches may depend on what you want generative coding assistants to be.  

In November, Cosine banned its engineers from using tools other than its own products. It is now seeing the impact of Genie on its own engineers, who often find themselves watching the tool as it comes up with code for them. “You now give the model the outcome you would like, and it goes ahead and worries about the implementation for you,” says Yang Li, another Cosine cofounder.

Pullen admits that it can be baffling, requiring a switch of mindset. “We have engineers doing multiple tasks at once, flitting between windows,” he says. “While Genie is running code in one, they might be prompting it to do something else in another.”

These tools also make it possible to protype multiple versions of a system at once. Say you’re developing software that needs a payment system built in. You can get a coding assistant to simultaneously try out several different options—Stripe, Mango, Checkout—instead of having to code them by hand one at a time.

Genie can be left to fix bugs around the clock. Most software teams use bug-reporting tools that let people upload descriptions of errors they have encountered. Genie can read these descriptions and come up with fixes. Then a human just needs to review them before updating the code base.

No single human understands the trillions of lines of code in today’s biggest software systems, says Li, “and as more and more software gets written by other software, the amount of code will only get bigger.”

This will make coding assistants that maintain that code for us essential. “The bottleneck will become how fast humans can review the machine-generated code,” says Li.

How do Cosine’s engineers feel about all this? According to Pullen, at least, just fine. “If I give you a hard problem, you’re still going to think about how you want to describe that problem to the model,” he says. “Instead of writing the code, you have to write it in natural language. But there’s still a lot of thinking that goes into that, so you’re not really taking the joy of engineering away. The itch is still scratched.”

Some may adapt faster than others. Cosine likes to invite potential hires to spend a few days coding with its team. A couple of months ago it asked one such candidate to build a widget that would let employees share cool bits of software they were working on to social media. 

The task wasn’t straightforward, requiring working knowledge of multiple sections of Cosine’s millions of lines of code. But the candidate got it done in a matter of hours. “This person who had never seen our code base turned up on Monday and by Tuesday afternoon he’d shipped something,” says Li. “We thought it would take him all week.” (They hired him.)

But there’s another angle too. Many companies will use this technology to cut down on the number of programmers they hire. Li thinks we will soon see tiers of software engineers. At one end there will be elite developers with million-dollar salaries who can diagnose problems when the AI goes wrong. At the other end, smaller teams of 10 to 20 people will do a job that once required hundreds of coders. “It will be like how ATMs transformed banking,” says Li.

“Anything you want to do will be determined by compute and not head count,” he says. “I think it’s generally accepted that the era of adding another few thousand engineers to your organization is over.”

Warp drives

Indeed, for Gottschlich, machines that can code better than humans are going to be essential. For him, that’s the only way we will build the vast, complex software systems that he thinks we will eventually need. Like many in Silicon Valley, he anticipates a future in which humans move to other planets. That’s only going to be possible if we get AI to build the software required, he says: “Merly’s real goal is to get us to Mars.”

Gottschlich prefers to talk about “machine programming” rather than “coding assistants,” because he thinks that term frames the problem the wrong way. “I don’t think that these systems should be assisting humans—I think humans should be assisting them,” he says. “They can move at the speed of AI. Why restrict their potential?”

“There’s this cartoon called The Flintstones where they have these cars, but they only move when the drivers use their feet,” says Gottschlich. “This is sort of how I feel most people are doing AI for software systems.”

“But what Merly’s building is, essentially, spaceships,” he adds. He’s not joking. “And I don’t think spaceships should be powered by humans on a bicycle. Spaceships should be powered by a warp engine.”

If that sounds wild—it is. But there’s a serious point to be made about what the people building this technology think the end goal really is.

Gottschlich is not an outlier with his galaxy-brained take. Despite their focus on products that developers will want to use today, most of these companies have their sights on a far bigger payoff. Visit Cosine’s website and the company introduces itself as a “Human Reasoning Lab.” It sees coding as just the first step toward a more general-purpose model that can mimic human problem-solving in a number of domains.

Poolside has similar goals: The company states upfront that it is building AGI. “Code is a way of formalizing reasoning,” says Kant.

Wang invokes agents. Imagine a system that can spin up its own software to do any task on the fly, he says. “If you get to a point where your agent can really solve any computational task that you want through the means of software—that is a display of AGI, essentially.”

Down here on Earth, such systems may remain a pipe dream. And yet software engineering is changing faster than many at the cutting edge expected. 

“We’re not at a point where everything’s just done by machines, but we’re definitely stepping away from the usual role of a software engineer,” says Cosine’s Pullen. “We’re seeing the sparks of that new workflow—what it means to be a software engineer going into the future.”

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

EPA to end environmental justice programs, monitoring tools

Dive Brief: The Trump administration announced Wednesday it will shut down all environmental justice offices and officially end other EJ-related initiatives, a move that will impact how waste and recycling industries measure and track their environmental impact on neighboring communities. The closures include the EPA’s Office of Environmental Justice and

Read More »

Intel under Tan: What enterprise IT buyers need to know

Intel’s discrete GPU ambitions — especially in enterprise AI — have often appeared reactive rather than part of a clear strategic vision. The company entered the market late, facing Nvidia’s dominant CUDA ecosystem and AMD’s aggressive push into AI GPUs. “Tan’s background suggests he is unlikely to double down on

Read More »

SUSE expands AI tools to control workloads, LLM usage

“And every few weeks we’ll continue to add to the library,” Puri says. SUSE also announced a partnership with Infosys today. The system integrator has the Topaz AI platform, which includes a set of services and solutions to help enterprises build and deploy AI applications. SUSE is also integrating the

Read More »

D-Wave uses quantum to solve real-world problem

D-Wave published its results today, peer-reviewed in the journal Science. The classical supercomputer that D-Wave benchmarked against was the Frontier supercomputer at the Department of Energy’s Oak Ridge National Laboratory. It was, until recently, the most powerful supercomputer in the world but moved to second place in November. Two different

Read More »

Alliant Energy Picks New Board Chair

Patrick Allen has been named as new independent chairman of the board of directors of Alliant Energy Corporation, succeeding John Larsen, who retired from the company after 36 years of service. The company said in a media release that the appointment will take effect after its annual meeting of shareowners, planned for May 2025. “Patrick has consistently demonstrated exceptional strategic insight throughout his tenure on the Board. I am excited to see the positive impact he will continue to have in his new role as Board Chair”, Carol Sanders, Lead Independent Director at Alliant Energy, said. Allen has been a Director of Alliant Energy’s Board since 2011. He was Chief Financial Officer at Collins Aerospace from 2018 to 2020 and previously served as Senior Vice President and CFO at Rockwell Collins, Inc. from 2005 to 2018, overseeing finance activities, including planning, accounting, treasury, audit, and tax. Before joining Rockwell Collins in 2001, Allen held several positions at Rockwell International, including Vice President and Treasurer. He started his career as an auditor at Deloitte & Touche and has served on the Board of Triumph Group, Inc. since 2023. To contact the author, email [email protected] WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed. MORE FROM THIS AUTHOR

Read More »

ICYMI: Secretary Wright Powers up American Energy at CERAWeek & the Houston Rodeo

“We are unabashedly pursuing a policy of MORE American energy production and infrastructure, not less.”  — Secretary Chris Wright at CERAWeek 2025   At the 43rd annual CERAWeek by S&P Global, Secretary Wright outlined the administration’s strategy to enhance the production of affordable, reliable, and secure American energy. He emphasized the critical role of fossil fuels in meeting global energy demands and the need to “end the Biden administration’s irrational, quasi-religious policies on climate change that imposed endless sacrifices on our citizens.”  Read Secretary Wright’s full remarks here.

Read More »

Petronas Is Evaluating Exit From Argentina Shale Oil Venture

Malaysia’s Petronas is evaluating a sale of its shale oil asset in Argentina, a move that would complete its exit from the country’s booming Vaca Muerta fields as several international drillers also look to divest from the region. Petronas has begun a process that may result in a sale of its 50% stake in La Amarga Chica, a venture with state-run YPF SA in the oil production heartland of Vaca Muerta, according to people familiar with the matter who couldn’t be named discussing private matters. Petronas has already been in talks with a potential suitor, one of the people said. Petronas didn’t respond to a request for comment.  Last year, Petronas left a venture with YPF to develop a project for liquefying and exporting shale gas. Petronas’ involvement in La Amarga Chica began in 2014, when Argentina’s shale industry was just getting started. The field’s size is about 46,000 acres, with half corresponding to each partner, according to YPF. If the sale does go ahead, Petronas would follow Exxon Mobil Corp. in divesting from Argentine shale oil and monetizing the assets at a time when the outlook for Vaca Muerta is improving under President Javier Milei. Equinor ASA is also eyeing the door, while TotalEnergies said this week it would sell if it could reap the sort of rich valuations that Exxon got. That’s left the stage largely to homegrown companies. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed. MORE FROM THIS AUTHOR Bloomberg

Read More »

Crude Edges Higher After Seven Weeks of Declines

Oil snapped a seven-week losing streak as US equity markets rebounded and peace talks between Russia and Ukraine stalled, damping expectations that Moscow’s crude will return to the market soon. West Texas Intermediate rose almost 1% to settle above $67 a barrel, supported by a weaker dollar and an advance in US equities. Brent climbed to settle below $71. Russian President Vladimir Putin said Ukrainian troops in the Kursk region should lay down their arms, and Ukraine pushed back on the request, raising doubts about how soon a ceasefire could be achieved. US crude eked out a 0.2% gain for the week, barely skirting an eighth straight weekly decline that would have been its longest such losing streak since 2015. US President Donald Trump’s salvos against the country’s major trading partners have weighed on crude prices since mid-January, raising the prospect of sputtering economic growth and falling oil consumption. Long-term inflation expectations jumped by the most since 1993, painting a gloomy picture for future energy demand. US crude earlier rose as much as 1.4% after the White House imposed sanctions on Iran’s oil minister and on more companies and vessels used by the OPEC member, while also restricting payment options for Russian energy, before paring the gains. Still, the ceasefire negotiations unfolding between Russia and Ukraine, as well as macroeconomic risk, are holding traders’ attention for now, said Rebecca Babin, senior energy trader at CIBC Private Wealth Group. The sanctions developments are “all just words until they’re enforced, so the market is less reactive to the headlines recently,” Babin said. The potential return of Russian barrels comes amid projections the market already is headed for an oversupply. The IEA forecasts the global supply surplus is set to deepen as an escalating trade war pressures demand at the same time that

Read More »

Qatar Supplies Syria With Natural Gas in Latest Post-Assad Boost

Qatar began supplying natural gas to Syria through Jordan, the latest boost to the war-torn country’s interim government following the fall of former president Bashar al-Assad. About 2 million cubic meters a day will be sent via the Arab Gas Pipeline, eventually contributing a total of 400 megawatts to the power grid, Syrian state-run news agency Sana said. The supplies were approved by Washington, Reuters reported earlier, without providing numbers.  The contract signals further recognition for the government of Ahmed Al-Sharaa, who led the battle to overthrow Assad. It should help increase average power supply for Syrians to four hours a day, up from two, helping ease severe energy shortages. The UK removed the Syrian central bank and 23 other entities, mainly lenders and energy companies, from a list of sanctioned institutions earlier this month, following similar moves by several Western countries. Natural gas supplies through the Arab Gas Pipeline to Syria, and by extension to Lebanon, have been disrupted since 2011 due to the war and have been largely inactive since then.  The exact mechanism by which Qatar will transport the gas to Syria and reactivate that section of the pipeline is unclear, as years of conflict have damaged vital energy infrastructure. Plus, the only LNG storage facility in Jordan, a vessel off the Red Sea port city of Aqaba, will be leased to Egypt for 10 years starting mid-2025. The power supply hinges on raising the production capacity of Syria’s Deir Ali power station, state-run Qatar News Agency said. This supply level is the “first phase” of a deal signed between Qatar Fund for Development and the Jordanian Ministry of Energy, in cooperation with the United Nations Development Program, which will oversee the “executive aspects of the project”. Syria’s interim government is seeking to replace oil imports from

Read More »

Energy Bosses Shrug Off DeepSeek to Focus on Powering AI Boom

While tariffs and macroeconomic concerns weighed on the outlook for oil at a major energy conference in Houston this week, the mood around artificial intelligence and its sky-high power needs could scarcely be different. For a second year, energy executives at the CERAWeek by S&P Global gathering hailed the looming data center requirements for AI as both a huge challenge and a once-in-a-generation opportunity.  “The only way we win the AI arms race with China is if we have electricity,” US Interior Secretary Doug Burgum said in his address. “They are moving at a speed that would suggest we are in a serious cyberwar with them.” The energy world appears to have shrugged off investor doubts that emerged over the AI-power narrative in January, when Chinese startup DeepSeek released a chat bot purported to use just a fraction of the electricity required by established US rivals. Despite that wobble, many forecasts for US power demand are still unprecedented — and come after more than two decades of stable consumption. Jenny Yang, head of power and renewables research at S&P, told conference delegates Thursday that US utilities’ estimates for additional power demand coming just from data centers by 2030 are equivalent to the entire Ercot power market in Texas. “We’re seeing load forecasts that, in my experience as a state regulator, are mind-boggling,” said Mark Christie, a former energy regulator in Virginia, the data-center capital of the US, and who now chairs the Federal Energy Regulatory Commission. The so-called hyperscalers continue to race ahead with their build-out of AI infrastructure. Google parent Alphabet Inc. reported last month it plans capital expenditures of $75 billion this year.  The power demand related to that spending “is coming so fast and from so many different directions,” Alan Armstrong, chief executive officer of US pipeline operator Williams

Read More »

IBM laying foundation for mainframe as ultimate AI server

“It will truly change what customers are able to do with AI,” Stowell said. IBM’s mainframe processors The next generation of processors is expected to continue a long history of generation-to-generation improvements, IBM stated in a new white paper on AI and the mainframe. “They are projected to clock in at 5.5 GHz. and include ten 36 MB level 2 caches. They’ll feature built-in low-latency data processing for accelerated I/O as well as a completely redesigned cache and chip-interconnection infrastructure for more on-chip cache and compute capacity,” IBM wrote.  Today’s mainframes also have extensions and accelerators that integrate with the core systems. These specialized add-ons are designed to enable the adoption of technologies such as Java, cloud and AI by accelerating computing paradigms that are essential for high-volume, low-latency transaction processing, IBM wrote.  “The next crop of AI accelerators are expected to be significantly enhanced—with each accelerator designed to deliver 4 times more compute power, reaching 24 trillion operations per second (TOPS),” IBM wrote. “The I/O and cache improvements will enable even faster processing and analysis of large amounts of data and consolidation of workloads running across multiple servers, for savings in data center space and power costs. And the new accelerators will provide increased capacity to enable additional transaction clock time to perform enhanced in-transaction AI inferencing.” In addition, the next generation of the accelerator architecture is expected to be more efficient for AI tasks. “Unlike standard CPUs, the chip architecture will have a simpler layout, designed to send data directly from one compute engine, and use a range of lower- precision numeric formats. These enhancements are expected to make running AI models more energy efficient and far less memory intensive. As a result, mainframe users can leverage much more complex AI models and perform AI inferencing at a greater scale

Read More »

VergeIO enhances VergeFabric network virtualization offering

VergeIO is not, however, using an off-the-shelf version of KVM. Rather, it is using what Crump referred to as a heavily modified KVM hypervisor base, with significant proprietary enhancements while still maintaining connections to the open-source community. VergeIO’s deployment profile is currently 70% on premises and about 30% via bare-metal service providers, with a particularly strong following among cloud service providers that host applications for their customers. The software requires direct hardware access due to its low-level integration with physical resources. “Since November of 2023, the normal number one customer we’re attracting right now is guys that have had a heart attack when they got their VMware renewal license,” Crump said. “The more of the stack you own, the better our story becomes.” A 2024 report from Data Center Intelligence Group (DCIG) identified VergeOS as one of the top 5 alternatives to VMware. “VergeIO starts by installing VergeOS on bare metal servers,” the report stated. “It then brings the servers’ hardware resources under its management, catalogs these resources, and makes them available to VMs. By directly accessing and managing the server’s hardware resources, it optimizes them in ways other hypervisors often cannot.” Advanced networking features in VergeFabric VergeFabric is the networking component within the VergeOS ecosystem, providing software-defined networking capabilities as an integrated service rather than as a separate virtual machine or application.

Read More »

Podcast: On the Frontier of Modular Edge AI Data Centers with Flexnode’s Andrew Lindsey

The modular data center industry is undergoing a seismic shift in the age of AI, and few are as deeply embedded in this transformation as Andrew Lindsey, Co-Founder and CEO of Flexnode. In a recent episode of the Data Center Frontier Show podcast, Lindsey joined Editor-in-Chief Matt Vincent and Senior Editor David Chernicoff to discuss the evolution of modular data centers, the growing demand for high-density liquid-cooled solutions, and the industry factors driving this momentum. A Background Rooted in Innovation Lindsey’s career has been defined by the intersection of technology and the built environment. Prior to launching Flexnode, he worked at Alpha Corporation, a top 100 engineering and construction management firm founded by his father in 1979. His early career involved spearheading technology adoption within the firm, with a focus on high-security infrastructure for both government and private clients. Recognizing a massive opportunity in the data center space, Lindsey saw a need for an innovative approach to infrastructure deployment. “The construction industry is relatively uninnovative,” he explained, citing a McKinsey study that ranked construction as the second least-digitized industry—just above fishing and wildlife, which remains deliberately undigitized. Given the billions of square feet of data center infrastructure required in a relatively short timeframe, Lindsey set out to streamline and modernize the process. Founded four years ago, Flexnode delivers modular data centers with a fully integrated approach, handling everything from site selection to design, engineering, manufacturing, deployment, operations, and even end-of-life decommissioning. Their core mission is to provide an “easy button” for high-density computing solutions, including cloud and dedicated GPU infrastructure, allowing faster and more efficient deployment of modular data centers. The Rising Momentum for Modular Data Centers As Vincent noted, Data Center Frontier has closely tracked the increasing traction of modular infrastructure. Lindsey has been at the forefront of this

Read More »

Last Energy to Deploy 30 Microreactors in Texas for Data Centers

As the demand for data center power surges in Texas, nuclear startup Last Energy has now announced plans to build 30 microreactors in the state’s Haskell County near the Dallas-Fort Worth Metroplex. The reactors will serve a growing customer base of data center operators in the region looking for reliable, carbon-free energy. The plan marks Last Energy’s largest project to date and a significant step in advancing modular nuclear power as a viable solution for high-density computing infrastructure. Meeting the Looming Power Demands of Texas Data Centers Texas is already home to over 340 data centers, with significant expansion underway. Google is increasing its data center footprint in Dallas, while OpenAI’s Stargate has announced plans for a new facility in Abilene, just an hour south of Last Energy’s planned site. The company notes the Dallas-Fort Worth metro area alone is projected to require an additional 43 gigawatts of power in the coming years, far surpassing current grid capacity. To help remediate, Last Energy has secured a 200+ acre site in Haskell County, approximately three and a half hours west of Dallas. The company has also filed for a grid connection with ERCOT, with plans to deliver power via a mix of private wire and grid transmission. Additionally, Last Energy has begun pre-application engagement with the U.S. Nuclear Regulatory Commission (NRC) for an Early Site Permit, a key step in securing regulatory approval. According to Last Energy CEO Bret Kugelmass, the company’s modular approach is designed to bring nuclear energy online faster than traditional projects. “Nuclear power is the most effective way to meet Texas’ growing energy demand, but it needs to be deployed faster and at scale,” Kugelmass said. “Our microreactors are designed to be plug-and-play, enabling data center operators to bypass the constraints of an overloaded grid.” Scaling Nuclear for

Read More »

Data Center Jobs: Engineering and Technician Jobs Available in Major Markets

Each month Data Center Frontier, in partnership with Pkaza, posts some of the hottest data center career opportunities in the market. Here’s a look at some of the latest data center jobs posted on the Data Center Frontier jobs board, powered by Pkaza Critical Facilities Recruiting.  Data Center Facility Engineer (Night Shift Available) Ashburn, VAThis position is also available in: Tacoma, WA (Nights), Days/Nights: Needham, MA and New York City, NY. This opportunity is working directly with a leading mission-critical data center developer / wholesaler / colo provider. This firm provides data center solutions custom-fit to the requirements of their client’s mission-critical operational facilities. They provide reliability of mission-critical facilities for many of the world’s largest organizations facilities supporting enterprise clients and hyperscale companies. This opportunity provides a career-growth minded role with exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits. Electrical Commissioning Engineer New Albany, OHThis traveling position is also available in: Somerset, NJ; Boydton, VA; Richmond, VA; Ashburn, VA; Charlotte, NC; Atlanta, GA; Hampton, GA; Fayetteville, GA; Des Moines, IA; San Jose, CA; Portland, OR; St Louis, MO; Phoenix, AZ;  Dallas, TX;  Chicago, IL; or Toronto, ON. *** ALSO looking for a LEAD EE and ME CxA agents.*** Our client is an engineering design and commissioning company that has a national footprint and specializes in MEP critical facilities design. They provide design, commissioning, consulting and management expertise in the critical facilities space. They have a mindset to provide reliability, energy efficiency, sustainable design and LEED expertise when providing these consulting services for enterprise, colocation and hyperscale companies. This career-growth minded opportunity offers exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits. Switchgear Field Service Technician – Critical Facilities Nationwide TravelThis position is also available in: Charlotte, NC; Atlanta, GA; Dallas,

Read More »

Amid Shifting Regional Data Center Policies, Iron Mountain and DC Blox Both Expand in Virginia’s Henrico County

The dynamic landscape of data center developments in Maryland and Virginia exemplify the intricate balance between fostering technological growth and addressing community and environmental concerns. Data center developers in this region find themselves both in the crosshairs of groups worried about the environment and other groups looking to drive economic growth. In some cases, the groups are different components of the same organizations, such as local governments. For data center development, meeting the needs of these competing interests often means walking a none-too-stable tightrope. Rapid Government Action Encourages Growth In May 2024, Maryland demonstrated its commitment to attracting data center investments by enacting the Critical Infrastructure Streamlining Act. This legislation provides a clear framework for the use of emergency backup power generation, addressing previous regulatory challenges that a few months earlier had hindered projects like Aligned Data Centers’ proposed 264-megawatt campus in Frederick County, causing Aligned to pull out of the project. However, just days after the Act was signed by the governor, Aligned reiterated its plans to move forward with development in Maryland.  With the Quantum Loop and the related data center development making Frederick County a focal point for a balanced approach, the industry is paying careful attention to the pace of development and the relations between developers, communities and the government. In September of 2024, Frederick County Executive Jessica Fitzwater revealed draft legislation that would potentially restrict where in the county data centers could be built. The legislation was based on information found in the Frederick County Data Centers Workgroup’s final report. Those bills would update existing regulations and create a floating zone for Critical Digital Infrastructure and place specific requirements on siting data centers. Statewide, a cautious approach to environmental and community impacts statewide has been deemed important. In January 2025, legislators introduced SB116,  a bill

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »