Stay Ahead, Stay ONMINE

This Nobel Prize–winning chemist dreams of making water from thin air

Omar Yaghi was a quiet child, diligent, unlikely to roughhouse with his nine siblings. So when he was old enough, his parents tasked him with one of the family’s most vital chores: fetching water. Like most homes in his Palestinian neighborhood in Amman, Jordan, the Yaghis’ had no electricity or running water. At least once every two weeks, the city switched on local taps for a few hours so residents could fill their tanks. Young Omar helped top up the family supply. Decades later, he says he can’t remember once showing up late. The fear of leaving his parents, seven brothers, and two sisters parched kept him punctual. Yaghi proved so dependable that his father put him in charge of monitoring how much the cattle destined for the family butcher shop ate and drank. The best-­quality cuts came from well-fed, hydrated animals—a challenge given that they were raised in arid desert. Specially designed materials called metal-organic frameworks can pull water from the air like a sponge—and then give it back. But at 10 years old, Yaghi learned of a different occupation. Hoping to avoid a rambunctious crowd at recess, he found the library doors in his school unbolted and sneaked in. Thumbing through a chemistry textbook, he saw an image he didn’t understand: little balls connected by sticks in fascinating shapes. Molecules. The building blocks of everything. “I didn’t know what they were, but it captivated my attention,” Yaghi says. “I kept trying to figure out what they might be.” That’s how he discovered chemistry—or maybe how chemistry discovered him. After coming to the United States and, eventually, a postdoctoral program at Harvard University, Yaghi devoted his career to finding ways to make entirely new and fascinating shapes for those little sticks and balls. In October 2025, he was one of three scientists who won a Nobel Prize in chemistry for identifying metal-­organic frameworks, or MOFs—metal ions tethered to organic molecules that form repeating structural landscapes. Today that work is the basis for a new project that sounds like science fiction, or a miracle: conjuring water out of thin air. When he first started working with MOFs, Yaghi thought they might be able to absorb climate-damaging carbon dioxide—or maybe hold hydrogen molecules, solving the thorny problem of storing that climate-friendly but hard-to-contain fuel. But then, in 2014, Yaghi’s team of researchers at UC Berkeley had an epiphany. The tiny pores in MOFs could be designed so the material would pull water molecules from the air around them, like a sponge—and then, with just a little heat, give back that water as if squeezed dry. Just one gram of a water-absorbing MOF has an internal surface area of roughly 7,000 square meters. Yaghi wasn’t the first to try to pull potable water from the atmosphere. But his method could do it at lower levels of humidity than rivals—potentially shaking up a tiny, nascent industry that could be critical to humanity in the thirsty decades to come. Now the company he founded, called Atoco, is racing to demonstrate a pair of machines that Yaghi believes could produce clean, fresh, drinkable water virtually anywhere on Earth, without even hooking up to an energy supply. That’s the goal Yaghi has been working toward for more than a decade now, with the rigid determination that he learned while doing chores in his father’s butcher shop. “It was in that shop where I learned how to perfect things, how to have a work ethic,” he says. “I learned that a job is not done until it is well done. Don’t start a job unless you can finish it.” Most of Earth is covered in water, but just 3% of it is fresh, with no salt—the kind of water all terrestrial living things need. Today, desalination plants that take the salt out of seawater provide the bulk of potable water in technologically advanced desert nations like Israel and the United Arab Emirates, but at a high cost. Desalination facilities either heat water to distill out the drinkable stuff or filter it with membranes the salt doesn’t pass through; both methods require a lot of energy and leave behind concentrated brine. Typically desal pumps send that brine back into the ocean, with devastating ecological effects. Heiner Linke, chair of the Nobel Committee for Chemistry, uses a model to explain how metalorganic frameworks (MOFs) can trap smaller molecules inside. In October 2025, Yaghi and two other scientists won the Nobel Prize in chemistry for identifying MOFs.JONATHAN NACKSTRAND/GETTY IMAGES I was talking to Atoco executives about carbon dioxide capture earlier this year when they mentioned the possibility of harvesting water from the atmosphere. Of course my mind immediately jumped to Star Wars, and Luke Skywalker working on his family’s moisture farm, using “vaporators” to pull water from the atmosphere of the arid planet Tatooine. (Other sci-fi fans’ minds might go to Dune, and the water-gathering technology of the Fremen.) Could this possibly be real? It turns out people have been doing it for millennia. Archaeological evidence of water harvesting from fog dates back as far as 5000 BCE. The ancient Greeks harvested dew, and 500 years ago so did the Inca, using mesh nets and buckets under trees. Today, harvesting water from the air is a business already worth billions of dollars, say industry analysts—and it’s on track to be worth billions more in the next five years. In part that’s because typical sources of fresh water are in crisis. Less snowfall in mountains during hotter winters means less meltwater in the spring, which means less water downstream. Droughts regularly break records. Rising seas seep into underground aquifers, already drained by farming and sprawling cities. Aging septic tanks leach bacteria into water, and cancer-causing “forever chemicals” are creating what the US Government Accountability Office last year said “may be the biggest water problem since lead.” That doesn’t even get to the emerging catastrophe from microplastics. So lots of places are turning to atmospheric water harvesting. Watergen, an Israel-based company working on the tech, initially planned on deploying in the arid, poorer parts of the world. Instead, buyers in Europe and the United States have approached the company as a way to ensure a clean supply of water. And one of Watergen’s biggest markets is the wealthy United Arab Emirates. “When you say ‘water crisis,’ it’s not just the lack of water—it’s access to good-quality water,” says Anna Chernyavsky, Watergen’s vice president of marketing. In other words, the technology “has evolved from lab prototypes to robust, field-deployable systems,” says Guihua Yu, a mechanical engineer at the University of Texas at Austin. “There is still room to improve productivity and energy efficiency in the whole-system level, but so much progress has been steady and encouraging.” MOFs are just the latest approach to the idea. The first generation of commercial tech depended on compressors and refrigerant chemicals—large-scale versions of the machine that keeps food cold and fresh in your kitchen. Both use electricity and a clot of pipes and exchangers to make cold by phase-shifting a chemical from gas to liquid and back; refrigerators try to limit condensation, and water generators basically try to enhance it. That’s how Watergen’s tech works: using a compressor and a heat exchanger to wring water from air at humidity levels as low as 20%—Death Valley in the spring. “We’re talking about deserts,” Chernyavsky says. “Below 20%, you get nosebleeds.” A Watergen unit provides drinking water to students and staff at St. Joseph’s, a girls’ school in Freetown, Sierra Leone. “When you say ‘water crisis,’ it’s not just the lack of water— it’s access to good-quality water,” says Anna Chernyavsky, Watergen’s vice president of marketing.COURTESY OF WATERGEN That still might not be good enough. “Refrigeration works pretty well when you are above a certain relative humidity,” says Sameer Rao, a mechanical engineer at the University of Utah who researches atmospheric water harvesting. “As the environment dries out, you go to lower relative humidities, and it becomes harder and harder. In some cases, it’s impossible for refrigeration-based systems to really work.” So a second wave of technology has found a market. Companies like Source Global use desiccants—substances that absorb moisture from the air, like the silica packets found in vitamin bottles—to pull in moisture and then release it when heated. In theory, the benefit of desiccant-­based tech is that it could absorb water at lower humidity levels, and it uses less energy on the front end since it isn’t running a condenser system. Source Global claims its off-grid, solar-powered system is deployed in dozens of countries. But both technologies still require a lot of energy, either to run the heat exchangers or to generate sufficient heat to release water from the desiccants. MOFs, Yaghi hopes, do not. Now Atoco is trying to prove it. Instead of using heat exchangers to bring the air temperature to dew point or desiccants to attract water from the atmosphere, a system can rely on specially designed MOFs to attract water molecules. Atoco’s prototype version uses an MOF that looks like baby powder, stuck to a surface like glass. The pores in the MOF naturally draw in water molecules but remain open, making it theoretically easy to discharge the water with no more heat than what comes from direct sunlight. Atoco’s industrial-scale design uses electricity to speed up the process, but the company is working on a second design that can operate completely off grid, without any energy input. Yaghi’s Atoco isn’t the only contender seeking to use MOFs for water harvesting. A competitor, AirJoule, has introduced MOF-based atmospheric water generators in Texas and the UAE and is working with researchers at Arizona State University, planning to deploy more units in the coming months. The company started out trying to build more efficient air-­conditioning for electric buses operating on hot, humid city streets. But then founder Matt Jore heard about US government efforts to harvest water from air—and pivoted. The startup’s stock price has been a bit of a roller-­coaster, but Jore says the sheer size of the market should keep him in business. Take Maricopa County, encompassing Phoenix and its environs—it uses 1.2 billion gallons of water from its shrinking aquifer every day, and another 874 million gallons from surface sources like rivers. “So, a couple of billion gallons a day, right?” Jore tells me. “You know how much influx is in the atmosphere every day? Twenty-five billion gallons.” My eyebrows go up. “Globally?” “Just the greater Phoenix area gets influx of about 25 billion gallons of water in the air,” he says. “If you can tap into it, that’s your source. And it’s not going away. It’s all around the world. We view the atmosphere as the world’s free pipeline.” Besides AirJoule’s head start on Atoco, the companies also differ on where they get their MOFs. AirJoule’s system relies on an off-the-shelf version the company buys from the chemical giant BASF; Atoco aims to use Yaghi’s skill with designing the novel material to create bespoke MOFs for different applications and locations. “Given the fact that we have the inventor of the whole class of materials, and we leverage the stuff that comes out of his lab at Berkeley—everything else equal, we have a good starting point to engineer maybe the best materials in the world,” says Magnus Bach, Atoco’s VP of business development. Yaghi envisions a two-pronged product line. Industrial-scale water generators that run on electricity would be capable of producing thousands of liters per day on one end, while units that run on passive systems could operate in remote locations without power, just harnessing energy from the sun and ambient temperatures. In theory, these units could someday replace desalination and even entire municipal water supplies. The next round of field tests is scheduled for early 2026, in the Mojave Desert—one of the hottest, driest places on Earth. “That’s my dream,” Yaghi says. “To give people water independence, so they’re not reliant on another party for their lives.” Both Yaghi and Watergen’s Chernyavsky say they’re looking at more decentralized versions that could operate outside municipal utility systems. Home appliances, similar to rooftop solar panels and batteries, could allow households to generate their own water off grid. That could be tricky, though, without economies of scale to bring down prices. “You have to produce, you have to cool, you have to filter—all in one place,” Chernyavsky says. “So to make it small is very, very challenging.” Difficult as that may be, Yaghi’s childhood gave him a particular appreciation for the freedom to go off grid, to liberate the basic necessity of water from the whims of systems that dictate when and how people can access it. “That’s really my dream,” he says. “To give people independence, water independence, so that they’re not reliant on another party for their livelihood or lives.” Toward the end of one of our conversations, I asked Yaghi what he would tell the younger version of himself if he could. “Jordan is one of the worst countries in terms of the impact of water stress,” he said. “I would say, ‘Continue to be diligent and observant. It doesn’t really matter what you’re pursuing, as long as you’re passionate.’” I pressed him for something more specific: “What do you think he’d say when you described this technology to him?” Yaghi smiled: “I think young Omar would think you’re putting him on, that this is all fictitious and you’re trying to take something from him.” This reality, in other words, would be beyond young Omar’s wildest dreams. Alexander C. Kaufman is a reporter who has covered energy, climate change, pollution, business, and geopolitics for more than a decade.

Omar Yaghi was a quiet child, diligent, unlikely to roughhouse with his nine siblings. So when he was old enough, his parents tasked him with one of the family’s most vital chores: fetching water. Like most homes in his Palestinian neighborhood in Amman, Jordan, the Yaghis’ had no electricity or running water. At least once every two weeks, the city switched on local taps for a few hours so residents could fill their tanks. Young Omar helped top up the family supply. Decades later, he says he can’t remember once showing up late. The fear of leaving his parents, seven brothers, and two sisters parched kept him punctual.

Yaghi proved so dependable that his father put him in charge of monitoring how much the cattle destined for the family butcher shop ate and drank. The best-­quality cuts came from well-fed, hydrated animals—a challenge given that they were raised in arid desert.

Specially designed materials called metal-organic frameworks can pull water from the air like a sponge—and then give it back.

But at 10 years old, Yaghi learned of a different occupation. Hoping to avoid a rambunctious crowd at recess, he found the library doors in his school unbolted and sneaked in. Thumbing through a chemistry textbook, he saw an image he didn’t understand: little balls connected by sticks in fascinating shapes. Molecules. The building blocks of everything.

“I didn’t know what they were, but it captivated my attention,” Yaghi says. “I kept trying to figure out what they might be.”

That’s how he discovered chemistry—or maybe how chemistry discovered him. After coming to the United States and, eventually, a postdoctoral program at Harvard University, Yaghi devoted his career to finding ways to make entirely new and fascinating shapes for those little sticks and balls. In October 2025, he was one of three scientists who won a Nobel Prize in chemistry for identifying metal-­organic frameworks, or MOFs—metal ions tethered to organic molecules that form repeating structural landscapes. Today that work is the basis for a new project that sounds like science fiction, or a miracle: conjuring water out of thin air.

When he first started working with MOFs, Yaghi thought they might be able to absorb climate-damaging carbon dioxide—or maybe hold hydrogen molecules, solving the thorny problem of storing that climate-friendly but hard-to-contain fuel. But then, in 2014, Yaghi’s team of researchers at UC Berkeley had an epiphany. The tiny pores in MOFs could be designed so the material would pull water molecules from the air around them, like a sponge—and then, with just a little heat, give back that water as if squeezed dry. Just one gram of a water-absorbing MOF has an internal surface area of roughly 7,000 square meters.

Yaghi wasn’t the first to try to pull potable water from the atmosphere. But his method could do it at lower levels of humidity than rivals—potentially shaking up a tiny, nascent industry that could be critical to humanity in the thirsty decades to come. Now the company he founded, called Atoco, is racing to demonstrate a pair of machines that Yaghi believes could produce clean, fresh, drinkable water virtually anywhere on Earth, without even hooking up to an energy supply.

That’s the goal Yaghi has been working toward for more than a decade now, with the rigid determination that he learned while doing chores in his father’s butcher shop.

“It was in that shop where I learned how to perfect things, how to have a work ethic,” he says. “I learned that a job is not done until it is well done. Don’t start a job unless you can finish it.”


Most of Earth is covered in water, but just 3% of it is fresh, with no salt—the kind of water all terrestrial living things need. Today, desalination plants that take the salt out of seawater provide the bulk of potable water in technologically advanced desert nations like Israel and the United Arab Emirates, but at a high cost. Desalination facilities either heat water to distill out the drinkable stuff or filter it with membranes the salt doesn’t pass through; both methods require a lot of energy and leave behind concentrated brine. Typically desal pumps send that brine back into the ocean, with devastating ecological effects.

hand holding a ball and stick model
Heiner Linke, chair of the Nobel Committee for Chemistry, uses a model to explain how metalorganic frameworks (MOFs) can trap smaller molecules inside. In October 2025, Yaghi and two other scientists won the Nobel Prize in chemistry for identifying MOFs.
JONATHAN NACKSTRAND/GETTY IMAGES

I was talking to Atoco executives about carbon dioxide capture earlier this year when they mentioned the possibility of harvesting water from the atmosphere. Of course my mind immediately jumped to Star Wars, and Luke Skywalker working on his family’s moisture farm, using “vaporators” to pull water from the atmosphere of the arid planet Tatooine. (Other sci-fi fans’ minds might go to Dune, and the water-gathering technology of the Fremen.) Could this possibly be real?

It turns out people have been doing it for millennia. Archaeological evidence of water harvesting from fog dates back as far as 5000 BCE. The ancient Greeks harvested dew, and 500 years ago so did the Inca, using mesh nets and buckets under trees.

Today, harvesting water from the air is a business already worth billions of dollars, say industry analysts—and it’s on track to be worth billions more in the next five years. In part that’s because typical sources of fresh water are in crisis. Less snowfall in mountains during hotter winters means less meltwater in the spring, which means less water downstream. Droughts regularly break records. Rising seas seep into underground aquifers, already drained by farming and sprawling cities. Aging septic tanks leach bacteria into water, and cancer-causing “forever chemicals” are creating what the US Government Accountability Office last year said “may be the biggest water problem since lead.” That doesn’t even get to the emerging catastrophe from microplastics.

So lots of places are turning to atmospheric water harvesting. Watergen, an Israel-based company working on the tech, initially planned on deploying in the arid, poorer parts of the world. Instead, buyers in Europe and the United States have approached the company as a way to ensure a clean supply of water. And one of Watergen’s biggest markets is the wealthy United Arab Emirates. “When you say ‘water crisis,’ it’s not just the lack of water—it’s access to good-quality water,” says Anna Chernyavsky, Watergen’s vice president of marketing.

In other words, the technology “has evolved from lab prototypes to robust, field-deployable systems,” says Guihua Yu, a mechanical engineer at the University of Texas at Austin. “There is still room to improve productivity and energy efficiency in the whole-system level, but so much progress has been steady and encouraging.”


MOFs are just the latest approach to the idea. The first generation of commercial tech depended on compressors and refrigerant chemicals—large-scale versions of the machine that keeps food cold and fresh in your kitchen. Both use electricity and a clot of pipes and exchangers to make cold by phase-shifting a chemical from gas to liquid and back; refrigerators try to limit condensation, and water generators basically try to enhance it.

That’s how Watergen’s tech works: using a compressor and a heat exchanger to wring water from air at humidity levels as low as 20%—Death Valley in the spring. “We’re talking about deserts,” Chernyavsky says. “Below 20%, you get nosebleeds.”

children in queue at a blue Watergen dispenser
A Watergen unit provides drinking water to students and staff at St. Joseph’s, a girls’ school in Freetown, Sierra Leone. “When you say ‘water crisis,’ it’s not just the lack of water— it’s access to good-quality water,” says Anna Chernyavsky, Watergen’s vice president of marketing.
COURTESY OF WATERGEN

That still might not be good enough. “Refrigeration works pretty well when you are above a certain relative humidity,” says Sameer Rao, a mechanical engineer at the University of Utah who researches atmospheric water harvesting. “As the environment dries out, you go to lower relative humidities, and it becomes harder and harder. In some cases, it’s impossible for refrigeration-based systems to really work.”

So a second wave of technology has found a market. Companies like Source Global use desiccants—substances that absorb moisture from the air, like the silica packets found in vitamin bottles—to pull in moisture and then release it when heated. In theory, the benefit of desiccant-­based tech is that it could absorb water at lower humidity levels, and it uses less energy on the front end since it isn’t running a condenser system. Source Global claims its off-grid, solar-powered system is deployed in dozens of countries.

But both technologies still require a lot of energy, either to run the heat exchangers or to generate sufficient heat to release water from the desiccants. MOFs, Yaghi hopes, do not. Now Atoco is trying to prove it. Instead of using heat exchangers to bring the air temperature to dew point or desiccants to attract water from the atmosphere, a system can rely on specially designed MOFs to attract water molecules. Atoco’s prototype version uses an MOF that looks like baby powder, stuck to a surface like glass. The pores in the MOF naturally draw in water molecules but remain open, making it theoretically easy to discharge the water with no more heat than what comes from direct sunlight. Atoco’s industrial-scale design uses electricity to speed up the process, but the company is working on a second design that can operate completely off grid, without any energy input.

Yaghi’s Atoco isn’t the only contender seeking to use MOFs for water harvesting. A competitor, AirJoule, has introduced MOF-based atmospheric water generators in Texas and the UAE and is working with researchers at Arizona State University, planning to deploy more units in the coming months. The company started out trying to build more efficient air-­conditioning for electric buses operating on hot, humid city streets. But then founder Matt Jore heard about US government efforts to harvest water from air—and pivoted. The startup’s stock price has been a bit of a roller-­coaster, but Jore says the sheer size of the market should keep him in business. Take Maricopa County, encompassing Phoenix and its environs—it uses 1.2 billion gallons of water from its shrinking aquifer every day, and another 874 million gallons from surface sources like rivers.

“So, a couple of billion gallons a day, right?” Jore tells me. “You know how much influx is in the atmosphere every day? Twenty-five billion gallons.”

My eyebrows go up. “Globally?”

“Just the greater Phoenix area gets influx of about 25 billion gallons of water in the air,” he says. “If you can tap into it, that’s your source. And it’s not going away. It’s all around the world. We view the atmosphere as the world’s free pipeline.”

Besides AirJoule’s head start on Atoco, the companies also differ on where they get their MOFs. AirJoule’s system relies on an off-the-shelf version the company buys from the chemical giant BASF; Atoco aims to use Yaghi’s skill with designing the novel material to create bespoke MOFs for different applications and locations.

“Given the fact that we have the inventor of the whole class of materials, and we leverage the stuff that comes out of his lab at Berkeley—everything else equal, we have a good starting point to engineer maybe the best materials in the world,” says Magnus Bach, Atoco’s VP of business development.

Yaghi envisions a two-pronged product line. Industrial-scale water generators that run on electricity would be capable of producing thousands of liters per day on one end, while units that run on passive systems could operate in remote locations without power, just harnessing energy from the sun and ambient temperatures. In theory, these units could someday replace desalination and even entire municipal water supplies. The next round of field tests is scheduled for early 2026, in the Mojave Desert—one of the hottest, driest places on Earth.

“That’s my dream,” Yaghi says. “To give people water independence, so they’re not reliant on another party for their lives.”

Both Yaghi and Watergen’s Chernyavsky say they’re looking at more decentralized versions that could operate outside municipal utility systems. Home appliances, similar to rooftop solar panels and batteries, could allow households to generate their own water off grid.

That could be tricky, though, without economies of scale to bring down prices. “You have to produce, you have to cool, you have to filter—all in one place,” Chernyavsky says. “So to make it small is very, very challenging.”


Difficult as that may be, Yaghi’s childhood gave him a particular appreciation for the freedom to go off grid, to liberate the basic necessity of water from the whims of systems that dictate when and how people can access it.

“That’s really my dream,” he says. “To give people independence, water independence, so that they’re not reliant on another party for their livelihood or lives.”

Toward the end of one of our conversations, I asked Yaghi what he would tell the younger version of himself if he could. “Jordan is one of the worst countries in terms of the impact of water stress,” he said. “I would say, ‘Continue to be diligent and observant. It doesn’t really matter what you’re pursuing, as long as you’re passionate.’”

I pressed him for something more specific: “What do you think he’d say when you described this technology to him?”

Yaghi smiled: “I think young Omar would think you’re putting him on, that this is all fictitious and you’re trying to take something from him.” This reality, in other words, would be beyond young Omar’s wildest dreams.

Alexander C. Kaufman is a reporter who has covered energy, climate change, pollution, business, and geopolitics for more than a decade.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Will Google throw gasoline on the AI chip arms race?

The Nvidia processors, he explains, are for processing massive, large language models (LLMs), while the Google TPU is used for inferencing, the next step after processing the LLM. So the two chips don’t compete with each other, they complement each other, according to Gold. Selling and supporting processors may not

Read More »

Nvidia moves deeper into AI infrastructure with SchedMD acquisition

“Slurm excels at orchestrating multi-node distributed training, where jobs span hundreds or thousands of GPUs,” said Lian Jye Su, chief analyst at Omdia. “The software can optimize data movement within servers by deciding where jobs should be placed based on resource availability. With strong visibility into the network topology, Slurm

Read More »

ExxonMobil bumps up 2030 target for Permian production

ExxonMobil Corp., Houston, is looking to grow production in the Permian basin to about 2.5 MMboe/d by 2030, an increase of 200,000 boe/d from executives’ previous forecasts and a jump of more than 45% from this year’s output. Helping drive that higher target is an expected 2030 cost profile that

Read More »

Strategists Forecast Week on Week USA Crude Build

In an oil and gas report sent to Rigzone by the Macquarie team this week, Macquarie strategists, including Walt Chancellor, revealed that they are forecasting that U.S. crude inventories will be up by 2.5 million barrels for the week ending December 12. “This follows a 1.8 million barrel draw in the prior week, with the crude balance realizing quite loose relative to our expectations amidst an apparent surge in Canadian imports,” the strategists said in the report. “While our balances point to a much looser fundamental picture this week, we note some potential for a ‘catch-up’ to the tighter side in this week’s data,” they added. “For this week’s balance, from refineries, we look for a minimal reduction in crude runs. Among net imports, we model a small increase, with exports lower (-0.1 million barrels per day) and imports higher (+0.1 million barrels per day) on a nominal basis,” they continued. The strategists warned in the report that the timing of cargoes remains a source of potential volatility in this week’s crude balance. “From implied domestic supply (prod.+adj.+transfers), we look for an increase (+0.4 million barrels per day) on a nominal basis this week,” the strategists went on to note. “Rounding out the picture, we anticipate another small increase (+0.3 million barrels) in SPR [Strategic Petroleum Reserve] stocks this week,” they added. The analysts also stated in the report that, “among products”, they “again look for across the board builds (gasoline/ distillate/jet +5.2/+2.0/+1.5 million barrels)”. “We model implied demand for these three products at ~14.3 million barrels per day for the week ending December 12,” they said. In its latest weekly petroleum status report at the time of writing, which was released on December 10 and included data for the week ending December 5, the U.S. Energy Information Administration (EIA)

Read More »

SK On pivots to stationary energy storage after Ford joint venture ends

Dive Brief: Korean battery maker SK On says it remains committed to building out a Tennessee plant originally intended to supply electric vehicle batteries to Ford after a joint venture with the car maker was called off, the company said in a statement. The manufacturer will maintain its strategic partnership with Ford and continue to supply EV batteries for its future vehicles, SK Americas spokesperson Joe Guy Collier said in an email. However, going forward, SK On plans to focus more on “profitable and sustainable growth” in the U.S. by supplying batteries produced in the Tennessee plant to other customers, including for stationary energy storage systems, the company said. “This agreement allows SK On to strategically realign assets and production capacity to improve its operational efficiency,” the battery maker said in a statement. “It also enables the company to enhance productivity, operational flexibility, and respond more effectively to evolving market dynamics and diverse customer needs.” Dive Insight: Ford and SK On reached a mutual agreement to dissolve their electric vehicle battery joint venture, BlueOval SK, Collier confirmed in an email last week.  The joint venture was established in September 2021 as part of a planned $11.4 billion investment by the two companies to build three large-scale manufacturing plants — one in Tennessee and two in Kentucky —  to produce advanced batteries for Ford’s future EVs.  Under the terms of the dissolution agreement, each company will independently own and operate the joint venture’s former production facilities, Collier said. A Ford subsidiary will take full ownership of the two battery plants in Kentucky, and SK On will assume full ownership and operate the battery plant in Tennessee. “SK On is committed to the Tennessee plant long-term,” the company said. “We plan to make it a key part of our manufacturing base for advanced batteries

Read More »

Shell Adds New Gas Customer in Nigeria

Shell PLC, through Shell Nigeria Gas Ltd (SNG), has signed an agreement to supply natural gas to SG Industrial FZE. The new customer is “a leading steel company in the Guandong industrial zone in the state”, the British company said on its Nigerian website. “The agreement adds to a growing list of clients for SNG which has developed as a dependable supplier of gas through distribution pipelines of some 150 kilometers [93.21 miles], serving over 150 clients in Abia, Bayelsa, Ogun and Rivers states”, Shell said. Shell did not disclose the contract volume or value. SNG managing director Ralph Gbobo said, “Our commitment is clear – to build, operate and maintain a gas distribution system that is not only reliable but resilient, transparent and designed to fuel growth”. SG Industrial vice general manager Moya Shua said, “This collaboration marks a major step forward in securing reliable energy that will power our growth and long-term ambitions”. Shell said it had previously signed agreements to supply pipeline gas to Nigeria Distilleries Ltd III, Reliance Chemical Products Limited II, Rumbu Industries Nigeria Ltd and Ultimum Ltd. Expanding its gas operations in the West African country, Shell recently announced a final investment decision to develop the HI field to supply up to 350 million standard cubic feet of gas a day, equivalent to about 60,000 oil barrels per day, to Nigeria LNG. The project is part of a joint venture in which Shell owns 40 percent through Shell Nigeria Exploration and Production Co Ltd. Sunlink Energies and Resources Ltd holds 60 percent. At Nigeria LNG, which has a declared capacity of 22 million metric tons of liquefied natural gas a year, Shell owns 25.6 percent. “The increase in feedstock to NLNG, via the train VII project that aims to expand the Bonny Island terminal’s production capacity,

Read More »

Energy Secretary Ensures Washington Coal Plant Remains Open to Ensure Affordable, Reliable and Secure Power Heading into Winter

Emergency order addresses critical grid reliability issues, lowering risk of blackouts and ensuring affordable electricity access WASHINGTON—U.S. Secretary of Energy Chris Wright today issued an emergency order to ensure Americans in the Northwestern region of the United States have access to affordable, reliable and secure electricity heading into the cold winter months. The order directs TransAlta to keep Unit 2 of the Centralia Generating Station in Centralia, Washington available to operate. Unit 2 of the coal plant was scheduled to shut down at the end of 2025. The reliable supply of power from the Centralia coal plant is essential for grid stability in the Northwest. The order prioritizes minimizing the risk and costs of blackouts. “The last administration’s energy subtraction policies had the United States on track to experience significantly more blackouts in the coming years — thankfully, President Trump won’t let that happen,” said Energy Secretary Wright. “The Trump administration will continue taking action to keep America’s coal plants running so we can stop the price spikes and ensure we don’t lose critical generation sources. Americans deserve access to affordable, reliable, and secure energy to heat their homes all the time, regardless of whether the wind is blowing or the sun is shining.” According to DOE’s Resource Adequacy Report, blackouts were on track to potentially increase 100 times by 2030 if the U.S. continued to take reliable power offline as it did during the Biden administration. The North American Electric Reliability Corporation (NERC) determined in its 2025-2026 Winter Reliability Assessment that the WECC Northwest region is at elevated risk during periods of extreme weather, such as prolonged, far-reaching cold snaps.  This order is in effect beginning on December 16, 2025, and continuing until March 16, 2026.  Background:  The NERC Winter Reliability Assessment warns that “extreme winter conditions extending over

Read More »

Wood Says Mideast Contract Wins Exceeded $1B in 2025

John Wood Group PLC said Tuesday it has won more than $1 billion in contracts across the Middle East this year, exceeding last year’s company record. “Wood has seen a near 20 percent increase in awards compared to 2024, with wins across United Arab Emirates, Iraq, Kingdom of Saudi Arabia, Bahrain, Kuwait, Oman and Qatar”, the Aberdeen, Scotland-based engineering and consulting company said in an online statement. Ellis Renforth, president of operations for Europe, Middle East and Africa at Wood, said, “This year we’ve delivered critical solutions across the Middle East to improve asset reliability and cut emissions”. “In 2026, we’ll build on this success by expanding our operations and maintenance services in the region. Our focus is on proven approaches to asset management and modifications that improve efficiency and reduce downtime – practical steps that strengthen energy security and decarbonization”, Renforth added. Stuart Turl, Wood vice president for Middle East consulting, said, “Decarbonization and digitalization remain central to how we support clients in the Middle East. This year, we launched our specialist Middle East Energy Transition and Digital & AI Hubs to further support clients in accelerating emissions reduction while unlocking efficiencies through AI-driven solutions”. “This in-region advisory enables practical pathways to carbon reduction while supporting national visions for a sustainable energy future. Delivery has already spanned initiatives such as minerals procurement, hydrogen production facilities and carbon capture and storage infrastructure”, Turl said. On May 27 Wood said it had secured a contract from TA’ZIZ, a joint venture of Abu Dhabi National Oil Co (ADNOC) PJSC, TA’ZIZ to provide project management consultancy for the development of the UAE’s first methanol production facility, to rise in Al Ruwais Industrial City. “Construction will be completed by 2028 and the plant will be one of the largest methanol plants in the world, producing 1.8 million tonnes per year. It will be powered using the latest clean energy technology”, Wood noted. On June 10 Wood said it

Read More »

EU to Scrap Combustion Engine Ban

The European Union is set to propose softening emissions rules for new cars, scrapping an effective ban on combustion engines following months of pressure from the automotive industry. The proposal will allow carmakers to slow the rollout of electric vehicles in Europe and aligns the region more closely with the US, where President Donald Trump is tearing up efficiency standards for cars put in place by the previous administration. Globally, automakers are struggling to make the shift profitable, with Ford Motor Co. announcing it will take $19.5 billion in charges tied to a sweeping overhaul of its EV business. The European stepback – to be unveiled Tuesday – follows a global pullback from green policies as economic realities of major transformations set in. Mounting trade tensions with the US and China are pushing Europe to further prioritize shoring up its own industry. Although the bloc is legally bound to reach climate neutrality by 2050, governments and companies are intensifying calls for more flexibility, warning that rigid targets could jeopardize economic stability. Under the new proposal, the European Commission will lower the requirements that would have halted sales of new gasoline and diesel-fueled cars starting in 2035, instead allowing a number of plug-in hybrids and electric vehicles with fuel-powered range extenders, according to people with knowledge of the matter.  Tailpipe emissions will have to be reduced by 90 percent by the middle of the next decade compared with the current goal of a 100 percent reduction, said the people, who asked not to be identified because talks on the proposal are private. The commission will set a condition that carmakers need to compensate for the additional pollution by using low-carbon or renewable fuels or locally produced green steel. The European Commission declined to comment. The proposal is set to be adopted by EU commissioners on

Read More »

Uptime Institute’s Max Smolaks: Power, Racks, and the Economics of the AI Data Center Boom

The latest episode of the Data Center Frontier Show opens not with a sweeping thesis, but with a reminder of just how quickly the industry’s center of gravity has shifted. Editor in Chief Matt Vincent is joined by Max Smolaks, research analyst at Uptime Institute, whom DCF met in person earlier this year at the Open Compute Project (OCP) Global Summit 2025 in San Jose. Since then, Smolaks has been closely tracking several of the most consequential—and least obvious—threads shaping the AI infrastructure boom. What emerges over the course of the conversation is not a single narrative, but a set of tensions: between power and place, openness and vertical integration, hyperscale ambition and economic reality. From Crypto to Compute: An Unlikely On-Ramp One of the clearest structural patterns Smolaks sees in today’s AI buildout is the growing number of large-scale AI data center projects that trace their origins back to cryptocurrency mining. It is a transition few would have predicted even a handful of years ago. Generative AI was not an anticipated workload in traditional capacity planning cycles. Three years ago, ChatGPT did not exist, and the industry had not yet begun to grapple with the scale, power density, and energy intensity now associated with AI training and inference. When demand surged, developers were left with only a limited set of viable options. Many leaned heavily on on-site generation—most often natural gas—to bypass grid delays. Others ended up in geographies that had already been “discovered” by crypto miners. For years, cryptocurrency operators had been quietly mapping underutilized power capacity. Latency did not matter. Proximity to population centers did not matter. Cheap, abundant electricity did—often in remote or unconventional locations that would never have appeared on a traditional data center site-selection short list. As crypto markets softened, those same sites became

Read More »

Google’s TPU Roadmap: Challenging Nvidia’s Dominance in AI Infrastructure

Google’s roadmap for its Tensor Processing Units has quietly evolved into a meaningful counterweight to Nvidia’s GPU dominance in cloud AI infrastructure—particularly at hyperscale. While Nvidia sells physical GPUs and associated systems, Google sells accelerator services through Google Cloud Platform. That distinction matters: Google isn’t competing in the GPU hardware market, but it is increasingly competing in the AI compute services market, where accelerator mix and economics directly influence hyperscaler strategy. Over the past 18–24 months, Google has focused on identifying workloads that map efficiently onto TPUs and has introduced successive generations of the architecture, each delivering notable gains in performance, memory bandwidth, and energy efficiency. Currently, three major TPU generations are broadly available in GCP: v5e and v5p, the “5-series” workhorses tuned for cost-efficient training and scale-out learning. Trillium (v6), offering a 4–5× performance uplift over v5e with significant efficiency gains. Ironwood (v7 / TPU7x), a pod-scale architecture of 9,216 chips delivering more than 40 exaFLOPS FP8 compute, designed explicitly for the emerging “age of inference.” Google is also aggressively marketing TPU capabilities to external customers. The expanded Anthropic agreement (up to one million TPUs, representing ≥1 GW of capacity and tens of billions of dollars) marks the most visible sign of TPU traction. Reporting also suggests that Google and Meta are in advanced discussions for a multibillion-dollar arrangement in which Meta would lease TPUs beginning in 2026 and potentially purchase systems outright starting in 2027. At the same time, Google is broadening its silicon ambitions. The newly introduced Axion CPUs and the fully integrated AI Hypercomputer architecture frame TPUs not as a standalone option, but as part of a multi-accelerator environment that includes Nvidia H100/Blackwell GPUs, custom CPUs, optimized storage, and high-performance fabrics. What follows is a deeper look at how the TPU stack has evolved, and what

Read More »

DCF Trends Summit 2025: Beyond the Grid – Natural Gas, Speed, and the New Data Center Reality

By 2025, the data center industry’s power problem has become a site-selection problem, a finance problem, a permitting problem and, increasingly, a communications problem. That was the throughline of “Beyond the Grid: Natural Gas, Speed, and the New Data Center Reality,” a DCF Trends Summit panel moderated by Stu Dyer, First Vice President at CBRE, with Aad den Elzen, VP of Power Generation at Solar Turbines (a Caterpillar company); Creede Williams, CEO & President of Exigent Energy Partners; and Adam Michaelis, Vice President of Hyperscale Engineering at PointOne Data Centers. In an industry that once treated proximity to gas infrastructure as a red flag, Dyer opened with a blunt marker of the market shift: what used to be a “no-go” is now, for many projects, the shortest path to “yes.” Vacancy is tight, preleasing is high, and the center of gravity is moving both in scale and geography as developers chase power beyond the traditional core. From 48MW Campuses to Gigawatt Expectations Dyer framed the panel’s premise with a Northern Virginia memory: a “big” 48MW campus in Sterling that was expected to last five to seven years—until a hyperscale takedown effectively erased the runway. That was the early warning sign of what’s now a different era entirely. Today, Dyer said, the industry isn’t debating 72MW or even 150MW blocks. Increasingly, the conversation starts at 500MW critical and, for some customers, pushes past a gigawatt. Grid delivery timelines have not kept pace with that shift, and the mismatch is forcing alternative strategies into the mainstream. “If you’re interested in speed and scale… gas.” If there was a sharp edge to the panel, it came from Williams’ assertion that for near-term speed-to-power at meaningful scale, natural gas is the only broadly viable option. Williams spoke as an independent power producer (IPP) operator who

Read More »

Roundtable: The Economics of Acceleration

Ben Rapp, Rehlko: The pace of AI deployment is outpacing grid capacity in many regions, which means power strategy is now directly tied to deployment timelines. To move fast without sacrificing lifecycle cost or reliability, operators are adopting modular power systems that can be installed and commissioned quickly, then expanded or adapted as loads grow. From an energy perspective, this requires architectures that support multiple pathways: traditional generation, cleaner fuels like HVO, battery energy storage, and eventually hydrogen or renewable integrations where feasible. Backup power is no longer a static insurance policy, it’s a dynamic part of the operating model, supporting uptime, compliance, and long-term cost management. Rehlko’s global footprint and broad energy portfolio enable us to support operators through these transitions with scalable solutions that meet existing technical needs while providing a roadmap for future adaptation.

Read More »

DCF Trends Summit 2025: Bridging the Data Center Power Gap – Utilities, On-Site Power, and the AI Buildout

The second installment in our recap series from the 2025 Data Center Frontier Trends Summit highlights a panel that brought unusual candor—and welcome urgency—to one of the defining constraints of the AI era: power availability. Moderated by Buddy Rizer, Executive Director of Economic Development for Loudoun County, Bridging the Data Center Power Gap: Ways to Streamline the Energy Supply Chain convened a powerhouse group of energy and data center executives representing on-site generation, independent power markets, regulated utilities, and hyperscale operators: Jeff Barber, VP of Global Data Centers, Bloom Energy Bob Kinscherf, VP of National Accounts, Constellation Stan Blackwell, Director, Data Center Practice, Dominion Energy Joel Jansen, SVP Regulated Commercial Operations, American Electric Power David McCall, VP of Innovation, QTS Data Centers As presented on September 26, 2025 in Reston, Virginia, the discussion quickly revealed that while no single answer exists to the industry’s power crunch, a more collaborative, multi-path playbook is now emerging—and evolving faster than many realize. A Grid Designed for Yesterday Meets AI-Era Demand Curves Rizer opened with context familiar to anyone operating in Northern Virginia: this region sits at the epicenter of globally scaled digital infrastructure, but its once-ample headroom has evaporated under the weight of AI scaling cycles. Across the panel, the message was consistent: demand curves have shifted permanently, and the step-changes in load growth require new thinking across the entire energy supply chain. Joel Jansen (AEP) underscored the pace of change. A decade ago, utilities faced flat or declining load growth. Now, “our load curve is going straight up,” driven by hyperscale and AI training clusters that are large, high-density, and intolerant of slow development cycles. AEP’s 40,000 miles of transmission and 225,000 miles of distribution infrastructure give it perspective: generation is challenging, but transmission and interconnection timelines are becoming decisive gating factors.

Read More »

DCF Trends Summit 2025 – Scaling AI: Adaptive Reuse, Power-Rich Sites, and the New GPU Frontier

When Jones Lang LaSalle (JLL)’s Sean Farney walked back on stage after lunch at the Data Center Frontier Trends Summit 2025, he didn’t bother easing into the topic. “This is the best one of the day,” he joked, “and it’s got the most buzzwords in the title.” The session, “Scaling AI: The Role of Adaptive Reuse and Power-Rich Sites in GPU Deployment,” lived up to that billing. Over the course of the hour, Farney and his panel of experts dug into the hard constraints now shaping AI infrastructure—and the unconventional sites and power strategies needed to overcome them. Joining Farney on stage were: Lovisa Tedestedt, Strategic Account Executive – Cloud & Service Providers, Schneider Electric Phill Lawson-Shanks, Chief Innovation Officer, Aligned Data Centers Scott Johns, Chief Commercial Officer, Sapphire Gas Solutions Together, they painted a picture of an industry running flat-out, where adaptive reuse, modular buildouts, and behind-the-meter power are becoming the fastest path to AI revenue. The Perfect Storm: 2.3% Vacancy, Power-Constrained Revenue Farney opened with fresh JLL research that set the stakes in stark terms. U.S. colo vacancy is down to 2.3% – roughly 98% utilization. Just five years ago, vacancy was about 10%. The industry is tracking to over 5.4 GW of colocation absorption this year, with 63% of first-half absorption concentrated in just two markets: Northern Virginia and Dallas. There’s roughly 8 GW of build pipeline, but about 73% of that is already pre-leased, largely by hyperscalers and “Mag 7” cloud and AI giants. “We are the envy of every industry on the planet,” Farney said. “That’s fantastic if you’re in the data center business. It’s a really bad thing if you’re a customer.” The message to CIOs and CTOs was blunt: if you don’t have a capacity strategy dialed in, your growth may be constrained

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »